JP2006107625A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2006107625A
JP2006107625A JP2004292953A JP2004292953A JP2006107625A JP 2006107625 A JP2006107625 A JP 2006107625A JP 2004292953 A JP2004292953 A JP 2004292953A JP 2004292953 A JP2004292953 A JP 2004292953A JP 2006107625 A JP2006107625 A JP 2006107625A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
recording layer
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004292953A
Other languages
Japanese (ja)
Inventor
Takashi Chiba
隆 千葉
Jun Ariake
順 有明
Naoki Honda
直樹 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Japan Science and Technology Agency
Original Assignee
Akita Prefecture
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture, Japan Science and Technology Agency filed Critical Akita Prefecture
Priority to JP2004292953A priority Critical patent/JP2006107625A/en
Publication of JP2006107625A publication Critical patent/JP2006107625A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium capable of developing a high vertical coercive force by decreasing the magnetic coupling between magnetic particles. <P>SOLUTION: The magnetic recording medium is characterized in to include a recording layer comprising a ferromagnetic body expressed in general formula: [(Co<SB>1-m</SB>Pt<SB>m</SB>)<SB>1-n</SB>Cr<SB>n</SB>]<SB>100-x-y</SB>Ta<SB>x</SB>O<SB>y</SB>, wherein m, n are atomic ratios, m is ≥0.2 and ≤0.4, n is ≥0 and ≤0.1, y is ≥16 at.% and ≤26 at.%, and y/x ≥1.7 and ≤2.3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁気記録媒体に関し、より詳細には、コンピューター、ビデオレコーダーなどの各種記録機器に搭載される磁気記録媒体に関する。   The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium mounted on various recording devices such as a computer and a video recorder.

磁気記録密度をより高める技術として、垂直磁気記録方式が注目されている。垂直磁気記録に用いる記録媒体として、Co−Pt−Crの結晶粒をSiO2が取り巻くグラニュラー構造を有する記録層を用いる媒体が開示されている(特許文献1参照)。この媒体は、強磁性体であるCo−Pt−Crのおのおのの結晶粒が、SiO2によって完全に分断されるならば、磁性粒子間の磁気的な相互作用が小さくなることから、低ノイズ特性が得られると期待されている。また、c軸が膜面垂直方向に配向したCo−Pt−Cr結晶が持つ高い結晶磁気異方性が、磁性粒子間の磁気的相互作用を小さくすることによって、高い垂直抗磁力を発現すると考えられている。
特開2003−178413号公報
As a technique for further increasing the magnetic recording density, a perpendicular magnetic recording system has attracted attention. As a recording medium used for perpendicular magnetic recording, a medium using a recording layer having a granular structure in which SiO 2 surrounds Co—Pt—Cr crystal grains is disclosed (see Patent Document 1). This medium has a low noise characteristic because the magnetic interaction between the magnetic particles is reduced if each crystal grain of the ferromagnetic Co—Pt—Cr is completely divided by SiO 2 . Is expected to be obtained. In addition, it is considered that the high magnetocrystalline anisotropy of the Co—Pt—Cr crystal with the c-axis oriented in the direction perpendicular to the film surface exhibits a high perpendicular coercive force by reducing the magnetic interaction between magnetic particles. It has been.
JP 2003-178413 A

上記の記録層を製造する方法として、Co−Pt−Cr合金とSiO2とを混合させた材料をターゲットとするスパッタリングが報告されている。金属と酸化物の混合材料からなるターゲットを用いて成膜した場合、金属粒子を酸化物が取り巻くグラニュラー構造の膜が得られる。 As a method for producing the recording layer, sputtering using a material in which a Co—Pt—Cr alloy and SiO 2 are mixed has been reported. When a film is formed using a target made of a mixed material of metal and oxide, a film having a granular structure in which the metal particles surround the oxide can be obtained.

