JP2006109676A - Rotor and manufacturing method therefor - Google Patents

Rotor and manufacturing method therefor Download PDF

Info

Publication number
JP2006109676A
JP2006109676A JP2004296643A JP2004296643A JP2006109676A JP 2006109676 A JP2006109676 A JP 2006109676A JP 2004296643 A JP2004296643 A JP 2004296643A JP 2004296643 A JP2004296643 A JP 2004296643A JP 2006109676 A JP2006109676 A JP 2006109676A
Authority
JP
Japan
Prior art keywords
permanent magnet
inner cylinder
cylinder
rotor
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296643A
Other languages
Japanese (ja)
Inventor
Yukifumi Jinbo
志文 神保
Takashi Kuroda
貴司 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004296643A priority Critical patent/JP2006109676A/en
Publication of JP2006109676A publication Critical patent/JP2006109676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor which can be reduced in the eccentricity of a permanent magnet and can be enhanced in the fracture resistance of the permanent magnet. <P>SOLUTION: The rotor comprises an inner cylinder 2 having protruded stripes 21 on the outer peripheral part, an outer cylinder 3 which is loosely fitted to the outer periphery of the inner cylinder 2 and covers the permanent magnet 4 with respect to the inner cylinder 2, a cushioning layer 5 composed of a silicon synthetic resin which is filled between the inner cylinder 2 and the outer cylinder 3 and holds the permanent magnet 4, and a support cylinder 1 which is fitted in the inside of the inner cylinder 2 so that it can be freely inserted and detached to integrally rotate with the inner cylinder 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電動モータの回転子及びこれの製造方法に関する。   The present invention relates to an electric motor rotor and a method of manufacturing the same.

電動モータは、磁石保持筒及び該磁石保持筒の外周部に配置される永久磁石とを有する回転子と、前記永久磁石の外周りに配置される固定子とを備えている。しかし、電動モータは、回転子が固定子に対して偏芯し易く、また、回転子が固定子に対して傾き易いという問題があり、さらに、永久磁石部の渦電流損失が生じ易く、また、永久磁石部の熱変形によって永久磁石が割れる等の問題があった。   The electric motor includes a rotor having a magnet holding cylinder and a permanent magnet arranged on the outer periphery of the magnet holding cylinder, and a stator arranged on the outer periphery of the permanent magnet. However, the electric motor has a problem that the rotor is easily decentered with respect to the stator, the rotor is easily inclined with respect to the stator, and eddy current loss of the permanent magnet portion easily occurs. There has been a problem that the permanent magnet breaks due to thermal deformation of the permanent magnet portion.

回転子の偏芯、傾きを低減する回転子として、円筒形の永久磁石及び該永久磁石の内側に結合された特殊ゴム製の緩衝層を有する回転子(例えば、特許文献1参照)が知られている。
また、永久磁石部の渦電流損失を低減する回転子として、円筒形の複数の永久磁石間に絶縁層を有する回転子(例えば、特許文献2参照)が知られている。
また、熱破壊を防ぐことができる回転子として、磁石保持筒に円筒形の永久磁石が遊嵌され、該永久磁石がシリコン系接着剤により磁石保持筒に接着された回転子(例えば、特許文献3参照)が知られている。
特開2001−327105号公報 特開平08−163801号公報 特開平08−154351号公報
As a rotor for reducing eccentricity and inclination of a rotor, a rotor having a cylindrical permanent magnet and a special rubber buffer layer coupled to the inside of the permanent magnet is known (for example, see Patent Document 1). ing.
Further, as a rotor for reducing eddy current loss in a permanent magnet portion, a rotor having an insulating layer between a plurality of cylindrical permanent magnets (see, for example, Patent Document 2) is known.
Further, as a rotor capable of preventing thermal destruction, a rotor in which a cylindrical permanent magnet is loosely fitted in a magnet holding cylinder, and the permanent magnet is bonded to the magnet holding cylinder with a silicon-based adhesive (for example, Patent Documents) 3) is known.
JP 2001-327105 A Japanese Patent Laid-Open No. 08-163801 Japanese Patent Laid-Open No. 08-154351

ところが、特許文献1のように構成された回転子にあっては、低速回転で高トルクを必要とし、さらに比較的高温になることが予想される電動パワーステアリング装置の電動モータに採用した場合、熱により永久磁石に割れが発生し易いという問題がある。   However, in the case of a rotor configured as in Patent Document 1, when it is used in an electric motor of an electric power steering device that requires high torque at low speed and is expected to be relatively high temperature, There is a problem that the permanent magnet is easily cracked by heat.

また、特許文献2のように構成された回転子にあっては、前記電動パワーステアリング装置の電動モータに採用した場合、熱により回転子が変形し、この変形部により絶縁層が圧迫され、永久磁石に割れが発生し易いという問題がある。   Further, in the case of the rotor configured as in Patent Document 2, when employed in the electric motor of the electric power steering apparatus, the rotor is deformed by heat, the insulating layer is pressed by the deformed portion, and is permanently There is a problem that the magnet is easily cracked.

また、特許文献3のように構成された回転子にあっては、円筒形の単一の永久磁石が用いられるため、永久磁石が巨大であり、永久磁石の製作が困難であるという問題がある。   Moreover, in the rotor comprised like patent document 3, since a cylindrical single permanent magnet is used, there exists a problem that a permanent magnet is huge and manufacture of a permanent magnet is difficult. .

操舵補助用として電動モータが使用される電動パワーステアリング装置の前記電動モータとして、回転子の磁石保持筒が操舵軸の途中に一体的に結合され、減速機構を経ることなく電動モータの回転力を操舵軸に直接伝動するように構成された場合、低速回転で高トルクを必要とするが、電動モータは車室に配置されるため、電動モータを径方向に大きくして高トルクが得られるように構成すると、電動モータの回転子を単純な円柱と見なした場合、一般に円柱のイナーシャ(慣性)は外径Dの二乗と質量Mに比例し、電動パワーステアリング装置においては外径Dの大径化によって慣性項が増大しステアリングホイールの戻り特性などが悪化するので高度な補正制御または補正機構の取付けを要求され、コストが増加し車両側で許容されている体積余裕を超え周辺機器との設置上の干渉を引き起こすため、前記構成を採用できない場合が発生しやすく車体への実装が難しい。大径化時のイナーシャ低減のために中空円筒にした場合、イナーシャは前記中空円筒の外径Dの二乗と内径dの二乗の和で示され、外径項と内径項とは質量Mにそれぞれ比例するので、軸方向長さL分だけ内径dにて円柱を肉抜きしただけでは回転子自体は軽量化するが、必ずしも円柱時のイナーシャよりも低減できるとは限らない。多くの前記のような場合に対応するためには、電動モータは軸長方向に長くして高トルクを得ることが要求される。   As the electric motor of the electric power steering apparatus in which the electric motor is used for steering assistance, the magnet holding cylinder of the rotor is integrally coupled in the middle of the steering shaft, and the rotational force of the electric motor is obtained without passing through the reduction mechanism. When configured to transmit directly to the steering shaft, high torque is required at low speed rotation, but since the electric motor is disposed in the passenger compartment, the electric motor can be increased in the radial direction so that high torque can be obtained. If the rotor of the electric motor is regarded as a simple cylinder, generally the inertia of the cylinder is proportional to the square of the outer diameter D and the mass M, and in the electric power steering device, the outer diameter D is large. Since the inertia term increases and the return characteristics of the steering wheel deteriorate due to the diameter increase, it is required to install advanced correction control or correction mechanism, which increases the cost and is allowed on the vehicle side. That to cause the installation on the interference of the volume margin beyond peripherals, it is difficult mounting to the vehicle body when it is not possible to adopt the configuration is likely to occur. When the hollow cylinder is used to reduce the inertia when the diameter is increased, the inertia is indicated by the sum of the square of the outer diameter D and the square of the inner diameter d of the hollow cylinder. Since it is proportional, the rotor itself can be reduced in weight by merely thinning the cylinder with the inner diameter d by the axial length L, but it cannot always be reduced more than the inertia at the time of the cylinder. In order to cope with many cases as described above, the electric motor is required to be elongated in the axial direction to obtain a high torque.

