JP2006109408A - Image reading apparatus, method of adjusting the same and image forming apparatus using the same - Google Patents

Image reading apparatus, method of adjusting the same and image forming apparatus using the same Download PDF

Info

Publication number
JP2006109408A
JP2006109408A JP2005207941A JP2005207941A JP2006109408A JP 2006109408 A JP2006109408 A JP 2006109408A JP 2005207941 A JP2005207941 A JP 2005207941A JP 2005207941 A JP2005207941 A JP 2005207941A JP 2006109408 A JP2006109408 A JP 2006109408A
Authority
JP
Japan
Prior art keywords
reading
image
document
scanning direction
reading means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005207941A
Other languages
Japanese (ja)
Other versions
JP4633564B2 (en
Inventor
Takeshi Iwasaki
武 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005207941A priority Critical patent/JP4633564B2/en
Priority to US11/219,914 priority patent/US7460279B2/en
Publication of JP2006109408A publication Critical patent/JP2006109408A/en
Application granted granted Critical
Publication of JP4633564B2 publication Critical patent/JP4633564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To optimally synthesize images by easily measuring deviation amount of an image in a sub-scanning direction at a reading joint of reading sensors in a short period of time, and highly accurately obtaining the delay amount of image data read by a first reading sensor in an upstream with respect to image data read by a second reading sensor in a downstream. <P>SOLUTION: Respective differences are found which are calculated by causing the plurality of reading means to read an original document having a plurality of reference straight line patterns extending in a main scanning direction, and which are caused in such a way that a plurality of straight line images extending in a main scanning direction at a reading joint between a first reading means and a second reading means are displaced in a sub scanning direction. A value acquired by applying arithmetic mean to the differences is used as a mean value of the relative deviation amount. The mean value of the relative deviation value is determined as the delay amount of the image data read by the first reading means, and is set as a correction value for correcting the deviation value. The delay time of the first reading means in the compositing means is adjusted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真方式又はインクジェット方式を用いて画像を形成する複写機、ファクシミリ、プリンター等の画像形成装置において、画像読み取り装置の調整方法、これを用いる画像読み取り装置及び画像形成装置に関する。   The present invention relates to a method for adjusting an image reading apparatus, an image reading apparatus using the same, and an image forming apparatus in an image forming apparatus such as a copying machine, a facsimile, or a printer that forms an image using an electrophotographic method or an inkjet method.

以下に、副走査方向の調整方法について、従来技術を図1〜3に基づいて説明する。
図1は、従来の画像読取装置の概略構成図である。画像読取装置は、原稿テーブル8上から挿入される原稿11の先端を第1ペーパー検知9により原稿11が挿入されたことを認識し、第1搬送ローラ1及び第2搬送ローラ2を回転させ、第2ペーパー検知10により読み取りの開始タイミングをとる。第1搬送ローラ1の回転で読み取りセンサ3に導かれた原稿11の画像は、読み取りセンサ3で読み取られ、読み取りが終了した原稿11は第2搬送ローラ2により機械の外に排出される。
読み取りセンサ3の内部には照明手段5が設けられており、原稿11の画像面に対し所定光量の光を照射し、画像面から反射した画像パターンに対応する反射光はセルフォックレンズ6を介して受光素子7に等倍で結像される。原稿11の画像に対応した受光素子7のアナログ出力レベルはA/D変換回路によってアナログからデジタル値に変換され、その変換されたデータは画像データとしてメモリに蓄積される。
Hereinafter, the conventional technique will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of a conventional image reading apparatus. The image reading apparatus recognizes that the original 11 has been inserted by the first paper detection 9 at the leading edge of the original 11 inserted from the original table 8, rotates the first conveying roller 1 and the second conveying roller 2, and The reading start timing is taken by the second paper detection 10. The image of the document 11 guided to the reading sensor 3 by the rotation of the first conveying roller 1 is read by the reading sensor 3, and the document 11 that has been read is discharged out of the machine by the second conveying roller 2.
Illumination means 5 is provided inside the reading sensor 3, and a predetermined amount of light is applied to the image surface of the document 11, and reflected light corresponding to the image pattern reflected from the image surface passes through the SELFOC lens 6. Thus, an image is formed on the light receiving element 7 at the same magnification. The analog output level of the light receiving element 7 corresponding to the image of the document 11 is converted from analog to digital value by the A / D conversion circuit, and the converted data is stored in the memory as image data.

図2は、従来の読み取りセンサのタイプ1〜3について説明した図である。従来の読み取りセンサの読み取り方式は、大別してタイプ1〜3に分類される。図2(a)のタイプ1は、原稿の最大幅に対応ができるだけの長さをもった1本の読み取りセンサ3−aで読み取る方式であり、図2(b)のタイプ2は、原稿の幅方向に複数に分割した読み取りセンサ3−bを配置し、その読み取った画像を合成する方式であり(例えば、特許文献1参照。)、図2(c)のタイプ3は、タイプ2と同様に複数のセンサで読み取る方式であるが、タイプ2は等倍型の結像素子を使用する読み取りセンサであり、タイプ3は縮小レンズ12を用いた縮小型の読み取りセンサ3−cを用いた方式である。
タイプ1のメリットとしては、高品質の画像を簡単な構成で得られることであるが、デメリットとしては、本方式に用いる読み取りセンサ3−aの1本で原稿の幅方向のあらゆるサイズに対応しなくてはならないことである。読み取りセンサの部品費は原稿の幅方向の長さに比例するため、例えばA0幅の原稿を読み取る場合にはA0長さのセンサが必要となり、読み取りセンサの部品費が上昇し、結果的に装置自体のコストも上昇するのが、タイプ1の欠点である。
タイプ2はタイプ1の欠点を補うために考案された方式である。タイプ2のメリットとしては、幅の短い読み取りセンサ3−bを複数配置することにより、読み取りセンサの部品費の低減が図られることであるが、デメリットとしては、複数のセンサで読み取った画像を合成する必要があるため、画像データ処理が複雑となる点である。
タイプ3のメリットとしては、タイプ2と同様に読み取りセンサの部品費の低減が図られることであるが、タイプ2のセンサよりコストをさらに低くするため、縮小型の読み取りセンサ3−cを用いている点にある。
FIG. 2 is a diagram illustrating types 1 to 3 of a conventional reading sensor. Conventional reading sensor reading methods are roughly classified into types 1 to 3. Type 1 in FIG. 2 (a) is a method of reading by one reading sensor 3-a having a length that can correspond to the maximum width of the document. Type 2 in FIG. This is a method of arranging a plurality of read sensors 3-b in the width direction and synthesizing the read images (see, for example, Patent Document 1). Type 3 in FIG. The type 2 is a reading sensor using an equal-magnification type imaging element, and the type 3 is a method using a reduction type reading sensor 3-c using a reduction lens 12. It is.
The advantage of Type 1 is that a high-quality image can be obtained with a simple configuration, but the disadvantage is that one reading sensor 3-a used in this method can handle any size in the width direction of the document. It must be. Since the parts cost of the reading sensor is proportional to the length of the document in the width direction, for example, when reading an A0 width document, an A0 length sensor is required, and the parts cost of the reading sensor increases, resulting in the apparatus being The disadvantage of Type 1 is that the cost of itself increases.
Type 2 is a method devised to compensate for the drawbacks of Type 1. The merit of Type 2 is that the parts cost of the reading sensor can be reduced by arranging a plurality of reading sensors 3-b with a short width, but the disadvantage is that the images read by the plurality of sensors are synthesized. Therefore, the image data processing becomes complicated.
The advantage of Type 3 is that the parts cost of the read sensor can be reduced in the same way as Type 2. However, in order to further reduce the cost compared to the Type 2 sensor, a reduced type read sensor 3-c is used. There is in point.

