JP2006107804A - Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell - Google Patents

Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006107804A
JP2006107804A JP2004289740A JP2004289740A JP2006107804A JP 2006107804 A JP2006107804 A JP 2006107804A JP 2004289740 A JP2004289740 A JP 2004289740A JP 2004289740 A JP2004289740 A JP 2004289740A JP 2006107804 A JP2006107804 A JP 2006107804A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
membrane
electrolyte membrane
electrode assembly
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289740A
Other languages
Japanese (ja)
Inventor
Mitsutaka Abe
光高 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004289740A priority Critical patent/JP2006107804A/en
Publication of JP2006107804A publication Critical patent/JP2006107804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode junction for a polymer electrolyte fuel cell restraining dimensional change accompanying temperature change in a plane direction of a polymer electrolyte film, and restraining damage or exfoliation of an electrode layer arranged on such a polymer electrolyte film, when the junction is used for a polymer electrolyte fuel cell. <P>SOLUTION: Following processes are carried out: (A) expanding the polymer electrolyte film within the range satisfying a relation expressed in formula (1), S<SB>w</SB>≤S<SB>x</SB>; (B) pinching the polymer electrolyte film with a pair of support bodies; (C) retaining the polymer electrolyte film in an expanded state; (D) jointing the polymer electrolyte film with the support bodies; and (E) jointing the electrode layer to the polymer electrolyte film exposed to openings of the support bodies. The membrane-electrode junction for the polymer electrolyte fuel cell is thereby obtained. S<SB>x</SB>in the formula denotes an area of the polymer electrolyte film at manufacturing, and S<SB>w</SB>an area at moisture expansion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高分子電解質形燃料電池(PEFC)用膜・電極接合体の製造方法に係り、更には詳細には、PEFCの使用時における、湿度変化に伴う高分子電解質膜の膜厚方向に対して垂直な方向(以下、平面方向と略記する。)の寸法変化を抑制し、かかる高分子電解質膜上に配置される電極層の破損や剥離を抑制し得るPEFC用膜・電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell (PEFC), and more specifically, in the film thickness direction of a polymer electrolyte membrane accompanying a change in humidity when PEFC is used. A membrane / electrode assembly for PEFC that suppresses a change in dimensions in a direction perpendicular to the plane (hereinafter abbreviated as a plane direction) and can suppress breakage and peeling of the electrode layer disposed on the polymer electrolyte membrane. It relates to a manufacturing method.

PEFC用膜・電極接合体を作製する際に、膜の外周縁部(セパレータと接触する部位)にシワが生じることが知られており、これを抑制するために、外周縁部にシートを接着したものが提案されている(例えば、特許文献1参照。)。
特開平11−45729号公報
When manufacturing membrane / electrode assemblies for PEFC, it is known that wrinkles occur at the outer periphery of the membrane (the part that contacts the separator). To suppress this, a sheet is adhered to the outer periphery. Have been proposed (see, for example, Patent Document 1).
JP-A-11-45729

しかしながら、湿度条件の変化に伴い、高分子電解質膜が平面方向の寸法変化(膜の膨潤・収縮)を繰り返すため、高分子電解質膜のうちのシートが接着されていない部分に接合された電極層は、膜の寸法変化に追従できず、破損や剥離が生じるという問題があった。   However, since the polymer electrolyte membrane repeats dimensional changes in the planar direction (swelling / shrinking of the membrane) with changes in humidity conditions, the electrode layer joined to the portion of the polymer electrolyte membrane where the sheet is not bonded Has a problem that it cannot follow the dimensional change of the film and breakage or peeling occurs.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、PEFCに用いた場合に、湿度変化に伴う高分子電解質膜の平面方向の寸法変化を抑制し、かかる高分子電解質膜上に配置される電極層の破損や剥離を抑制し得るPEFC用膜・電極接合体を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to change the dimensional change in the planar direction of the polymer electrolyte membrane accompanying a change in humidity when used in PEFC. An object of the present invention is to provide a membrane / electrode assembly for PEFC that can suppress and prevent the electrode layer disposed on the polymer electrolyte membrane from being damaged or peeled off.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、作製時に予め高分子電解質膜を拡大させて支持することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by, for example, expanding and supporting the polymer electrolyte membrane in advance at the time of production, and has completed the present invention. It was.