ここで、永久磁石の生成上有する特徴として磁化の配向方向がある。磁化の配向方向とは、磁区と呼ばれる永久磁石内の組成組織が外部からの二次元又は三次元的な着磁磁界を与えられることで所定の磁化方向(一般にN極、S極と呼ばれる磁力の向き)にて磁化されることで決定されるものである。
磁化の配向方向が決定された永久磁石は、その永久磁石の使用者の仕様によって着磁状態もしくは消磁された非着磁状態で出荷される事が多い。
Here, there is a magnetization orientation direction as a feature of the generation of the permanent magnet. The orientation direction of magnetization is a predetermined magnetization direction (generally referred to as N pole or S pole) by applying a two-dimensional or three-dimensional magnetization magnetic field from the outside to a composition structure in a permanent magnet called a magnetic domain. It is determined by being magnetized in the direction).
Permanent magnets whose magnetization orientation directions are determined are often shipped in a non-magnetized state, which is magnetized or demagnetized according to the specifications of the user of the permanent magnet.

磁化の配向方向が決定された永久磁石は着磁する際に、磁化配向上の性質として磁化し易い方向(以下磁化容易軸と呼び永久磁石の生成上、磁力の向きとほぼ一致する事が多い)と、磁化し難い方向(以下磁化困難軸と呼び永久磁石の生成上、磁力の向きに対して直角方向を指し示す事が多く、これはほぼ永久磁石の積層方向と周方向とに等しい場合が多い)とを考慮する必要がある。   When a permanent magnet whose magnetization orientation direction has been determined is magnetized, it is likely to be magnetized as a property of magnetization orientation (hereinafter referred to as the easy axis of magnetization, and in many cases almost coincides with the direction of magnetic force in the production of permanent magnets. ) And the direction in which magnetization is difficult (hereinafter referred to as the hard axis), and in many cases, the direction perpendicular to the direction of the magnetic force is pointed out in the production of the permanent magnet, which is almost equal to the lamination direction and the circumferential direction of the permanent magnet. Many).

磁化容易軸と磁化困難軸の熱膨張係数は一般的には共に正の値を有するが、ネオジオム−鉄−ボロン系等の希土類系永久磁石では、磁化困難軸が負の値を有するものが多く、永久磁石を積層してモータ軸に隙間なく配設した場合、低温時に永久磁石がモータ軸方向且つ周方向に膨張し、永久磁石の内部に有する残留応力等と永久磁石の軸方向と周方向の配置関係との相乗効果によって破損するという問題がある。
前記ネオジオム−鉄−ボロン系等の希土類系永久磁石をモータ軸に積層する場合には、何らかの方法によって破損を回避するための所定の隙間を作る、或いはモータ軸と永久磁石の膨張収縮に十分に追従できる高い可逆性を有し且つ周辺環境特性(湿気、耐油性、温度、耐塩性など)に対する所定の耐久仕様を満足できる高性能な接着剤と、接着剤としての性能が十分に確保できる必要接着層幅を設ける必要がある。
The thermal expansion coefficients of the easy magnetization axis and the hard magnetization axis generally have positive values, but rare earth permanent magnets such as neodymium-iron-boron systems often have negative values for the hard magnetization axis. When the permanent magnets are stacked and disposed without gaps on the motor shaft, the permanent magnets expand in the motor axial direction and circumferential direction at low temperatures, and the residual stress etc. in the permanent magnet and the axial direction and circumferential direction of the permanent magnet There is a problem that it is damaged due to a synergistic effect with the arrangement relationship.
When a rare earth-based permanent magnet such as the neodymium-iron-boron system is laminated on the motor shaft, a predetermined gap for avoiding damage is created by some method, or sufficient for expansion and contraction of the motor shaft and the permanent magnet. A high-performance adhesive that has high reversibility that can be followed and that satisfies the specified durability specifications for the surrounding environmental characteristics (humidity, oil resistance, temperature, salt resistance, etc.), and sufficient performance as an adhesive is required. It is necessary to provide an adhesive layer width.

しかしながら、前記接着層や永久磁石の破損を回避するための所定の隙間を設けることにより、軸長方向長さが長くなるに従い、回転子に複数個配設された永久磁石の外周及びモータ軸又はステアリングシャフトに対する各種幾何交差(同軸度、真円度、円筒度など)をコストなどの諸事情から甘く設定していく必要が生じ、結果的に回転子自体の偏心量が増大するため、前記構成を持つ電動パワーステアリング装置において、脈動トルクの増大や操舵感の悪化が生じるという問題がある。   However, by providing a predetermined gap for avoiding breakage of the adhesive layer and the permanent magnet, the outer circumference of the permanent magnet and the motor shaft or Since the various geometrical intersections (coaxiality, roundness, cylindricity, etc.) with respect to the steering shaft need to be set gently for various reasons such as cost, the eccentricity of the rotor itself increases as a result. In the electric power steering apparatus having the above, there is a problem that pulsation torque increases and steering feeling deteriorates.

