JP2006108222A - Solid-state imaging device and method for manufacturing the same - Google Patents

Solid-state imaging device and method for manufacturing the same Download PDF

Info

Publication number
JP2006108222A
JP2006108222A JP2004289937A JP2004289937A JP2006108222A JP 2006108222 A JP2006108222 A JP 2006108222A JP 2004289937 A JP2004289937 A JP 2004289937A JP 2004289937 A JP2004289937 A JP 2004289937A JP 2006108222 A JP2006108222 A JP 2006108222A
Authority
JP
Japan
Prior art keywords
light
charge transfer
imaging device
state imaging
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289937A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
将宏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004289937A priority Critical patent/JP2006108222A/en
Publication of JP2006108222A publication Critical patent/JP2006108222A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging device which can suppress the generation of smear, without reducing the pixel opening size. <P>SOLUTION: The CCD solid-state imaging device is provided with a silicon substrate 1 where a light-receiving part 2, a reading gate 3, a vertical charge transmitter 4, a horizontal charge transmitter, and a channel stop region 5 are formed; a transfer electrode 6 formed on the upper layer of the vertical charge transmitter and the gate reading gate, and a light-shielding film 9 wherein an opening 8 is provided in a light-receiving region formed on the upper layer of the transfer electrode with an SiO<SB>2</SB>layer 7 in-between. In this case, grooves 10, arranged aside the vertical charge transmitter are formed on both sides of the vertical charge transmitter in the silicon substrate, and the groove region is covered entirely with the light-shielding film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は固体撮像素子及び固体撮像素子の製造方法に関する。詳しくは、遮光膜端から電荷転送部までの実効的な距離を長くしてスミアの発生を抑制しようとした固体撮像素子及びこうした固体撮像素子の製造方法に係るものである。   The present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device. More specifically, the present invention relates to a solid-state image sensor that attempts to suppress the occurrence of smear by increasing the effective distance from the end of the light-shielding film to the charge transfer unit, and a method for manufacturing such a solid-state image sensor.

図6及び図7は従来のCCD(Charge Coupled Device)固体撮像素子を説明するための模式的な平面図及び断面図である。
従来のCCD固体撮像素子は、シリコン基板100内に、マトリクス状に配列された複数の受光部101、この受光部に隣接して設けられ、受光部で取り込んだ電荷を読み出す読み出しゲート102、読み出しゲートに隣接して設けられ、読み出しゲートによって読み出された電荷を垂直方向に転送する垂直電荷転送部103、垂直電荷転送部により転送された電荷を水平方向に転送する水平電荷転送部104及び受光部の読み出しゲートとは逆側に設けられ、混色を抑制するチャネルストップ領域106が形成されている。
6 and 7 are a schematic plan view and a sectional view for explaining a conventional CCD (Charge Coupled Device) solid-state imaging device.
A conventional CCD solid-state imaging device includes a plurality of light receiving portions 101 arranged in a matrix in a silicon substrate 100, a read gate 102 that is provided adjacent to the light receiving portions, and that reads out electric charges taken in by the light receiving portions, and a read gate. , A vertical charge transfer unit 103 that transfers the charges read by the read gate in the vertical direction, a horizontal charge transfer unit 104 that transfers the charges transferred by the vertical charge transfer unit in the horizontal direction, and a light receiving unit A channel stop region 106 that is provided on the opposite side of the read gate and suppresses color mixing is formed.

また、垂直電荷転送部に転送パルスを印加したり、読み出しゲートに読み出しパルスを印加したりする転送電極107が垂直電荷転送部及び読み出しゲートの上層に形成され、転送電極の上層には受光部領域に開口部108が形成された遮光膜109が形成されている(例えば、特許文献1参照。)。   In addition, a transfer electrode 107 for applying a transfer pulse to the vertical charge transfer unit or applying a read pulse to the read gate is formed in the upper layer of the vertical charge transfer unit and the read gate. A light shielding film 109 in which an opening 108 is formed is formed (for example, see Patent Document 1).

特開平10−144907号公報JP-A-10-144907

ところで、通常のCCD固体撮像素子では、連続露光動作時に、例えば太陽のような非常に強い光を放つものが被写体の中にあったとすると、その撮像画面中の強い光を中心としていわゆるスミアが発生する。   By the way, in a normal CCD solid-state image sensor, if there is something in the subject that emits very strong light such as the sun during continuous exposure operation, so-called smear occurs around the strong light in the imaging screen. To do.