即ち、本発明のPEFC用膜・電極接合体の製造方法は、高分子電解質膜を中央部に開口部を有する一対の支持体で狭持し、該支持体の開口部に露出した該高分子電解質膜に電極層を接合して成る高分子電解質形燃料電池用膜・電極接合体を製造する方法であって、下記の工程(A)〜(E)を含むことを特徴とする。
(A):上記高分子電解質膜を次式(1)
≦S…(1)
(式中のSは高分子電解質膜の製造時における面積、Sは含水膨張時における面積を示す。)で表される関係を満足する範囲で拡大する工程
(B):上記高分子電解質膜を一対の上記支持体で挟む工程
(C):上記高分子電解質膜が拡大された状態で保持する工程
(D):上記高分子電解質膜と上記支持体を接合する工程
(E):上記支持体の開口部に露出した上記高分子電解質膜に上記電極層を接合する工程
That is, in the PEFC membrane / electrode assembly production method of the present invention, the polymer electrolyte membrane is sandwiched between a pair of supports having an opening at the center, and the polymer exposed at the opening of the support. A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell comprising an electrode layer bonded to an electrolyte membrane, comprising the following steps (A) to (E).
(A): The polymer electrolyte membrane is expressed by the following formula (1)
S w ≦ S x (1)
(S x is the area at the time of production of the polymer electrolyte membrane wherein, S w represents the area at the time of moisture expansion.) A step of expanding a range which satisfies the relationship represented by (B): the polymer electrolyte Step (C) for sandwiching the membrane between the pair of supports: Step (D) for holding the polymer electrolyte membrane in an enlarged state: Step (E) for joining the polymer electrolyte membrane and the support (E): The step of bonding the electrode layer to the polymer electrolyte membrane exposed at the opening of the support

本発明によれば、作製時に予め高分子電解質膜を拡大させて支持することなどとしたため、PEFCに用いた場合に、湿度変化に伴う高分子電解質膜の平面方向の寸法変化を抑制し、かかる高分子電解質膜上に配置される電極層の破損や剥離を抑制し得るPEFC用膜・電極接合体を提供することができる。   According to the present invention, since the polymer electrolyte membrane is expanded and supported in advance at the time of production, when used in PEFC, the dimensional change in the planar direction of the polymer electrolyte membrane accompanying a change in humidity is suppressed. It is possible to provide a membrane / electrode assembly for PEFC capable of suppressing breakage and peeling of an electrode layer disposed on a polymer electrolyte membrane.

以下、本発明の高分子電解質形燃料電池(PEFC)用膜・電極接合体(以下、膜・電極接合体と略記する。)の製造方法について説明する。
上述の如く、本発明の膜・電極接合体の製造方法は、高分子電解質膜を中央部に開口部を有する一対の支持体で狭持し、該支持体の開口部に露出した該高分子電解質膜に電極層を接合して成る膜・電極接合体を製造する方法であって、上記高分子電解質膜を次式(1)
≦S…(1)
(式中のSは高分子電解質膜の製造時における面積、Sは含水膨張時における面積を示す。)で表される関係を満足する範囲で拡大する(A)工程、上記高分子電解質膜を一対の上記支持体で挟む(B)工程、上記高分子電解質膜が拡大された状態で保持する(C)工程、上記高分子電解質膜と上記支持体を接合する(D)工程、上記支持体の開口部に露出した上記高分子電解質膜に上記電極層を接合する(E)工程、を含む。
Hereinafter, a method for producing a membrane / electrode assembly (hereinafter abbreviated as a membrane / electrode assembly) for a polymer electrolyte fuel cell (PEFC) of the present invention will be described.
As described above, in the method for producing a membrane / electrode assembly of the present invention, the polymer electrolyte membrane is sandwiched between a pair of supports having an opening at the center and the polymer exposed at the opening of the support. A method for producing a membrane / electrode assembly formed by joining an electrode layer to an electrolyte membrane, wherein the polymer electrolyte membrane is represented by the following formula (1):
S w ≦ S x (1)
(S x is the area at the time of production of the polymer electrolyte membrane wherein, S w is. Showing the area at the time of moisture expansion) to expand in a range satisfying the relationship represented by (A) step, the polymer electrolyte (B) step of sandwiching the membrane between the pair of supports, (C) step of holding the polymer electrolyte membrane in an expanded state, (D) step of joining the polymer electrolyte membrane and the support, (E) joining the said electrode layer to the said polymer electrolyte membrane exposed to the opening part of a support body.

ここで、用いる高分子電解質膜によって若干異なるが、含水膨張時における面積Sは、高分子電解質膜を温度:23〜85℃、相対湿度60〜98%の条件の下10分〜24時間置いた後に測定される面積である。
なお、高分子電解質膜としては、PEFCに適用することができれば特に限定されるものではなく、従来公知のナフィオン、スルホン化ポリアリーレン系電解質膜、スルホン化ポリイミド系電解質膜などを挙げることができる。
Here, although slightly different by a polymer electrolyte membrane to be used, the area S w at water expansion, the polymer electrolyte membrane Temperature: 23-85 ° C., at the bottom 10 minutes to 24 hours relative humidity 60-98% conditions It is the area measured after
The polymer electrolyte membrane is not particularly limited as long as it can be applied to PEFC, and conventionally known Nafion, sulfonated polyarylene electrolyte membrane, sulfonated polyimide electrolyte membrane and the like can be mentioned.

