JP2006108550A - Variable-capacitance diode - Google Patents

Variable-capacitance diode Download PDF

Info

Publication number
JP2006108550A
JP2006108550A JP2004296057A JP2004296057A JP2006108550A JP 2006108550 A JP2006108550 A JP 2006108550A JP 2004296057 A JP2004296057 A JP 2004296057A JP 2004296057 A JP2004296057 A JP 2004296057A JP 2006108550 A JP2006108550 A JP 2006108550A
Authority
JP
Japan
Prior art keywords
type impurity
capacitance diode
diffusion region
impurity diffusion
variable capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296057A
Other languages
Japanese (ja)
Inventor
Yoko Sakiyama
陽子 崎山
Susumu Tomoi
進 友井
Takafumi Mise
孝文 見世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004296057A priority Critical patent/JP2006108550A/en
Publication of JP2006108550A publication Critical patent/JP2006108550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable-capacitance diode wherein the relative varying width of its depleted layer to its voltage variation is reduced, and the linearity of its voltage-resonance frequency characteristic is improved largely within the scope of its using voltage. <P>SOLUTION: The variable-capacitance diode is formed in a semiconductor substrate 1, and has an n-type impurity diffusing region 6 which constitutes a pn-junction together with a p-type impurity diffusing region 5. A capacitance C obtained when applying a reverse bias voltage (v) across electrodes 3, 4 of the variable-capacitance diode is represented by a function C(v) of the reverse bias voltage (v), and a resonance frequency (f) obtained at this time is represented by a function f(v) of the reverse bias voltage (v). Then, the variable-capacitance diode is such a diode that, when representing the function f(v) by the equation of f(v)=K'/√C, (K' is a constant), the difference of f'(v)=K/(1/√(C(v+0.05))-1/√(C(v-0.05))), (K is a constant), which is the difference of the function f(v) taken between v+0.05 and v-0.05 is forced to satisfy the equation of 0.95<f(v)/f(1)<1.05 within the scope of 1<v<3.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、超階段接合の可変容量ダイオード(VCD:Variable Capasitance Diode )に関し、特に、電圧制御発振器(VCO:Voltage Controlled Oscillator)などに使用される可変容量ダイオードの構造に関するものである。   The present invention relates to, for example, a supercapacitor variable capacitance diode (VCD), and more particularly to the structure of a variable capacitance diode used in a voltage controlled oscillator (VCO) or the like.

従来、例えば、電圧制御発振器にキャパシタとして用いられる可変容量ダイオードは、1対の電極とその間に形成されたP型不純物拡散領域及びN型不純物拡散領域を備え、この電極間に逆バイアス電圧を印加することによりPN接合部に空乏層を形成し、これを誘電体層とするキャパシタを構成するものである。しかしながら、このような可変容量ダイオードは、使用電圧領域において、とくにその領域の下限付近において入力電圧に対する発振周波数の変動が大きく、発振周波数の電圧制御を困難にしていた。
このように可変容量ダイオードは、逆バイアス電圧を入力してPN接合を空乏化することで所望の容量をもつコンデンサを形成して使用する。入力電圧に対する周波数特性は、不純物濃度によって変化するため不純物濃度分布が可変容量ダイオードの性能を決定する。
非特許文献1には、入力電圧に対して発振周波数が比例する理想的なVCDの不純物濃度分布が示されている(図3(a)参照)。また、従来の可変容量ダイオードは、特許文献1に記載されている。
Conventionally, for example, a variable capacitance diode used as a capacitor in a voltage controlled oscillator has a pair of electrodes and a P-type impurity diffusion region and an N-type impurity diffusion region formed therebetween, and a reverse bias voltage is applied between the electrodes. By doing so, a depletion layer is formed at the PN junction, and a capacitor using this as a dielectric layer is constructed. However, such a variable capacitance diode has a large fluctuation of the oscillation frequency with respect to the input voltage in the working voltage region, particularly near the lower limit of the region, making voltage control of the oscillation frequency difficult.
As described above, the variable capacitance diode is used by forming a capacitor having a desired capacitance by depleting the PN junction by inputting a reverse bias voltage. Since the frequency characteristic with respect to the input voltage varies depending on the impurity concentration, the impurity concentration distribution determines the performance of the variable capacitance diode.
Non-Patent Document 1 shows an ideal VCD impurity concentration distribution in which the oscillation frequency is proportional to the input voltage (see FIG. 3A). A conventional variable capacitance diode is described in Patent Document 1.

ところが、実際の可変容量ダイオードでは、N型不純物拡散領域(N層)をシリコンなどの半導体基板の表面領域にイオン注入・熱拡散などの方法により形成し、その後、高濃度で浅いP型不純物拡散領域(P層)を形成する。したがって、N型不純物拡散領域の実効不純物濃度は、N型不純物濃度とP型不純物濃度との差であり、P型不純物拡散領域の実効不純物濃度は、P型不純物濃度とN型不純物濃度との差である。そのためドナーあるいはアクセプターとして働く正味の不純物濃度分布は、PN接合の近傍において、理想の不純物濃度分布より濃度が低く、特に可変容量ダイオードの入力電圧が低い領域では入力電圧に対する発振周波数の変動が理想的な比例関係から大きく乖離していた(図4参照)。このような理想的な比例関係に近付けるため従来の電圧制御発振器では可変容量ダイオードを2個用いて互いのズレを補償するように回路を構成していた(図1(b)参照)。可変容量ダイオードの入力電圧に対する発振周波数の変動が理想的な比例関係にあれば、電圧制御発振器は、図1(a)に示すように、1つの可変容量ダイオードで十分であり、簡単な構造にすることができる。しかしながら、実際には、このような事情により従来のものは理想的な比例関係にはなく、この関係に近付けることも実用化されていなかった。
半導体デバイス−基礎理論とプロセス技術−(S.M.ジィー著 84−85頁) 特開平5−167088号公報
However, in an actual variable capacitance diode, an N-type impurity diffusion region (N layer) is formed in a surface region of a semiconductor substrate such as silicon by a method such as ion implantation and thermal diffusion, and then a high-concentration and shallow P-type impurity diffusion is performed. A region (P layer) is formed. Therefore, the effective impurity concentration of the N-type impurity diffusion region is the difference between the N-type impurity concentration and the P-type impurity concentration, and the effective impurity concentration of the P-type impurity diffusion region is the difference between the P-type impurity concentration and the N-type impurity concentration. It is a difference. For this reason, the net impurity concentration distribution acting as a donor or acceptor is lower than the ideal impurity concentration distribution in the vicinity of the PN junction, and the fluctuation of the oscillation frequency with respect to the input voltage is ideal especially in the region where the input voltage of the variable capacitance diode is low. There was a large deviation from the proportional relationship (see Fig. 4). In order to approach such an ideal proportional relationship, the conventional voltage-controlled oscillator uses two variable capacitance diodes so as to compensate for the mutual displacement (see FIG. 1B). If the fluctuation of the oscillation frequency with respect to the input voltage of the variable capacitance diode is in an ideal proportional relationship, a single variable capacitance diode is sufficient for the voltage controlled oscillator as shown in FIG. can do. However, in reality, the conventional one is not in an ideal proportional relationship due to such circumstances, and it has not been put into practical use to approach this relationship.
Semiconductor Devices-Basic Theory and Process Technology-(SMJ, pages 84-85) Japanese Patent Laid-Open No. 5-167088

本発明は、使用電圧範囲での電圧−共振周波数の線形性(比例性)を大きく向上させる可変容量ダイオードを提供する。   The present invention provides a variable capacitance diode that greatly improves the linearity (proportionality) of voltage-resonance frequency in the operating voltage range.