しかし、得られた膜の垂直方向のM−Hループの傾きパラメータα(ここで、α=4π(dM/dH)と定義される)が約2であることから、粒子間に大きな磁気的結合が残っていると考えられる。また、金属粒子中に酸化物の構成元素が多少なりとも混入する可能性は否定できない。上記のようにCo−Pt−Cr合金とSiO2とを混合させた材料からなるターゲットを用いて成膜された膜中の磁性粒子にSiが混入した場合、膜の垂直抗磁力を大幅に減少させると考えられる。酸化物元素の磁性粒子への混入が多少なりとも避けられないことを前提としたとき、成膜される膜の垂直抗磁力の劣化の度合いを極力小さくすることが必要となる。 However, since the inclination parameter α (defined as α = 4π (dM / dH)) of the MH loop in the vertical direction of the obtained film is about 2, a large magnetic coupling between the particles Seems to remain. Moreover, the possibility that the constituent elements of the oxide are mixed in the metal particles cannot be denied. When Si is mixed into magnetic particles in a film formed using a target made of a material in which a Co—Pt—Cr alloy and SiO 2 are mixed as described above, the perpendicular coercive force of the film is greatly reduced. It is thought to let you. When it is assumed that mixing of oxide elements into the magnetic particles is unavoidable, it is necessary to minimize the degree of deterioration of the perpendicular coercive force of the film to be formed.

本発明の目的は、磁性粒子間の磁気的結合を小さくして、高い垂直抗磁力を発現できる磁気記録媒体を提供することにある。   An object of the present invention is to provide a magnetic recording medium that can exhibit a high perpendicular coercive force by reducing the magnetic coupling between magnetic particles.

本発明に係る磁気記録媒体は、下記一般式
[(Co1-mPtm1-nCrn100-x-yTaxy
(ここで、m、nは原子比で、mは0.2以上0.4以下、nは0以上0.1以下、yは16at.%以上26at.%以下、y/xは1.7以上2.3以下である)
で表される強磁性体からなる記録層を有することを特徴とする。
The magnetic recording medium according to the present invention has the following general formula [(Co 1-m Pt m ) 1-n Cr n ] 100-xy Ta x O y
(Where m and n are atomic ratios, m is from 0.2 to 0.4, n is from 0 to 0.1, y is from 16 at.% To 26 at.%, Y / x is 1.7. The above is 2.3 or less)
It has the recording layer which consists of a ferromagnetic material represented by these.

本発明において、前記記録層は垂直磁気異方性を持つことが好ましい。また、本発明において、前記記録層は6Pa以上16Pa以下のArガス圧力雰囲気下で成膜されることが好ましい。   In the present invention, the recording layer preferably has perpendicular magnetic anisotropy. In the present invention, the recording layer is preferably formed under an Ar gas pressure atmosphere of 6 Pa or more and 16 Pa or less.

本発明の磁気記録媒体は、磁性粒子間の磁気的結合を小さくでき、高い垂直抗磁力を発現できる。   The magnetic recording medium of the present invention can reduce the magnetic coupling between magnetic particles and can exhibit a high perpendicular coercive force.

以下、図面を参照して、本発明の好ましい実施形態について説明する。
図1は、本発明に係る磁気記録媒体の一例を示す断面図である。基板1上に、下地層2、Co−Pt系合金の結晶粒とそれを取り巻くTa25からなる記録層3、保護層4が順次形成された構造を有する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an example of a magnetic recording medium according to the present invention. The substrate 1 has a structure in which a base layer 2, a Co—Pt alloy crystal grain, a recording layer 3 made of Ta 2 O 5 surrounding the base layer 2, and a protective layer 4 are sequentially formed.

基板1としては、容易に破損しない力学的強度を有し、かつ表面が平滑であるならばどのような材料を用いてもよく、例として、ガラス、金属、プラスチックなどを用いることができる。下地層2はなくてもよく、また多層構造であってもよい。例として、記録時の補助として用いられるNi−Feなどの軟磁性層や、記録層の結晶配向性を確保するためのPt,Ruなどの非磁性膜などを用いることができる。下地層2の厚さは特に限定されない。   As the substrate 1, any material may be used as long as it has a mechanical strength that is not easily broken and has a smooth surface. Examples thereof include glass, metal, and plastic. The underlayer 2 may not be provided and may have a multilayer structure. For example, a soft magnetic layer such as Ni—Fe used as an auxiliary during recording, or a nonmagnetic film such as Pt or Ru for ensuring the crystal orientation of the recording layer can be used. The thickness of the underlayer 2 is not particularly limited.