特に前記周辺環境特性においては、電動パワーステアリング装置に要求される近年の一般的な温度保証範囲は車室内では−40°Cから+85°C程度であるが、実質的な耐久保証上エンジンルーム内に搭載されるものを含め−40°Cから+125°Cまでを要求されることが多く、各部品ごとでは最高−55°Cから+180°C仕様までカバーしなければならない部品も存在し、200°C以上の温度変化に超長期間耐え得る必要に迫られる場合がある。
これら事情を踏まえ、高トルクを得るために軸長方向長さを長くすると、回転子の持つ機械的ねじれ量の増大が起こり、運転者の不快感(操舵軸上にばねが介在するような感覚)を増長させるため、回転子全体に或る所定の剛性を保持させながら、前記温度膨張収縮の寸法変化に対する品質面と性能面とコスト面とのバランスを考慮しつつ、電動パワーステアリング装置の操舵感の悪化に対応していく事は大きな設計課題となっている。
In particular, in the ambient environment characteristics, the recent general temperature guarantee range required for the electric power steering apparatus is about −40 ° C. to + 85 ° C. in the vehicle interior, but in the engine room for substantial durability guarantee. -40 ° C to + 125 ° C are often required, including those mounted on the board, and there are parts that must cover up to -55 ° C to + 180 ° C specifications for each part. There is a case where it is necessary to withstand a temperature change of ° C or more for an extremely long time.
Based on these circumstances, if the axial length is increased to obtain high torque, the amount of mechanical torsion of the rotor increases, resulting in driver discomfort (feeling that a spring is interposed on the steering shaft). ), The steering of the electric power steering apparatus is performed while considering a balance of quality, performance, and cost with respect to the dimensional change of the temperature expansion and contraction while maintaining a predetermined rigidity in the entire rotor. Responding to the deterioration of feeling is a major design issue.

以上により電動モータの軸長方向長さが長くなるに従って回転子の永久磁石及び回転子の製作が難しくなり、また、熱変形により永久磁石が割れ易くなるという問題がある。   As described above, as the axial length of the electric motor increases, it becomes difficult to manufacture the rotor permanent magnet and the rotor, and the permanent magnet is liable to break due to thermal deformation.

本発明は斯かる事情に鑑みてなされたものであり、回転子の偏芯を低減でき、永久磁石の耐破損性を高めることができる回転子を提供することを目的とし、また、回転子の剛性を所定量保持しながら軸長方向長さが比較的長い回転子を容易に製造することができる製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a rotor that can reduce the eccentricity of the rotor and can improve the breakage resistance of the permanent magnet. It is an object of the present invention to provide a manufacturing method capable of easily manufacturing a rotor having a relatively long axial length while maintaining a predetermined amount of rigidity.

第1発明に係る回転子は、磁石保持筒の周りに複数の永久磁石を配置してなる回転子において、前記磁石保持筒は、内筒と、該内筒の外周りに遊嵌され、前記内筒との間で前記永久磁石を被覆する外筒と、前記内筒及び外筒間で前記永久磁石を保持する緩衝層とを備えていることを特徴とする。   The rotor according to the first invention is a rotor in which a plurality of permanent magnets are arranged around a magnet holding cylinder, wherein the magnet holding cylinder is loosely fitted to an inner cylinder and an outer periphery of the inner cylinder, An outer cylinder that covers the permanent magnet between the inner cylinder and a buffer layer that holds the permanent magnet between the inner cylinder and the outer cylinder.

第2発明に係る回転子は、第1発明において、前記内筒の内側に挿脱可能に内嵌され、前記内筒と一体に回転する支持筒を備えていることを特徴とする。   The rotor according to a second aspect of the present invention is characterized in that, in the first aspect of the present invention, the rotor includes a support cylinder that is detachably fitted inside the inner cylinder and rotates integrally with the inner cylinder.

第3発明に係る回転子の製造方法は、内筒の外周部に環状の複数の永久磁石を仮止めする工程と、前記永久磁石の外周りに複数の外筒を遊嵌する工程と、その板厚方向に貫通し、前記内筒及び外筒間の空間に臨む貫通孔を有する環状板を隣合う前記外筒間に配置して該外筒を中心軸線方向へ離隔させる工程と、前記内筒及び外筒間の空間に溶融された緩衝材を供給して緩衝層を形成する工程と、前記環状板を取外す工程とを含むことを特徴とする。   A method for manufacturing a rotor according to a third aspect of the present invention includes a step of temporarily fixing a plurality of annular permanent magnets to an outer peripheral portion of an inner cylinder, a step of loosely fitting a plurality of outer cylinders around the outer periphery of the permanent magnet, Disposing an annular plate having a through-hole penetrating in the plate thickness direction and facing a space between the inner cylinder and the outer cylinder between the adjacent outer cylinders, and separating the outer cylinder in the central axis direction; and It includes a step of supplying a buffer material melted into a space between the cylinder and the outer cylinder to form a buffer layer, and a step of removing the annular plate.

第1発明によれば、永久磁石は内筒及び外筒間に配置され、内筒及び外筒間で緩衝層により保持されているため、永久磁石の偏芯を低減でき、永久磁石の耐破損性を高めることができ、さらに、熱による永久磁石の破損を低減できる。しかも、複数の永久磁石は内筒、外筒及び緩衝層と一体に形成されているため、電動モータへの組込みを簡易に行うことができる。   According to the first invention, since the permanent magnet is disposed between the inner cylinder and the outer cylinder and is held between the inner cylinder and the outer cylinder by the buffer layer, the eccentricity of the permanent magnet can be reduced, and the permanent magnet is resistant to breakage. In addition, it is possible to reduce the damage of the permanent magnet due to heat. In addition, since the plurality of permanent magnets are formed integrally with the inner cylinder, the outer cylinder, and the buffer layer, it can be easily incorporated into the electric motor.

第2発明によれば、永久磁石を備える内筒を支持筒に対して挿脱することができるため、永久磁石部分の交換を簡易にでき、支持筒は内筒を支持する事ができれば良いため、支持筒の形状に回転子構造が依存しなくなり、支持筒に衝撃吸収機構を設けるなどの従来の回転子構造では与える事が難しかった高い設計自由度を支持筒に付与できる。   According to the second invention, since the inner cylinder including the permanent magnet can be inserted into and removed from the support cylinder, the replacement of the permanent magnet portion can be simplified, and the support cylinder only needs to support the inner cylinder. The rotor structure does not depend on the shape of the support cylinder, and it is possible to give the support cylinder a high degree of design freedom that is difficult to provide with a conventional rotor structure such as providing an impact absorbing mechanism in the support cylinder.

第3発明によれば、永久磁石及び外筒を複数とし、この永久磁石及び外筒を一つの内筒と一体にできるため、軸長方向長さが比較的長い回転子を容易に製造できる。   According to the third invention, a plurality of permanent magnets and outer cylinders are provided, and the permanent magnets and outer cylinders can be integrated with one inner cylinder. Therefore, a rotor having a relatively long axial length can be easily manufactured.

以下本発明をその実施の形態を示す図面に基づいて詳述する。
実施の形態1
図1は本発明に係る回転子の構成を示す模式的斜視図、図2は図1のII−II線の拡大断面図、図3は図1の III−III 線の拡大断面図、図4の(a) ,(b) は永久磁石の斜視図である。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
Embodiment 1
1 is a schematic perspective view showing the structure of a rotor according to the present invention, FIG. 2 is an enlarged sectional view taken along line II-II in FIG. 1, FIG. 3 is an enlarged sectional view taken along line III-III in FIG. (A) and (b) are perspective views of the permanent magnet.