ここで、タイプ2の具体的な画像読み取り方法としては、まず原稿搬送方向の上流側に配設される読み取りセンサで幅方向の一部分の画像を読み取り、続いて、その下流側に配設される読み取りセンサでまだ読み取られていない画像領域を読み取る。このとき、上流の読み取りセンサで読み取った画像データは、所定メモリに一時格納されて遅延され、下流側の読み取りセンサで読み取った画像データと合成される。
このように、タイプ2では複数のセンサで読み取った画像を合成する必要があるため、読み取りセンサ分割部の読み取りつなぎ目において、画像合成の際に画像が正常につながるように、読み取りセンサの位置精度を確保しているとともに、上下流の読み取りセンサの副走査方向の相対的な距離を求め、その相対的な距離相当分、上流側の読み取りセンサで読み取った画像データを遅延させ、下流側の読み取りセンサで読み取った画像データと一列に合成する補正操作が必要となる。
Here, as a specific type 2 image reading method, first, a part of the image in the width direction is read by a reading sensor arranged on the upstream side in the document conveying direction, and then arranged on the downstream side thereof. An image area that has not yet been read by the reading sensor is read. At this time, the image data read by the upstream reading sensor is temporarily stored in a predetermined memory and delayed, and is combined with the image data read by the downstream reading sensor.
As described above, in Type 2, since it is necessary to combine images read by a plurality of sensors, the position accuracy of the reading sensor is increased so that the images are normally connected at the reading joint of the reading sensor dividing unit when the images are combined. In addition to obtaining the relative distance in the sub-scanning direction of the upstream and downstream reading sensors, the image data read by the upstream reading sensor is delayed by an amount corresponding to the relative distance, and the downstream reading sensor A correction operation for combining the image data read in step 1 with the image data is required.

ここで、従来の補正操作の方法として、
(1)上下流の読み取りセンサの読み取りつなぎ目の副走査方向の相対的な距離を機械的に測定して補正値に換算し、上流側で読み取った画像データの遅延量を設定する方法。
(2)タイプ2の画像読み取り装置に対して、読み取った画像を表示するモニターを接続し、主走査方向に延在する1本の直線を読み込み、モニターに表示させて、表示された直線画像の上下流の読み取りセンサの読み取りつなぎ目における副走査方向の相対的なずれ量を測定して補正値に換算し、上流側で読み取った画像データの遅延量を設定する方法。
(3)また、特許文献2のように、主走査方向に延在する1本の直線を各読み取りセンサで読み込み、その直線画像の画素データに基づいてCPU等で構成された制御回路により各回帰直線を自動的に求め、各読み取りセンサの読み取りつなぎ目の副走査方向の相対的なずれ量を求め、画像データの遅延量を設定する方法(例えば、特許文献2参照。)。
Here, as a conventional correction operation method,
(1) A method in which the relative distance in the sub-scanning direction of the reading joints of the upstream and downstream reading sensors is mechanically measured and converted into a correction value, and the delay amount of the image data read on the upstream side is set.
(2) A monitor that displays the read image is connected to the type 2 image reading apparatus, and a single straight line extending in the main scanning direction is read and displayed on the monitor. A method of measuring the relative shift amount in the sub-scanning direction at the reading joint of the upstream and downstream reading sensors, converting it to a correction value, and setting the delay amount of the image data read on the upstream side.
(3) Further, as in Patent Document 2, each straight line extending in the main scanning direction is read by each reading sensor, and each regression is performed by a control circuit configured by a CPU or the like based on pixel data of the straight line image. A method of automatically obtaining a straight line, obtaining a relative shift amount in the sub-scanning direction of the reading joint of each reading sensor, and setting a delay amount of image data (see, for example, Patent Document 2).

しかしながら、上記(1)、(2)の従来の設定方法では、上下流の読み取りセンサの読み取りつなぎ目のずれ量の測定に時間と手間を要し、製造コストが大きくなるという問題があった。また、測定結果に作業者の裁量によるバラツキが生じることによって正確な設定がされず、精度の良い調整が行えない可能性があった。
上記(3)の方法では、1本の副走査方向測定と補正値の設定をCPU等により自動的に行えるため上記(1)、(2)の問題を低減している。しかしながら、上下流の読み取りセンサの副走査方向の距離がわずかなときは問題ないが、一般的に汎用の読み取りセンサの副走査方向の幅は受光素子を実装し駆動する基板の幅と筐体の幅が必要となる。このため、読み取りセンサを千鳥状に配列したときは、図4に示した上下流の読み取りセンサ間の副走査方向の距離L(ずれ量)が大きくなる。
However, in the conventional setting methods (1) and (2), it takes time and labor to measure the shift amount of the reading joint of the upstream and downstream reading sensors, and there is a problem that the manufacturing cost increases. In addition, there is a possibility that an accurate setting cannot be performed due to variations in measurement results due to the discretion of the operator, and accurate adjustment cannot be performed.
In the method (3), since the measurement of one sub-scanning direction and the setting of the correction value can be automatically performed by the CPU or the like, the problems (1) and (2) are reduced. However, there is no problem when the distance between the upstream and downstream reading sensors in the sub-scanning direction is small, but generally the width of the general-purpose reading sensor in the sub-scanning direction is equal to the width of the substrate on which the light receiving element is mounted and the housing. A width is required. For this reason, when the reading sensors are arranged in a staggered manner, the distance L (deviation amount) in the sub-scanning direction between the upstream and downstream reading sensors shown in FIG. 4 increases.

従って、原稿を副走査方向に搬送して画像を読み取る場合、上下流の読み取りセンサ間の副走査方向の距離間における搬送速度のずれは無視できない。上記(3)の方法のように主走査方向に延在する1本の直線を読み取って、その直線画像の画素データに基づいて遅延量を決めてしまうと、上下流の読み取りセンサ間の副走査方向の距離間における原稿搬送速度のずれにより大きく狙いの搬送速度と違って読み込まれた画像に基づいて遅延量が設定された場合、例えば図3のように、主走査方向に延在する複数の直線画像を読み取って、アウトプットとして合成した直線画像のほとんどに画像ずれが生じてしまう。
図3は、原稿搬送速度のずれにより生じる読み取りセンサの読み取りつなぎ目の画像ずれを示した図である。画像ずれが生じていない直線画像は、遅延量を設定した画像読み取り時の原稿搬送速度と同じ搬送速度で読み取った瞬間のずれがない部分である。
Accordingly, when the original is conveyed in the sub-scanning direction and an image is read, a shift in the conveyance speed between the distances in the sub-scanning direction between the upstream and downstream reading sensors cannot be ignored. If a single straight line extending in the main scanning direction is read as in the method (3) and the delay amount is determined based on the pixel data of the straight line image, the sub-scanning between the upstream and downstream reading sensors is performed. When the delay amount is set based on the read image that is largely different from the target conveyance speed due to the deviation of the document conveyance speed between the distances in the direction, for example, as shown in FIG. An image shift occurs in most of the straight line images that are read and combined as output.
FIG. 3 is a diagram showing an image shift at the reading joint of the reading sensor caused by a shift in the document conveyance speed. A linear image in which no image deviation occurs is a portion where there is no deviation at the moment of reading at the same conveyance speed as the original conveyance speed at the time of image reading with a delay amount set.

さらに、次のような場合にも、読み取りつなぎ部に画像ずれを生じる。
すなわち、読み取り装置に用いられる搬送ローラは、原稿が搬送される時にシワが発生しないように、通常は、下流側の第2搬送ローラの径を上流側の第1搬送ローラの径より若干大きくするなどして、下流側の第2搬送ローラの引っ張り効果によって、原稿面が常に張るように搬送させている。このとき、原稿が下流側の第2搬送ローラにくわえ込まれる前後で原稿の搬送速度に違いが生じる。このため、例えば、下流側の第2搬送ローラによる搬送速度に合わせて、上流側の第1の読み取りセンサで読み取った画像データと下流側の第2の読み取りセンサで読み取った画像とを合成するように遅延量を設定した場合、原稿が下流側の第2搬送ローラにくわえ込まれる前の画像は原稿の搬送速度が下流側の第2搬送ローラで搬送するよりも遅くなるため、読み取りセンサの読み取りつなぎ部において、図9のように、副走査方向に上流側の第1の読み取りセンサで読み取った画像が原稿搬送方向に先行したような画像ずれを生じることになる。
Furthermore, an image shift occurs in the reading connection portion also in the following cases.
In other words, the conveyance roller used in the reading apparatus normally has a diameter of the second conveyance roller on the downstream side slightly larger than the diameter of the first conveyance roller on the upstream side so that wrinkles do not occur when the document is conveyed. For example, the document surface is always conveyed by the pulling effect of the second conveyance roller on the downstream side. At this time, there is a difference in the document conveyance speed before and after the document is added to the second conveyance roller on the downstream side. Therefore, for example, the image data read by the first reading sensor on the upstream side and the image read by the second reading sensor on the downstream side are synthesized in accordance with the conveyance speed of the second conveyance roller on the downstream side. When the delay amount is set, the image before the document is fed to the downstream second transport roller is slower than the document transport speed by the downstream second transport roller. As shown in FIG. 9, the connecting portion causes an image shift such that an image read by the first reading sensor on the upstream side in the sub-scanning direction precedes the document conveyance direction.