保護層4はなくてもよく、また多層構造であってもよい。例として、カーボンやTiNなどの硬質膜、さらに最表面に液体や固体の潤滑剤を用いてもよい。ただし、磁気ヘッド先端から記録層表面までの距離をできるだけ小さくすることが記録特性上好ましいので、これらの厚さは薄いほどよい。   The protective layer 4 may not be provided and may have a multilayer structure. For example, a hard film such as carbon or TiN, and a liquid or solid lubricant may be used on the outermost surface. However, since it is preferable from the viewpoint of recording characteristics that the distance from the tip of the magnetic head to the surface of the recording layer is as small as possible, these thicknesses are preferably as thin as possible.

記録層3は、Co−Pt系合金の結晶粒とそれを取り巻くTa25の粒界からなるグラニュラー構造の膜である。結晶粒や粒界の状態や、それぞれの元素組成の詳細を別個に知ることは困難であるが、この層全体の元素の構成として、Oが16at.%以上26at.%以下であり、OとTaの比率が原子比で1.7以上2.3以下であり、TaとOを除く全元素中、CoとPtの合計が90at.%以上、Crが10at.%以下であり、かつCoとPtの合計のうちPtの比率は原子比で0.2以上0.4以下であることが必要である。 The recording layer 3 is a film having a granular structure composed of Co—Pt alloy crystal grains and Ta 2 O 5 grain boundaries surrounding the crystal grains. Although it is difficult to know the state of crystal grains and grain boundaries and the details of each elemental composition separately, the element composition of the entire layer is that O is 16 at. % Or more and 26 at. %, The ratio of O to Ta is 1.7 to 2.3 in terms of atomic ratio, and the total of Co and Pt is 90 at. % Or more and Cr is 10 at. %, And the ratio of Pt in the total of Co and Pt needs to be 0.2 or more and 0.4 or less in terms of atomic ratio.

Oが16at.%未満の場合には、酸化物の絶対量が結晶粒の間に非磁性粒界を構成するのに不十分であり、Oが26at.%を超える場合には、結晶粒の結晶配向性の維持が困難になる。   O is 16 at. If it is less than%, the absolute amount of oxide is insufficient to form a nonmagnetic grain boundary between crystal grains, and O is 26 at. When it exceeds%, it becomes difficult to maintain the crystal orientation of the crystal grains.

膜中のOとTaの全てがTa酸化物を形成し、他の形態では存在しないとすると、OとTaの比率は原子比で2.5となる。膜中のOとTaの比率が1.7未満の場合、Ta原子のかなりの部分が金属状態でCoPt合金磁性粒子中に侵入し、記録層の磁気特性を劣化させる。   If all of O and Ta in the film form a Ta oxide and do not exist in other forms, the ratio of O and Ta is 2.5 in atomic ratio. When the ratio of O to Ta in the film is less than 1.7, a significant portion of Ta atoms enter the CoPt alloy magnetic particles in a metallic state, and deteriorate the magnetic properties of the recording layer.

膜中のTaに対するOの比率を増大させるには、成膜時のArガス圧力を上昇させたり、Arガスに酸素ガスを混合させたりする方法があるが、成膜時のArガス圧力を極端に高くしたり、高濃度の酸素ガスを添加しなくてはならず、これらの場合、CoPt合金の結晶粒の結晶配向性の維持が困難になる。   In order to increase the ratio of O to Ta in the film, there is a method of increasing the Ar gas pressure at the time of film formation or mixing oxygen gas with Ar gas, but the Ar gas pressure at the time of film formation is extremely high. In other cases, it is difficult to maintain the crystal orientation of the crystal grains of the CoPt alloy.

また、TaとOを除く全元素、すなわち結晶粒を構成すると考えられる元素中、CoとPtの合計が90at.%未満の場合には、垂直磁気異方性が劣化する。ただし、低ノイズ化などの目的で、記録層中のTaとOを除く全元素中、合計10at.%以下で、Co、Pt以外の元素、例えばCrなどを添加することができる。   Further, among all elements except Ta and O, that is, elements considered to constitute crystal grains, the total of Co and Pt is 90 at. If it is less than%, the perpendicular magnetic anisotropy deteriorates. However, for the purpose of reducing noise, etc., a total of 10 at. %, Elements other than Co and Pt, such as Cr, can be added.