回転子は円筒形の支持筒1と、該支持筒1に挿離可能に外嵌される金属製の内筒2と、該内筒2の外周りに遊嵌される金属製の外筒3と、内筒2及び外筒3間に配置される複数の永久磁石4と、該永久磁石4を内筒2及び外筒3間で保持する緩衝層5とを備える。   The rotor includes a cylindrical support cylinder 1, a metal inner cylinder 2 that is externally fitted to the support cylinder 1, and a metal outer cylinder 3 that is loosely fitted around the outer circumference of the inner cylinder 2. And a plurality of permanent magnets 4 disposed between the inner cylinder 2 and the outer cylinder 3 and a buffer layer 5 for holding the permanent magnet 4 between the inner cylinder 2 and the outer cylinder 3.

内筒2はアルミニウム等の金属製のパイプからなり、中心軸線方向へ離隔した複数の位置から径方向外側へ突出する環状の凸条21が成形されている。   The inner cylinder 2 is made of a pipe made of metal such as aluminum, and is formed with an annular ridge 21 that protrudes radially outward from a plurality of positions separated in the central axis direction.

永久磁石4は図4の(a) のように湾曲した略直方体をなしているが、その他、(b) のように非湾曲の略直方体をなす形状であってもよく、その形状は特に制限されない。この永久磁石4の一面に凸条21に係合する溝41が設けられており、各凸条21に沿って内筒2の複数の周方向位置に配置され、溝41が凸条21と係合することにより永久磁石4の内筒2に対する位置が決められるように構成されている。周方向位置の永久磁石4間には第1の非永久磁石部aを有し、中心軸線方向位置の永久磁石4間には第2の非永久磁石部bを有する。   The permanent magnet 4 has a curved substantially rectangular parallelepiped shape as shown in FIG. 4 (a). However, the permanent magnet 4 may have a non-curved substantially rectangular parallelepiped shape as shown in FIG. Not. Grooves 41 that engage with the ridges 21 are provided on one surface of the permanent magnet 4. The grooves 41 are arranged at a plurality of circumferential positions of the inner cylinder 2 along the ridges 21. By combining, the position of the permanent magnet 4 with respect to the inner cylinder 2 is determined. A first non-permanent magnet part a is provided between the permanent magnets 4 in the circumferential direction position, and a second non-permanent magnet part b is provided between the permanent magnets 4 in the central axis direction position.

緩衝層5は伸長性を有し、耐熱性等に優れたシリコン系の合成樹脂材からなり、溶融している状態で内筒2及び外筒3間の空間に充填され、固化することにより永久磁石4を包み込み、該永久磁石4を緩衝的に保持するように形成されている。   The buffer layer 5 is made of a silicon-based synthetic resin material having extensibility and excellent heat resistance, etc., and is filled in the space between the inner cylinder 2 and the outer cylinder 3 in a molten state and solidifies by being solidified. The magnet 4 is wrapped and formed so as to hold the permanent magnet 4 in a buffered manner.

外筒3はアルミニウム等の金属製のパイプからなり、凸条21に沿って複数の周方向位置に配置された永久磁石4の外周りに遊嵌される大きさに形成され、内筒2との間で永久磁石4を被覆しており、第1及び第2の非永久磁石部a,bと対応する箇所が凹条にカシメられ、永久磁石4の位置ずれを防いでいる。   The outer cylinder 3 is made of a pipe made of a metal such as aluminum, and is formed in a size that is loosely fitted around the outer periphery of the permanent magnet 4 arranged at a plurality of circumferential positions along the ridges 21. The portions corresponding to the first and second non-permanent magnet portions a and b are squeezed into the concave stripes to prevent the position of the permanent magnet 4 from being displaced.

以上のように構成された回転子の製造は、立設された円柱形治具に内筒2を嵌入し、該内筒2の外周りに外筒3を遊嵌し、内筒2及び外筒3間に複数の永久磁石4を挿入し、該永久磁石4の溝41を内筒2の凸条21に係合させることにより、永久磁石4の位置を決め、次に内筒2及び外筒3間の空間に溶融したシリコン系の合成樹脂材を充填し、この合成樹脂材が固化することにより緩衝層5が形成され、該緩衝層5が各永久磁石4を保持している。そして、外筒3における第1及び第2の非永久磁石部a,bと対応する箇所が凹条にカシメられ、永久磁石4の位置ずれを防いでおり、内筒2、複数の永久磁石4、緩衝層5及び外筒3が一体化している。このように永久磁石部分は一体化しているため、電動モータへの組付けを簡易に行うことができる。しかも、永久磁石4は同芯となる内筒2及び外筒3間に緩衝層5により保持されているため、永久磁石4の偏芯を低減でき、永久磁石4の耐破損性等を高めることができ、さらに、永久磁石4は伸長性を有し、耐熱性に優れたシリコン系の合成樹脂材からなる緩衝層5が保持しているため、熱による永久磁石4の破損を防ぐことができる。   The rotor configured as described above is manufactured by inserting the inner cylinder 2 into an upright columnar jig, loosely fitting the outer cylinder 3 around the outer periphery of the inner cylinder 2, and the inner cylinder 2 and the outer cylinder. By inserting a plurality of permanent magnets 4 between the cylinders 3 and engaging the grooves 41 of the permanent magnets 4 with the ridges 21 of the inner cylinder 2, the position of the permanent magnets 4 is determined, and then the inner cylinder 2 and the outer The space between the cylinders 3 is filled with molten silicon-based synthetic resin material, and the synthetic resin material is solidified to form a buffer layer 5, and the buffer layer 5 holds each permanent magnet 4. And the location corresponding to the 1st and 2nd non-permanent magnet parts a and b in the outer cylinder 3 is caulked into the recesses to prevent the positional displacement of the permanent magnet 4, and the inner cylinder 2 and the plurality of permanent magnets 4. The buffer layer 5 and the outer cylinder 3 are integrated. Thus, since the permanent magnet part is integrated, the assembly | attachment to an electric motor can be performed easily. Moreover, since the permanent magnet 4 is held by the buffer layer 5 between the inner cylinder 2 and the outer cylinder 3 which are concentric, the eccentricity of the permanent magnet 4 can be reduced, and the damage resistance of the permanent magnet 4 is improved. Furthermore, since the permanent magnet 4 has a stretchability and is held by the buffer layer 5 made of a silicon-based synthetic resin material having excellent heat resistance, the permanent magnet 4 can be prevented from being damaged by heat. .