本発明の可変容量ダイオードの一態様は、半導体基板と、前記半導体基板に形成されたP型不純物拡散領域と、前記半導体基板に形成され、前記P型不純物拡散領域とPN接合を構成するN型不純物拡散領域と、前記半導体基板上に形成され、前記P型不純物拡散領域に電気的に接続された第1の電極と、前記半導体基板上に形成され、前記N型不純物拡散領域に電気的に接続された第2の電極とを備え、前記第1の電極及び第2の電極間に逆バイアス電圧vを印加した時の容量Cを前記逆バイアス電圧vの関数C(v)で表し、その時の共振周波数fを前記逆バイアス電圧vの関数f(v)で表し、前記関数f(v)を比例式f(v)=K′/√C(K′は定数)で表した場合において、前記関数f(v)のv+0.05とv−0.05間の差分f’(v)=K/(1/√(C(v+0.05))−1/√(C(v−0.05)))(Kは定数)が1<v<3.5の範囲において以下の関係式(1)を満足することを特徴とする。
0.95<f(v)/f(1)<1.05 ・・・(1)
One aspect of the variable capacitance diode of the present invention is a semiconductor substrate, a P-type impurity diffusion region formed in the semiconductor substrate, and an N-type formed in the semiconductor substrate and forming a PN junction with the P-type impurity diffusion region. An impurity diffusion region, a first electrode formed on the semiconductor substrate and electrically connected to the P-type impurity diffusion region, and formed on the semiconductor substrate and electrically connected to the N-type impurity diffusion region A capacitance C when a reverse bias voltage v is applied between the first electrode and the second electrode, and expressed as a function C (v) of the reverse bias voltage v. Is expressed by a function f (v) of the reverse bias voltage v, and the function f (v) is expressed by a proportional expression f (v) = K ′ / √C (K ′ is a constant). Between v + 0.05 and v−0.05 of the function f (v) The difference f ′ (v) = K / (1 / √ (C (v + 0.05)) − 1 / √ (C (v−0.05))) (K is a constant) is 1 <v <3.5 The following relational expression (1) is satisfied in the range.
0.95 <f (v) / f (1) <1.05 (1)

本発明は、使用電圧範囲での電圧−共振周波数の線形性(比例性)を大きく向上させる可変容量ダイオードを提供する。   The present invention provides a variable capacitance diode that greatly improves the linearity (proportionality) of voltage-resonance frequency in the operating voltage range.

以下、実施例を参照して発明の実施の形態を説明する。   Hereinafter, embodiments of the invention will be described with reference to examples.

まず、図1乃至図6を参照して実施例1を説明する。
図1は、この実施例の超階段接合の可変容量ダイオードを用いた電圧制御発振器、図2は、この実施例を説明する半導体基板に形成された可変容量ダイオードの断面図及び平面図、図3(a)は、入力電圧に対して発振周波数が比例する理想的な可変容量ダイオードの不純物濃度分布図、図3(b)は、図3(a)に示す不純物濃度分布を有する理想的な可変容量ダイオードの入力電圧−共振周波数変化特性を説明する特性図、図4は、従来技術の可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を説明する特性図、図5(a)は、この実施例における可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す分布図、図5(b)は、図5(a)に示す実効不純物濃度分布を有する可変容量ダイオードの入力電圧−共振周波数変化特性を示す特性図、図6は、従来の可変容量ダイオードの空乏層幅と比較した、この実施例を説明する可変容量ダイオードのN型不純物拡散領域の実効不純物濃度に依存する空乏層幅を示す特性図である。
First, Embodiment 1 will be described with reference to FIGS.
1 is a voltage-controlled oscillator using a supercapacitor variable capacitance diode of this embodiment, FIG. 2 is a cross-sectional view and a plan view of a variable capacitance diode formed on a semiconductor substrate for explaining this embodiment, FIG. FIG. 3A is an impurity concentration distribution diagram of an ideal variable capacitance diode in which the oscillation frequency is proportional to the input voltage, and FIG. 3B is an ideal variable having the impurity concentration distribution shown in FIG. FIG. 4 is a characteristic diagram illustrating the input voltage-resonance frequency variation characteristics of the capacitance diode. FIG. 4 is a characteristic diagram illustrating the effective impurity concentration distribution of the conventional variable capacitance diode and the region depleted in the operating voltage range. ) Is a distribution diagram showing an effective impurity concentration distribution of the variable capacitance diode in this embodiment and a region depleted in the operating voltage range, and FIG. 5B is a variable having the effective impurity concentration distribution shown in FIG. FIG. 6 is a characteristic diagram showing the input voltage-resonance frequency variation characteristic of the quantum diode. FIG. 6 is a graph showing the effective impurity in the N-type impurity diffusion region of the variable capacitance diode described in this embodiment in comparison with the depletion layer width of the conventional variable capacitance diode. It is a characteristic figure which shows the depletion layer width depending on a density | concentration.

図2は、この実施例を説明する半導体基板に形成された可変容量ダイオードの断面図及び半導体基板内部の部分透過平面図である。シリコンなどの半導体基板1は、高濃度のN+基板であり、表面領域にN−領域(ウエル領域)2が形成されている。N−領域2には基板表面に接してP型不純物拡散領域5が形成され、基板表面から離れP型不純物拡散領域5と接してN型不純物拡散領域6が形成されている。両領域の境界にはPN接合が形成されている。半導体基板1の表面には外部端子を有する第1の電極3が設けられ、裏面には外部端子を有する第2の電極4が設けられている。第1の電極3は、P型不純物拡散領域5に電気的に接続され、第2の電極4は、N型不純物拡散領域6に電気的に接続されている。
このP型不純物拡散領域5及びN型不純物拡散領域6を形成するには、初めにイオン注入・熱拡散の通常の半導体技術を用いて半導体基板1の表面領域深くにN型不純物拡散領域6を形成する。その後、高濃度で浅いP型不純物拡散領域5をイオン注入・熱拡散の通常の半導体技術を用いて形成する。したがって、この時のP型不純物拡散領域5の実効不純物濃度は、P型不純物濃度からN型不純物濃度を引いた残りになり、N型不純物拡散領域6の実効不純物濃度は、N型不純物濃度からP型不純物濃度を引いた残りになる。
FIG. 2 is a cross-sectional view of a variable capacitance diode formed on a semiconductor substrate and a partially transparent plan view inside the semiconductor substrate for explaining this embodiment. A semiconductor substrate 1 such as silicon is a high concentration N + substrate, and an N− region (well region) 2 is formed in a surface region. In the N− region 2, a P-type impurity diffusion region 5 is formed in contact with the substrate surface, and an N-type impurity diffusion region 6 is formed in contact with the P-type impurity diffusion region 5 away from the substrate surface. A PN junction is formed at the boundary between the two regions. A first electrode 3 having external terminals is provided on the front surface of the semiconductor substrate 1, and a second electrode 4 having external terminals is provided on the back surface. The first electrode 3 is electrically connected to the P-type impurity diffusion region 5, and the second electrode 4 is electrically connected to the N-type impurity diffusion region 6.
In order to form the P-type impurity diffusion region 5 and the N-type impurity diffusion region 6, the N-type impurity diffusion region 6 is first formed deep in the surface region of the semiconductor substrate 1 by using a normal semiconductor technique of ion implantation and thermal diffusion. Form. Thereafter, a high-concentration and shallow P-type impurity diffusion region 5 is formed using a normal semiconductor technique of ion implantation and thermal diffusion. Therefore, the effective impurity concentration of the P-type impurity diffusion region 5 at this time is the remainder obtained by subtracting the N-type impurity concentration from the P-type impurity concentration, and the effective impurity concentration of the N-type impurity diffusion region 6 is determined from the N-type impurity concentration. The remaining P-type impurity concentration is subtracted.