さらに、CoPt系合金では、CoとPtの合計中、Ptの原子比が0.2以上0.4以下の範囲で高い抗磁力が得られるが、Ptの比率がこの範囲より小さい場合、または大きい場合のいずれでも抗磁力は劣化する。よって、膜中のCoとPtの合計のうち、Ptの比率は原子比で0.2以上0.4以下であることが必要である。   Further, in the CoPt-based alloy, a high coercive force can be obtained when the atomic ratio of Pt is in the range of 0.2 to 0.4 in the total of Co and Pt. In any case, the coercive force deteriorates. Therefore, in the total of Co and Pt in the film, the ratio of Pt needs to be 0.2 or more and 0.4 or less in terms of atomic ratio.

[予備検討]
CoPt合金について、CoとPtの適切な比率を知るため、Ptの比率を0at.%から53.5at.%の範囲で変化させた厚さ約30nmのCoPt合金膜を作製し、その垂直抗磁力を調べた。結果を図2に示す。Ptの比率が0.2以上0.4以下の範囲で2.5Oe以上の高い抗磁力が得られるが、Ptの比率がこの範囲より小さい場合または大きい場合のいずれでも垂直抗磁力は劣化することがわかる。
[Preliminary study]
For a CoPt alloy, the Pt ratio is set to 0 at. % To 53.5 at. A CoPt alloy film having a thickness of about 30 nm and varied in the range of% was fabricated, and its perpendicular coercive force was examined. The results are shown in FIG. A high coercive force of 2.5 Oe or more can be obtained when the Pt ratio is in the range of 0.2 to 0.4, but the perpendicular coercive force deteriorates when the Pt ratio is smaller or larger than this range. I understand.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

[実施例1]
本実施例では図3に示す磁気記録媒体を作製した。基板11として2.5インチのガラスディスクを用い、Arガス圧力1Paで厚さ約2nmのカーボン膜12、Arガス圧力0.07Paで厚さ約5nmのPt膜13、Arガス圧力3Paで厚さ約15nmのRu膜14を順次成膜して下地層とした。続いて、Co80Pt20(at.%)の体積比が70%、Ta25の体積比が30%のターゲットを用いて、DCマグネトロンスパッタ法により、Arガス圧力1〜20Paで厚さ約15nmの記録層15を形成した。全ての層の成膜において、基板の加熱は行っていない。
[Example 1]
In this example, the magnetic recording medium shown in FIG. 3 was produced. A 2.5-inch glass disk is used as the substrate 11, a carbon film 12 having a thickness of about 2 nm at an Ar gas pressure of 1 Pa, a Pt film 13 having a thickness of about 5 nm at an Ar gas pressure of 0.07 Pa, and a thickness at an Ar gas pressure of 3 Pa. A Ru film 14 having a thickness of about 15 nm was sequentially formed as an underlayer. Subsequently, using a target with a volume ratio of Co 80 Pt 20 (at.%) Of 70% and a volume ratio of Ta 2 O 5 of 30%, the thickness is increased by DC magnetron sputtering at an Ar gas pressure of 1 to 20 Pa. A recording layer 15 having a thickness of about 15 nm was formed. The substrate is not heated in the formation of all layers.