図5は本発明に係る回転子を有する電動モータが組み込まれた電動パワーステアリング装置の構成を示す模式図である。以上のように製造された永久磁石4の組体は磁性を有する支持筒1に挿脱可能に外嵌固定され、回転子となる。この回転子は例えば電動パワーステアリング装置における操舵軸10の途中に支持筒1が一体的に結合される。尚、図5において、11は操舵軸10の上端に連なるステアリングホイール、12は回転子を回転自在に支持したモータハウジング、13はモータハウジング12の内側に固定された固定子、14は操舵軸10の下端に自在軸継手を介して連動連結された中間軸、15は中間軸の下端に連動連結された伝動軸が有するピニオン、16はピニオン15に噛合するラック歯を有するラック軸である。   FIG. 5 is a schematic diagram showing a configuration of an electric power steering apparatus in which an electric motor having a rotor according to the present invention is incorporated. The assembly of the permanent magnets 4 manufactured as described above is externally fitted and fixed to the support cylinder 1 having magnetism so as to be a detachable element. For example, the support cylinder 1 is integrally coupled to the rotor in the middle of the steering shaft 10 in the electric power steering apparatus. In FIG. 5, reference numeral 11 denotes a steering wheel connected to the upper end of the steering shaft 10, 12 denotes a motor housing that rotatably supports the rotor, 13 denotes a stator fixed inside the motor housing 12, and 14 denotes a steering shaft 10. An intermediate shaft that is interlocked and connected to the lower end of the intermediate shaft via a universal shaft joint, 15 is a pinion that the transmission shaft is interlocked and connected to the lower end of the intermediate shaft, and 16 is a rack shaft that has rack teeth that mesh with the pinion 15.

実施の形態2
図6は実施の形態2の構成を示す模式的斜視図である。この回転子は実施の形態1のように内筒2の複数の中心軸線方向位置に配置される永久磁石4の周方向位置を等しくする代わりに、中心軸線方向位置に配置される永久磁石4の周方向位置を交互に変え(図6参照)、第1の非永久磁石部a、ひいては外筒3のカシメ部を交互に変えたものであり、縦断側面の形状及び横断平面の形状は図2、図3と同様であり、実施の形態1と同様に製造される。
その他の構成及び作用は実施の形態1と同様であるため、同様の構成については同じ符号を付し、その詳細な説明及び作用効果の説明を省略する。
Embodiment 2
FIG. 6 is a schematic perspective view showing the configuration of the second embodiment. Instead of equalizing the circumferential positions of the permanent magnets 4 arranged at a plurality of positions in the central axis direction of the inner cylinder 2 as in the first embodiment, the rotor of the permanent magnets 4 arranged at the positions in the central axis direction is used. The circumferential positions are alternately changed (see FIG. 6), and the first non-permanent magnet portions a and, consequently, the caulking portions of the outer cylinder 3 are alternately changed. The shape of the longitudinal side surface and the shape of the transverse plane are shown in FIG. 3 is the same as FIG. 3 and manufactured in the same manner as in the first embodiment.
Since other configurations and operations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and detailed descriptions and descriptions of the operations and effects are omitted.

実施の形態3
図7は実施の形態3の構成を示す模式的斜視図、図8は内筒2の斜視図、図9は永久磁石4の斜視図である。この回転子は実施の形態1、2のように略直方体をなす永久磁石4を用いる代わりに、円筒形をなす複数の永久磁石4を内筒2及び外筒3間で緩衝層5により保持したものである。
Embodiment 3
FIG. 7 is a schematic perspective view showing the configuration of the third embodiment, FIG. 8 is a perspective view of the inner cylinder 2, and FIG. 9 is a perspective view of the permanent magnet 4. In this rotor, a plurality of cylindrical permanent magnets 4 are held between the inner cylinder 2 and the outer cylinder 3 by the buffer layer 5 instead of using the permanent magnet 4 having a substantially rectangular parallelepiped shape as in the first and second embodiments. Is.

実施の形態3において、アルミニウム等の金属製のパイプからなる内筒2は、両端に亘って径方向外側へ突出する螺旋の凸条22が成形されている。   In the third embodiment, the inner cylinder 2 made of a metal pipe such as aluminum is formed with spiral ridges 22 protruding radially outward across both ends.

永久磁石4は内筒2より若干大径とした円筒形をなし、内周面に螺旋の凸条22に係合する螺旋の溝42が両端に亘って設けられており、凸条22に沿って内筒2の複数の中心軸線方向位置に配置され、溝42が凸条22と係合することにより永久磁石4の内筒2に対する位置が決められ、永久磁石4間に第3の非永久磁石部cができるように構成されている。   The permanent magnet 4 has a cylindrical shape slightly larger in diameter than the inner cylinder 2, and a spiral groove 42 that engages with the spiral protrusion 22 is provided on both ends of the inner periphery 2. The inner cylinder 2 is disposed at a plurality of positions in the central axis direction, and the groove 42 is engaged with the ridge 22 to determine the position of the permanent magnet 4 with respect to the inner cylinder 2. It is comprised so that the magnet part c can be performed.

アルミニウム等の金属製のパイプからなる外筒3は、第3の非永久磁石部cと対応する箇所が凹条にカシメられ、永久磁石4の位置ずれを防いでいる。   In the outer cylinder 3 made of a metal pipe such as aluminum, a portion corresponding to the third non-permanent magnet portion c is crimped into a concave line, and the displacement of the permanent magnet 4 is prevented.

実施の形態3のように構成された回転子の製造は、立設された円柱形治具に内筒2を嵌入し、該内筒2の外側に複数の永久磁石4を挿嵌する。この永久磁石4は溝42を凸条22に係合させて回すことにより凸条22に沿って挿嵌することができ、第3の非永久磁石部cの間隔で停止させる。次に永久磁石4の外周りに外筒3を遊嵌し、内筒2及び外筒3間の空間に溶融したシリコン系の前記合成樹脂材を充填し、この合成樹脂材が固化することにより緩衝層5が形成され、該緩衝層5が各永久磁石4を緩衝的に保持している。そして、外筒3における第3の非永久磁石部cと対応する箇所が凹条にカシメられ、永久磁石4の位置ずれを防いでおり、内筒2、複数の永久磁石4、緩衝層5及び外筒3が一体化している。 その他の構成及び作用は実施の形態1と同様であるため、同様の構成については同じ符号を付し、その詳細な説明及び作用効果の説明を省略する。   In the manufacture of the rotor configured as in the third embodiment, the inner cylinder 2 is inserted into an upright columnar jig, and a plurality of permanent magnets 4 are inserted into the outer side of the inner cylinder 2. The permanent magnet 4 can be inserted along the ridge 22 by engaging the groove 42 with the ridge 22 and turning it, and is stopped at the interval of the third non-permanent magnet portion c. Next, the outer cylinder 3 is loosely fitted around the outer periphery of the permanent magnet 4, and the space between the inner cylinder 2 and the outer cylinder 3 is filled with the molten silicon-based synthetic resin material, and the synthetic resin material is solidified. A buffer layer 5 is formed, and the buffer layer 5 holds each permanent magnet 4 in a buffering manner. And the location corresponding to the 3rd non-permanent magnet part c in the outer cylinder 3 is crimped by the groove, and the position shift of the permanent magnet 4 is prevented, and the inner cylinder 2, the plurality of permanent magnets 4, the buffer layer 5 and The outer cylinder 3 is integrated. Since other configurations and operations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and detailed descriptions and descriptions of the operations and effects are omitted.