以下、図8を参照して2つのスミアの発生メカニズムについて説明する。
(1)1つの原因は、シリコン基板100の奥深くで光電変換された電荷が、フォトダイオード(受光部)101に全て集まらず、ある割合で垂直電荷転送部103に吸収される。このため、垂直電荷転送部が転送している間、このようなスミア電荷が定常的に垂直電荷転送部に漏れ込むこととなる。すると、強い光が当たっている近くの垂直電荷転送部からは信号電荷に加えて常に一定のスミア電荷が重畳され、結果としてスミアが発生する(図8中符号aで示す入射光参照。)。
(2)もう1つの原因は、垂直電荷転送部及び転送電極107を遮光している遮光膜109とシリコン基板の間から入射光が乱反射して、直接垂直電荷転送部に飛び込み、そこで光電変換がなされ、結果としてスミアが発生する(図8中符号bで示す入射光参照。)。
Hereinafter, two smear generation mechanisms will be described with reference to FIG.
(1) One cause is that the charges photoelectrically converted deep in the silicon substrate 100 are not collected by the photodiode (light receiving unit) 101 but are absorbed by the vertical charge transfer unit 103 at a certain rate. For this reason, while the vertical charge transfer unit is transferring, such smear charges steadily leak into the vertical charge transfer unit. Then, a constant smear charge is always superimposed in addition to the signal charge from the nearby vertical charge transfer unit that is exposed to strong light, and as a result, smear is generated (see incident light indicated by symbol a in FIG. 8).
(2) Another cause is that incident light is irregularly reflected from between the silicon substrate and the light shielding film 109 that shields the vertical charge transfer portion and the transfer electrode 107, and jumps directly into the vertical charge transfer portion, where photoelectric conversion occurs. As a result, smear is generated (see incident light indicated by symbol b in FIG. 8).

上記の様なメカニズムでスミアが発生するのであるが、現在主流となっている小型デジタルスチルカメラ向けCCD固体撮像素子では、画素ピッチが小さく、物理的制約によってスミアに不利なことが多い。なお、スミアを低減するために、画素開口部サイズを縮小する等の対策を採っているが、画素開口部サイズを縮小すると感度が低下する等の不利益が生じてしまう。   Although smear is generated by the mechanism as described above, the CCD solid-state imaging device for small digital still cameras, which is currently mainstream, has a small pixel pitch and is often disadvantageous for smear due to physical restrictions. In order to reduce smear, measures such as reducing the size of the pixel opening are taken. However, if the size of the pixel opening is reduced, there is a disadvantage that sensitivity is lowered.

本発明は、以上の点に鑑みて創案されたものであって、スミアの発生を抑制することができる固体撮像素子及びこうした固体撮像素子の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a solid-state imaging device capable of suppressing the occurrence of smear and a method for manufacturing such a solid-state imaging device.

上記の目的を達成するために、本発明に係る固体撮像素子は、受光部と、該受光部に併設し、受光部から電荷が転送される電荷転送部と、前記受光部と前記電荷転送部の間に設けられる読み出しゲート部と、前記電荷転送部にクロック信号を印加する転送電極と、前記転送電極の上層に形成されると共に、前記受光部領域に開口部が形成された遮光膜とを備える固体撮像素子において、前記受光部と前記電荷転送部との間に溝部が形成されている。   In order to achieve the above object, a solid-state imaging device according to the present invention includes a light receiving unit, a charge transfer unit that is provided in the light receiving unit and transfers charges from the light receiving unit, the light receiving unit, and the charge transfer unit. A read gate portion provided between the transfer electrode, a transfer electrode that applies a clock signal to the charge transfer portion, and a light shielding film that is formed in an upper layer of the transfer electrode and has an opening formed in the light receiving portion region. In the solid-state imaging device provided, a groove is formed between the light receiving unit and the charge transfer unit.

ここで、受光部と電荷転送部との間に溝部が形成されたことによって、遮光膜端から電荷転送部までの実効的な距離を長くすることができる。   Here, since the groove is formed between the light receiving portion and the charge transfer portion, an effective distance from the light shielding film end to the charge transfer portion can be increased.