そのため、前述のように、ドナーあるいはアクセプターとして働く正味の不純物濃度分布は、PN接合の近傍において、理想の不純物濃度分布より濃度が低く、特に可変容量ダイオードの入力電圧が低い領域では入力電圧に対する発振周波数の変動が理想的な比例関係から大きく乖離しているのが従来の可変容量ダイオードであった(図4参照)が、この実施例では、可変容量ダイオードの入力電圧が低い領域でのN型不純物拡散領域6の実効不純物濃度を従来の可変容量ダイオードより理想の不純物濃度分布に近付けることができる。
図5(a)は、この実施例において説明する可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲での空乏化する領域を示している。縦軸が実効不純物濃度を示し、横軸が空乏層の幅を示している。また、逆バイアス電圧である入力電圧(VR)を印加した時に空乏層が生じる。この図では、使用電圧範囲での入力電圧下限の空乏化領域(空乏層)(A)と入力電圧(VR)上限の空乏化領域(空乏層)(B)が示されている。図に示されているように、P型不純物拡散領域5(P層)の実効不純物濃度及びN型不純物拡散領域6(N層)の実効不純物濃度は、図4に示す従来のものに比較して格段に理想の不純物濃度分布に近付いている。
Therefore, as described above, the net impurity concentration distribution acting as a donor or acceptor is lower than the ideal impurity concentration distribution in the vicinity of the PN junction, and in particular, in the region where the input voltage of the variable capacitance diode is low, oscillation with respect to the input voltage. The conventional variable capacitance diode has a frequency deviation greatly deviated from the ideal proportional relationship (see FIG. 4). In this embodiment, the N-type in the region where the input voltage of the variable capacitance diode is low. The effective impurity concentration of the impurity diffusion region 6 can be made closer to the ideal impurity concentration distribution than the conventional variable capacitance diode.
FIG. 5A shows the effective impurity concentration distribution of the variable capacitance diode described in this embodiment and the depleted region in the operating voltage range. The vertical axis represents the effective impurity concentration, and the horizontal axis represents the width of the depletion layer. Further, a depletion layer is generated when an input voltage (VR) that is a reverse bias voltage is applied. In this figure, a depletion region (depletion layer) (A) at the lower limit of the input voltage in the operating voltage range and a depletion region (depletion layer) (B) at the upper limit of the input voltage (VR) are shown. As shown in the figure, the effective impurity concentration of the P-type impurity diffusion region 5 (P layer) and the effective impurity concentration of the N-type impurity diffusion region 6 (N layer) are compared with the conventional one shown in FIG. It is very close to the ideal impurity concentration distribution.

入力電圧に対して共振周波数が比例する理想的な可変容量ダイオードの不純物濃度分布(図3(a)参照)を有すると、図3(b)に示すように理想的な入力電圧−周波数変化特性の可変容量ダイオードが得られる。この実施例においても、可変容量ダイオードは、図5(a)に示すような理想に近い不純物濃度分布を有しているので、図5(b)に示すように、使用電圧領域で入力電圧と発振周波数の比例性が向上する。図5(b)は、縦軸が共振周波数(f)であり、横軸が入力電圧(VR)(V)である。入力電圧VRの上限と下限の間でほぼ直線になっていて、比例性が向上しているのが分かる。これに対して、従来の可変容量ダイオードは、図4に示すようなかなり理想から離れた不純物濃度分布を有しているので、使用電圧領域で入力電圧と発振周波数の比例性が悪く、とくに、入力電圧VRの下限で直線性(比例性)が大きく崩れている。   When the impurity concentration distribution (see FIG. 3A) of an ideal variable capacitance diode in which the resonance frequency is proportional to the input voltage is provided, an ideal input voltage-frequency change characteristic as shown in FIG. The variable capacitance diode is obtained. Also in this embodiment, the variable capacitance diode has an impurity concentration distribution that is close to ideal as shown in FIG. 5A. Therefore, as shown in FIG. The proportionality of the oscillation frequency is improved. In FIG. 5B, the vertical axis represents the resonance frequency (f), and the horizontal axis represents the input voltage (VR) (V). It can be seen that the linearity is almost linear between the upper limit and the lower limit of the input voltage VR, and the proportionality is improved. On the other hand, the conventional variable capacitance diode has an impurity concentration distribution considerably far from ideal as shown in FIG. 4, so that the proportionality between the input voltage and the oscillation frequency is poor in the operating voltage range. The linearity (proportionality) is greatly broken at the lower limit of the input voltage VR.

また、従来の可変容量ダイオードのN型不純物拡散領域の実効不純物濃度は、入力電圧下限の空乏化領域(A)端より外側にそのピーク濃度点を有しているが、これは、PN接合近傍の不純物濃度が大きく低下していることを示している(図4参照)。しかし、図5(a)に示すように、この実施例の可変容量ダイオードのN型不純物拡散領域の実効不純物濃度は、入力電圧下限の空乏化領域(A)端と近似してピーク濃度点を有している。これは、PN接合近傍の不純物濃度が理想に近い不純物濃度になっていることを示している。また、PN接合近傍の不純物濃度が理想に近付いているので、入力電圧下限の空乏化領域(A)における空乏層幅(W)を従来の入力電圧下限の空乏化領域(A)における空乏層幅(W0 )(図4参照)より狭くする(W<W0 )ことができる。   Further, the effective impurity concentration of the N-type impurity diffusion region of the conventional variable capacitance diode has its peak concentration point outside the depletion region (A) end of the lower limit of the input voltage, which is near the PN junction. It is shown that the impurity concentration of is greatly reduced (see FIG. 4). However, as shown in FIG. 5A, the effective impurity concentration of the N-type impurity diffusion region of the variable capacitance diode of this example approximates the end of the depletion region (A) at the lower limit of the input voltage and sets the peak concentration point. Have. This indicates that the impurity concentration in the vicinity of the PN junction is an ideal impurity concentration. Further, since the impurity concentration in the vicinity of the PN junction is close to ideal, the depletion layer width (W) in the depletion region (A) at the lower limit of the input voltage is reduced to the depletion layer width in the conventional depletion region (A) at the lower limit of the input voltage. (W0) (see FIG. 4) can be made narrower (W <W0).

電圧制御発振器の共振回路の共振周波数fが下式にしめすように、コンデンサの容量Cの平方根の逆数に比例することは知られている。電極間に逆バイアス電圧vを印加した時の容量Cを前記逆バイアス電圧vの関数C(v)で表し、その時の共振周波数fを前記逆バイアス電圧vの関数f(v)で表すと、fは、以下の関係式(4)で表される。
f(v)=K′/√(C(v))(K′は定数) ・・・(4)
コンデンサとしてこの実施例の可変容量ダイオードを用いた場合、入力電圧vの微小変化に対して、共振周波数fもまた変化するため、共振周波数を入力電圧v(ボルト(V))の関数として、v+0.05Vとv−0.05Vとで差分(f’)をとると、
f’(v)=K/(f(v+0.05)−f(v−0.05))=1/((1/√(C(v+0.05))−(1/√(C(v−0.05)))(Kは定数) ・・・(5)
となる。
It is known that the resonance frequency f of the resonance circuit of the voltage controlled oscillator is proportional to the inverse of the square root of the capacitance C of the capacitor, as shown in the following equation. The capacitance C when the reverse bias voltage v is applied between the electrodes is expressed as a function C (v) of the reverse bias voltage v, and the resonance frequency f at that time is expressed as a function f (v) of the reverse bias voltage v. f is expressed by the following relational expression (4).
f (v) = K ′ / √ (C (v)) (K ′ is a constant) (4)
When the variable capacitance diode of this embodiment is used as a capacitor, the resonance frequency f also changes with a minute change in the input voltage v. Therefore, the resonance frequency is expressed as v + 0 as a function of the input voltage v (volt (V)). Taking the difference (f ′) between .05V and v−0.05V,
f ′ (v) = K / (f (v + 0.05) −f (v−0.05)) = 1 / ((1 / √ (C (v + 0.05)) − (1 / √ (C (v -0.05))) (K is a constant) (5)
It becomes.