特開昭59−105762号公報JP 59-105762 A 特開平8−97980号公報JP-A-8-97980

本発明は上記問題点に鑑みてなされたものであり、読み取りセンサの読み取りつなぎ目における画像の副走査方向のずれ量の測定を短時間で容易に行えるようにし、測定結果に作業者の裁量によるバラツキをなくすことで、下流側の第2の読み取りセンサで読み取った画像データに対する上流側の第1の読み取りセンサで読み取った画像データの遅延量を精度よく求めて画像を最適に合成する画像読み取り装置の調整方法、これを用いる画像読み取り装置及び画像形成装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can easily measure the amount of deviation in the sub-scanning direction of an image at a reading joint of a reading sensor in a short time, and the measurement result varies depending on the discretion of the operator. Of the image reading apparatus that accurately obtains the delay amount of the image data read by the first reading sensor on the upstream side with respect to the image data read by the second reading sensor on the downstream side and optimally combines the images. It is an object of the present invention to provide an adjustment method, an image reading apparatus using the adjustment method, and an image forming apparatus.

上記課題を解決するための手段として、本発明は以下の特徴を有している。
本発明の画像読み取り装置の調整方法は、原稿挿入口から挿入された原稿を読み取り部へと搬送する第1の搬送ローラと、搬送された原稿を検知する検知手段と、第1の搬送ローラにより搬送された原稿を読み取る複数の読み取り手段と、その複数の読み取り手段は主走査方向の所定のラインに沿って各々長手方向に一列に並べられた上流側の第1の読み取り手段と下流側の第2の読み取り手段の複数の組み合わせからなり、第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目の画像データの読み出し開始画素と読み出し終了画素が複数個重なるように、各々の読み取り手段を副走査方向に交互に割り当てて千鳥状に配置され、その千鳥状に配置された複数の読み取り手段のうち、第1の読み取り手段で読み取った画像データを遅延させて、第2の読み取り手段で読み取った画像と一列に合成する合成手段と、読み取りが終了した原稿を挿入口とは反対の方向に導き搬送する第2の搬送ローラと、第1、第2の搬送ローラを回転駆動する駆動手段と、第1、第2の搬送ローラの回転駆動を制御する制御手段とを備える画像読み取り装置における前記複数の読み取り手段の調整方法おいて、 前記調整方法は、前記複数の読み取り手段に主走査方向に延在する基準直線パターンが複数本以上ある原稿を読み取らせて算出した第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における主走査方向に延在する複数の直線画像が副走査方向にずれた差を各々求め、相加平均した値を相対的なずれ量の平均値とすることにより、その相対的なずれ量の平均値を第1の読み取り手段で読み取った画像データの遅延量として決定し、前記合成手段における第1の読み取り手段の遅延時間を調整することを特徴とする。
このように、前記複数の読み取り手段に主走査方向に延在する基準直線パターンが複数本以上ある原稿を読み取らせて算出した第1の読み取り手段と第2の読み取り手段の読み取り手段の読み取りつなぎ目における主走査方向に延在する複数の直線画像が副走査方向にずれた差を各々求めることにより、読み取りセンサの読み取りつなぎ目における画像のずれ量の測定を短時間で容易に行えるようにし、測定結果に作業者の裁量によるバラツキをなくし、それぞれの直線画像の遅延量を精度よく求めて画像を最適に合成する。
As means for solving the above problems, the present invention has the following features.
An adjustment method for an image reading apparatus according to the present invention includes a first transport roller that transports a document inserted from a document insertion slot to a reading unit, a detection unit that detects the transported document, and a first transport roller. A plurality of reading means for reading the conveyed document, and the plurality of reading means are arranged in a row in the longitudinal direction along a predetermined line in the main scanning direction, and the first reading means on the upstream side and the first reading means on the downstream side. Each of the reading means is sub-scanned so that a plurality of reading start pixels and reading end pixels of the image data at the reading joint of the first reading means and the second reading means overlap each other. The image data read by the first reading means among the plurality of reading means arranged in a zigzag pattern are alternately allocated in the direction. A second image forming unit that combines the image read by the second reading unit with the second reading unit; a second conveying roller that guides and conveys the document that has been read in a direction opposite to the insertion port; In the method for adjusting the plurality of reading means in the image reading apparatus comprising a driving means for rotationally driving the conveying rollers and a control means for controlling the rotational driving of the first and second conveying rollers, the adjusting method comprises: Extending in the main scanning direction at the reading joint between the first reading means and the second reading means calculated by causing the plurality of reading means to read a document having a plurality of reference linear patterns extending in the main scanning direction. Each of the differences between the plurality of linear images in the sub-scanning direction is obtained, and the arithmetic average value is used as the average value of the relative shift amounts, thereby calculating the average value of the relative shift amounts in the first reading. Ri is determined as the delay amount of the image data read by means, characterized in that adjusting the delay time of the first reading means in said combining means.
In this way, at the reading joint between the reading means of the first reading means and the second reading means calculated by causing the plurality of reading means to read a document having a plurality of reference linear patterns extending in the main scanning direction. By determining the difference between the multiple linear images extending in the main scanning direction in the sub-scanning direction, it is possible to easily measure the amount of image shift at the reading joint of the reading sensor in a short time. The variation due to the discretion of the operator is eliminated, and the delay amount of each linear image is accurately obtained, and the image is optimally combined.

また、本発明の画像読み取り装置の調整方法は、主走査方向に延在する直線パターンを原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離の範囲内に複数本以上配置し、かつ原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離より上流側の範囲内に複数本以上配置した原稿を読み取らせ、記憶手段によって保持させた、前記原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離の範囲内の前記第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における各直線パターン画像データより算出した副走査方向の相対的なずれ量の平均値と、前記原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離より上流側の範囲内の前記第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における各直線パターン画像データより算出した副走査方向の相対的なずれ量の平均値との差を各々求めることにより、前記第1、第2の搬送ローラによる原稿の搬送速度が一定になるように前記第1、第2の搬送ローラの回転駆動を調整制御することを特徴とする。
このように、原稿先端の第2搬送ローラと第1の読み取り手段までの副走査間距離の範囲内の前記読み取りつなぎ目における副走査方向の相対的なずれ量の平均値である遅延量と、前記原稿先端の副走査間距離より上流側の範囲内の前記読み取りつなぎ目における遅延量の差を各々求めることにより、第1、第2搬送ローラの回転駆動を制御する制御手段に増速量として自動的に設定され、原稿の搬送速度が常に一定に保たれる。
The image reading apparatus adjusting method according to the present invention includes a plurality of linear patterns extending in the main scanning direction within a range of the sub-scanning distance from the leading edge of the document to the second conveying roller and the first reading means. The original document arranged and read by a plurality of originals within a range upstream from the sub-scanning distance from the leading edge of the original document to the second transport roller and the first reading means, and held by the storage means The sub-scanning direction calculated from each linear pattern image data at the reading joint between the first reading means and the second reading means within the range of the distance between the second conveying roller and the first reading means from the front end. And the first reader in the range upstream of the distance between the second transport roller and the first reading means from the leading edge of the original to the sub-scanning distance. And the average value of the relative shift amounts in the sub-scanning direction calculated from the linear pattern image data at the reading joint of the second reading means, respectively, thereby obtaining the original by the first and second transport rollers. The rotational drive of the first and second transport rollers is adjusted and controlled so that the transport speed of the first and second transport rollers is constant.
As described above, the delay amount which is an average value of the relative shift amount in the sub-scanning direction at the reading joint within the range of the sub-scanning distance between the second conveying roller at the leading end of the document and the first reading unit, By calculating the difference in delay amount at the reading joint within the range upstream of the sub-scanning distance at the leading edge of the document, the control means for controlling the rotational driving of the first and second transport rollers is automatically used as the acceleration amount. And the document transport speed is always kept constant.