また、上記の目的を達成するために、本発明に係る固体撮像素子の製造方法は、受光部と、該受光部に併設し、受光部から電荷が転送される電荷転送部と、前記受光部と前記電荷転送部の間に設けられる読み出しゲート部と、前記電荷転送部にクロック信号を印加する転送電極とを備える固体撮像素子の製造方法において、前記読み出しゲート部の形成領域と前記受光部の形成領域との間に溝部を形成する工程と、前記受光部、前記電荷転送部、前記読み出しゲート部及び前記転送電極を形成する工程と、前記転送電極の上層に、少なくとも一部が前記溝部に埋設されると共に、前記受光部領域に開口部を設けた遮光膜を形成する工程とを備える。   In order to achieve the above object, a method of manufacturing a solid-state imaging device according to the present invention includes a light receiving unit, a charge transfer unit that is attached to the light receiving unit, and charges are transferred from the light receiving unit, and the light receiving unit. And a read gate portion provided between the charge transfer portion and a transfer electrode for applying a clock signal to the charge transfer portion. A step of forming a groove portion with the formation region, a step of forming the light receiving portion, the charge transfer portion, the readout gate portion, and the transfer electrode, and at least a part of the groove in the upper layer of the transfer electrode. And a step of forming a light shielding film having an opening in the light receiving area.

ここで、読み出しゲート部の形成領域と受光部の形成領域との間に溝部を形成し、転送電極の上層に、少なくとも一部が溝部に埋設されると共に、受光部領域に開口部を設けた遮光膜を形成することによって、遮光膜端から電荷転送部までの実効的な距離を長くすることができる。   Here, a groove portion is formed between the formation region of the readout gate portion and the formation region of the light receiving portion, and at least a part is embedded in the groove portion on the upper layer of the transfer electrode, and an opening portion is provided in the light receiving portion region. By forming the light shielding film, the effective distance from the edge of the light shielding film to the charge transfer portion can be increased.

上記した本発明を適用した固体撮像素子及び本発明を適用した固体撮像素子の製造方法で得られる固体撮像素子では、遮光膜端から電荷転送部までの実効的な距離が長いために、半導体基板内部で吸収され、光電変換によって発生した電子が電荷転送部に到達する確率を減少させることができ、また、遮光膜と半導体基板の間からの入射光についても、溝部の端部領域で入射光の反射方向が変わるため、反射光が電荷転送部へ進む確率を減少させることができ、遮光膜の開口幅を変えることなくスミアの発生を抑制することができる。   In the above-described solid-state imaging device to which the present invention is applied and the solid-state imaging device obtained by the method for manufacturing the solid-state imaging device to which the present invention is applied, the effective distance from the light shielding film edge to the charge transfer portion is long. The probability that electrons absorbed inside and generated by photoelectric conversion will reach the charge transfer unit can be reduced, and incident light from between the light shielding film and the semiconductor substrate can also be incident on the end region of the groove. Therefore, the probability that the reflected light travels to the charge transfer portion can be reduced, and smear can be suppressed without changing the opening width of the light shielding film.

また、遮光膜の転送電極に対する張り出し部分を溝部に落とし込むことができるために、斜め光の集光率の向上を通じ、斜め光成分の感度向上を図ることができる。   In addition, since the protruding portion of the light shielding film with respect to the transfer electrode can be dropped into the groove portion, the sensitivity of the oblique light component can be improved through the improvement of the light collection rate of the oblique light.

以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用したCCD固体撮像素子の一例を説明するための模式的な断面図であり、ここで示すCCD固体撮像素子は、従来のCCD固体撮像素子と同様に、シリコン基板1内に、マトリクス状に配列された複数の受光部2、この受光部に隣接して設けられ、受光部で取り込んだ電荷の読み出しを行なう読み出しゲート3、読み出しゲートに隣接して設けられ、読み出しゲートによって読み出された電荷を垂直方向に転送する垂直電荷転送部4、垂直電荷転送部により転送された電荷を水平方向に転送する水平電荷転送部(図示せず)及び受光部の読み出しゲートとは逆側に設けられ、混色を抑制するチャネルストップ領域5が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic cross-sectional view for explaining an example of a CCD solid-state imaging device to which the present invention is applied. The CCD solid-state imaging device shown here is similar to a conventional CCD solid-state imaging device in the silicon substrate 1. In addition, a plurality of light receiving portions 2 arranged in a matrix, provided adjacent to the light receiving portions, a read gate 3 for reading charges taken in by the light receiving portions, provided adjacent to the read gates, The vertical charge transfer unit 4 that transfers the read charges in the vertical direction, the horizontal charge transfer unit (not shown) that transfers the charges transferred by the vertical charge transfer unit in the horizontal direction, and the readout gate of the light receiving unit are opposite. A channel stop region 5 that is provided on the side and suppresses color mixing is formed.