媒体の記録層中の元素組成は、表面5nmをスパッタエッチングした後、光電子分光分析で、垂直抗磁力は試料振動型磁力計でそれぞれ測定した。図4に、記録層成膜時のArガス圧力に対する、膜中のTaおよびOの元素量を示す。記録層成膜時のArガス圧力を変えることにより、膜中の元素量が変わることがわかる。Taの量は大きな変化はなく8〜12at.%の範囲であるが、Oの量はArガス圧力の上昇に伴い大きく増加する。図6に膜中O量に対する垂直抗磁力Hcの値の変化を示す。O量が16〜26at.%の範囲において3kOe以上の高い垂直抗磁力が発現した。図6に膜中のOとTaの原子比に対する垂直抗磁力Hcの値の変化を示す。3kOe以上の高い垂直抗磁力が発現するのは、この比率が1.7以上2.3以下の範囲であることがわかる。また、最大のHcを示した試料では、膜の垂直方向のM−Hループの傾きパラメータαが1.3と小さい値であった。   The elemental composition in the recording layer of the medium was measured by photoelectron spectroscopy after sputter etching of the surface 5 nm, and the perpendicular coercive force was measured by a sample vibration type magnetometer. FIG. 4 shows the amounts of Ta and O elements in the film with respect to the Ar gas pressure when the recording layer is formed. It can be seen that the amount of elements in the film is changed by changing the Ar gas pressure when the recording layer is formed. The amount of Ta is not greatly changed and is 8 to 12 at. %, The amount of O greatly increases as the Ar gas pressure increases. FIG. 6 shows changes in the value of the perpendicular coercive force Hc with respect to the amount of O in the film. O amount is 16 to 26 at. In the% range, a high perpendicular coercive force of 3 kOe or more was developed. FIG. 6 shows changes in the value of the perpendicular coercive force Hc with respect to the atomic ratio of O and Ta in the film. It can be seen that a high perpendicular coercive force of 3 kOe or higher appears in the range of 1.7 to 2.3. In the sample showing the maximum Hc, the slope parameter α of the MH loop in the vertical direction of the film was as small as 1.3.

[実施例2]
ガラスディスク基板上に、実施例1と同様にしてカーボン、Pt、Ruの各下地層を成膜した後、実施例1で用いたターゲットの表面にCrのチップを配置し、DCマグネトロンスパッタ法により、Arガス圧力5Paで厚さ約15nmの記録層を形成した。この膜中の元素組成はCo48.4at.%、Pt13.6at.%、Cr3.8at.%、Ta8.3at.%、O25.9at.%であり、TaとOを除く元素中でのCrの比率は5.8at.%であった。また、この膜のHcは2688Oeであった。
[Example 2]
After carbon, Pt, and Ru underlayers were formed on a glass disk substrate in the same manner as in Example 1, a Cr chip was placed on the surface of the target used in Example 1, and DC magnetron sputtering was used. A recording layer having a thickness of about 15 nm was formed at an Ar gas pressure of 5 Pa. The elemental composition in this film is Co48.4 at. %, Pt 13.6 at. %, Cr 3.8 at. %, Ta8.3 at. %, O25.9 at. %, And the ratio of Cr in the elements other than Ta and O is 5.8 at. %Met. The Hc of this film was 2688 Oe.

記録層に金属元素としてCoとPtの他にCrを加えることにより、Hcは減少したが、しかし2.5kOe以上の値を保っており、結晶粒の構成元素として、CoとPt以外の元素を少量添加しても、良好な磁気特性を維持できることがわかる。   By adding Cr in addition to Co and Pt as metal elements to the recording layer, Hc was reduced, but the value of 2.5 kOe or more was maintained, and elements other than Co and Pt were used as constituent elements of the crystal grains. It can be seen that good magnetic properties can be maintained even when added in a small amount.

[比較例1]
ガラスディスク基板上に、実施例1と同様にしてカーボン、Pt、Ruの各下地層を成膜した後、Co80Pt20(at.%)の体積比が70%、SiO2の体積比が30%のターゲットを用いて、Arガス圧力3〜10Paで厚さ約15nmの記録層を形成した。垂直抗磁力は成膜Arガス圧力により変化し、7Paにおいて最大値(参考文献1の開示に近い値)が得られた。この最大のHcを示した試料は、M−Hループの傾きパラメータαの値が2.0であり、実施例1よりも大きい値であった。
[Comparative Example 1]
After carbon, Pt, and Ru underlayers were formed on a glass disk substrate in the same manner as in Example 1, the volume ratio of Co 80 Pt 20 (at.%) Was 70% and the volume ratio of SiO 2 was Using a 30% target, a recording layer having a thickness of about 15 nm was formed at an Ar gas pressure of 3 to 10 Pa. The perpendicular coercive force changed depending on the film-forming Ar gas pressure, and a maximum value (a value close to the disclosure of Reference 1) was obtained at 7 Pa. The sample showing the maximum Hc had a value of the slope parameter α of the MH loop of 2.0, which was larger than that of Example 1.