また、本発明の画像読み取り装置の調整方法は、主走査方向をX座標、副走査方向をY座標としたとき、前記主走査方向に延在する各直線画像のY座標を、重心法を用いて算出することを特徴とする。
評価対象となる直線の認識は、画素レベルを用いた「閾値検索」、重心法を用いた「重心検索」の2ステップにて行う。閾値判別により直線と認識された座標群を求め、評価対象となる直線の座標(重心)を計算により求める。1本の直線はX方向とY方向のいくつかの画素から形成され、各画素単位で読み取り濃度差を生じるため、重心法を用いることで直線のY座標が正確に求められる。
Further, the adjustment method of the image reading apparatus according to the present invention uses the center of gravity method for the Y coordinate of each linear image extending in the main scanning direction when the main scanning direction is the X coordinate and the sub scanning direction is the Y coordinate. It is characterized by calculating.
Recognition of the straight line to be evaluated is performed in two steps: “threshold search” using the pixel level and “centroid search” using the centroid method. A coordinate group recognized as a straight line by threshold discrimination is obtained, and the coordinates (center of gravity) of the straight line to be evaluated are obtained by calculation. One straight line is formed of several pixels in the X direction and the Y direction, and causes a reading density difference for each pixel. Therefore, the Y coordinate of the straight line can be accurately obtained by using the centroid method.

本発明の画像読み取り装置は、上述の調整方法用いることを特徴とする。   The image reading apparatus of the present invention is characterized by using the above-described adjustment method.

本発明の画像形成装置は、前記画像読み取り装置によって読み取られた画像情報信号に対応した画像を形成する電子写真方式又はインクジェット方式の画像形成装置であって、前記画像形成装置は、上述の画像読み取り装置を備えることを特徴とする。   The image forming apparatus of the present invention is an electrophotographic or inkjet image forming apparatus that forms an image corresponding to an image information signal read by the image reading apparatus, and the image forming apparatus includes the above-described image reading apparatus. A device is provided.

上記課題を解決するための手段により、本発明の調整方法によれば、各読み取り手段の読み取りつなぎ目において、画像の副走査方向のずれ量の測定と調整を作業者の裁量によらずに短時間で容易に行えるようにし、下流側の第2の読み取りセンサで読み取った画像データに対する上流側の第1の読み取りセンサで読み取った画像データの遅延量を精度よく求めて画像を最適に合成できるようにし、また原稿の搬送速度が常に一定に保たれるように自動調整ができるようにして、画素の重複や欠落による画像ずれが生じない高画質の画像を得ることができた。このように、本発明は、利便性を向上させた画像読み取り装置の調整方法、これを用いる画像読み取り装置及び画像形成装置を提供することができた。   According to the means for solving the above-described problems, according to the adjustment method of the present invention, the measurement and adjustment of the deviation amount of the image in the sub-scanning direction can be performed in a short time at the reading joint of each reading means without depending on the discretion of the operator. So that the delay amount of the image data read by the upstream first reading sensor with respect to the image data read by the second reading sensor on the downstream side can be obtained accurately and the image can be optimally combined. In addition, automatic adjustment can be performed so that the document conveyance speed is always kept constant, and a high-quality image free from image displacement due to overlapping or missing pixels can be obtained. As described above, the present invention can provide a method for adjusting an image reading apparatus with improved convenience, an image reading apparatus using the same, and an image forming apparatus.

以下に、本発明を実施するための最良の形態を、図4〜10に基づいて説明する。ただし、これらは一実施形態にすぎず、本発明の特許請求の範囲を限定するものではない。   Below, the best form for implementing this invention is demonstrated based on FIGS. However, these are merely embodiments, and do not limit the scope of the claims of the present invention.

図4は、本発明の画像読取装置を上面と側面から見た概略図である 図4(a)は、上面から見た概略図で、図4(b)は、側面から見た概略図である。第1搬送ローラ1によってコンタクトガラス4と圧板13の間に搬送された原稿11の画像は、上流の第1読み取りセンサ3−1、3−3、下流の第2読み取りセンサ3−2により読み取られ、第2搬送ローラ2によって排出される。各々の読み取りセンサで分割読み取りされた画像は、図5に示すように第1読み取りセンサ3−1、3−3で読み取った画像データは、A/D変換回路でデジタル信号(256階調)に変換され、次の遅延回路により第1読み取りセンサ3−1、3−3、第2読み取りセンサ3−2のつなぎ目における副走査方向の相対的な距離(ずれ量)相当分のライン数(距離/読み取り密度)遅延させ、第2読み取りセンサで読み取った画像の出力に合わせて読み取り画像は1ラインに合成され、下流の画像処理回路に送られる。ここで、図中のLは、第1読み取りセンサ3−1、3−3と第2読み取りセンサ3−2間の読み取りつなぎ目における副走査方向の距離で、副走査方向のずれ量に相当する。図中のLLは、原稿11の先端より第2搬送ローラ2と第1読み取りセンサ3−1、3−3間の副走査方向の距離で、原稿11が第2搬送ローラ2にくわえ込まれるまで読み取られる原稿先端からわずかの画像領域である。   4A and 4B are schematic views of the image reading apparatus according to the present invention as viewed from the upper surface and the side surface. FIG. 4A is a schematic view as viewed from the upper surface, and FIG. 4B is a schematic diagram as viewed from the side surface. is there. The image of the document 11 conveyed between the contact glass 4 and the pressure plate 13 by the first conveying roller 1 is read by the upstream first reading sensors 3-1 and 3-3 and the downstream second reading sensor 3-2. The paper is discharged by the second transport roller 2. As shown in FIG. 5, the image data read by the first reading sensors 3-1, 3-3 is converted into digital signals (256 gradations) by the A / D conversion circuit. The number of lines (distance / distance) corresponding to the relative distance (shift amount) in the sub-scanning direction at the joint of the first reading sensors 3-1 and 3-2 and the second reading sensor 3-2 is converted by the next delay circuit. (Reading density) is delayed and the read image is combined into one line in accordance with the output of the image read by the second reading sensor, and sent to the downstream image processing circuit. Here, L in the drawing is a distance in the sub-scanning direction at a reading joint between the first reading sensors 3-1 and 3-3 and the second reading sensor 3-2, and corresponds to a shift amount in the sub-scanning direction. LL in the drawing is a distance in the sub-scanning direction between the second conveyance roller 2 and the first reading sensors 3-1 and 3-3 from the leading end of the document 11 until the document 11 is held by the second conveyance roller 2. This is a slight image area from the front end of the original to be read.

図5は、画像読取装置の調整方法を説明した図である。
図5(a)は、上流の第1読み取りセンサと下流の第2読み取りセンサとの間に生じる画像データの遅延量を示した図である。遅延量Lが、副走査方向のずれ量に相当する。
図5(b)は、画像読取装置の調整方法を説明したブロック図である。第1読み取りセンサ3−1、3−3で読み取った画像データの遅延量を求めるために、画像読取装置にその画像装置で読み取られた画像を保持するページメモリと保持した画像データから遅延量を決定する制御回路を具備した調整装置を接続している。第1読み取りセンサ3−1、3−3で読み取った画像データは、A/D変換回路で256階調のデジタル信号に変換され遅延回路により複数の副走査方向のずれ量Lを各々求めて相加平均した相対的なずれ量の平均値に相当するライン数だけ遅延され、第2読み取りセンサで読み取った画像の出力に合わせて1ラインに合成されて、下流の画像処理回路に送られる。ここで、ライン数は、ずれ量Lを読み取り密度で除した値である。
FIG. 5 is a diagram for explaining an adjustment method of the image reading apparatus.
FIG. 5A is a diagram illustrating a delay amount of image data generated between the upstream first reading sensor and the downstream second reading sensor. The delay amount L corresponds to the amount of deviation in the sub-scanning direction.
FIG. 5B is a block diagram illustrating a method for adjusting the image reading apparatus. In order to obtain the delay amount of the image data read by the first reading sensors 3-1 and 3-3, the delay amount is calculated from the page memory for holding the image read by the image device and the held image data. An adjusting device having a control circuit for determination is connected. The image data read by the first reading sensors 3-1 and 3-3 are converted into 256 gradation digital signals by the A / D conversion circuit, and a plurality of shift amounts L in the sub-scanning direction are respectively obtained by the delay circuit. Delayed by the number of lines corresponding to the average value of the averaged relative shift amounts, combined into one line in accordance with the output of the image read by the second reading sensor, and sent to the downstream image processing circuit. Here, the number of lines is a value obtained by dividing the shift amount L by the reading density.