また、垂直電荷転送部に転送パルスを印加したり、読み出しゲートに読み出しパルスを印加したりする転送電極6が垂直電荷転送部及び読み出しゲートの上層に形成され、転送電極の上層にはSiO層7を介して受光部領域に開口部8が形成された遮光膜9が形成されている。 Further, a transfer electrode 6 for applying a transfer pulse to the vertical charge transfer unit or applying a read pulse to the read gate is formed on the vertical charge transfer unit and the read gate, and an SiO 2 layer is formed on the transfer electrode. A light shielding film 9 in which an opening 8 is formed in the light receiving portion region is formed through 7.

更に、シリコン基板の表面には、垂直電荷転送部の両側に溝部10が並設されており、遮光膜は、この溝部が形成された領域(以下、溝部領域という)の全領域を覆うように形成されている。   Further, grooves 10 are provided on both sides of the vertical charge transfer portion on the surface of the silicon substrate, and the light shielding film covers the entire region where the groove is formed (hereinafter referred to as the groove region). Is formed.

ここで、本実施例では、垂直電荷転送部の両側、即ち、垂直電荷転送部の読み出しゲート側及びチャネルストップ領域側の双方に溝部を形成して、受光部から入射した光に起因するスミア電荷が読み出しゲート方向(図1中符号Aで示す方向)に移動することによる垂直電荷転送部4Aへの流れ込み及びスミア電荷がチャネルストップ領域方向(図1中符号Bで示す方向)に移動することによる垂直電荷転送部4Bへの流れ込みの双方を低減すると共に、受光部から入射した光の乱反射成分が読み出しゲート方向に進入することによる垂直電荷転送部4Aへの飛び込み及び乱反射成分がチャネルストップ領域方向に進入することによる垂直電荷転送部4Bへの飛び込みの双方を低減することによって、スミアの発生を抑制しているが、垂直電荷転送部の片側、即ち、垂直電荷転送部の読み出しゲート側若しくはチャネルストップ領域側に溝部を形成することによって、充分にスミアを抑制することができるのであれば、必ずしも垂直電荷転送部の両側に溝部を形成する必要は無い。但し、より一層充分にスミアの発生を抑制するためには、垂直電荷転送部の両側に溝部を形成した方が好ましい。   Here, in this embodiment, a groove is formed on both sides of the vertical charge transfer unit, that is, on both the read gate side and the channel stop region side of the vertical charge transfer unit, and smear charges caused by light incident from the light receiving unit are formed. By moving in the readout gate direction (indicated by reference symbol A in FIG. 1) and flowing into the vertical charge transfer unit 4A and by moving smear charges in the channel stop region direction (indicated by reference symbol B in FIG. 1). Both the flow into the vertical charge transfer unit 4B is reduced, and the irregular reflection component of the light incident from the light receiving unit enters the read gate direction, so that the jump into the vertical charge transfer unit 4A and the irregular reflection component in the channel stop region direction. The occurrence of smear is suppressed by reducing both jumping into the vertical charge transfer unit 4B due to the entry, If the smear can be sufficiently suppressed by forming the groove on one side of the transfer unit, that is, on the read gate side or the channel stop region side of the vertical charge transfer unit, the groove is not necessarily provided on both sides of the vertical charge transfer unit. There is no need to form. However, in order to more sufficiently suppress the occurrence of smear, it is preferable to form groove portions on both sides of the vertical charge transfer portion.