このように、予め作製時に高分子電解質膜を拡大させて保持することにより、高分子電解質膜のうち支持体で支持された外周縁部より内側の部分には、乾燥時だけでなく、含水時においても平面方向の外向きに張力が予めかかった状態となる。
そのため、湿度変化により高分子電解質が膨潤しても、張力の緩和により吸収され、膜の平面方向における寸法変化を抑制することができる。
これにより、PEFCが運転・停止を繰り返し、高分子電解質膜の膨潤・収縮が繰り返される場合においても、高分子電解質膜からの電極層の剥離や電極層自体の破損、即ちPEFCの劣化を抑制することができる。
なお、本発明の効果を奏すれば、得られる膜・電極接合体の使用条件は特に限定されるものではないが、例えば、膜電極接合体の使用時の相対湿度より高い相対湿度で製造することが好ましい。
In this way, by expanding and holding the polymer electrolyte membrane at the time of production in advance, the portion inside the outer peripheral edge supported by the support in the polymer electrolyte membrane is not only dried but also water-containing Also, the tension is applied in advance in the plane direction.
Therefore, even if the polymer electrolyte swells due to a change in humidity, it is absorbed by the relaxation of the tension, and the dimensional change in the plane direction of the membrane can be suppressed.
Thereby, even when the PEFC is repeatedly operated and stopped, and the polymer electrolyte membrane is repeatedly swelled and contracted, the peeling of the electrode layer from the polymer electrolyte membrane and the damage of the electrode layer itself, that is, the deterioration of the PEFC are suppressed. be able to.
In addition, if the effect of the present invention is exerted, the use conditions of the obtained membrane-electrode assembly are not particularly limited. For example, the membrane-electrode assembly is manufactured at a relative humidity higher than the relative humidity at the time of use of the membrane-electrode assembly. It is preferable.

また、用いる支持体は、支持体で狭持されている膜・電極接合体の外縁部におけるシワの発生を抑制すれば、特に限定されるものではないが、熱溶着することが望ましい。これにより、溶剤により高分子電解質膜が汚染される可能性が格段に低くなり、更に加熱や加圧するといった簡易な方法(いわゆるホットプレス)で高分子電解質膜と支持体を接着させることができる。
更に、用いる支持体は、その形状がスタック化する際の体積やガスシール性を考慮するとシート状であることが望ましく、支持体の含水時の膨潤率は支持体としての機能をより発揮するために高分子電解質膜より小さいことが好ましく、弾性率においては高分子電解質膜より大きいことが好ましい。
例えば、具体的にはエンジニアリングプラスチック(ポリイミドや炭化フッ素系樹脂など)のシートを挙げることができる。
支持体に熱溶着性を付与する接着剤としては、具体的には熱可塑性樹脂(ポリエステル、ポリウレタン、ポリオレフィンなど)のシートを挙げることができる。
更にまた、用いる電極層は、特に限定されるものではなく、従来公知の電極層を適用することが可能であるが、電極層がガス拡散層を備えていることが望ましい。
Further, the support to be used is not particularly limited as long as the generation of wrinkles at the outer edge portion of the membrane / electrode assembly held by the support is suppressed, but it is desirable to perform heat welding. Thereby, the possibility that the polymer electrolyte membrane is contaminated by the solvent is remarkably reduced, and the polymer electrolyte membrane and the support can be bonded by a simple method (so-called hot pressing) such as heating or pressurization.
Furthermore, it is desirable that the support to be used is in the form of a sheet in consideration of the volume and gas sealability when the shape of the support is stacked, and the swelling rate of the support when it contains water exhibits more functions as a support. In particular, it is preferably smaller than the polymer electrolyte membrane, and is preferably larger than the polymer electrolyte membrane in terms of elastic modulus.
For example, a sheet of engineering plastic (such as polyimide or fluorocarbon resin) can be specifically mentioned.
Specific examples of the adhesive that imparts heat weldability to the support include sheets of thermoplastic resins (polyester, polyurethane, polyolefin, etc.).
Furthermore, the electrode layer to be used is not particularly limited, and a conventionally known electrode layer can be applied, but the electrode layer preferably includes a gas diffusion layer.