[比較例2]
ガラスディスク基板上に、実施例1と同様にしてカーボン、Pt、Ruの各下地層を成膜した後、Co80Pt20(at.%)のターゲット表面にCr23のチップを配置し、DCマグネトロンスパッタ法により、Arガス圧力3〜10Paで厚さ約15nmの記録層を形成した。垂直抗磁力は成膜Arガス圧力により変化し、5PaにおいてHcが最大になった。この最大のHcを示した試料は、M−Hループの傾きパラメータαが1.9であり、実施例1よりも大きい値であった。
図7に、実施例1、比較例1および比較例2の評価結果をまとめて示す。
[Comparative Example 2]
After carbon, Pt, and Ru underlayers were formed on a glass disk substrate in the same manner as in Example 1, a Cr 2 O 3 chip was placed on the target surface of Co 80 Pt 20 (at.%). A recording layer having a thickness of about 15 nm was formed at a Ar gas pressure of 3 to 10 Pa by a DC magnetron sputtering method. The perpendicular coercive force changed depending on the film-forming Ar gas pressure, and Hc was maximized at 5 Pa. The sample showing the maximum Hc had a MH loop slope parameter α of 1.9, which was larger than Example 1.
In FIG. 7, the evaluation result of Example 1, the comparative example 1, and the comparative example 2 is shown collectively.

以上のように、記録層を構成する酸化物としてTa25を用いた媒体は、成膜条件によって膜中のTaおよびOを適当量に調整することにより、記録層を構成する酸化物としてSiO2やCr23を用いた媒体と比較して、高い垂直抗磁力および小さいM−Hループの傾きパラメータαを示した。このことは、Ta25酸化物を用いた媒体が、SiO2やCr23を用いた媒体と比較し、磁性粒子間の磁気的相互作用がより小さいことを示唆している。また、記録層中にCr3.8at.%(TaとOを除いた元素中で5.8at.%)を含有する媒体も2.5kOe以上の高い垂直抗磁力を示した。 As described above, a medium using Ta 2 O 5 as an oxide constituting the recording layer can be used as an oxide constituting the recording layer by adjusting Ta and O in the film to an appropriate amount according to the film forming conditions. Compared with the medium using SiO 2 or Cr 2 O 3 , a high perpendicular coercive force and a small MH loop slope parameter α were shown. This suggests that the medium using Ta 2 O 5 oxide has a smaller magnetic interaction between the magnetic particles than the medium using SiO 2 or Cr 2 O 3 . In the recording layer, Cr 3.8 at. % (5.8 at.% In the elements excluding Ta and O) also showed a high perpendicular coercive force of 2.5 kOe or more.

本発明に係る磁気記録媒体の一例を示す断面図。1 is a cross-sectional view showing an example of a magnetic recording medium according to the present invention. CoPt合金膜中のPtの原子比に対する膜の垂直抗磁力の変化を示す図。The figure which shows the change of the perpendicular coercive force of a film | membrane with respect to the atomic ratio of Pt in a CoPt alloy film. 実施例において作製した磁気記録媒体を示す断面図。Sectional drawing which shows the magnetic recording medium produced in the Example. 実施例1の磁気記録媒体について、記録層成膜時のArガス圧力に対する膜中のTaおよびOの元素量を示す図。FIG. 4 is a diagram showing the element amounts of Ta and O in the film with respect to the Ar gas pressure when forming the recording layer for the magnetic recording medium of Example 1. 実施例1の磁気記録媒体について、膜中のO量に対する垂直抗磁力Hcの値の変化を示す図。The figure which shows the change of the value of the perpendicular coercive force Hc with respect to the amount of O in a film | membrane about the magnetic recording medium of Example 1. FIG. 実施例1の磁気記録媒体について、膜中のOとTaの原子比に対する垂直抗磁力Hcの値の変化を示す図。FIG. 4 is a graph showing changes in the value of the perpendicular coercive force Hc with respect to the atomic ratio of O and Ta in the film for the magnetic recording medium of Example 1. 実施例1、比較例1および比較例2の評価結果をまとめて示す図。The figure which shows collectively the evaluation result of Example 1, the comparative example 1, and the comparative example 2. FIG.