実施の形態4
図10は実施の形態4の構成を示す模式的斜視図、図11は図10のXI−XI線の拡大断面図、図12は図10の XII−XII 線の拡大断面図、図13は環状板の平面図である。この回転子は実施の形態1、2のように直方体をなす永久磁石4を用いる代わりに、円筒形をなす複数の永久磁石4を内筒2及び複数の外筒3間で緩衝層5により保持したものである。
Embodiment 4
10 is a schematic perspective view showing the configuration of the fourth embodiment, FIG. 11 is an enlarged sectional view taken along line XI-XI in FIG. 10, FIG. 12 is an enlarged sectional view taken along line XII-XII in FIG. It is a top view of a board. In this rotor, instead of using the rectangular parallelepiped permanent magnet 4 as in the first and second embodiments, a plurality of cylindrical permanent magnets 4 are held by the buffer layer 5 between the inner cylinder 2 and the plurality of outer cylinders 3. It is a thing.

実施の形態4において、アルミニウム等の金属製のパイプからなる内筒2の外周部には、中心軸線方向へ離隔した複数の位置に接着剤が塗布されている。   In the fourth embodiment, an adhesive is applied to the outer peripheral portion of the inner cylinder 2 made of a metal pipe such as aluminum at a plurality of positions separated in the central axis direction.

永久磁石4は内筒2より若干大径とした円筒形をなし、内筒2の外周りに挿嵌し、前記接着剤により仮止めされる。   The permanent magnet 4 has a cylindrical shape slightly larger in diameter than the inner cylinder 2, is fitted around the outer periphery of the inner cylinder 2, and is temporarily fixed by the adhesive.

外筒3は永久磁石4とほぼ等しい長さに形成されており、各外筒3及び各永久磁石4間に環状板6を配置し、各外筒3及び各永久磁石4を内筒2の中心軸線方向へ離隔させている。   The outer cylinder 3 is formed to have a length substantially equal to that of the permanent magnet 4. An annular plate 6 is disposed between each outer cylinder 3 and each permanent magnet 4, and each outer cylinder 3 and each permanent magnet 4 is connected to the inner cylinder 2. It is spaced apart in the direction of the central axis.

環状板6は、内筒2とほぼ同径の内径を有し、外筒3より大径の外径を有する円板からなり、周方向の一部にスリット61が設けられており、該スリット61により拡径可能に構成されている。また、複数の周方向位置に、その板厚方向に貫通し、永久磁石4及び外筒3間の第1の空間に臨む貫通孔62aと、永久磁石4及び内筒2間の第2の空間に臨む貫通孔62bとが設けられている。   The annular plate 6 is formed of a disc having an inner diameter substantially the same as that of the inner cylinder 2 and having an outer diameter larger than that of the outer cylinder 3, and a slit 61 is provided in a part of the circumferential direction. The diameter can be increased by 61. Further, a through-hole 62 a that penetrates in a plate thickness direction at a plurality of circumferential positions and faces a first space between the permanent magnet 4 and the outer cylinder 3, and a second space between the permanent magnet 4 and the inner cylinder 2 And a through-hole 62b facing the surface.

実施の形態4のように構成された回転子の製造は、立設された円柱形治具に、外周部に接着剤が塗布されている内筒2を嵌入し、該内筒2の外側に永久磁石4を挿嵌し、該永久磁石4を前記接着剤により内筒2に仮止めし、該永久磁石4の外周りに外筒3を遊嵌し、さらに、内筒2の外側に環状板6を挿嵌する。そして、永久磁石4、外筒3及び環状板6を順次挿嵌する。この場合、隣合う永久磁石4間及び隣合う外筒3間に環状板6が介在され、環状板6の外径側の貫通孔62aが永久磁石4及び外筒3間の第1の空間に臨み、各永久磁石4及び各外筒3間の第1の空間は外径側の貫通孔62aにより連通する。同様に、環状板6の内径側の貫通孔62bが永久磁石4及び内筒2間の第2の空間に臨み、この第2の空間は内径側の貫通孔62bにより連通する。次に、内筒2及び永久磁石4間の第2の空間と、永久磁石4及び外筒3間の第1の空間とに溶融したシリコン系の前記合成樹脂材を充填する。第2の空間に供給される合成樹脂材は環状板6の内径側の貫通孔62bを通過し、仮止め用の接着剤間を経てそれぞれの第2の空間に充填され、また、第1の空間に供給される合成樹脂材は環状板6の外径側の貫通孔62aを経てそれぞれの第1の空間に充填される。充填された合成樹脂材が固化することにより緩衝層5が形成され、該緩衝層5が各永久磁石4及び各外筒3を保持する。次に、各環状板6を径方向外方へ引張り、環状板6を破壊させて取外すことにより内筒2、複数の永久磁石4、緩衝層5及び複数の外筒3が一体化しており、永久磁石4間及び外筒3間に環状溝が形成されている。
その他の構成及び作用は実施の形態1と同様であるため、同様の構成については同じ符号を付し、その詳細な説明及び作用効果の説明を省略する。
In the manufacture of the rotor configured as in the fourth embodiment, an inner cylinder 2 whose outer peripheral portion is coated with an adhesive is inserted into an upright cylindrical jig, and the outer side of the inner cylinder 2 is inserted. The permanent magnet 4 is inserted, the permanent magnet 4 is temporarily fixed to the inner cylinder 2 with the adhesive, the outer cylinder 3 is loosely fitted around the outer periphery of the permanent magnet 4, and the outer cylinder 3 is annularly formed outside. The plate 6 is inserted. And the permanent magnet 4, the outer cylinder 3, and the annular plate 6 are inserted in order. In this case, the annular plate 6 is interposed between the adjacent permanent magnets 4 and between the adjacent outer cylinders 3, and the through hole 62 a on the outer diameter side of the annular plate 6 is formed in the first space between the permanent magnet 4 and the outer cylinder 3. At first, the first space between each permanent magnet 4 and each outer cylinder 3 communicates with a through hole 62a on the outer diameter side. Similarly, the through hole 62b on the inner diameter side of the annular plate 6 faces the second space between the permanent magnet 4 and the inner cylinder 2, and the second space communicates with the through hole 62b on the inner diameter side. Next, the melted silicon-based synthetic resin material is filled into the second space between the inner cylinder 2 and the permanent magnet 4 and the first space between the permanent magnet 4 and the outer cylinder 3. The synthetic resin material supplied to the second space passes through the through hole 62b on the inner diameter side of the annular plate 6, passes through the temporary fixing adhesive, and is filled into each second space. The synthetic resin material supplied to the spaces is filled in the first spaces through the through holes 62 a on the outer diameter side of the annular plate 6. A buffer layer 5 is formed by solidifying the filled synthetic resin material, and the buffer layer 5 holds each permanent magnet 4 and each outer cylinder 3. Next, the inner cylinder 2, the plurality of permanent magnets 4, the buffer layer 5, and the plurality of outer cylinders 3 are integrated by pulling each annular plate 6 radially outward and breaking and removing the annular plate 6. An annular groove is formed between the permanent magnets 4 and between the outer cylinders 3.
Since other configurations and operations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and detailed descriptions and descriptions of the operations and effects are omitted.