また、本発明の膜・電極接合体の製造方法における(A)工程において、高分子電解質膜を拡大させるに当たり、高分子電解質膜自体の破損が生じなければ、拡大方法は特に限定されるものではないが、例えば用いる高分子電解質膜を加湿雰囲気下に配置して膨潤させることにより、拡大させることができる。この場合には、高分子電解質膜に実際のPEFC使用時の湿度条件における寸法変化を反映した適切な張力を、予め与えることができるという観点から好ましい。また、用いる高分子電解質膜に外力(例えば、圧力や張力など)を加えて拡張させることによっても、拡大させることができる。この場合には、高分子電解質膜にPEFC使用時の湿度条件における寸法変化を模擬した張力を、例えば湿度などの製造環境条件を維持する大掛かりな装置を不要としながらも、予め与えることができるという観点から好ましい。なお、双方の拡大方法を適宜組み合わせてもよい。また、張力をかけて拡大させるに当たり、その方向は拡張できれば特に限定されるものではなく、例えば高分子電解質膜が正方形の場合には、後述する図2で示すように張力をかけてもよく、四方から張力をかけてもよい。   In addition, in the step (A) in the method for producing a membrane / electrode assembly of the present invention, when the polymer electrolyte membrane itself is not damaged when the polymer electrolyte membrane is enlarged, the enlargement method is not particularly limited. However, it can be enlarged by, for example, placing the polymer electrolyte membrane to be used in a humidified atmosphere and causing it to swell. In this case, it is preferable from the viewpoint that an appropriate tension reflecting a dimensional change in a humidity condition when actually using PEFC can be given in advance to the polymer electrolyte membrane. Further, it can be expanded by applying an external force (for example, pressure or tension) to the polymer electrolyte membrane to be used. In this case, the polymer electrolyte membrane can be provided in advance with a tension that simulates a dimensional change in humidity conditions when PEFC is used, for example, without requiring a large-scale device that maintains manufacturing environment conditions such as humidity. It is preferable from the viewpoint. In addition, you may combine both expansion methods suitably. In addition, when expanding by applying tension, the direction is not particularly limited as long as the direction can be expanded. For example, when the polymer electrolyte membrane is square, tension may be applied as shown in FIG. Tension may be applied from all sides.

更に、本発明の膜・電極接合体の製造方法における(D)工程において、高分子電解質膜と支持体を接合するに当たり、平面方向における双方の相対位置を変化させないように、つまり膜・電極接合体としての中心合せを保持した状態で接合することが望ましい。これにより、膜・電極接合体が性能を十分に発揮することができる。
なお、加湿雰囲気下で膨潤させて拡大させた場合には、接合工程も同じ加湿雰囲気下で実施することにより、中心合せを保持することが容易となるが、接合工程の条件はこれに限定されるものではない。
Further, in the step (D) in the method for producing a membrane / electrode assembly of the present invention, in joining the polymer electrolyte membrane and the support, the relative positions of both in the plane direction are not changed, that is, the membrane / electrode junction. It is desirable to join while maintaining the center alignment as a body. Thereby, a membrane electrode assembly can fully exhibit performance.
In addition, when it is swollen and expanded in a humidified atmosphere, it is easy to maintain center alignment by performing the bonding process in the same humidified atmosphere, but the conditions of the bonding process are limited to this. It is not something.

また、本発明の膜・電極接合体の製造方法における(D)工程において、高分子電解質膜と支持体を接合するに当たり、双方に熱及び圧力の一方又は双方をかけることにより接合することが望ましい。支持体が熱溶着性である場合には上述したような理由から特に望ましい。   Further, in the step (D) in the method for producing a membrane / electrode assembly of the present invention, it is desirable to join the polymer electrolyte membrane and the support by applying one or both of heat and pressure to both. . When the support is heat-weldable, it is particularly desirable for the reasons described above.

更に、本発明の膜・電極接合体の製造方法における(E)工程において、高分子電解質膜と電極層を接合するに当たり、双方に熱及び圧力の一方又は双方をかけることにより接合することが望ましい。このような接合方法とすることにより、(D)工程と(E)工程を同時に実施することが可能となり、製造方法の工程数を少なくすることができ好ましい。
このように、本発明の膜・電極接合体の製造方法における工程の順序は、例えば他に(A)工程と(B)工程の先後は問わないなど、本発明の膜・電極接合体の製造方法により得られる効果を損なわない範囲で各工程の順序は適宜変更できる。
Furthermore, in the step (E) in the method for producing a membrane / electrode assembly of the present invention, it is desirable to join the polymer electrolyte membrane and the electrode layer by applying one or both of heat and pressure to both. . By adopting such a joining method, it becomes possible to simultaneously perform the step (D) and the step (E), and the number of steps in the manufacturing method can be reduced, which is preferable.
As described above, the order of the steps in the method for producing a membrane / electrode assembly of the present invention is not limited, for example, before and after the steps (A) and (B). The order of the respective steps can be appropriately changed within a range not impairing the effect obtained by the method.

以下、本発明の膜・電極接合体の製造方法を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, although the manufacturing method of the membrane electrode assembly of this invention is demonstrated in detail by an Example and a comparative example, this invention is not limited to these Examples.