以下に、本発明の副走査調整方法として、第1読み取りセンサ3−1、3−3と第2読み取りセンサ3−2の副走査方向のずれ補正動作を、図6〜9に基づいて説明する。
図6は、本発明の調整方法における読み取りセンサの読み取りつなぎ目の直線パターン認識方法を説明するための図である。まず、図6の原稿搬送方向(副走査方向)に直交した直線パターンが複数ある原稿を画像読取装置に読み込ませる。次に合成した画像を調整装置のページメモリに格納して、制御回路により図6に示すa、b領域の直線パターンを認識する。
次に、認識した各直線パターンの各読み取りセンサの読み取りつなぎ目におけるY座標を、図7のようにY1(n)、Y2L(n)、Y3(n)、Y2R(n)として求める。図7は、各直線パターンの読み取りつなぎ目のY座標から副走査方向のずれ量を求める方法を説明した図である。
ここで、読み込んだ直線パターンには、図8のようにY方向に幅と各ドット単位で読み取り濃度差があるため、重心法等を用いて正確に直線のY座標を求めるのが望ましい。図8は、直線パターンのY方向に存在する幅と各ドット単位の読み取り濃度差を説明した図である。
以上求めたY座標より、第1読み取りセンサ3−1と第2読み取りセンサ3−2の副走査方向のずれ量の平均値R12は、下記式(1)により求められる。
R12=Σ(Y1(n)−Y2L(n))/n ・・・式(1)
第1読み取りセンサ3−3と第2読み取りセンサ3−2の副走査方向のずれ量の平均値R32は、下記式(2)により求められる。
R32=Σ(Y3(n)−Y2R(n))/n ・・・式(2)
R12、R32のそれぞれを遅延量と決定し、そのR12、R32は、画像読取装置の図示しない入力装置より遅延回路にずれ量を補正する補正値として設定される。
Hereinafter, as the sub-scanning adjustment method of the present invention, the sub-scanning direction shift correction operation of the first reading sensors 3-1 and 3-2 and the second reading sensor 3-2 will be described with reference to FIGS. .
FIG. 6 is a diagram for explaining a method of recognizing a straight line pattern of a reading joint of the reading sensor in the adjustment method of the present invention. First, a document having a plurality of linear patterns orthogonal to the document conveyance direction (sub-scanning direction) in FIG. Next, the synthesized image is stored in the page memory of the adjusting device, and the control circuit recognizes the linear pattern of the regions a and b shown in FIG.
Next, the Y coordinate at the reading joint of each reading sensor of each recognized linear pattern is obtained as Y1 (n), Y2L (n), Y3 (n), Y2R (n) as shown in FIG. FIG. 7 is a diagram for explaining a method for obtaining the amount of deviation in the sub-scanning direction from the Y coordinate of the reading joint of each linear pattern.
Here, since the read linear pattern has a reading density difference in width and each dot unit in the Y direction as shown in FIG. 8, it is desirable to accurately obtain the Y coordinate of the straight line using the centroid method or the like. FIG. 8 is a diagram for explaining the width existing in the Y direction of the linear pattern and the reading density difference for each dot unit.
The average value R12 of the shift amount in the sub-scanning direction of the first reading sensor 3-1 and the second reading sensor 3-2 is obtained from the Y coordinate obtained as described above by the following equation (1).
R12 = Σ (Y1 (n) −Y2L (n)) / n Expression (1)
The average value R32 of the shift amount in the sub-scanning direction of the first reading sensor 3-3 and the second reading sensor 3-2 is obtained by the following equation (2).
R32 = Σ (Y3 (n) −Y2R (n)) / n (2)
Each of R12 and R32 is determined as a delay amount, and R12 and R32 are set as correction values for correcting the shift amount in the delay circuit from an input device (not shown) of the image reading apparatus.

R12、R32は、複数の直線画像が副走査方向にずれた差を各々求め、相加平均した値を相対的なずれ量の平均値としたものである。このため、第1、2の読み取りセンサ副走査方向の距離間において搬送速度むらがあった場合でも、R12、R32は平均された搬送速度での副走査方向のずれに対する遅延量のため、一列に合成された画像に生ずる各読み取りセンサの読み取りつなぎ目における副走査方向のずれが偏りなく補正される。   R12 and R32 each obtain a difference in which a plurality of linear images are shifted in the sub-scanning direction, and an arithmetic average value is used as an average value of relative shift amounts. For this reason, even when there is uneven conveyance speed between the distances in the first and second reading sensors in the sub-scanning direction, R12 and R32 are in a row because of the delay amount with respect to the deviation in the sub-scanning direction at the averaged conveyance speed. Deviations in the sub-scanning direction at the reading joints of the reading sensors generated in the synthesized image are corrected without deviation.

また、図6に示す原稿先端から離れた上流側のa、b領域の直線パターン画像のデータを用いて遅延量を決定したのは以下の理由からである。
読み取り装置に用いられる搬送ローラは、原稿が搬送される時にシワが発生しないように、通常は第2搬送ローラ2の径を第1搬送ローラ1の径より若干大きくして、第2搬送ローラ2の引っ張り効果によって、原稿面が常に張られるように搬送させている。原稿11が第2搬送ローラ2にくわえ込まれるまでは径の小さい第1搬送ローラ1のみで原稿11が搬送されるので、原稿11が第2搬送ローラ2にくわえ込まれるまでの搬送速度は、原稿11が第2搬送ローラ2にくわえ込まれた後での搬送速度より遅い。
ここで、原稿11が第2搬送ローラ2にくわえ込まれるまで読み取られる原稿の画像領域は、図4に示すように、原稿先端より第2搬送ローラ2と第1読み取りセンサ3―1、3―3の副走査間距離LLの領域である。LL領域は先端わずかの領域であり、LL領域以外の原稿先端から離れた上流側のa、b領域の直線パターン画像データを用いて遅延量を決定すれば、先端からLL間のわずかな領域以外の広範囲でずれが補正される。
Further, the reason why the delay amount is determined by using the data of the linear pattern images in the upstream a and b regions apart from the leading edge of the document shown in FIG. 6 is as follows.
The conveying roller used in the reading device is usually configured such that the diameter of the second conveying roller 2 is slightly larger than the diameter of the first conveying roller 1 so that wrinkles do not occur when the document is conveyed. Due to the pulling effect, the document surface is conveyed so that it is always stretched. Since the document 11 is transported only by the first transport roller 1 having a small diameter until the document 11 is gripped by the second transport roller 2, the transport speed until the document 11 is gripped by the second transport roller 2 is It is slower than the conveyance speed after the document 11 is held by the second conveyance roller 2.
Here, as shown in FIG. 4, the image area of the original that is read until the original 11 is held by the second conveying roller 2 is the second conveying roller 2 and the first reading sensors 3-1, 3- 3 is a region having a sub-scanning distance LL. The LL area is a small area at the front end, and if the delay amount is determined using the linear pattern image data of the upstream a and b areas apart from the front end of the document other than the LL area, the area other than the slight area between the front end and LL is determined. Deviation is corrected over a wide range.

図9は、上流搬送ローラと下流搬送ローラの搬送速度差に起因する読み取りセンサの読み取りつなぎ目の画像ずれを示した図である。原稿先端のLL領域は第2搬送ローラ2の搬送速度より遅い第1搬送ローラ1で搬送されて読み取られるため、第2搬送ローラ2による搬送速度に合わせて、第1読み取りセンサ3−1、3−3で読み取った画像データと第2読み取りセンサ3−2で読み取った画像とを合成するようにした場合、LL領域の読み取りつなぎ目において原稿送り方向(副走査方向)に第1読み取りセンサで読み取った画像が搬送方向に先行したような画像ずれを生じることになる。
例えば、図4に示すように、第2搬送ローラ2の径をφ30.5mm、第1搬送ローラ1の径をφ30mm、第1、第2読み取りセンサの副走査間隔Lを30mmとすると、第2搬送ローラ2の径が約0.17%大きいことより、そのずれ量は約50μmとなり、600dpi(1画素42.3μm)の解像度で読み取った場合、1ライン強の画像ずれとなる。
FIG. 9 is a diagram illustrating an image shift of the reading joint of the reading sensor due to a difference in conveying speed between the upstream conveying roller and the downstream conveying roller. Since the LL region at the leading edge of the document is conveyed and read by the first conveyance roller 1 that is slower than the conveyance speed of the second conveyance roller 2, the first reading sensors 3-1, 3 and 3 are matched with the conveyance speed by the second conveyance roller 2. When the image data read at -3 and the image read by the second reading sensor 3-2 are combined, the image is read by the first reading sensor in the document feed direction (sub-scanning direction) at the reading joint in the LL area. The image shifts as if the image preceded the conveyance direction.
For example, as shown in FIG. 4, when the diameter of the second transport roller 2 is 30.5 mm, the diameter of the first transport roller 1 is 30 mm, and the sub-scanning interval L between the first and second reading sensors is 30 mm, Since the diameter of the conveying roller 2 is about 0.17% larger, the amount of deviation is about 50 μm, and when read at a resolution of 600 dpi (42.3 μm per pixel), an image deviation of just over one line occurs.