この実施例では、可変容量ダイオードは、使用電圧範囲において、以下の関係式(1)を満足する。つまり、比例性が格段に上がる。
0.95<f(v)/f(1)<1.05 ・・・(1)
f(1)は、入力電圧が1Vの時の共振周波数である。
入力電圧vと共振周波数fが完全に比例する場合(図3(a)に示す理想的な可変容量ダイオードの不純物濃度分布の場合)には、いかなるv(V)に対してもf’(v)は一定の値となる。しかしながら、図4に示す様な従来の可変容量ダイオードでは、入力電圧と共振周波数の比例性の誤差が大きく、(1)式に示すような範囲から大きく外れている。
In this embodiment, the variable capacitance diode satisfies the following relational expression (1) in the operating voltage range. In other words, the proportionality increases dramatically.
0.95 <f (v) / f (1) <1.05 (1)
f (1) is a resonance frequency when the input voltage is 1V.
When the input voltage v and the resonance frequency f are completely proportional (in the case of the ideal impurity concentration distribution of the variable capacitance diode shown in FIG. 3A), f ′ (v ) Is a constant value. However, the conventional variable capacitance diode as shown in FIG. 4 has a large error in the proportionality between the input voltage and the resonance frequency, which is far from the range shown in the equation (1).

次に、図6を参照してこの実施例の実効不純物濃度に依存する空乏層幅を説明する。図6は、縦軸がN型不純物拡散領域の実効不純物濃度Nd(cm3 )を表し、横軸は、空乏層幅W(μm)を表している。特性曲線A(−◆−)は、この実施例の入力電圧が0Vのとき(この時の容量はC0Vで表す)の空乏層幅を表し、特性曲線B(−◇−)は、この実施例の入力電圧が1Vのとき(この時の容量はC1Vで表す)の空乏層幅を表し、特性曲線a(−▲−)は、図4に示す従来の入力電圧が0Vのとき(この時の容量はC0Vで表す)の空乏層幅を表し、特性曲線b(−△−)は、図4に示す従来の入力電圧が1Vのとき(この時の容量はC1Vで表す)の空乏層幅を表す。 Next, the width of the depletion layer depending on the effective impurity concentration of this embodiment will be described with reference to FIG. In FIG. 6, the vertical axis represents the effective impurity concentration Nd (cm 3 ) of the N-type impurity diffusion region, and the horizontal axis represents the depletion layer width W (μm). The characteristic curve A (-◆-) represents the depletion layer width when the input voltage of this embodiment is 0V (capacity at this time is represented by C0V), and the characteristic curve B (-◇-) is the embodiment. 4 represents the depletion layer width when the input voltage is 1V (capacitance at this time is represented by C1V), and the characteristic curve a (− ▲ −) indicates that when the conventional input voltage shown in FIG. The characteristic curve b (−Δ−) represents the depletion layer width when the conventional input voltage shown in FIG. 4 is 1 V (capacity is represented by C1V). To express.

電極(図2の3、4)間に印加される逆バイアス電圧により生じる空乏層幅Wは、入力電圧が0Vの場合において、N型不純物拡散領域の実効不純物濃度Ndが5.47E+16〜3.00E+17(cm3 )のときに約0.07〜0.11μmであり、入力電圧が1Vの場合において、N型不純物拡散領域の実効不純物濃度Ndが2.94E+16〜2.06E+17(cm3 )のときに約0.09〜0.20Vである。これに対して、図4に示す特性を有する従来の可変容量ダイオードの電極間に印加される逆バイアス電圧により生じる空乏層幅Wは、入力電圧が0Vの場合において、N型不純物拡散領域の実効不純物濃度Ndが4.00E+16〜1.50E+17(cm3 )のときに約0.09〜0.16μmであり、入力電圧が1Vの場合において、N型不純物拡散領域の実効不純物濃度Ndが2.50E+16〜9.50E+16(cm3 )のときに約0.13〜0.24μmである。この様に、この実施例と従来例とを比較すると、この実施例の実効不純物濃度は高くなり、空乏層幅は狭くなっている。 The depletion layer width W generated by the reverse bias voltage applied between the electrodes (3 and 4 in FIG. 2) is such that the effective impurity concentration Nd of the N-type impurity diffusion region is 5.47E + 16-3. When it is 00E + 17 (cm 3 ), it is about 0.07 to 0.11 μm, and when the input voltage is 1 V, the effective impurity concentration Nd of the N-type impurity diffusion region is 2.94E + 16 to 2.06E + 17 (cm 3 ). Sometimes it is about 0.09-0.20V. On the other hand, the depletion layer width W generated by the reverse bias voltage applied between the electrodes of the conventional variable capacitance diode having the characteristics shown in FIG. 4 is effective for the N-type impurity diffusion region when the input voltage is 0V. When the impurity concentration Nd is 4.00E + 16 to 1.50E + 17 (cm 3 ), it is about 0.09 to 0.16 μm. When the input voltage is 1 V, the effective impurity concentration Nd of the N-type impurity diffusion region is 2. When it is 50E + 16 to 9.50E + 16 (cm 3 ), it is about 0.13 to 0.24 μm. Thus, when this embodiment is compared with the conventional example, the effective impurity concentration of this embodiment is high and the depletion layer width is narrow.

以上の通り、可変容量ダイオードの使用電圧範囲において、例えば、入力電圧1<v<3.5の範囲で入力電圧vと共振周波数fの比例性の誤差が1V入力時で±5%以内と従来技術の可変容量ダイオードに比べて小さいため、電圧制御発振器の設計が容易になり、また、電圧制御発信器の共振回路に用いた場合、所望の周波数に同調するために必要な時間が短縮される。
また、N型不純物濃度からP型不純物濃度を差し引いた濃度分布(以下、実効不純物濃度分布という)のPN接合近辺の不純物分布が従来の可変容量ダイオードより急峻なため、従来品より低い入力電圧で理想的な不純物濃度分布近辺まで空乏化することができる。そして、この実施例の可変容量ダイオードは、従来の可変容量ダイオードと比較してP型不純物拡散領域(P層)が急峻に形成されるので、1.5V以下の入力電圧において、理想的な不純物濃度分布領域を低電圧側に延長することができる。その結果、入力電圧の変化に対する発振周波数の変動が1V入力時の±5%以内にまで抑えることが出来るため、電圧制御発振器の設計が容易になり、また電圧制御発振器が所望の周波数に同調するために必要な時間が短縮される。
As described above, in the operating voltage range of the variable capacitance diode, for example, in the range of the input voltage 1 <v <3.5, the proportionality error between the input voltage v and the resonance frequency f is within ± 5% at 1V input. Smaller than technology variable capacitance diodes make it easier to design voltage controlled oscillators, and when used in resonant circuits of voltage controlled oscillators, reduce the time required to tune to the desired frequency .
In addition, since the impurity distribution near the PN junction in the concentration distribution obtained by subtracting the P-type impurity concentration from the N-type impurity concentration (hereinafter referred to as effective impurity concentration distribution) is steeper than that of the conventional variable capacitance diode, the input voltage is lower than that of the conventional product. Depletion can be achieved up to the vicinity of an ideal impurity concentration distribution. In the variable capacitance diode of this embodiment, the P-type impurity diffusion region (P layer) is sharply formed as compared with the conventional variable capacitance diode, so that an ideal impurity is obtained at an input voltage of 1.5 V or less. The concentration distribution region can be extended to the low voltage side. As a result, the fluctuation of the oscillation frequency with respect to the change of the input voltage can be suppressed to within ± 5% at the time of 1V input, so that the design of the voltage controlled oscillator becomes easy and the voltage controlled oscillator is tuned to a desired frequency. The time required for this is shortened.