また、本実施例では、垂直電荷転送部に並設された溝部領域の全領域を覆う様に遮光膜が形成されているが、図2で示す様に、溝部領域の一部の領域を覆う様に遮光膜が形成されたとしても、遮光膜端から垂直電荷転送部までの実効的な距離を長くすることができると共に、溝部の端部を遮光膜で覆うことにより入射光の反射方向を変えることができるために必ずしも溝部領域の全領域を覆う様に遮光膜が形成される必要は無い。但し、より一層遮光膜端から垂直電荷転送部までの実効的な距離を長くすると共に、入射光の反射方向を変えるべく、溝部領域の全領域を覆う様に遮光膜が形成される方が好ましい。   In this embodiment, the light shielding film is formed so as to cover the entire region of the groove region arranged in parallel with the vertical charge transfer portion. However, as shown in FIG. 2, a part of the groove region is covered. Even if the light shielding film is formed in this manner, the effective distance from the edge of the light shielding film to the vertical charge transfer portion can be increased, and the reflection direction of incident light can be changed by covering the edge of the groove with the light shielding film. Since it can be changed, it is not always necessary to form the light shielding film so as to cover the entire region of the groove region. However, it is preferable that the light shielding film is formed so as to cover the entire region of the groove region so as to further increase the effective distance from the edge of the light shielding film to the vertical charge transfer portion and change the reflection direction of incident light. .

なお、シリコン基板に溝部を形成した場合には、この溝部の表面または内部に格子欠陥等ができやすく、特に図1中符号Cで示す溝部端部の斜め部分からの暗電流の発生が懸念されるが、溝部端部の斜め部分を遮光膜で覆う構造とし、遮光膜に電圧を印加することによるピンニング強化により暗電流の発生を抑制することができる。従って、暗電流を抑制するという観点からも溝部領域の全領域を覆う様に遮光膜が形成される方が好ましい。   When a groove is formed on the silicon substrate, lattice defects or the like are likely to be formed on the surface or inside of the groove, and there is a concern that dark current may be generated from an oblique portion at the end of the groove indicated by C in FIG. However, it is possible to suppress the generation of dark current by strengthening pinning by applying a voltage to the light shielding film by covering the oblique part of the end of the groove with a light shielding film. Therefore, it is preferable that the light shielding film is formed so as to cover the entire region of the groove region from the viewpoint of suppressing dark current.

以下、上記の様に構成されたCCD固体撮像素子の製造方法について説明する。即ち、本発明を適用した固体撮像素子の製造方法の一例について説明する。   Hereinafter, a manufacturing method of the CCD solid-state imaging device configured as described above will be described. That is, an example of a method for manufacturing a solid-state imaging device to which the present invention is applied will be described.

上記したCCD固体撮像素子の製造方法では、先ず、図3(a)で示す様に、シリコン基板1表面を熱酸化してパッド酸化膜11(SiO膜)を成長させ、パッド酸化膜の上層にアンモニア(NH)とシラン(SiH)を反応させてシリコン窒化膜12(Si)を堆積する。 In the manufacturing method of the CCD solid-state imaging device described above, first, as shown in FIG. 3A, the surface of the silicon substrate 1 is thermally oxidized to grow a pad oxide film 11 (SiO 2 film), and the upper layer of the pad oxide film. Then, ammonia (NH 3 ) and silane (SiH 4 ) are reacted with each other to deposit a silicon nitride film 12 (Si 3 N 4 ).

次に、図3(b)で示す様に、汎用のフォトリソグラフィー技術及びエッチング技術によって、後述する不純物の注入工程によって垂直電荷転送部を形成する領域14(以下、垂直電荷転送部形成領域)の両側のシリコン窒化膜及びパッド酸化膜を除去する。   Next, as shown in FIG. 3B, a region 14 (hereinafter referred to as a vertical charge transfer portion forming region) in which a vertical charge transfer portion is formed by a general-purpose photolithography technique and an etching technique by an impurity implantation process described later. The silicon nitride film and the pad oxide film on both sides are removed.

続いて、図3(c)で示す様に、耐酸化性を有するシリコン窒化膜をマスクとして、熱酸化法によりシリコン窒化膜に覆われていない領域のシリコン基板表面上に厚いSiO膜13を成長させた後に、図4(d)で示す様に、シリコン窒化膜を熱リン酸で、パッド酸化膜をフッ酸で除去する。 Subsequently, as shown in FIG. 3C, with a silicon nitride film having oxidation resistance as a mask, a thick SiO 2 film 13 is formed on the silicon substrate surface in a region not covered with the silicon nitride film by a thermal oxidation method. After the growth, as shown in FIG. 4D, the silicon nitride film is removed with hot phosphoric acid and the pad oxide film is removed with hydrofluoric acid.