符号の説明Explanation of symbols

1…基板、2…下地層、3…記録層、4…保護層、11…基板、12…カーボン膜、13…Pt膜、14…Ru膜、15…記録層。   DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Underlayer, 3 ... Recording layer, 4 ... Protective layer, 11 ... Substrate, 12 ... Carbon film, 13 ... Pt film, 14 ... Ru film, 15 ... Recording layer.

Claims (3)

下記一般式
[(Co1-mPtm1-nCrn100-x-yTaxy
(ここで、m、nは原子比で、mは0.2以上0.4以下、nは0以上0.1以下、yは16at.%以上26at.%以下、y/xは1.7以上2.3以下である)
で表される強磁性体からなる記録層を有することを特徴とする磁気記録媒体。
The following general formula [(Co 1-m Pt m ) 1-n Cr n ] 100-xy Ta x O y
(Where m and n are atomic ratios, m is from 0.2 to 0.4, n is from 0 to 0.1, y is from 16 at.% To 26 at.%, Y / x is 1.7. The above is 2.3 or less)
A magnetic recording medium comprising a recording layer made of a ferromagnetic material represented by:
前記記録層は垂直磁気異方性を持つことを特徴とする請求項1に記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the recording layer has perpendicular magnetic anisotropy. 前記記録層は6Pa以上16Pa以下のArガス圧力雰囲気下で成膜されることを特徴とする請求項1に記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the recording layer is formed under an Ar gas pressure atmosphere of 6 Pa to 16 Pa.
JP2004292953A 2004-10-05 2004-10-05 Magnetic recording medium Pending JP2006107625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292953A JP2006107625A (en) 2004-10-05 2004-10-05 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292953A JP2006107625A (en) 2004-10-05 2004-10-05 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2006107625A true JP2006107625A (en) 2006-04-20

Family

ID=36377130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292953A Pending JP2006107625A (en) 2004-10-05 2004-10-05 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2006107625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090914A1 (en) * 2018-10-30 2020-05-07 田中貴金属工業株式会社 In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090914A1 (en) * 2018-10-30 2020-05-07 田中貴金属工業株式会社 In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target
JPWO2020090914A1 (en) * 2018-10-30 2021-09-24 田中貴金属工業株式会社 In-plane magnetization film, in-plane magnetization film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target
JP7219285B2 (en) 2018-10-30 2023-02-07 田中貴金属工業株式会社 In-plane magnetic film, multilayer structure of in-plane magnetic film, hard bias layer, magnetoresistive element, and sputtering target
US11810700B2 (en) 2018-10-30 2023-11-07 Tanaka Kikinzoku Kogyo K.K. In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target

Similar Documents

Publication Publication Date Title
JP4582978B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
KR20060054100A (en) Perpendicular magnetic recording medium
JP2005243226A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2003178423A (en) Longitudinal recording magnetic recording medium and its manufacturing method
JP2004259423A (en) Magnetic recording medium, its manufacturing method, and magnetic recording device
US20110129692A1 (en) Magnetic alloy materials with hcp stabilized microstructure, magnetic recording media comprising same, and fabrication method therefor
JP2007164941A (en) Perpendicular magnetic recording medium
JP3822387B2 (en) Magnetic recording medium
JP5627223B2 (en) Perpendicular magnetic recording medium
JP2005521980A (en) Magnetic recording medium and magnetic storage device
US7229707B2 (en) Magnetic recording medium
JP2004227701A (en) Vertical magnetic recording medium
JP3947771B2 (en) Magnetic recording medium
JP2001134927A (en) Magnetic recording medium
JP3173490B2 (en) Perpendicular magnetic recording media
US20100124673A1 (en) High density magnetic recording film and method for manufacturing the same by using rapid thermal annealing treatment
JP2006107625A (en) Magnetic recording medium
JP4993296B2 (en) Perpendicular magnetic recording medium
JP2007102833A (en) Perpendicular magnetic recording medium
JP4634267B2 (en) Perpendicular magnetic recording medium
JP2004234718A (en) Magnetic recording medium
JP2004273046A (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording disk
JP2015015062A (en) Manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A02