また、従来品で問題であった使用電圧領域下限近辺、特に1.5V以下の入力電圧に対して電圧と共振周波数の比例性が向上するため、図1(b)に示すように、従来の可変容量ダイオードを用いた電圧制御発振器は、特性を補償する為に2個必要だったが、この実施例の可変容量ダイオードを用いると1個で同じ作用効果の回路(図1(a)参照)を構成できる。勿論、この実施例の可変容量ダイオードを図1(b)の回路に用いることが可能である。   In addition, since the proportionality between the voltage and the resonance frequency is improved near the lower limit of the operating voltage range, which is a problem with the conventional product, particularly with respect to an input voltage of 1.5 V or less, as shown in FIG. Two voltage-controlled oscillators using variable capacitance diodes were necessary to compensate for the characteristics. However, when the variable capacitance diode of this embodiment is used, one voltage-controlled oscillator has the same effect (see FIG. 1A). Can be configured. Of course, the variable capacitance diode of this embodiment can be used in the circuit of FIG.

次に、図7を参照して実施例2を説明する。
この実施例は、入力電圧0.5Vで実効不純物濃度分布の最高濃度領域が空乏化している超階段接合の可変容量ダイオードに特徴がある。図7(a)は、この実施例可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す特性図、図7(b)は、図7(a)に示す実効不純物濃度分布の入力電圧−周波数変化特性を示す特性図である。図7(a)は、縦軸が実効不純物濃度を示し、横軸が空乏層の幅を示している。また、逆バイアス電圧である入力電圧(VR)を印加した時に空乏層が生じる。この図では、使用電圧範囲での入力電圧下限0.5Vの空乏化領域(空乏層)(C)と入力電圧(VR)上限4Vの空乏化領域(空乏層)(D)が示されている。図に示されているように、P型不純物拡散領域(P層)の実効不純物濃度及びN型不純物拡散領域(N層)の実効不純物濃度は、図4に示す従来のものに比較して、格段に理想の不純物濃度分布に近付いている。
Next, Example 2 will be described with reference to FIG.
This embodiment is characterized by a super staircase junction variable capacitance diode in which the maximum concentration region of the effective impurity concentration distribution is depleted at an input voltage of 0.5V. FIG. 7A is a characteristic diagram showing an effective impurity concentration distribution of the variable capacitance diode of this embodiment and a region depleted in the operating voltage range, and FIG. 7B is an effective impurity concentration distribution shown in FIG. 7A. It is a characteristic view which shows the input voltage-frequency change characteristic of. In FIG. 7A, the vertical axis represents the effective impurity concentration, and the horizontal axis represents the width of the depletion layer. Further, a depletion layer is generated when an input voltage (VR) that is a reverse bias voltage is applied. This figure shows a depletion region (depletion layer) (C) having an input voltage lower limit of 0.5 V and a depletion region (depletion layer) (D) having an input voltage (VR) upper limit of 4 V in the operating voltage range. . As shown in the figure, the effective impurity concentration of the P-type impurity diffusion region (P layer) and the effective impurity concentration of the N-type impurity diffusion region (N layer) are compared with the conventional one shown in FIG. It is very close to the ideal impurity concentration distribution.

この実施例においても、可変容量ダイオードは、図7(a)に示すように理想に近い不純物濃度分布を有しているので、図7(b)に示すように、使用電圧領域で入力電圧と発振周波数の比例性が向上する。図7(b)は、縦軸が共振周波数(f)であり、横軸が入力電圧(VR)(V)である。入力電圧VRの上限 (=4V)と下限(=0.5V)の間でほぼ直線になっていて、比例性が向上しているのが分かる。これに対して、従来の可変容量ダイオードは、かなり理想から離れた不純物濃度分布を有しているので、使用電圧領域で入力電圧と発振周波数の比例性が悪く、とくに、入力電圧VRの下限で直線性(比例性)が大きく崩れている。
また、従来の可変容量ダイオードのN型不純物拡散領域の実効不純物濃度は、入力電圧下限の空乏化領域(A)端より外側にそのピーク濃度点(P)を有しているが、これは、PN接合近傍の不純物濃度が大きく低下していることを示している(図4参照)。
Also in this embodiment, the variable capacitance diode has an impurity concentration distribution that is close to ideal as shown in FIG. 7A. Therefore, as shown in FIG. The proportionality of the oscillation frequency is improved. In FIG. 7B, the vertical axis represents the resonance frequency (f), and the horizontal axis represents the input voltage (VR) (V). It can be seen that the linearity is almost linear between the upper limit (= 4V) and the lower limit (= 0.5V) of the input voltage VR, and the proportionality is improved. On the other hand, since the conventional variable capacitance diode has an impurity concentration distribution that is far from ideal, the proportionality between the input voltage and the oscillation frequency is poor in the operating voltage range, especially at the lower limit of the input voltage VR. The linearity (proportionality) is greatly broken.
Further, the effective impurity concentration of the N-type impurity diffusion region of the conventional variable capacitance diode has its peak concentration point (P) outside the depletion region (A) end of the lower limit of the input voltage. It shows that the impurity concentration in the vicinity of the PN junction is greatly reduced (see FIG. 4).

しかし、図7(a)に示すように、この実施例の可変容量ダイオードのN型不純物拡散領域の実効不純物濃度は、入力電圧下限(0.5V)の空乏化領域(C)端にピーク濃度点Pを有しているが、これは、PN接合近傍の不純物濃度が理想に近い不純物濃度になっていることを示している。また、PN接合近傍の不純物濃度が理想に近付いているので、入力電圧下限の空乏化領域(C)における空乏層幅を従来の入力電圧下限の空乏化領域における空乏層幅より狭くすることができる。
この様に、この実施例の可変容量ダイオードでは使用電圧領域の電圧下限である0.5Vで実効不純物濃度分布の濃度ピークが空乏化しているため入力電圧0.5Vから3.5Vの範囲において、図3(a)に示す理想的な不純物分布の領域を使用することができ、入力電圧に対する共振周波数の比例性が向上する。
However, as shown in FIG. 7A, the effective impurity concentration of the N-type impurity diffusion region of the variable capacitance diode of this embodiment has a peak concentration at the end of the depletion region (C) at the lower limit of the input voltage (0.5 V). Although it has a point P, this indicates that the impurity concentration in the vicinity of the PN junction is close to the ideal impurity concentration. Further, since the impurity concentration in the vicinity of the PN junction is close to ideal, the depletion layer width in the depletion region (C) at the lower limit of the input voltage can be made narrower than the depletion layer width in the depletion region at the lower limit of the input voltage. .
In this way, in the variable capacitance diode of this embodiment, the concentration peak of the effective impurity concentration distribution is depleted at 0.5 V, which is the lower voltage limit of the working voltage region, so that the input voltage ranges from 0.5 V to 3.5 V. The ideal impurity distribution region shown in FIG. 3A can be used, and the proportionality of the resonance frequency to the input voltage is improved.