次に、図4(e)で示す様に、垂直電荷転送部形成領域に不純物注入を行なって垂直電荷転送部4を形成し、更に不純物注入を行なってマトリクス状の受光部2を形成する。また、受光部に隣接した領域に不純物注入を行なって読み出しゲート3を形成すると共に、チャネルストップ領域5及び水平電荷転送部(図示せず)も形成する。   Next, as shown in FIG. 4E, impurities are implanted into the vertical charge transfer portion forming region to form the vertical charge transfer portion 4, and further impurity implantation is performed to form the matrix-shaped light receiving portion 2. Further, impurity implantation is performed in a region adjacent to the light receiving portion to form the read gate 3, and a channel stop region 5 and a horizontal charge transfer portion (not shown) are also formed.

その後、垂直電荷転送部及び読み出しゲートを覆う様に転送電極6を形成し、転送電極の上層にSiO層7を介して転送電極及び溝部領域の全領域を覆うと共に、受光部領域に開口部8を有する遮光膜9を形成することによって、図4(f)で示す様なCCD固体撮像素子を得ることができる。 Thereafter, the transfer electrode 6 is formed so as to cover the vertical charge transfer portion and the readout gate, and the transfer electrode and the entire groove region are covered over the transfer electrode via the SiO 2 layer 7, and an opening is formed in the light receiving portion region. By forming the light shielding film 9 having 8, a CCD solid-state imaging device as shown in FIG. 4F can be obtained.

なお、本実施例では、LOCOS酸化を用いて溝部を形成する方法を例に挙げて説明を行ったが、溝部の形成方法はLOCOS酸化に限定されるものではなく、どの様な方法で溝部を形成しても良い。   In this embodiment, the method of forming the groove using LOCOS oxidation has been described as an example. However, the method of forming the groove is not limited to LOCOS oxidation, and the groove is formed by any method. It may be formed.

上記した本発明を適用したCCD固体撮像素子では、従来のCCD固体撮像素子と比較するとスミアの発生を抑制することができる。即ち、図5(a)中符号d'で示す従来のCCD固体撮像素子における遮光膜端から垂直電荷転送部までの実効的な距離と比べて、図5(b)中符号dで示す本発明を適用したCCD固体撮像素子における遮光膜端から垂直電荷転送部までの実効的な距離が長く、シリコン基板内部で光電変換によって発生した電子が垂直電荷転送部に到達する確率が減ると共に、溝部端部の斜め部分で入射光の反射方向が変化して反射光が垂直電荷転送部方向へ進む確率が減ることによって、従来構造のCCD固体撮像素子と比較するとスミアの発生を抑制することができる。   In the CCD solid-state imaging device to which the present invention described above is applied, the occurrence of smear can be suppressed as compared with the conventional CCD solid-state imaging device. That is, the present invention indicated by symbol d in FIG. 5B is compared with the effective distance from the light shielding film end to the vertical charge transfer portion in the conventional CCD solid-state imaging device indicated by symbol d ′ in FIG. The effective distance from the light-shielding film edge to the vertical charge transfer section in the CCD solid-state imaging device to which is applied is long, the probability that electrons generated by photoelectric conversion inside the silicon substrate reach the vertical charge transfer section is reduced, and the groove edge The incidence direction of the incident light is changed in the oblique portion of the portion and the probability that the reflected light travels in the direction of the vertical charge transfer portion is reduced, so that it is possible to suppress the occurrence of smear as compared with a CCD solid-state imaging device having a conventional structure.

また、本発明を適用したCCD固体撮像素子では、斜め光成分の感度上昇が期待できる。即ち、従来のCCD固体撮像素子では転送電極の断面が横長の方形状をしていることから、SiO層を介して積層された遮光膜の形状も転送電極の形状を反映して、その側壁がほぼ垂直に切り立っており、図7中符号φ1で示す受光部の任意の点から見た仰角が、切り立った遮光膜の側壁頂部によって決められ、受光部に対し斜めに入射する光量が限られたものになっていた。これに対して、本発明を適用したCCD固体撮像素子では遮光膜の転送電極に対する張り出し部分を溝部に落とし込むことができるために、図1中符号φ2で示す受光部の任意の点から見た仰角が従来の構造と比較して大きくなり、その分だけ受光部に対し斜めに入射する光量が増加し、斜め光の集光率が向上し、斜め光成分の感度向上が期待できる。 Further, in the CCD solid-state imaging device to which the present invention is applied, an increase in sensitivity of the oblique light component can be expected. That is, in the conventional CCD solid-state imaging device, since the cross section of the transfer electrode has a horizontally long square shape, the shape of the light-shielding film laminated via the SiO 2 layer also reflects the shape of the transfer electrode, and its side wall The elevation angle viewed from an arbitrary point of the light receiving portion indicated by symbol φ1 in FIG. 7 is determined by the top portion of the side wall of the light shielding film, and the amount of light incident obliquely on the light receiving portion is limited. It was a thing. On the other hand, in the CCD solid-state imaging device to which the present invention is applied, the protruding portion of the light-shielding film with respect to the transfer electrode can be dropped into the groove portion. However, the amount of light incident obliquely on the light receiving portion is increased by that amount, and the light collection rate of oblique light is improved, and the improvement of sensitivity of oblique light components can be expected.