(実施例1)
まず、電極層に触媒層を形成するための触媒溶液(スラリー)として触媒金属として白金(Pt)微粒子を担持させたカーボンブラック粉末(Vulcan XC72)及び高分子電解質膜用樹脂溶液(ナフィオン(登録商標)の5%溶液)と共に、溶剤としてのアルコール溶液及び水を用いて、Pt使用量が0.3mg/cm、乾燥後の触媒担持カーボンブラック粉末と高分子樹脂の質量比が1:1となるようなスラリーを調製した。
カーボンペーパー(ガス拡散層)にこのスラリーを用いて触媒層を付着形成させて電極層を得た。
Example 1
First, as a catalyst solution (slurry) for forming a catalyst layer on an electrode layer, carbon black powder (Vulcan XC72) supporting platinum (Pt) fine particles as a catalyst metal and a polymer electrolyte membrane resin solution (Nafion (registered trademark)) ) And an alcohol solution as a solvent and water, the amount of Pt used is 0.3 mg / cm 2 , and the mass ratio of the catalyst-supported carbon black powder after drying and the polymer resin is 1: 1. A slurry was prepared.
A catalyst layer was deposited and formed on carbon paper (gas diffusion layer) using this slurry to obtain an electrode layer.

次いで、高分子電解質膜(ナフィオン112)の両面に支持シート(ポリイミド(東レ・デュポン製カプトン))を、接着剤シート(ポリエステル(3M製サーモボンド))を用いて接合した。以後、支持シートと接着剤とを合わせて熱溶着性シートという。
ここで、図1(1)及び(2)は、本例における高分子電解質膜と熱溶着性シートの接合方法の概要を示す平面図及びA−Aにおける断面図である。
図面に基づいて詳細に説明すると、高分子電解質膜2と、高分子電解質膜2を支持する支持体の一例である熱溶着性シート4とを、図示しない湿度調節機の湿度調節槽内(槽内条件:温度40℃、相対湿度90%)に、10分間放置して膨潤させた。
次いで、高分子電解質膜2の上下面を熱溶着性シート4で挟み、槽内に配置されたプレス機の台上に配置した。上下方向に1MPaの圧力を加えて、高分子電解質膜2と熱溶着性シート4を密着させて、150℃で、5分間加熱して高分子電解質膜2と熱溶着性シート4を接合した。
Next, a support sheet (polyimide (Kapton manufactured by Toray DuPont)) was bonded to both surfaces of the polymer electrolyte membrane (Nafion 112) using an adhesive sheet (polyester (3M Thermobond)). Hereinafter, the support sheet and the adhesive are collectively referred to as a heat-weldable sheet.
Here, FIG. 1 (1) and (2) are the top views and sectional drawings in AA which show the outline | summary of the joining method of the polymer electrolyte membrane in this example, and a heat welding sheet | seat.
Describing in detail with reference to the drawings, the polymer electrolyte membrane 2 and a heat-weldable sheet 4 as an example of a support that supports the polymer electrolyte membrane 2 are placed in a humidity control tank (tank) of a humidity controller (not shown). (Internal conditions: temperature 40 ° C., relative humidity 90%) and left to swell for 10 minutes.
Next, the upper and lower surfaces of the polymer electrolyte membrane 2 were sandwiched between the heat-weldable sheets 4 and placed on a press machine placed in a tank. The polymer electrolyte membrane 2 and the heat-weldable sheet 4 were brought into close contact with each other by applying a pressure of 1 MPa in the vertical direction, and the polymer electrolyte membrane 2 and the heat-weldable sheet 4 were joined by heating at 150 ° C. for 5 minutes.

しかる後、上記電極層を熱溶着性シートの開口部から露出した高分子電解質膜に設置し、1MPaの圧力を加えて、150℃で、5分間加熱して高分子電解質膜と電極層を接合し、膜・電極接合体を得た。   Thereafter, the electrode layer is placed on the polymer electrolyte membrane exposed from the opening of the heat-weldable sheet, and a pressure of 1 MPa is applied and heated at 150 ° C. for 5 minutes to join the polymer electrolyte membrane and the electrode layer. As a result, a membrane / electrode assembly was obtained.

(実施例2)
上記高分子電解質膜の上下面に上記熱溶着性シートを接合する際に、湿度調節機を用いず以下に説明する接合方法により接合した以外は、実施例1と同様の操作を繰り返し、膜・電極接合体を得た。
ここで、図2(1)及び(2)は、本例における高分子電解質膜と熱溶着性シートの接合方法の概要を示す平面図及びB−Bにおける断面図である。
図面に基づいて詳細に説明すると、高分子電解質膜2の両端をブロックで支持し、矢印方向に2MPaの張力をかけて拡張させた。
次いで、高分子電解質膜2の上下面を熱溶着性シート4で挟み、プレス機の台上に配置した。上下方向に1MPaの圧力を加えて、高分子電解質膜2と熱溶着性シート4を密着させて、150℃で、5分間加熱して高分子電解質膜2と熱溶着性シート4を接合した。
(Example 2)
When joining the heat-weldable sheet to the upper and lower surfaces of the polymer electrolyte membrane, the same operation as in Example 1 was repeated except that the joining was performed by the joining method described below without using a humidity controller. An electrode assembly was obtained.
Here, FIGS. 2 (1) and (2) are a plan view and a cross-sectional view taken along line BB showing an outline of a method for joining the polymer electrolyte membrane and the heat-weldable sheet in this example.
Describing in detail based on the drawings, both ends of the polymer electrolyte membrane 2 were supported by blocks, and expanded by applying a tension of 2 MPa in the direction of the arrow.
Next, the upper and lower surfaces of the polymer electrolyte membrane 2 were sandwiched between the heat-weldable sheets 4 and placed on a press machine. The polymer electrolyte membrane 2 and the heat-weldable sheet 4 were brought into close contact with each other by applying a pressure of 1 MPa in the vertical direction, and the polymer electrolyte membrane 2 and the heat-weldable sheet 4 were joined by heating at 150 ° C. for 5 minutes.