実施の形態5
図14は実施の形態5の構成を示す模式的斜視図である。この回転子は実施の形態1のように外筒3における第1の非永久磁石部aと対応する箇所が凹条にカシメられた構成とする代わりに、実施の形態5の環状板6を用い、緩衝層5を形成した後、環状板6を径方向外方へ引張り、環状板6を破壊させて取外すことにより第1の非永久磁石部a(永久磁石4間)に環状溝dができるように構成したものである。
Embodiment 5
FIG. 14 is a schematic perspective view showing the configuration of the fifth embodiment. This rotor uses the annular plate 6 of the fifth embodiment instead of the configuration in which the portion corresponding to the first non-permanent magnet portion a in the outer cylinder 3 is crimped to the concave shape as in the first embodiment. After forming the buffer layer 5, the annular plate 6 is pulled outward in the radial direction, and the annular plate 6 is broken and removed to form an annular groove d in the first non-permanent magnet portion a (between the permanent magnets 4). It is comprised as follows.

実施の形態5において、内筒2、永久磁石4は実施の形態1のものを用い、外筒3及び環状板6は実施の形態4のものを用い、内筒2及び外筒3間の空間に溶融したシリコン系の合成樹脂材を充填し、この合成樹脂材が固化することにより緩衝層5が形成され、該緩衝層5が各永久磁石4を保持している。そして、外筒3における第2の非永久磁石部bと対応する箇所が凹条にカシメられ、永久磁石4の位置ずれを防いでおり、さらに、各環状板6を径方向外方へ引張り、環状板6を破壊させて取外すことにより内筒2、複数の永久磁石4、緩衝層5及び複数の外筒3が一体化しており、永久磁石4間及び外筒3間に環状溝dが形成されている。
その他の構成及び作用は実施の形態1、4と同様であるため、同様の構成については同じ符号を付し、その詳細な説明及び作用効果の説明を省略する。
In the fifth embodiment, the inner cylinder 2 and the permanent magnet 4 are those of the first embodiment, the outer cylinder 3 and the annular plate 6 are those of the fourth embodiment, and the space between the inner cylinder 2 and the outer cylinder 3. A melted silicon-based synthetic resin material is filled in, and the synthetic resin material is solidified to form a buffer layer 5, and the buffer layer 5 holds each permanent magnet 4. And the location corresponding to the 2nd non-permanent magnet part b in the outer cylinder 3 is crimped by the concave stripe, the position shift of the permanent magnet 4 is prevented, and further, each annular plate 6 is pulled radially outward, By destroying and removing the annular plate 6, the inner cylinder 2, the plurality of permanent magnets 4, the buffer layer 5 and the plurality of outer cylinders 3 are integrated, and an annular groove d is formed between the permanent magnets 4 and between the outer cylinders 3. Has been.
Since other configurations and operations are the same as those of the first and fourth embodiments, the same reference numerals are given to the same configurations, and the detailed description and description of the operations and effects are omitted.

尚、以上説明した実施の形態の回転子は、支持筒1を備える構成としたが、その他、支持筒1をなくし、内筒2、外筒3、永久磁石4及び緩衝層5を有する構成としてもよい。
また、以上説明した実施の形態では内筒2及び外筒3間に中心軸線方向に複数の永久磁石4が配置された構成としたが、その他、内筒2の中心軸線方向に配置される永久磁石4は一つであってもよい。
また、本発明に係る回転子はブラシレス型の電動モータに組み込まれるが、その他、ブラシ型の電動モータに組み込まれてもよい。
Although the rotor according to the embodiment described above includes the support cylinder 1, the support cylinder 1 is eliminated and the inner cylinder 2, the outer cylinder 3, the permanent magnet 4, and the buffer layer 5 are provided. Also good.
In the embodiment described above, a plurality of permanent magnets 4 are arranged between the inner cylinder 2 and the outer cylinder 3 in the central axis direction. One magnet 4 may be provided.
The rotor according to the present invention is incorporated in a brushless type electric motor, but may be incorporated in a brush type electric motor.

本発明に係る回転子の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of the rotor which concerns on this invention. 図1のII−II線の拡大断面図である。It is an expanded sectional view of the II-II line of FIG. 図1のIII −III 線の拡大断面図である。It is an expanded sectional view of the III-III line of FIG. 本発明に係る回転子の永久磁石の斜視図である。It is a perspective view of the permanent magnet of the rotor which concerns on this invention. 本発明に係る回転子を有する電動モータが組込まれた電動パワーステアリング装置の構成を示す模式図である。It is a mimetic diagram showing the composition of the electric power steering device with which the electric motor which has the rotor concerning the present invention was built. 本発明に係る回転子の実施の形態2の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of Embodiment 2 of the rotor which concerns on this invention. 本発明に係る回転子の実施の形態3の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of Embodiment 3 of the rotor which concerns on this invention. 本発明に係る回転子の内筒の斜視図である。It is a perspective view of the inner cylinder of the rotor which concerns on this invention. 本発明に係る回転子の永久磁石の斜視図である。It is a perspective view of the permanent magnet of the rotor which concerns on this invention. 本発明に係る回転子の実施の形態4の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of Embodiment 4 of the rotor which concerns on this invention. 図10のXI−XI線の拡大断面図である。It is an expanded sectional view of the XI-XI line of FIG. 図10のXII −XII 線の拡大断面図である。It is an expanded sectional view of the XII-XII line | wire of FIG. 本発明に係る回転子の環状板の平面図である。It is a top view of the annular plate of the rotor which concerns on this invention. 本発明に係る回転子の実施の形態5の構成を示す模式的斜視図である。It is a typical perspective view which shows the structure of Embodiment 5 of the rotor which concerns on this invention.

符号の説明Explanation of symbols

1 支持筒
2 内筒(磁石保持筒)
3 外筒(磁石保持筒)
4 永久磁石
5 緩衝層
6 環状板
62a,62b 貫通孔
1 support cylinder 2 inner cylinder (magnet holding cylinder)
3 Outer cylinder (magnet holding cylinder)
4 Permanent magnet 5 Buffer layer 6 Annular plate 62a, 62b Through hole

Claims (3)