次に、図8及び図9を参照して実施例3を説明する。
この実施例は、素子領域で図8に示す不純物濃度分布を有する超階段接合の可変容量ダイオードに特徴がある。図8は、この実施例の可変容量ダイオードの実効不純物濃度分布を示す特性図、図9(a)は、この実施例の可変容量ダイオードの実効不純物濃度分布及び入力電圧に対する空乏化領域を示す特性図、図9 (b)は、この実施例の可変容量ダイオードの電圧−共振周波数特性を示す特性図である。図8は、縦軸が不純物濃度Nd(cm3 )を表し、横軸が半導体基板表面からの深さ(μm)を表している。この可変容量ダイオードは、図に示すように、半導体基板表面にN型不純物拡散領域が形成され、この領域とPN接合を構成し、この領域より深い位置に形成されたP型不純物拡散領域を有している。図9(a)は、縦軸が実効不純物濃度を表し、横軸が半導体基板表面からの深さW(μm)を表している。そして、特性曲線は、入力電圧に対する空乏化領域を示している。曲線のa点は、入力電圧0Vでの空乏化領域(PN接合部から伸びる空乏層が終わる点)、曲線のb点は、入力電圧4Vでの空乏化領域である。図9(b)は、縦軸が共振周波数f(a.u.)を表し、横軸が入力電圧VR(V)を表している。
Next, Embodiment 3 will be described with reference to FIGS.
This embodiment is characterized by a variable capacitor diode having a super staircase junction having the impurity concentration distribution shown in FIG. 8 in the element region. FIG. 8 is a characteristic diagram showing the effective impurity concentration distribution of the variable capacitance diode of this embodiment, and FIG. 9A is a characteristic showing the effective impurity concentration distribution of the variable capacitance diode of this embodiment and the depletion region with respect to the input voltage. FIG. 9B is a characteristic diagram showing the voltage-resonance frequency characteristic of the variable capacitance diode of this example. In FIG. 8, the vertical axis represents the impurity concentration Nd (cm 3 ), and the horizontal axis represents the depth (μm) from the surface of the semiconductor substrate. As shown in the figure, this variable capacitance diode has an N-type impurity diffusion region formed on the surface of the semiconductor substrate, forms a PN junction with this region, and has a P-type impurity diffusion region formed deeper than this region. is doing. In FIG. 9A, the vertical axis represents the effective impurity concentration, and the horizontal axis represents the depth W (μm) from the surface of the semiconductor substrate. The characteristic curve shows a depletion region with respect to the input voltage. Point a of the curve is a depletion region at an input voltage of 0V (a point where a depletion layer extending from the PN junction ends), and point b of the curve is a depletion region at an input voltage of 4V. In FIG. 9B, the vertical axis represents the resonance frequency f (au), and the horizontal axis represents the input voltage VR (V).

図9(b)に示すように、入力電圧0.5Vから3.5Vの範囲で入力電圧−共振周波数が比例するような不純物分布になっているため、この実施例の可変容量ダイオードは、この領域で入力電圧−共振周波数特性が安定している。   As shown in FIG. 9B, since the impurity distribution is such that the input voltage-resonance frequency is proportional in the range of the input voltage from 0.5 V to 3.5 V, the variable capacitance diode of this embodiment is The input voltage-resonance frequency characteristics are stable in the region.

次に、図10を参照して実施例4を説明する。
図10(a)は、この実施例の可変容量ダイオードの素子面積(cm2 )と入力電圧1Vの場合の容量C1V(pF)の相関を示す特性図、図10(b)は、この実施例の可変容量ダイオードの素子面積(cm2 )と入力電圧0Vの場合の容量C0V(pF)の相関を示す特性図である。この実施例の可変容量ダイオードは、図2を参照して説明される。素子面積は、図2に示すN型不純物拡散領域(面積をSとする)に相当している。図10(a)及び図10(b)において、yは、C1V及びC0V(容量)に相当し、xは、S(N型不純物拡散領域面積=素子面積)に相当する。図10(a)及び図10(b)の縦軸は、容量(C1V、C0V)(pF)を表し、横軸は、N型不純物拡散領域面積S(cm2 )を表している。
Next, Example 4 will be described with reference to FIG.
FIG. 10A is a characteristic diagram showing the correlation between the element area (cm 2 ) of the variable capacitance diode of this embodiment and the capacitance C1V (pF) when the input voltage is 1 V, and FIG. 10B is this embodiment. FIG. 6 is a characteristic diagram showing the correlation between the element area (cm 2 ) of the variable capacitance diode and the capacitance C0V (pF) when the input voltage is 0V. The variable capacitance diode of this embodiment will be described with reference to FIG. The element area corresponds to the N-type impurity diffusion region (area is S) shown in FIG. 10A and 10B, y corresponds to C1V and C0V (capacitance), and x corresponds to S (N-type impurity diffusion region area = element area). 10A and 10B, the vertical axis represents capacitance (C1V, C0V) (pF), and the horizontal axis represents N-type impurity diffusion region area S (cm 2 ).

PN接合の単位面積あたりの容量C(pF)/(cm2 )は、空乏層幅W(μm)と下記の関係式(6)により表される。
C=Ks・ε0 /W ・・・(6)
(Ksはシリコンの比誘電率、ε0 は真空の誘電率)
従来のVCDと比較してP型不純物拡散領域(P層)を急峻に形成することによって、入力電圧vと共振周波数fの比例性を向上させたこの実施例の可変容量ダイオードは、PN接合の不純物濃度が高いため、従来例と同じ電圧を入力した場合に空乏層幅が薄くなる。
図10(a)に示す可変容量ダイオードは、N型不純物を拡散した部分の面積(S(cm2 )と逆バイアス電圧1Vの場合の容量C1V(pF)は、次の関係式(2)を満たしている。
S×63998+0.3162<C1V ・・・(2)
The capacitance C (pF) / (cm 2 ) per unit area of the PN junction is expressed by the depletion layer width W (μm) and the following relational expression (6).
C = Ks · ε0 / W (6)
(Ks is the dielectric constant of silicon, ε0 is the dielectric constant of vacuum)
The variable capacitance diode of this embodiment, in which the proportionality between the input voltage v and the resonance frequency f is improved by forming the P-type impurity diffusion region (P layer) sharply compared to the conventional VCD, Since the impurity concentration is high, the depletion layer width becomes thin when the same voltage as in the conventional example is input.
In the variable capacitance diode shown in FIG. 10A, the area (S (cm 2 ) of the portion where the N-type impurity is diffused and the capacitance C1V (pF) when the reverse bias voltage is 1 V are expressed by the following relational expression (2). Satisfies.
S × 63998 + 0.3162 <C1V (2)

この関係を満たしている領域は、図10(a)の式y=63998x+0.3162(yは、縦軸(C1V)、xは、横軸(素子面積S)を表す)の直線を境界とする斜線部分であり、この関係を満たす部分に容量(C1V)と面積(S)があてはまるように可変容量ダイオードを形成すると、入力電圧と共振周波数の比例性を満足するものが得られる。
また、さらに入力電圧が低い領域での入力電圧vと共振周波数fの比例性を向上させたデバイスにおいて、図10(b)に示す可変容量ダイオードは、N型不純物を拡散した部分の面積S(cm2 )と逆バイアス電圧0Vの場合の容量C0V(pF)は、次の関係式(3)を満たしている。
S×114786+0.525<C0V ・・・(3)
The region satisfying this relationship is bounded by the straight line of the equation y = 63998x + 0.3162 in FIG. 10A (y is the vertical axis (C1V), and x is the horizontal axis (element area S)). When the variable capacitance diode is formed so that the capacitance (C1V) and the area (S) are applied to the hatched portion and the portion satisfying this relationship, the one satisfying the proportionality between the input voltage and the resonance frequency can be obtained.
Further, in the device in which the proportionality between the input voltage v and the resonance frequency f in a region where the input voltage is lower is improved, the variable capacitance diode shown in FIG. 10B has an area S ( The capacity C0V (pF) in the case of cm 2 ) and the reverse bias voltage of 0 V satisfies the following relational expression (3).
S × 114786 + 0.525 <C0V (3)