(実施例3)
上記実施例1において、上記高分子電解質膜の両面に上記熱溶着性シートを接合する工程と、上記高分子電解質膜と上記電極層を接合する工程とを同時に実施した場合である。
ここで、図3(1)及び(2)は、本例における高分子電解質膜と熱溶着性シートと電極層の接合方法の概要を示す平面図及びC−Cにおける断面図である。
図面に基づいて詳細に説明すると、高分子電解質膜2と、高分子電解質膜2を支持する熱溶着性シート4とを、図示しない湿度調節機の湿度調節槽内(機内条件:温度40℃、相対湿度90%)に、10分間放置して膨潤させた。
次いで、高分子電解質膜2の上下面を熱溶着性シート4と電極層6で挟み、湿度調節機内に配置されたプレス機の台上に配置した。上下方向に1MPaの圧力を加えて、高分子電解質膜2と熱溶着性シート4とを、更に高分子電解質膜2と電極層6とを密着させて、150℃で、5分間加熱して高分子電解質膜2と熱溶着性シート4と電極層6を接合し、膜・電極接合体1を得た。
(Example 3)
In Example 1, the step of bonding the heat-weldable sheet to both surfaces of the polymer electrolyte membrane and the step of bonding the polymer electrolyte membrane and the electrode layer are performed at the same time.
Here, FIGS. 3A and 3B are a plan view and a cross-sectional view taken along the line C-C showing an outline of a method for joining the polymer electrolyte membrane, the heat-weldable sheet, and the electrode layer in this example.
Describing in detail with reference to the drawings, the polymer electrolyte membrane 2 and the heat-weldable sheet 4 that supports the polymer electrolyte membrane 2 are placed in a humidity control tank of a humidity controller (not shown) (in-machine conditions: temperature 40 ° C., Relative humidity 90%) and allowed to swell for 10 minutes.
Next, the upper and lower surfaces of the polymer electrolyte membrane 2 were sandwiched between the heat-weldable sheet 4 and the electrode layer 6 and placed on a press machine placed in a humidity controller. By applying a pressure of 1 MPa in the vertical direction, the polymer electrolyte membrane 2 and the heat-weldable sheet 4 are further brought into close contact with each other, and the polymer electrolyte membrane 2 and the electrode layer 6 are closely adhered and heated at 150 ° C. for 5 minutes. The molecular electrolyte membrane 2, the heat-weldable sheet 4, and the electrode layer 6 were joined to obtain the membrane / electrode assembly 1.

(比較例1)
本発明の膜・電極接合体の製造方法を実施することなく、上記高分子電解質膜の上下面を上記熱溶着性シートで挟み、プレス機の台上に配置し、上下方向に1MPaの圧力を加えて、高分子電解質膜2と熱溶着性シート4を密着させて、150℃で、5分間加熱して、高分子電解質膜2と熱溶着性シート4を接合した。
次いで、上記電極層を熱溶着性シートの開口部から露出した高分子電解質膜に設置し、1MPaの圧力を加えて、150℃で、5分間加熱して高分子電解質膜と電極層を接合し、膜・電極接合体を得た。
(Comparative Example 1)
Without carrying out the method for producing a membrane-electrode assembly of the present invention, the upper and lower surfaces of the polymer electrolyte membrane are sandwiched between the heat-weldable sheets, placed on a press machine, and a pressure of 1 MPa is applied in the vertical direction. In addition, the polymer electrolyte membrane 2 and the heat-weldable sheet 4 were brought into close contact with each other and heated at 150 ° C. for 5 minutes to join the polymer electrolyte membrane 2 and the heat-weldable sheet 4.
Next, the electrode layer is placed on the polymer electrolyte membrane exposed from the opening of the heat-weldable sheet, and a pressure of 1 MPa is applied and heated at 150 ° C. for 5 minutes to join the polymer electrolyte membrane and the electrode layer. A membrane / electrode assembly was obtained.