本発明を適用したCCD固体撮像素子の一例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating an example of the CCD solid-state image sensor to which this invention is applied. 本発明を適用したCCD固体撮像素子の変形例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the modification of the CCD solid-state image sensor to which this invention is applied. 本発明を適用したCCD固体撮像素子の製造方法を説明するための模式的な断面図(1)である。It is typical sectional drawing (1) for demonstrating the manufacturing method of the CCD solid-state image sensor to which this invention is applied. 本発明を適用したCCD固体撮像素子の製造方法を説明するための模式的な断面図(2)である。It is typical sectional drawing (2) for demonstrating the manufacturing method of the CCD solid-state image sensor to which this invention is applied. 遮光膜端から垂直電荷転送部までの実効的な距離を説明するための模式的な断面図である。FIG. 6 is a schematic cross-sectional view for explaining an effective distance from a light shielding film end to a vertical charge transfer portion. 従来のCCD固体撮像素子を説明するための模式的な平面図である。It is a typical top view for demonstrating the conventional CCD solid-state image sensor. 従来のCCD固体撮像素子を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the conventional CCD solid-state image sensor. スミアの発生メカニズムを説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the generation | occurrence | production mechanism of a smear.

符号の説明Explanation of symbols

1 シリコン基板
2 受光部
3 読み出しゲート
4 垂直電荷転送部
5 チャネルストップ領域
6 転送電極
7 SiO
8 開口部
9 遮光膜
10 溝部
11 パッド酸化膜
12 シリコン窒化膜
13 SiO
14 垂直電荷転送部形成領域
1 silicon substrate 2 light receiving unit 3 read gate 4 vertical charge transfer section 5 the channel stop region 6 transfer electrodes 7 SiO 2 layer 8 opening 9 the light shielding film 10 groove 11 the pad oxide film 12 a silicon nitride film 13 SiO 2 film 14 vertical charge transfer section Formation area

Claims (5)