この関係を満たしている領域は、図10(b)の式y=114786x+0.525(yは、縦軸(C0V)、xは、横軸(素子面積S)を表す)の直線を境界とする斜線部分であり、この関係を満たす部分に容量(C1V)と面積(S)があてはまるように可変容量ダイオードを形成すると、入力電圧と共振周波数の比例性を満足するものが得られる。
また、可変容量ダイオードの用途として、入力電圧の変化に対して、共振周波数の変化が大きい事が必要とされる用途(チューナー用途)があるが、このような用途のダイオードは、例えば、従来技術のダイオードではC1V(VR=1の空乏層幅a)とC25V(VR=25の空乏層幅b)の比が7程度のものが用いられてきた(図11(a))。しかし、C0V、C1Vでの空乏層幅が薄いこの実施例の拡散プロファイルを適用することにより、従来技術より低電圧同様の容量比(例えば、C1V(VR=1の空乏層幅a)のC7V(VR=7の空乏層幅b)比が7程度)を実現することができ( 図11(b))、容量変化が大きいことが必要な用途の可変容量ダイオードの低電圧化に使用できる。
The region satisfying this relationship is bounded by the straight line of the equation y = 114786x + 0.525 in FIG. 10B (y is the vertical axis (C0V), and x is the horizontal axis (element area S)). When the variable capacitance diode is formed so that the capacitance (C1V) and the area (S) are applied to the hatched portion and the portion satisfying this relationship, the one satisfying the proportionality between the input voltage and the resonance frequency can be obtained.
In addition, as an application of the variable capacitance diode, there is an application (tuner application) that requires a large change in the resonance frequency with respect to a change in the input voltage. A diode having a ratio of C1V (depletion layer width a of VR = 1) to C25V (depletion layer width b of VR = 25) of about 7 has been used (FIG. 11A). However, by applying the diffusion profile of this embodiment having a thin depletion layer width at C0V and C1V, a capacitance ratio (for example, C7V (depletion layer width a of VR = 1) C1V (VR = 1 depletion layer width a)) is lower than that of the prior art. VR = 7 depletion layer width b) ratio of about 7) can be realized (FIG. 11 (b)), and can be used for lowering the voltage of variable capacitance diodes that require large capacitance changes.

本発明の一実施例である実施例1の超階段接合の可変容量ダイオードを用いた電圧制御発振器。1 is a voltage controlled oscillator using a super step junction variable capacitance diode according to a first embodiment which is an embodiment of the present invention. 実施例1を説明する半導体基板に形成された可変容量ダイオードの断面図及び平面図。2A and 2B are a cross-sectional view and a plan view of a variable capacitance diode formed on a semiconductor substrate for explaining Example 1; 図3(a)は、入力電圧に対して発振周波数が比例する理想的な可変容量ダイオードの不純物濃度分布図及び図3(b)は、図3(a)に示す不純物濃度分布を有する理想的な可変容量ダイオードの入力電圧−共振周波数変化特性を説明する特性図。3A is an impurity concentration distribution diagram of an ideal variable capacitance diode in which the oscillation frequency is proportional to the input voltage, and FIG. 3B is an ideal having the impurity concentration distribution shown in FIG. The characteristic view explaining the input voltage-resonance frequency change characteristic of a variable diode. 従来技術の可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を説明する特性図。The characteristic view explaining the area | region which is depleted in the effective impurity density distribution of a variable capacitance diode of a prior art, and a working voltage range. 図5(a)は、実施例1における可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す分布図、図5(b)は、図5(a)に示す実効不純物濃度分布を有する可変容量ダイオードの入力電圧−共振周波数変化特性を示す特性図。FIG. 5A is an effective impurity concentration distribution of the variable capacitance diode in Example 1 and a distribution diagram showing a region depleted in the operating voltage range, and FIG. 5B is an effective impurity concentration shown in FIG. The characteristic view which shows the input voltage-resonance frequency change characteristic of the variable capacity diode which has distribution. 従来の可変容量ダイオードの空乏層幅と比較した、実施例1を説明する可変容量ダイオードのN型不純物拡散領域の実効不純物濃度に依存する空乏層幅を示す特性図である。It is a characteristic view which shows the depletion layer width depending on the effective impurity density | concentration of the N type impurity diffusion area | region of the variable capacitance diode explaining Example 1 compared with the depletion layer width of the conventional variable capacitance diode. 図7(a)は、本発明の一実施例である実施例2の可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す特性図、図7(b)は、図7(a)に示す実効不純物濃度分布の入力電圧−周波数変化特性を示す特性図。FIG. 7A is a characteristic diagram showing an effective impurity concentration distribution of the variable capacitance diode according to the second embodiment which is an embodiment of the present invention and a region depleted in the operating voltage range, and FIG. The characteristic view which shows the input voltage-frequency change characteristic of the effective impurity concentration distribution shown to (a). 本発明の一実施例である実施例3の可変容量ダイオードの実効不純物濃度分布を示す特性図。The characteristic view which shows the effective impurity density distribution of the variable capacity diode of Example 3 which is one Example of this invention. 図9(a)は、実施例3の可変容量ダイオードの実効不純物濃度分布及び入力電圧に対する空乏化領域を示す特性図。FIG. 9A is a characteristic diagram showing an effective impurity concentration distribution of the variable capacitance diode of Example 3 and a depletion region with respect to an input voltage. 図10(a)は、本発明の一実施例である実施例4の可変容量ダイオードの素子面積(cm2 )と入力電圧1Vの場合の容量C1V(pF)の相関を示す特性図、図10(b)は、この実施例の可変容量ダイオードの素子面積(cm2 )と入力電圧0Vの場合の容量C0V(pF)の相関を示す特性図。FIG. 10A is a characteristic diagram showing the correlation between the element area (cm 2 ) of the variable capacitance diode of Example 4 which is an embodiment of the present invention and the capacitance C1V (pF) when the input voltage is 1V. (B) is a characteristic diagram showing the correlation between the element area (cm 2 ) of the variable capacitance diode of this example and the capacitance C0V (pF) when the input voltage is 0V. 図11(a)は、従来の可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す分布図、図11(b)は、実施例4における可変容量ダイオードの実効不純物濃度分布及び使用電圧範囲で空乏化する領域を示す分布図。FIG. 11A is a distribution diagram showing an effective impurity concentration distribution of a conventional variable capacitance diode and a region depleted in the operating voltage range, and FIG. 11B is an effective impurity concentration distribution of the variable capacitance diode in the fourth embodiment. And a distribution diagram showing a region that is depleted in the operating voltage range.