磁石保持筒の周りに複数の永久磁石を配置してなる回転子において、前記磁石保持筒は、内筒と、該内筒の外周りに遊嵌され、前記内筒との間で前記永久磁石を被覆する外筒と、前記内筒及び外筒間で前記永久磁石を保持する緩衝層とを備えていることを特徴とする回転子。   In a rotor formed by arranging a plurality of permanent magnets around a magnet holding cylinder, the magnet holding cylinder is loosely fitted around an inner cylinder and an outer periphery of the inner cylinder, and the permanent magnet is interposed between the inner cylinder and the inner cylinder. And a buffer layer for holding the permanent magnet between the inner cylinder and the outer cylinder. 前記内筒の内側に挿脱可能に内嵌され、前記内筒と一体に回転する支持筒を備えている請求項1記載の回転子。   The rotor according to claim 1, further comprising a support cylinder that is fitted in and removable from the inside of the inner cylinder and rotates integrally with the inner cylinder. 内筒の外周部に環状の複数の永久磁石を仮止めする工程と、前記永久磁石の外周りに複数の外筒を遊嵌する工程と、その板厚方向に貫通し、前記内筒及び外筒間の空間に臨む貫通孔を有する環状板を隣合う前記外筒間に配置して該外筒を中心軸線方向へ離隔させる工程と、前記内筒及び外筒間の空間に溶融された緩衝材を供給して緩衝層を形成する工程と、前記環状板を取外す工程とを含むことを特徴とする回転子の製造方法。
A step of temporarily fixing a plurality of annular permanent magnets to the outer peripheral portion of the inner cylinder, a step of loosely fitting a plurality of outer cylinders around the outer periphery of the permanent magnet, and a penetrating through the plate in the plate thickness direction. A step of disposing an annular plate having a through hole facing the space between the cylinders between the adjacent outer cylinders to separate the outer cylinders in the direction of the central axis, and a buffer melted in the space between the inner cylinder and the outer cylinder A method of manufacturing a rotor, comprising: supplying a material to form a buffer layer; and removing the annular plate.
JP2004296643A 2004-10-08 2004-10-08 Rotor and manufacturing method therefor Pending JP2006109676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296643A JP2006109676A (en) 2004-10-08 2004-10-08 Rotor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296643A JP2006109676A (en) 2004-10-08 2004-10-08 Rotor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006109676A true JP2006109676A (en) 2006-04-20

Family

ID=36378720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296643A Pending JP2006109676A (en) 2004-10-08 2004-10-08 Rotor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006109676A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018724A1 (en) * 2008-04-14 2009-10-22 Siemens Aktiengesellschaft Secondary part i.e. rotor, for e.g. two-pole synchronous motor, has positioning elements e.g. steel tape, for positioning permanent magnets in magnet bags, and magnet bags with recesses for accommodation of positioning elements
BE1018187A3 (en) * 2008-06-13 2010-07-06 Atlas Copco Airpower Nv METHOD OF MANUFACTURING A ROTOR AND A ROTOR OBTAINED WITH SUCH METHOD
JP2012019605A (en) * 2010-07-07 2012-01-26 Toshiba Corp Permanent magnet rotating electrical machine
US20120098271A1 (en) * 2009-07-01 2012-04-26 Heiner Bayer Rotor and method for manufacturing a rotor of an electric machine
WO2013104998A3 (en) * 2012-01-10 2014-02-20 NELA RAZVOJNI CENTER d.o.o. PODRUZNICA OTOKI Permanent-magnet rotor for a synchronous electric motor
CN111934456A (en) * 2020-09-19 2020-11-13 浙江西菱股份有限公司 Embedded permanent magnet variable frequency motor rotor
CN113661636A (en) * 2019-04-10 2021-11-16 株式会社Ihi Motor rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621346U (en) * 1992-08-08 1994-03-18 株式会社三ツ葉電機製作所 Rotating machine rotor
JP2001511238A (en) * 1997-12-11 2001-08-07 エンプレサ・ブラジレイラ・デイ・コンプレソレス・エシ・ア−エンブラク Hermetic compressor for refrigeration system
JP2003169453A (en) * 2001-11-29 2003-06-13 Honda Motor Co Ltd Rotor arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621346U (en) * 1992-08-08 1994-03-18 株式会社三ツ葉電機製作所 Rotating machine rotor
JP2001511238A (en) * 1997-12-11 2001-08-07 エンプレサ・ブラジレイラ・デイ・コンプレソレス・エシ・ア−エンブラク Hermetic compressor for refrigeration system
JP2003169453A (en) * 2001-11-29 2003-06-13 Honda Motor Co Ltd Rotor arrangement

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018724A1 (en) * 2008-04-14 2009-10-22 Siemens Aktiengesellschaft Secondary part i.e. rotor, for e.g. two-pole synchronous motor, has positioning elements e.g. steel tape, for positioning permanent magnets in magnet bags, and magnet bags with recesses for accommodation of positioning elements
BE1018187A3 (en) * 2008-06-13 2010-07-06 Atlas Copco Airpower Nv METHOD OF MANUFACTURING A ROTOR AND A ROTOR OBTAINED WITH SUCH METHOD
US20120098271A1 (en) * 2009-07-01 2012-04-26 Heiner Bayer Rotor and method for manufacturing a rotor of an electric machine
US8847453B2 (en) * 2009-07-01 2014-09-30 Siemens Aktiengesellschaft Rotor and method for manufacturing a rotor of an electric machine
JP2012019605A (en) * 2010-07-07 2012-01-26 Toshiba Corp Permanent magnet rotating electrical machine
WO2013104998A3 (en) * 2012-01-10 2014-02-20 NELA RAZVOJNI CENTER d.o.o. PODRUZNICA OTOKI Permanent-magnet rotor for a synchronous electric motor
CN113661636A (en) * 2019-04-10 2021-11-16 株式会社Ihi Motor rotor
CN113661636B (en) * 2019-04-10 2024-04-16 株式会社Ihi Motor rotor
CN111934456A (en) * 2020-09-19 2020-11-13 浙江西菱股份有限公司 Embedded permanent magnet variable frequency motor rotor
CN111934456B (en) * 2020-09-19 2021-07-27 浙江西菱股份有限公司 Embedded permanent magnet variable frequency motor rotor

Similar Documents

Publication Publication Date Title
JP5876764B2 (en) Electromagnetic suspension
JP5641517B2 (en) Brushless motor
US8258670B2 (en) Motor including supporting portion contacting stator
JP4863061B2 (en) Electric motor
EP2161814A2 (en) Stator
WO2010087103A1 (en) Axial gap motor and method of manufacturing rotor for same
WO2012070255A1 (en) Motor for electric power steering device
US20120187792A1 (en) Motor
JP2008035616A (en) Motor
JP4529500B2 (en) Axial gap rotating electric machine
JP2007068318A (en) Magnet embedded type motor
US11394257B2 (en) Rotor core, rotor of rotary electrical machine, rotary electrical machine, and automotive auxiliary electrical system
JP2010233328A (en) Brushless motor
JP2006109676A (en) Rotor and manufacturing method therefor
KR20140078819A (en) Motor
JP4516392B2 (en) Brushless motor rotor, brushless motor, and motor for power steering device
JP2009177957A (en) Permanent magnet field motor
JP5452892B2 (en) Permanent magnet motor
JP2011172376A (en) Stator for brushless motor, brushless motor, and electric power steering apparatus, and method for manufacturing stator of brushless motor
JP2007060801A (en) Motor
JP6097513B2 (en) Linear stepping motor
JP2011101513A (en) Motor unit and manufacturing method of the same
JP2008092724A (en) Motor
JP4924846B2 (en) Axial gap type motor and rotor manufacturing method thereof
JP4066745B2 (en) Stator core and housing fixing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109