受光部と、
該受光部に併設し、受光部から電荷が転送される電荷転送部と、
前記受光部と前記電荷転送部の間に設けられる読み出しゲート部と、
前記電荷転送部にクロック信号を印加する転送電極と、
前記転送電極の上層に形成されると共に、前記受光部領域に開口部が形成された遮光膜とを備える固体撮像素子において、
前記受光部と前記電荷転送部との間に溝部が形成された
ことを特徴とする固体撮像素子。
A light receiver;
A charge transfer unit that is provided in the light receiving unit and transfers charges from the light receiving unit;
A readout gate unit provided between the light receiving unit and the charge transfer unit;
A transfer electrode for applying a clock signal to the charge transfer unit;
In a solid-state imaging device, which is formed in an upper layer of the transfer electrode and includes a light-shielding film in which an opening is formed in the light-receiving region.
A solid-state imaging device, wherein a groove is formed between the light receiving unit and the charge transfer unit.
前記遮光膜は、少なくとも一部が前記溝部に埋設された
ことを特徴とする請求項1に記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein at least a part of the light shielding film is embedded in the groove.
前記溝部は、前記読み出しゲート部と前記受光部の間に設けられた
ことを特徴とする請求項1に記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the groove portion is provided between the readout gate portion and the light receiving portion.
前記溝部は、前記電荷転送部の両側に併設された
ことを特徴とする請求項1に記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the groove is provided on both sides of the charge transfer unit.
受光部と、該受光部に併設し、受光部から電荷が転送される電荷転送部と、前記受光部と前記電荷転送部の間に設けられる読み出しゲート部と、前記電荷転送部にクロック信号を印加する転送電極とを備える固体撮像素子の製造方法において、
前記読み出しゲート部の形成領域と前記受光部の形成領域との間に溝部を形成する工程と、
前記受光部、前記電荷転送部、前記読み出しゲート部及び前記転送電極を形成する工程と、
前記転送電極の上層に、少なくとも一部が前記溝部に埋設されると共に、前記受光部領域に開口部を設けた遮光膜を形成する工程とを備える
ことを特徴とする固体撮像素子の製造方法。
A light-receiving unit, a charge transfer unit that is provided in the light-receiving unit and transfers charges from the light-receiving unit, a readout gate unit provided between the light-receiving unit and the charge transfer unit, and a clock signal to the charge transfer unit In a method for manufacturing a solid-state imaging device comprising a transfer electrode to be applied,
Forming a groove between a formation region of the read gate portion and a formation region of the light receiving portion;
Forming the light receiving portion, the charge transfer portion, the read gate portion, and the transfer electrode;
And a step of forming a light-shielding film having at least a portion embedded in the groove and provided with an opening in the light-receiving portion region above the transfer electrode.
JP2004289937A 2004-10-01 2004-10-01 Solid-state imaging device and method for manufacturing the same Pending JP2006108222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289937A JP2006108222A (en) 2004-10-01 2004-10-01 Solid-state imaging device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289937A JP2006108222A (en) 2004-10-01 2004-10-01 Solid-state imaging device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006108222A true JP2006108222A (en) 2006-04-20

Family

ID=36377616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289937A Pending JP2006108222A (en) 2004-10-01 2004-10-01 Solid-state imaging device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006108222A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465460U (en) * 1990-10-16 1992-06-08
JPH06224403A (en) * 1993-01-26 1994-08-12 Matsushita Electron Corp Solid-state image pickup device and its manufacture
JPH10189936A (en) * 1996-12-26 1998-07-21 Sony Corp Solid-state image sensor and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465460U (en) * 1990-10-16 1992-06-08
JPH06224403A (en) * 1993-01-26 1994-08-12 Matsushita Electron Corp Solid-state image pickup device and its manufacture
JPH10189936A (en) * 1996-12-26 1998-07-21 Sony Corp Solid-state image sensor and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4621719B2 (en) Back-illuminated image sensor
TWI429064B (en) Backside illuminated imaging device, semiconductor substrate, imaging apparatus and method for manufacturing backside illuminated imaging device
JP4649441B2 (en) Back-illuminated imaging device and imaging device provided with the same
US8629486B2 (en) CMOS image sensor having anti-absorption layer
JP2010093081A (en) Solid-state imaging device and method for manufacturing the same
KR101688249B1 (en) Back-illuminated solid-state image pickup device
JP2007019435A (en) Solid state imaging device and its manufacturing method, and camera
JP4649390B2 (en) Manufacturing method of back-illuminated image sensor
JP2010098169A (en) Solid-state imaging apparatus, camera, and method of manufacturing the solid-state imaging apparatus
JP2015082510A (en) Solid-state imaging element, method of manufacturing the same, and electronic device
KR20100089747A (en) Solid-state imaging device, imaging apparatus, and manufacturing method of solid-state imaging device
JP2003078125A (en) Solid-state imaging device
JP2009111118A (en) Rear-surface irradiation type solid-state imaging element, and manufacturing method therefor
JP2009049117A (en) Method of forming color filter of solid-state image pickup device, solid-state image pickup device, and pattern mask set for solid-state image pickup device
JP2007287818A (en) Solid imaging device and its manufacturing method
JP2012124213A (en) Solid state imaging device
JP2009283637A (en) Solid state imaging device and method of manufacturing the same
JP2006108222A (en) Solid-state imaging device and method for manufacturing the same
JP2012124275A (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus provided with the same
US7755091B2 (en) Solid state image pickup device
JP2005026717A (en) Solid imaging device
WO2008136634A1 (en) A unit pixel of the imagesensor having a high sensitive photodiode
JP2011146516A (en) Solid-state image sensor, imaging apparatus, method of manufacturing solid-state image sensor
JP2008028101A (en) Solid-state imaging element and its manufacturing method
JP2007194359A (en) Solid state imaging element, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102