符号の説明Explanation of symbols

1・・・半導体基板
2・・・N−領域
3、4・・・電極
5・・・P型不純物拡散領域(P層)
6・・・N型不純物拡散領域(N層)
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... N- area | region 3, 4 ... Electrode 5 ... P-type impurity diffusion area | region (P layer)
6 ... N-type impurity diffusion region (N layer)

Claims (5)

半導体基板と、
前記半導体基板に形成されたP型不純物拡散領域と、
前記半導体基板に形成され、前記P型不純物拡散領域とPN接合を構成するN型不純物拡散領域と、
前記半導体基板上に形成され、前記P型不純物拡散領域に電気的に接続された第1の電極と、
前記半導体基板上に形成され、前記N型不純物拡散領域に電気的に接続された第2の電極とを備え、
前記第1の電極及び第2の電極間に逆バイアス電圧vボルト(V)を印加した時の容量C(pF)を前記逆バイアス電圧vの関数C(v)で表し、その時の共振周波数fを前記逆バイアス電圧vの関数f(v)で表し、関数f(v)を比例式f(v)=K′/√C(K′は定数)で表した場合において、前記関数f(v)のv+0.05とv−0.05間の差分f’(v)=K/(1/√(C(v+0.05))−1/√(C(v−0.05)))(Kは定数)が使用電圧範囲において以下の関係式(1)を満足することを特徴とする可変容量ダイオード。
0.95<f(v)/f(1)<1.05 ・・・(1)
A semiconductor substrate;
A P-type impurity diffusion region formed in the semiconductor substrate;
An N-type impurity diffusion region formed on the semiconductor substrate and forming a PN junction with the P-type impurity diffusion region;
A first electrode formed on the semiconductor substrate and electrically connected to the P-type impurity diffusion region;
A second electrode formed on the semiconductor substrate and electrically connected to the N-type impurity diffusion region;
The capacitance C (pF) when a reverse bias voltage v volt (V) is applied between the first electrode and the second electrode is expressed as a function C (v) of the reverse bias voltage v, and the resonance frequency f at that time Is expressed by a function f (v) of the reverse bias voltage v, and the function f (v) is expressed by a proportional expression f (v) = K ′ / √C (K ′ is a constant). ) Between v + 0.05 and v−0.05, f ′ (v) = K / (1 / √ (C (v + 0.05)) − 1 / √ (C (v−0.05))) ( A variable capacitance diode characterized in that K is a constant) satisfies the following relational expression (1) in the operating voltage range.
0.95 <f (v) / f (1) <1.05 (1)
前記第1及び第2の電極間に印加される逆バイアス電圧により生じる空乏層幅は、入力電圧が0Vの場合において、前記N型不純物拡散領域の実効不純物濃度が5.47E+16〜3.00E+17(cm3 )のときに0.07〜0.11μmであり、前記入力電圧が1Vの場合において、前記N型不純物拡散領域の空乏層端の実効不純物濃度が4.00E+16〜2.06E+17 (cm3 )のときに0.09〜0.20Vであることを特徴とする請求項1に記載の可変容量ダイオード。 The depletion layer width generated by the reverse bias voltage applied between the first and second electrodes has an effective impurity concentration in the N-type impurity diffusion region of 5.47E + 16 to 3.00E + 17 (when the input voltage is 0 V). cm 3 ) and 0.07 to 0.11 μm, and when the input voltage is 1 V, the effective impurity concentration at the end of the depletion layer in the N-type impurity diffusion region is 4.00E + 16 to 2.06E + 17 (cm 3). The variable capacitance diode according to claim 1, wherein the voltage is 0.09 to 0.20V. 前記P型不純物拡散領域とPN接合を構成するN型不純物拡散領域の面積Scm2 である場合において、前記逆バイアス電圧が1Vの時の容量C1V(pF)は、関係式(2)を満足することを特徴とする請求項1に記載の可変容量ダイオード。
S×63998+0.3162<C1V ・・・(2)
In the case where the area is Scm 2 of the N-type impurity diffusion region forming the PN junction with the P-type impurity diffusion region, the capacitance C1V (pF) when the reverse bias voltage is 1 V satisfies the relational expression (2). The variable capacitance diode according to claim 1.
S × 63998 + 0.3162 <C1V (2)
前記P型不純物拡散領域とPN接合を構成するN型不純物拡散領域の面積Scm2 である場合において、前記逆バイアス電圧が0Vの時の容量C0V(pF)は、関係式(3)を満足することを特徴とする請求項1に記載の可変容量ダイオード。
S×114786+0.525<C0V ・・・(3)
In the case where the area is Scm 2 of the N-type impurity diffusion region forming the PN junction with the P-type impurity diffusion region, the capacitance C0V (pF) when the reverse bias voltage is 0 V satisfies the relational expression (3). The variable capacitance diode according to claim 1.
S × 114786 + 0.525 <C0V (3)
前記N型不純物拡散領域の実効不純物濃度分布における不純物濃度のピーク点は、下限の空乏層端と一致するかもしくは前記下限の空乏層内に含まれることを特徴とする請求項1に記載の可変容量ダイオード。 2. The variable according to claim 1, wherein a peak point of the impurity concentration in the effective impurity concentration distribution of the N-type impurity diffusion region coincides with a lower limit depletion layer end or is included in the lower limit depletion layer. Capacitance diode.
JP2004296057A 2004-10-08 2004-10-08 Variable-capacitance diode Pending JP2006108550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296057A JP2006108550A (en) 2004-10-08 2004-10-08 Variable-capacitance diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296057A JP2006108550A (en) 2004-10-08 2004-10-08 Variable-capacitance diode

Publications (1)

Publication Number Publication Date
JP2006108550A true JP2006108550A (en) 2006-04-20

Family

ID=36377884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296057A Pending JP2006108550A (en) 2004-10-08 2004-10-08 Variable-capacitance diode

Country Status (1)

Country Link
JP (1) JP2006108550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740770B1 (en) 2013-10-22 2017-05-26 인피니언 테크놀로지스 아게 System and method for a tunable capacitance circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740770B1 (en) 2013-10-22 2017-05-26 인피니언 테크놀로지스 아게 System and method for a tunable capacitance circuit
US9876480B2 (en) 2013-10-22 2018-01-23 Infineon Technologies Ag System and method for a tunable capacitance circuit

Similar Documents

Publication Publication Date Title
US7579642B1 (en) Gate-enhanced junction varactor
JP5655534B2 (en) Voltage controlled variable capacitor and voltage controlled oscillator
US7081663B2 (en) Gate-enhanced junction varactor with gradual capacitance variation
US9800204B2 (en) Integrated circuit capacitor including dual gate silicon-on-insulator transistor
US20090091380A1 (en) Differential varactor using gated varactor
US20110037526A1 (en) Oscillator
JP2006108550A (en) Variable-capacitance diode
JP2006197143A (en) Voltage controlled crystal oscillator
JP6395191B2 (en) Integrated MOS type varicap and voltage controlled oscillator and filter having the same
US6864528B2 (en) Integrated, tunable capacitor
JP2005269310A (en) Voltage controlled oscillator
US20080003758A1 (en) Varactor structure and method for fabricating the same
JP5179848B2 (en) Voltage controlled oscillator and PLL circuit
JP2016144163A (en) Voltage controlled oscillation circuit
KR20060029190A (en) Piezo-oscillator
KR100645928B1 (en) Pn junction varactor
JP4191028B2 (en) Integrated adjustable capacitance
CN104836572A (en) Phase-locked loop with a varactor based on mems technology
JP3742197B2 (en) Variable capacitance circuit and crystal oscillation circuit using this circuit
CN115173856A (en) Voltage controlled oscillator and phase locked loop
TWI638452B (en) Room temperature oscillator
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
Abadeer et al. A capacitance reliability degradation mechanism in hyper-abrupt junction varactors
JP3939688B2 (en) Varicap manufacturing method
JP2002057526A (en) Voltage controlled crystal oscillator