[性能評価]
上記各例の膜・電極接合体をガス流路形成部材及び集電体で挟み、PEFCの単セルを作製し、下記条件の下で、長期発電運転を行い、電気化学的に触媒有効表面積(ECA)を測定した。
得られた結果を図4に示す。図4は、運転時間とECA残存率の関係を示すグラフである。本発明とあるのは実施例1のPEFCの単セルの結果を、従来技術とあるのは比較例1のPEFCの単セルの結果を示す。
[Performance evaluation]
The membrane / electrode assembly of each of the above examples is sandwiched between a gas flow path forming member and a current collector, a single cell of PEFC is produced, a long-term power generation operation is performed under the following conditions, and an electrochemically effective catalytic surface area ( ECA) was measured.
The obtained results are shown in FIG. FIG. 4 is a graph showing the relationship between the operation time and the ECA remaining rate. The present invention shows the result of the single cell of the PEFC of Example 1, and the conventional technology shows the result of the single cell of the PEFC of Comparative Example 1.

(発電運転条件)
・温度 :70℃
・相対湿度 :60%
・燃料 :アノード側;水素、カソード側;空気
・電流密度 :0A/cm(1時間)・1A/cm(1時間)の繰り返しサイクル
(Power generation operation conditions)
・ Temperature: 70 ℃
・ Relative humidity: 60%
・ Fuel: anode side; hydrogen, cathode side; air ・ current density: 0 A / cm 2 (1 hour) • 1 A / cm 2 (1 hour) repetitive cycle

図4より、運転時間の経過とともにECAは減少するが、本発明の製造方法で作製した膜・電極接合体を用いた実施例1のPEFCの単セルは、従来の製造方法で作製した膜・電極接合体を用いた比較例1のPEFCの単セルよりも、ECAの低下が抑制されることが分かる。
このことから、湿度変化に伴う高分子電解質膜の平面方向の寸法変化を抑制されて、かかる高分子電解質膜上に配置された電極層の破損や剥離が抑制されていることが分かる。なお、実施例2及び3のPEFCの単セルも実施例1のPEFCの単セルと同程度の性能を発揮した。
As shown in FIG. 4, although the ECA decreases with the lapse of the operation time, the PEFC single cell of Example 1 using the membrane-electrode assembly produced by the production method of the present invention has a membrane / electrode produced by the conventional production method. It turns out that the fall of ECA is suppressed rather than the single cell of the PEFC of the comparative example 1 using an electrode assembly.
From this, it can be seen that the dimensional change in the planar direction of the polymer electrolyte membrane accompanying the change in humidity is suppressed, and the breakage or peeling of the electrode layer disposed on the polymer electrolyte membrane is suppressed. The PEFC single cells of Examples 2 and 3 exhibited the same performance as the PEFC single cell of Example 1.

(1)及び(2)は、実施例1における高分子電解質膜と熱溶着性シートの接合方法の概要を示す平面図及びA−Aにおける断面図である。(1) And (2) is the top view which shows the outline | summary of the joining method of the polymer electrolyte membrane and heat-weldable sheet in Example 1, and sectional drawing in AA. (1)及び(2)は、実施例2における高分子電解質膜と熱溶着性シートの接合方法の概要を示す平面図及びB−Bにおける断面図である。(1) And (2) is the top view which shows the outline | summary of the joining method of the polymer electrolyte membrane and heat-weldable sheet in Example 2, and sectional drawing in BB. (1)及び(2)は、実施例3における高分子電解質膜と熱溶着性シートと電極層の接合方法の概要を示す平面図及びC−Cにおける断面図である。(1) And (2) is the top view which shows the outline | summary of the joining method of the polymer electrolyte membrane in Example 3, a heat-weldable sheet | seat, and an electrode layer, and sectional drawing in CC. 運転時間とECA残存率の関係を示すグラフである。It is a graph which shows the relationship between driving | running time and ECA residual rate.

符号の説明Explanation of symbols

1 膜・電極接合体
2 高分子電解質膜
4 熱溶着性シート
6 電極層
1 Membrane / Electrode Assembly 2 Polymer Electrolyte Membrane 4 Thermal Weldable Sheet 6 Electrode Layer

Claims (10)