ここで、本実施例では、第1、第2搬送ローラの回転駆動を、図示しない制御手段により、回転速度制御可能なステッピングモータ16で第1駆動プーリ14、第2駆動プーリ15とタイミグベルト17を介して回転駆動する際に、原稿11が第1ペーパ検知9で検知され、第1、第2搬送ローラを回転開始して第2ペーパ検知10で原稿先端が検知され第2搬送ローラ2に原稿11がくわえ込まれるまでの間は、第2搬送ローラ2による搬送速度と同じになるように増速して搬送させることにより原稿の搬送速度が常に一定になるようにし、図9のような読み取りつなぎ目の副走査方向の画像ずれを防止している。
その増速量は、次のように求められる。
まず、図6に示すように、原稿搬送方向と直交した直線パターンが複数本以上ある原稿の直線パターンが、原稿先端より第2搬送ローラ2と第1読み取りセンサ3―1、3−3の副走査間距離LLの範囲内に複数本以上配置され、かつ原稿先端より第2搬送ローラ2と第1読み取りセンサ3−1、3−3の副走査間距離LLから離れた副走査方向上部の範囲内に複数本以上配置された原稿を読み取る。
次に、上記式(1)、(2)により求めた原稿先端のLL領域から離れたa、b領域の相対的なずれ量の平均値である遅延量R12、R32と、同様に求められるLL領域範囲内のa’、b’領域の相対的なずれ量の平均値である遅延量R’12、R’32より、増速量は、下記式(3)又は下記式(4)により求められる。
(R12−R’12)/R12×100 (%) ・・・式(3)
(R32−R’32)/R32×100 (%) ・・・式(4)
これも画像読取装置の図示しない入力装置により、図示しない第1、第2搬送ローラの回転駆動を制御する制御手段に増速量として設定されることにより、原稿の搬送速度が常に一定になる。このため、図9のような読み取りセンサの読み取りつなぎ目の副走査方向のずれが防止でき、各読み取りセンサの読み取りつなぎ目の全域において、画素の重複や欠落による画像ずれのない高画質の画像を得ることができる。
Here, in this embodiment, the first driving pulley 14, the second driving pulley 15, and the timing belt 17 are driven by the stepping motor 16 that can control the rotational speed of the first and second transport rollers by a control means (not shown). , The document 11 is detected by the first paper detection 9, the first and second conveyance rollers are started to rotate, the leading edge of the document is detected by the second paper detection 10, and the second conveyance roller 2 is detected. Until the original 11 is held, the conveyance speed of the original is always kept constant by increasing the conveyance speed so as to be the same as the conveyance speed by the second conveyance roller 2 as shown in FIG. Image misalignment in the sub-scanning direction of the reading joint is prevented.
The speed increase amount is obtained as follows.
First, as shown in FIG. 6, a linear pattern of a document having a plurality of linear patterns orthogonal to the document conveyance direction is added to the second conveyance roller 2 and the first reading sensors 3-1 and 3-3 from the leading edge of the document. A plurality in the range of the inter-scanning distance LL, and a range in the sub-scanning direction upper part away from the sub-scanning distance LL between the second transport roller 2 and the first reading sensors 3-1, 3-3 from the leading edge of the document. Scan multiple documents placed in the document.
Next, the delay amounts R12 and R32, which are the average values of the relative shift amounts of the a and b regions apart from the LL region at the front end of the document obtained by the above formulas (1) and (2), and the LL obtained similarly. From the delay amounts R′12 and R′32 that are the average values of the relative shift amounts of the a ′ and b ′ regions within the region range, the speed increase amount is obtained by the following equation (3) or the following equation (4). It is done.
(R12−R′12) / R12 × 100 (%) (3)
(R32−R′32) / R32 × 100 (%) (4)
This is also set by the input device (not shown) of the image reading apparatus as a speed increase amount in a control means for controlling the rotational drive of the first and second transport rollers (not shown), so that the document transport speed is always constant. For this reason, the shift in the sub-scanning direction of the reading joint of the reading sensor as shown in FIG. 9 can be prevented, and a high-quality image free from image shift due to overlapping or omission of pixels can be obtained in the entire reading joint of each reading sensor. Can do.

したがって、本発明によれば、副走査方向の画像データの遅延量が正確に調整装置により自動的に設定されるため、従来の調整方法のように、時間と手間を要し、結果的に製造コストが大きくなることがなく、また作業者の裁量によらないバラツキのない正確な設定がされ、各読み取りセンサの読み取りつなぎ目において、画素の重複、欠落による画像ずれのない高画質の画像が得られ、利便性を向上させた画像読み取り装置の調整方法、これを用いる画像読み取り装置及び画像形成装置を提供することができる。 Therefore, according to the present invention, since the delay amount of the image data in the sub-scanning direction is automatically set accurately by the adjustment device, it takes time and labor as in the conventional adjustment method, resulting in the manufacture. The cost is not increased, and accurate settings are made without variations that do not depend on the discretion of the operator, and high-quality images without image displacement due to overlapping or missing pixels can be obtained at the reading joints of each reading sensor. Further, it is possible to provide an adjustment method for an image reading apparatus with improved convenience, and an image reading apparatus and an image forming apparatus using the same.

図10は、本発明の画像読み取り装置を備えた画像形成装置の概略構成図である。
画像読み取り装置100は、原稿挿入口から挿入された原稿を読み取り部101へ原稿搬送方向Aに搬送する第1搬送ローラ1と、その搬送された原稿を複数の読み取りセンサで読み取る読み取り部101と、その複数の読み取りセンサは、主走査方向の所定のラインに沿って各々長手方向に一列に並べられた上流側の第1の読み取りセンサと下流側の第2の読み取りセンサの複数の組み合わせからなり、第1の読み取りセンサと第2の読み取りセンサの読み取りつなぎ目の画像データの読み出し開始画素と読み出し終了画素が複数個重なるように、各々の読み取りセンサを副走査方向に交互に割り当てて千鳥状に配置され、その千鳥状に配置された複数の読み取りセンサのうち、第1の読み取りセンサで読み取った画像データを遅延させて、第2の読み取りセンサで読み取った画像と一列に合成する合成手段と、読み取りが終了した原稿を挿入口とは反対の方向に導き搬送する第2搬送ローラ2とを備える。
画像形成装置は、読み取られた原稿情報を電気的な画像信号に変換する画像読み取り装置100と、読み取られた画像信号に対応した画像を書き込み部102により像担持体に形成する作像部103と、現像剤を現像ローラの表面に担持して像担持体に対向する現像領域に搬送し、像担持体上に形成されている静電潜像に転移させ顕像化する現像部104と、像担持体上に顕像化されたトナー像を記録紙へ定着させる定着部105を備える。
図10の画像形成装置は、A0サイズの図面原稿にも対応したものであり、ロール給紙部107はA0サイズの原稿の長さに合わせてカッター109でカットして記録紙として送ることができ、カセット給紙部108はA3サイズの原稿に対応している。
なお、画像形成装置は、電子写真方式又はインクジェット方式のいずれでもよく、本発明の調整方法用いる画像読み取り装置を備えることにより、画像ずれのない高画質の画像が得られ、利便性を向上させることができる。
FIG. 10 is a schematic configuration diagram of an image forming apparatus provided with the image reading apparatus of the present invention.
The image reading apparatus 100 includes a first conveyance roller 1 that conveys a document inserted from a document insertion opening to a reading unit 101 in a document conveyance direction A, a reading unit 101 that reads the conveyed document with a plurality of reading sensors, The plurality of reading sensors are composed of a plurality of combinations of an upstream first reading sensor and a downstream second reading sensor, each arranged in a line in the longitudinal direction along a predetermined line in the main scanning direction, Each reading sensor is alternately assigned in the sub-scanning direction so as to overlap a plurality of reading start pixels and reading end pixels of image data at the reading joint of the first reading sensor and the second reading sensor, and arranged in a staggered manner. Among the plurality of reading sensors arranged in a staggered pattern, the image data read by the first reading sensor is delayed. Comprising synthesizing means for synthesizing the image and a line read by the second reading sensor, and a second conveying roller 2 for conveying guided in a direction opposite to the insertion opening a document reading has been completed.
The image forming apparatus includes an image reading apparatus 100 that converts read document information into an electrical image signal, and an image forming unit 103 that forms an image corresponding to the read image signal on an image carrier using a writing unit 102. A developing unit 104 that carries the developer on the surface of the developing roller, transports the developer to a developing region facing the image carrier, and transfers the image to an electrostatic latent image formed on the image carrier, and an image; A fixing unit 105 is provided for fixing the toner image visualized on the carrier to the recording paper.
The image forming apparatus of FIG. 10 is also compatible with A0 size drawing originals, and the roll paper feeding unit 107 can be cut by the cutter 109 according to the length of the A0 size originals and sent as recording paper. The cassette paper feeding unit 108 is compatible with A3 size originals.
Note that the image forming apparatus may be either an electrophotographic system or an inkjet system, and by providing the image reading apparatus using the adjustment method of the present invention, a high-quality image without image displacement can be obtained and convenience can be improved. Can do.