高分子電解質膜を中央部に開口部を有する一対の支持体で狭持し、該支持体の開口部に露出した該高分子電解質膜に電極層を接合して成る高分子電解質形燃料電池用膜・電極接合体を製造する方法であって、下記の工程(A)〜(E)
(A):上記高分子電解質膜を次式(1)
≦S…(1)
(式中のSは高分子電解質膜の製造時における面積、Sは含水膨張時における面積を示す。)で表される関係を満足する範囲で拡大する工程、
(B):上記高分子電解質膜を一対の上記支持体で挟む工程、
(C):上記高分子電解質膜が拡大された状態で保持する工程、
(D):上記高分子電解質膜と上記支持体を接合する工程、
(E):上記支持体の開口部に露出した上記高分子電解質膜に上記電極層を接合する工程、
を含むことを特徴とする高分子電解質型燃料電池用膜・電極接合体の製造方法。
For a polymer electrolyte fuel cell, in which a polymer electrolyte membrane is sandwiched between a pair of supports having an opening at the center, and an electrode layer is joined to the polymer electrolyte membrane exposed at the opening of the support A method for producing a membrane / electrode assembly, comprising the following steps (A) to (E)
(A): The polymer electrolyte membrane is expressed by the following formula (1)
S w ≦ S x (1)
Step (the S x in formula area during production of the polymer electrolyte membrane, the S w to. Showing the area at the time of moisture expansion) to expand in a range satisfying the relationship represented by,
(B): a step of sandwiching the polymer electrolyte membrane between a pair of the supports,
(C): a step of holding the polymer electrolyte membrane in an expanded state,
(D): a step of joining the polymer electrolyte membrane and the support;
(E): a step of bonding the electrode layer to the polymer electrolyte membrane exposed in the opening of the support;
A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, comprising:
上記支持体が熱溶着性であることを特徴とする請求項1に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   2. The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the support is heat-weldable. 上記支持体の形状が更にシート状であることを特徴とする請求項1又は2に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the support is further in the form of a sheet. 上記支持体の含水時の膨潤率が、上記高分子電解質膜の含水時の膨潤率より小さいことを特徴とする請求項1〜3のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   4. The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the swelling rate of the support when it contains water is smaller than the swelling rate when the polymer electrolyte membrane contains water. Manufacturing method of membrane / electrode assembly. 上記電極層がガス拡散層を備えることを特徴とする請求項1〜4のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the electrode layer includes a gas diffusion layer. 上記(A)工程において、上記高分子電解質膜を加湿雰囲気下に放置して膨潤させる及び/又は上記高分子電解質膜に外力を加えて拡張させることを特徴とする請求項1〜5のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   In the step (A), the polymer electrolyte membrane is left to swell in a humidified atmosphere and / or is expanded by applying an external force to the polymer electrolyte membrane. The manufacturing method of the membrane electrode assembly for polymer electrolyte fuel cells as described in one term. 上記(D)工程において、膜厚方向に対して垂直な方向における該高分子電解質膜と該支持体との相対位置を変化させないようにすることを特徴とする請求項1〜6のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   In the step (D), the relative position between the polymer electrolyte membrane and the support in a direction perpendicular to the film thickness direction is not changed. The manufacturing method of the membrane electrode assembly for polymer electrolyte fuel cells as described in one term. 上記(D)工程において、上記高分子電解質膜と上記支持体の双方に、熱及び/又は圧力をかけることを特徴とする請求項1〜7のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   In said (D) process, heat and / or pressure are applied to both said polymer electrolyte membrane and said support body, The polymer electrolyte form as described in any one of Claims 1-7 characterized by the above-mentioned. Manufacturing method of membrane-electrode assembly for fuel cell. 上記(E)工程において、上記高分子電解質膜と上記電極層の双方に、熱及び/又は圧力をかけることを特徴とする請求項1〜8のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   The polymer electrolyte form according to any one of claims 1 to 8, wherein in the step (E), heat and / or pressure are applied to both the polymer electrolyte membrane and the electrode layer. Manufacturing method of membrane-electrode assembly for fuel cell. 上記(D)工程と(E)工程を同時に実施することを特徴とする請求項1〜9のいずれか1つの項に記載の高分子電解質形燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 9, wherein the step (D) and the step (E) are performed simultaneously.
JP2004289740A 2004-10-01 2004-10-01 Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell Pending JP2006107804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289740A JP2006107804A (en) 2004-10-01 2004-10-01 Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289740A JP2006107804A (en) 2004-10-01 2004-10-01 Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2006107804A true JP2006107804A (en) 2006-04-20

Family

ID=36377268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289740A Pending JP2006107804A (en) 2004-10-01 2004-10-01 Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2006107804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly

Similar Documents

Publication Publication Date Title
JP5164348B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell using the same
JP5363335B2 (en) Gas diffusion layer with built-in gasket
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2004047230A (en) Solid polymer electrolyte fuel cell
JP2006286430A (en) Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
JP5326250B2 (en) Polymer electrolyte fuel cell structure and polymer electrolyte fuel cell using the same
JP2009176573A (en) Method of manufacturing membrane-electrode assembly of fuel cell
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP2007026915A (en) Manufacturing method of catalyst layer-electrolyte membrane assembly of polymer electrolyte fuel cell, and catalyst layer-electrolyte membrane assembly
JP5162884B2 (en) Solid polymer electrolyte fuel cell
JP2003282088A (en) Polymerelectrolyte type fuel cell and production process thereof
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP4228643B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP2005222894A (en) Manufacturing method of membrane electrode junction
JP2012074315A (en) Membrane electrode assembly of solid polymer fuel cell, and manufacturing method of the same
JP2006107804A (en) Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell
JP2010003470A (en) Fuel cell
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5251139B2 (en) Manufacturing method of fuel cell membrane / electrode assembly
JP4239461B2 (en) Manufacturing method of membrane electrode assembly
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP2009238495A (en) Fuel cell and membrane-electrode-gas diffusion layer assembly used this