従来の画像読取装置の概略構成図である。It is a schematic block diagram of the conventional image reading apparatus. 従来の読み取りセンサのタイプ1〜3について説明した図である。It is a figure explaining types 1-3 of the conventional reading sensor. 原稿搬送速度のずれにより生じる読み取りセンサの読み取りつなぎ目の画像 ずれを示した図である。FIG. 6 is a diagram showing image misalignment at a reading joint of a reading sensor caused by a deviation in document conveying speed. 本発明の画像読取装置を上面と側面から見た概略図である。1 is a schematic view of an image reading apparatus according to the present invention as viewed from the top and side surfaces. 画像読取装置の調整方法を説明した図である。It is a figure explaining the adjustment method of an image reading apparatus. 本発明の調整方法における読み取りセンサの読み取りつなぎ目の直線パターン認識方法を説明するための図である。It is a figure for demonstrating the linear pattern recognition method of the reading joint of the reading sensor in the adjustment method of this invention. 各直線パターンの読み取つなぎ目のY座標から副走査方向のずれ量を求める 方法を説明した図である。It is a figure explaining the method of calculating | requiring the deviation | shift amount of a subscanning direction from the Y coordinate of the reading joint of each linear pattern. 直線パターンのY方向に存在する幅と各ドット単位の読み取り濃度差を説明 した図である。It is a figure explaining the width which exists in the Y direction of a linear pattern, and the reading density difference of each dot unit. 上流搬送ローラと下流搬送ローラの搬送速度差に起因する読み取りセンサの 読み取りつなぎ目の画像ずれを示した図である。FIG. 5 is a diagram illustrating image misalignment of a reading joint of a reading sensor caused by a difference in conveying speed between an upstream conveying roller and a downstream conveying roller. 本発明の画像読み取り装置を備えた画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus including an image reading apparatus of the present invention.

符号の説明Explanation of symbols

1 第1搬送ローラ
2 第2搬送ローラ
3−1、3−3 第1読み取りセンサ
3−2 第2読み取りセンサ
4 コンタクトガラス
5 照明手段
6 セルフォックレンズ
7 受光素子
8 原稿テーブル
9 第1ペーパー検知
10 第2ペーパー検知
11 原稿
12 縮小レンズ
13 圧板
14、15 駆動プーリ
16 ステッピングモータ
17 タイミングベルト
21 第1読み取りセンサの読み取りライン
22 第2読み取りセンサの読み取りライン
100 原稿搬送部
101 読み取り部
102 書き込み部
103 作像部
104 現像部
105 定着部
106 手差し部
107 ロール給紙部
108 カセット給紙部
109 カッター
A 原稿搬送方向
DESCRIPTION OF SYMBOLS 1 1st conveyance roller 2 2nd conveyance roller 3-1, 3-3 1st reading sensor 3-2 2nd reading sensor 4 Contact glass 5 Illumination means 6 Selfoc lens 7 Light receiving element 8 Original table 9 First paper detection 10 Second paper detection 11 Document 12 Reduction lens 13 Pressure plate 14, 15 Drive pulley 16 Stepping motor 17 Timing belt 21 Reading line 22 of first reading sensor Reading line 100 of second reading sensor 100 Document conveying section 101 Reading section 102 Writing section 103 Image unit 104 Developing unit 105 Fixing unit 106 Manual feeding unit 107 Roll paper feeding unit 108 Cassette paper feeding unit 109 Cutter A Original conveyance direction

Claims (5)

原稿挿入口から挿入された原稿を読み取り部へと搬送する第1の搬送ローラと、
搬送された原稿を検知する検知手段と、
第1の搬送ローラにより搬送された原稿を読み取る複数の読み取り手段と、
その複数の読み取り手段は、主走査方向の所定のラインに沿って各々長手方向に一列に並べられた上流側の第1の読み取り手段と下流側の第2の読み取り手段の複数の組み合わせからなり、第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目の画像データの読み出し開始画素と読み出し終了画素が複数個重なるように、各々の読み取り手段を副走査方向に交互に割り当てて千鳥状に配置され、
その千鳥状に配置された複数の読み取り手段のうち、第1の読み取り手段で読み取った画像データを遅延させて、第2の読み取り手段で読み取った画像と一列に合成する合成手段と、
読み取りが終了した原稿を挿入口とは反対の方向に導き搬送する第2の搬送ローラと、
第1、第2の搬送ローラを回転駆動する駆動手段と、
第1、第2の搬送ローラの回転駆動を制御する制御手段とを備える画像読み取り装置における前記複数の読み取り手段の調整方法おいて、
前記調整方法は、前記複数の読み取り手段に主走査方向に延在する基準直線パターンが複数本以上ある原稿を読み取らせて算出した第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における主走査方向に延在する複数の直線画像が副走査方向にずれた差を各々求め、相加平均した値を相対的なずれ量の平均値とすることにより、その相対的なずれ量の平均値を第1の読み取り手段で読み取った画像データの遅延量として決定し、前記合成手段における第1の読み取り手段の遅延時間を調整する
ことを特徴とする画像読み取り装置の調整方法。
A first transport roller for transporting a document inserted from a document insertion slot to a reading unit;
Detection means for detecting the conveyed document;
A plurality of reading means for reading the document conveyed by the first conveying roller;
The plurality of reading means is composed of a plurality of combinations of an upstream first reading means and a downstream second reading means arranged in a line in the longitudinal direction along a predetermined line in the main scanning direction, The reading means are alternately allocated in the sub-scanning direction so that a plurality of reading start pixels and reading end pixels of the image data at the reading joint of the first reading means and the second reading means overlap each other, and are arranged in a staggered manner. ,
Among the plurality of reading means arranged in a staggered manner, the combining means for delaying the image data read by the first reading means and combining it with the image read by the second reading means,
A second transport roller for guiding and transporting the document that has been read in a direction opposite to the insertion slot;
Drive means for rotationally driving the first and second transport rollers;
In the method for adjusting the plurality of reading means in an image reading apparatus comprising control means for controlling the rotational drive of the first and second transport rollers,
In the adjustment method, main scanning at a reading joint between the first reading unit and the second reading unit calculated by causing the plurality of reading units to read a document having a plurality of reference linear patterns extending in the main scanning direction. The difference between the plurality of linear images extending in the direction is respectively determined in the sub-scanning direction, and the arithmetic average value is used as the average value of the relative shift amounts, thereby calculating the average value of the relative shift amounts. An adjustment method for an image reading apparatus, characterized in that it is determined as a delay amount of image data read by a first reading means, and a delay time of the first reading means in the synthesizing means is adjusted.
前記調整方法は、主走査方向に延在する直線パターンを、原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離の範囲内に複数本以上配置し、かつ原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離より上流側の範囲内に複数本以上配置した原稿を読み取らせ、記憶手段によって保持させた、
前記原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離の範囲内の前記第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における各直線パターン画像データより算出した副走査方向の相対的なずれ量の平均値と、
前記原稿先端より前記第2搬送ローラと第1の読み取り手段までの副走査間距離より上流側の範囲内の前記第1の読み取り手段と第2の読み取り手段の読み取りつなぎ目における各直線パターン画像データより算出した副走査方向の相対的なずれ量の平均値との差を各々求めることにより、
前記第1、第2の搬送ローラによる原稿の搬送速度が一定になるように、前記第1、第2の搬送ローラの回転駆動を調整制御する
ことを特徴とする請求項1に記載の画像読み取り装置の調整方法。
In the adjustment method, a plurality of linear patterns extending in the main scanning direction are arranged within the range of the sub-scanning distance from the document leading edge to the second transport roller and the first reading means, and from the document leading edge. A plurality of originals arranged in a range upstream of the sub-scanning distance between the second transport roller and the first reading unit are read and held by a storage unit;
The sub-pattern calculated from each linear pattern image data at the reading joint between the first reading means and the second reading means within the range of the sub-scanning distance from the leading edge of the document to the second conveying roller and the first reading means. The average value of the relative displacement in the scanning direction;
From each linear pattern image data at the reading joint of the first reading means and the second reading means within the range upstream from the sub-scanning distance from the leading edge of the document to the second conveying roller and the first reading means. By calculating the difference from the calculated average value of relative displacements in the sub-scanning direction,
2. The image reading according to claim 1, wherein the rotational driving of the first and second transport rollers is adjusted and controlled so that the document transport speed by the first and second transport rollers is constant. Device adjustment method.
前記調整方法は、主走査方向をX座標、副走査方向をY座標としたとき、
前記主走査方向に延在する各直線画像のY座標を、
重心法を用いて算出する
ことを特徴とする請求項1又は2に記載の画像読み取り装置の調整方法。
In the adjustment method, when the main scanning direction is the X coordinate and the sub scanning direction is the Y coordinate,
The Y coordinate of each linear image extending in the main scanning direction is
The method of adjusting the image reading apparatus according to claim 1, wherein the calculation is performed using a center of gravity method.
前記画像読み取り装置は、請求項1ないし3のいずれかに記載の調整方法用いる
ことを特徴とする画像読み取り装置。
The image reading apparatus uses the adjustment method according to claim 1.
前記画像読み取り装置によって読み取られた画像情報信号に対応した画像を形成する電子写真方式又はインクジェット方式の画像形成装置であって、
前記画像形成装置は、請求項4に記載の画像読み取り装置を備える
ことを特徴とする画像形成装置。
An electrophotographic or inkjet image forming apparatus that forms an image corresponding to an image information signal read by the image reading apparatus,
The image forming apparatus includes the image reading apparatus according to claim 4.
JP2005207941A 2004-09-08 2005-07-19 Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same Expired - Fee Related JP4633564B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005207941A JP4633564B2 (en) 2004-09-08 2005-07-19 Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same
US11/219,914 US7460279B2 (en) 2004-09-08 2005-09-07 Adjustment method, image reading device, and image forming apparatus for adjusting read sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004260415 2004-09-08
JP2005207941A JP4633564B2 (en) 2004-09-08 2005-07-19 Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006109408A true JP2006109408A (en) 2006-04-20
JP4633564B2 JP4633564B2 (en) 2011-02-16

Family

ID=36378549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207941A Expired - Fee Related JP4633564B2 (en) 2004-09-08 2005-07-19 Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4633564B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234116A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Method of calculating correction value and method of discharging liquid
JP2009234115A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Method of calculating correction value and method of discharging liquid
US9185253B2 (en) 2013-05-21 2015-11-10 Canon Kabushiki Kaisha Image reading apparatus
JP6847314B1 (en) * 2020-01-31 2021-03-24 三菱電機株式会社 Image reader and image reading method
JP2023025127A (en) * 2020-04-02 2023-02-21 コニカミノルタ株式会社 Image reading device and image forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115459A (en) * 1998-10-02 2000-04-21 Canon Inc Image reader and computer-readable storage medium
JP2000175001A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Image data correction method in image reader
JP2001333250A (en) * 2000-05-22 2001-11-30 Sharp Corp Copy device
JP2002111959A (en) * 2000-09-29 2002-04-12 Canon Inc Image-reading device and method, and recording medium
JP2003143381A (en) * 2001-08-22 2003-05-16 Canon Inc Image processing apparatus
JP2004214834A (en) * 2002-12-27 2004-07-29 Ricoh Co Ltd Image reading apparatus
JP2006140599A (en) * 2004-11-10 2006-06-01 Seiko Instruments Inc Image processor
JP2006186558A (en) * 2004-12-27 2006-07-13 Seiko Instruments Inc Image reading apparatus
JP2006270819A (en) * 2005-03-25 2006-10-05 Sharp Corp Image reading apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115459A (en) * 1998-10-02 2000-04-21 Canon Inc Image reader and computer-readable storage medium
JP2000175001A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Image data correction method in image reader
JP2001333250A (en) * 2000-05-22 2001-11-30 Sharp Corp Copy device
JP2002111959A (en) * 2000-09-29 2002-04-12 Canon Inc Image-reading device and method, and recording medium
JP2003143381A (en) * 2001-08-22 2003-05-16 Canon Inc Image processing apparatus
JP2004214834A (en) * 2002-12-27 2004-07-29 Ricoh Co Ltd Image reading apparatus
JP2006140599A (en) * 2004-11-10 2006-06-01 Seiko Instruments Inc Image processor
JP2006186558A (en) * 2004-12-27 2006-07-13 Seiko Instruments Inc Image reading apparatus
JP2006270819A (en) * 2005-03-25 2006-10-05 Sharp Corp Image reading apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234116A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Method of calculating correction value and method of discharging liquid
JP2009234115A (en) * 2008-03-27 2009-10-15 Seiko Epson Corp Method of calculating correction value and method of discharging liquid
US9185253B2 (en) 2013-05-21 2015-11-10 Canon Kabushiki Kaisha Image reading apparatus
JP6847314B1 (en) * 2020-01-31 2021-03-24 三菱電機株式会社 Image reader and image reading method
JP2023025127A (en) * 2020-04-02 2023-02-21 コニカミノルタ株式会社 Image reading device and image forming apparatus

Also Published As

Publication number Publication date
JP4633564B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
CN111510573B (en) Tilt detection device, reading device, image processing device, and tilt detection method
US7460279B2 (en) Adjustment method, image reading device, and image forming apparatus for adjusting read sensors
EP1380901B1 (en) Picture reading device and image forming apparatus
JP7211238B2 (en) Edge detection device, tilt correction device, reading device, image processing device, and edge detection method
CN110086950B (en) Image reading apparatus, image forming apparatus, and density correction method
US8670163B2 (en) Image reader and image forming apparatus using same using multiple image sensors and which corrects misalignment
JP5652063B2 (en) Image reading apparatus, image forming apparatus, and shading correction method
EP1566955A2 (en) Method and apparatus for generating a scanner calibration target on a medium and for calibrating a scanner with this target
JP2006240774A (en) Image forming device, and control method for image forming device
US7502147B2 (en) Image position correcting method, image position correcting jig, and image formation device
JP7183669B2 (en) Image reading device, image forming device and image reading method
JP4571027B2 (en) Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same
JP4633564B2 (en) Image reading apparatus adjustment method, image reading apparatus and image forming apparatus using the same
JP7135534B2 (en) Reading device, image forming device, correction value calculation method and program
JP2005316427A (en) Device and apparatus for discriminating recording material, and image forming apparatus and method using recording material discriminating device
JP7103014B2 (en) Reader, image forming device, reference pattern reading method and program
US20220263972A1 (en) Image forming apparatus, method of forming gradation patch, and evaluation chart of the image forming apparatus
JP2019103122A (en) Reader, image forming apparatus, position detection method, and program
JP2019201280A (en) Inspection device, image reading device, image forming apparatus, calculation method, and program
JP2019004314A (en) Image reading apparatus
EP4060973A1 (en) Image reading device, image forming apparatus, and image reading method
JP7147438B2 (en) Image reading device, image forming device and image reading method
JPH11298683A (en) Image processor and image reader
JP2024034605A (en) Sheet conveyance device and image reading device
JPH03181271A (en) Automatic original feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees