JP2006106350A - Fixing belt - Google Patents

Fixing belt Download PDF

Info

Publication number
JP2006106350A
JP2006106350A JP2004292792A JP2004292792A JP2006106350A JP 2006106350 A JP2006106350 A JP 2006106350A JP 2004292792 A JP2004292792 A JP 2004292792A JP 2004292792 A JP2004292792 A JP 2004292792A JP 2006106350 A JP2006106350 A JP 2006106350A
Authority
JP
Japan
Prior art keywords
heating
belt
fixing belt
nickel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004292792A
Other languages
Japanese (ja)
Other versions
JP4444778B2 (en
Inventor
Masao Takagi
正夫 高木
Takeki Inukai
剛貴 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Kogyo Co Ltd
Original Assignee
Nitto Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Kogyo Co Ltd filed Critical Nitto Kogyo Co Ltd
Priority to JP2004292792A priority Critical patent/JP4444778B2/en
Publication of JP2006106350A publication Critical patent/JP2006106350A/en
Application granted granted Critical
Publication of JP4444778B2 publication Critical patent/JP4444778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixing belt made of electroformed nickel having excellent durability even at high temperature. <P>SOLUTION: The fixing belt (10) for fixing a toner image on a transfer material has an endless belt substrate (101) made of electroformed nickel. The belt substrate (101) contains 0.0045 to <0.017 mass% of sulfur, and with respect to crystallites of the belt substrate aligned on a crystal alignment surface on which such crystallites undergo large variation in grain size by heating, a rate of change in average grain size after heating at 250°C for 2 hours is ≤60%, based on average grain size before heating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ファクシミリ、レーザビームプリンター等の画像形成装置の定着部で転写材上のトナー像を定着させるために使用される、ニッケル電鋳製の無端状ベルト基体を備えた定着ベルトに関する。   The present invention relates to a fixing belt having an endless belt base made of nickel electroforming, which is used to fix a toner image on a transfer material in a fixing unit of an image forming apparatus such as a facsimile or a laser beam printer.

ファクシミリ、レーザビームプリンター等の画像形成装置には、小型化、省エネルギー化、印字・複写の高速化等の要求に応えるために、定着ローラの代わりに無端状の定着ベルトを使用したベルト定着方式が採用されるようになってきている。定着ベルトは、厚さが薄いために、全体が迅速に加熱され、電源投入後の待機時間を大幅に短縮することができるという利点もある。   In image forming apparatuses such as facsimiles and laser beam printers, there is a belt fixing system that uses an endless fixing belt instead of a fixing roller in order to meet demands such as miniaturization, energy saving, and high-speed printing and copying. It has been adopted. Since the fixing belt is thin, the entire fixing belt is heated quickly, and there is an advantage that the waiting time after power-on can be greatly shortened.

このようなトナー定着ベルトのベルト基体として、電鋳法により形成されたいわゆるニッケル電鋳製の無端状ニッケルベルト基体を用いることは、例えば特許文献1により公知である。電鋳法では、母型(電型、鋳型)、例えばステンレス製の円筒状母型を陰極とし、その表面にニッケルメッキ浴を用いて電気メッキを施すことによりニッケルメッキ膜を形成し、このメッキ膜を母型から剥離(脱型)して製品とする。   For example, Patent Document 1 discloses that an endless nickel belt substrate made of electroforming formed by electroforming is used as a belt substrate of such a toner fixing belt. In the electroforming method, a mother die (electric die, mold), for example, a stainless steel cylindrical mother die is used as a cathode, and a nickel plating film is formed by performing electroplating on the surface using a nickel plating bath. The film is peeled off (demolded) from the matrix to make a product.

特許文献1には、電鋳により炭素含有量が0.01〜0.1質量%の無端状ニッケルベルトを形成することが記載されている。また、特許文献2には、ハロゲンランプを熱源として用いたベルト定着方式が記載されている。
特開2002−148975号公報 特開2003−57981号公報
Patent Document 1 describes that an endless nickel belt having a carbon content of 0.01 to 0.1% by mass is formed by electroforming. Patent Document 2 describes a belt fixing method using a halogen lamp as a heat source.
JP 2002-148975 A JP 2003-57981 A

しかしながら、ニッケル電鋳をベルト基体として有する従来の定着ベルトは、高温下での耐熱疲労強度が十分でなく、耐久性に乏しい。すなわち、従来のニッケル電鋳製定着ベルト基体は、高温下での繰り返しの使用により、クラックが発生し、ベルト基体が破断してしまうという問題があった。   However, a conventional fixing belt having nickel electroforming as a belt substrate does not have sufficient heat-resistant fatigue strength at high temperatures and has poor durability. That is, the conventional nickel electroformed fixing belt substrate has a problem that cracks occur due to repeated use at high temperatures and the belt substrate breaks.

従って、本発明は、高温下での耐熱疲労特性を改善した高耐久性の定着ベルトを提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly durable fixing belt having improved heat fatigue characteristics at high temperatures.

本発明者らは、高温下で使用した定着ベルトのニッケル電鋳製ベルト基体について結晶学的研究を重ねたところ、破断したベルト基体には、ニッケル電鋳を構成する結晶子のうち、ある特定の結晶面に配向する結晶子、例えば裏面における(111)面に配向する結晶子が、高温下での加熱により、比較的大きく成長し、それが高温下でのベルト基体の破断の要因となることを究明した。本発明者らは、この結晶子の成長が、ニッケル電鋳中の硫黄含有量を制御することを通して抑制されることを見いだした。本発明はかかる知見に基づく。   As a result of repeated crystallographic studies on the nickel electroformed belt substrate of the fixing belt used at high temperatures, the inventors of the present invention found that the broken belt substrate had a specific crystallite among the crystallites constituting nickel electroforming. The crystallites oriented in the crystal plane, for example, the crystallites oriented in the (111) plane on the back surface grow relatively large by heating at a high temperature, which causes breakage of the belt substrate at a high temperature. I found out. The inventors have found that this crystallite growth is suppressed through controlling the sulfur content in nickel electroforming. The present invention is based on such knowledge.

すなわち、本発明の第1の側面によれば、転写材上のトナー像を定着するための定着ベルトであって、ニッケル電鋳製無端状ベルト基体を備え、前記ベルト基体は、硫黄を0.0045質量%以上、0.017質量%未満の割合で含有するとともに、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する250℃で2時間加熱した後の平均粒径の変化率が60%以下であることを特徴とする定着ベルトが提供される。   That is, according to the first aspect of the present invention, there is provided a fixing belt for fixing a toner image on a transfer material, comprising an endless belt base made of nickel electroforming. The crystallites that are contained in a ratio of 0045% by mass or more and less than 0.017% by mass and that have a large change in crystallite grain size due to heating are aligned on the crystal orientation plane. The fixing belt is characterized in that the change rate of the average particle size after heating for 2 hours is 60% or less.

また、本発明の第2の側面によれば、転写材上のトナー像を定着するための定着ベルトであって、ニッケル電鋳製無端状ベルト基体を備え、前記ベルト基体は、硫黄を0.0045質量%以上、0.017質量%未満の割合で含有するとともに、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する300℃で2時間加熱した後の平均粒径の変化率が70%以下であることを特徴とする定着ベルトが提供される。   According to a second aspect of the present invention, there is provided a fixing belt for fixing a toner image on a transfer material, comprising an endless belt base made of nickel electroforming, wherein the belt base contains 0.1% sulfur. The crystallites that are contained in a proportion of 0045% by mass or more and less than 0.017% by mass and that have a large change in crystallite grain size due to heating are aligned on the crystal orientation plane. The fixing belt is characterized in that the change rate of the average particle diameter after heating for 2 hours is 70% or less.

本発明の定着ベルトにおいて、ベルト基体は、リン、マンガン、および/またはホウ素からなる結晶成長抑制剤を含むことが好ましい。
本発明において、ベルト基体について、裏面とはベルト基体の内周面を意味し、表面とはベルト基体の外周面を意味する。
In the fixing belt of the present invention, the belt substrate preferably contains a crystal growth inhibitor composed of phosphorus, manganese, and / or boron.
In the present invention, regarding the belt substrate, the back surface means the inner peripheral surface of the belt substrate, and the front surface means the outer peripheral surface of the belt substrate.

本発明によれば、使用環境下での熱劣化を抑制し、高温下での耐疲労特性を改善した高耐久性の定着ベルトを得ることができる。   According to the present invention, it is possible to obtain a highly durable fixing belt that suppresses thermal degradation in a use environment and improves fatigue resistance characteristics at high temperatures.

以下、図面を参照しながら、本発明の種々の態様を説明する。
図1は、本発明の1つの態様に係るトナー定着ベルト10の概略正面図であり、図2は、図1のII−IIに沿う断面部分を示す図である。
Hereinafter, various aspects of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view of a toner fixing belt 10 according to one embodiment of the present invention, and FIG. 2 is a diagram showing a cross-sectional portion along II-II in FIG.

トナー定着ベルト10は、ニッケル電鋳により無端状に形成されたベルト基体101を備える。通常、ベルト基体101の表面(外周面)101aには、直接またはシリコーンゴムなどの弾性層102を介してフッ素樹脂等からなる離型層103が被覆形成される。また、ベルト基体101の裏面(内周面)101bには、必要に応じて、摺動性を向上させるための摺動層104が形成される。ベルト基体101と弾性層102との間、弾性層102と離型層103との間、あるいはベルト基体101と摺動層104との間に、接着のためにプライマー層(図示せず)を設けてもよい。   The toner fixing belt 10 includes a belt base 101 formed endlessly by nickel electroforming. Usually, a release layer 103 made of a fluororesin or the like is coated on the surface (outer peripheral surface) 101a of the belt base 101 directly or via an elastic layer 102 such as silicone rubber. Further, a sliding layer 104 for improving slidability is formed on the back surface (inner peripheral surface) 101b of the belt base 101 as necessary. A primer layer (not shown) is provided between the belt base 101 and the elastic layer 102, between the elastic layer 102 and the release layer 103, or between the belt base 101 and the sliding layer 104 for adhesion. May be.

ベルト基体101の厚さは、電磁誘導加熱方式を用いる場合は、次式:
σ=503×(ρ/fμ)1/2
(ここで、σは、表皮深さ(m)、fは、励磁回路の周波数(Hz)、μは、透磁率、ρは、固有抵抗(Ωm))で表される表皮深さより厚く、特に1μm以上100μm以下にすることが好ましい。この表皮深さは、電磁誘導加熱に使用される電磁波の吸収の深さを示しており、これより深いところでは電磁波の強度は1/e以下になり、ほとんどのエネルギーはこの深さまでで吸収される。ベルト基体の厚さが1μmを下回ると、ベルト基体101がほとんどの電磁エネルギーを吸収しきれなくなり、効率が低下してくることがあるので好ましくない。一方、ベルト基体101の厚さが100μmを上回ると、剛性が大きくなり、柔軟性が低下し、屈曲性が損なわれて定着ベルトとして使用しにくくなる傾向にある。
When the electromagnetic induction heating method is used, the thickness of the belt base 101 is represented by the following formula:
σ = 503 × (ρ / fμ) 1/2
(Where σ is the skin depth (m), f is the frequency of the excitation circuit (Hz), μ is the magnetic permeability, and ρ is the specific resistance (Ωm)). It is preferable to be 1 μm or more and 100 μm or less. This skin depth indicates the depth of absorption of electromagnetic waves used for electromagnetic induction heating, and the intensity of electromagnetic waves becomes 1 / e or less deeper than this, and most energy is absorbed up to this depth. The If the thickness of the belt base is less than 1 μm, the belt base 101 cannot absorb most of the electromagnetic energy, and the efficiency may be lowered. On the other hand, if the thickness of the belt substrate 101 exceeds 100 μm, the rigidity increases, the flexibility decreases, and the flexibility tends to be impaired, making it difficult to use as a fixing belt.

一方、ハロゲンヒータを熱源として用いたベルト定着方式に用いる場合は、熱容量を小さくしてクイックスタート性を向上させるために、ベルト基体101の厚さは、通常10〜100μm、好ましくは15〜80μm、より好ましくは20〜60μm程度である。熱容量、熱伝導性、機械的強度、可撓性などのバランスの観点から、30〜50μm程度の厚さであることが最も好ましい。電子写真複写機の定着ベルトに適用する場合には、幅を転写紙などの転写材の幅に応じて適宜定めることができる。   On the other hand, when used in a belt fixing method using a halogen heater as a heat source, the thickness of the belt base 101 is usually 10 to 100 μm, preferably 15 to 80 μm, in order to reduce heat capacity and improve quick start performance. More preferably, it is about 20 to 60 μm. From the viewpoint of balance between heat capacity, thermal conductivity, mechanical strength, flexibility, etc., the thickness is most preferably about 30 to 50 μm. When applied to a fixing belt of an electrophotographic copying machine, the width can be appropriately determined according to the width of a transfer material such as transfer paper.

さて、本発明において、ニッケル電鋳製ベルト基体101は、硫黄含有量が0.0045質量%以上、0.017質量%未満であって、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する250℃で2時間加熱した後の平均粒径の変化率(すなわち、[(加熱後の平均粒径−加熱前の平均粒径)/加熱前の平均粒径]×100)が60%以下であり、また該変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する300℃で2時間加熱した後の平均粒径の変化率が70%以下である。   In the present invention, the nickel electroformed belt substrate 101 has a sulfur content of 0.0045% by mass or more and less than 0.017% by mass, and the crystallite has a large change in grain size due to heating. For the crystallites oriented in the orientation plane, the change rate of the average particle diameter after heating at 250 ° C. for 2 hours with respect to the average particle diameter before heating (ie, [(average particle diameter after heating−average particle diameter before heating) / Average particle size before heating] × 100) is 60% or less, and the crystallites oriented in the crystal orientation plane having a large change amount are heated at 300 ° C. for 2 hours with respect to the average particle size before heating. The average particle size change rate is 70% or less.

また、本発明において、ニッケル電鋳製ベルト基体101は、ベルト基体101を構成する結晶子の平均粒径の変化量の観点からすると、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、250℃で2時間加熱した後の平均粒径と該加熱前の平均粒径との差、すなわち加熱による変化量が120Å以下に抑制され、300℃で2時間加熱した後の平均粒径と該加熱前の平均粒径との差、すなわち該加熱による変化量が90Å以下に抑制されている。   Further, in the present invention, the nickel electroformed belt base 101 has a crystal orientation in which the change in the crystallite grain size due to heating is large from the viewpoint of the change in the average grain diameter of the crystallites constituting the belt base 101. For crystallites oriented in the plane, the difference between the average particle size after heating at 250 ° C. for 2 hours and the average particle size before heating, that is, the change due to heating is suppressed to 120 ° C. or less, and heated at 300 ° C. for 2 hours. The difference between the average particle diameter after heating and the average particle diameter before heating, that is, the amount of change due to the heating is suppressed to 90 mm or less.

本発明において、未加熱(状態)あるいは加熱前とは、ベルト基体が周囲温度の下に置かれていた状態を指す。周囲温度には、ベルト基体を電鋳法により製造した後、そのベルト基体を用いて定着ベルトを製造するまでの間にベルト基体が置かれる温度が含まれる。通常、この周囲温度は、せいぜい100℃までの温度である。   In the present invention, unheated (state) or before heating refers to a state in which the belt substrate is placed at an ambient temperature. The ambient temperature includes the temperature at which the belt substrate is placed after the belt substrate is manufactured by electroforming and before the fixing belt is manufactured using the belt substrate. Usually, this ambient temperature is at most 100 ° C.

通常、本発明において、ニッケル電鋳製ベルト基体101は、未加熱状態で90Å〜200Åの平均粒径を有する結晶子から構成され得る。   In general, in the present invention, the nickel electroformed belt base 101 can be composed of crystallites having an average particle size of 90 to 200 mm in an unheated state.

ニッケル電鋳法により形成されたベルト基体101は、その表面および裏面において、特定の複数の結晶配向面に配向する結晶子を有する。例えば、表面において(111)面に配向する結晶子(以下、「表面(111)結晶子」という。)、裏面において(111)面に配向する結晶子(以下、「裏面(111)結晶子」という。)、表面において(200)面に配向する結晶子(以下、「表面(200)結晶子」という。)および裏面において(200)面に配向する結晶子(以下、「裏面(200)結晶子」という。)から主として構成され得る。本発明において、ニッケル電鋳製ベルト基体を構成する結晶子のうち、加熱(例えば、250℃で2時間の加熱)による結晶子の平均粒径の変化量あるいは変化率が最も大きい結晶配向面に配向する結晶子の加熱による粒子成長が抑制されていれば、ベルト基体101の耐熱疲労特性が有意に向上すること、すなわち以下の耐熱疲労試験において、700MPaの最大張力下においてさえ、30万回以上、好ましくは50万回以上、さらに好ましくは100万回以上の繰り返し回数を達成し、非常に優れた耐熱疲労特性を示すことがわかった。250℃で2時間の加熱による結晶子の平均粒径の変化率は、40%以下であることが好ましい。また、250℃で2時間の加熱による結晶子の平均粒径の変化量は、50Å以下であることがより好ましい。   The belt base 101 formed by the nickel electroforming method has crystallites oriented in a plurality of specific crystal orientation planes on the front and back surfaces. For example, a crystallite oriented in the (111) plane on the front surface (hereinafter referred to as “surface (111) crystallite”), and a crystallite oriented in the (111) plane on the back surface (hereinafter referred to as “back (111) crystallite”). ), Crystallites oriented in the (200) plane on the front surface (hereinafter referred to as “surface (200) crystallites”) and crystallites oriented in the (200) plane on the back side (hereinafter referred to as “back (200) crystals”. It can be mainly composed of “child”. In the present invention, among the crystallites constituting the nickel electroformed belt substrate, the crystal orientation plane having the largest change amount or change rate of the average grain size of the crystallites by heating (for example, heating at 250 ° C. for 2 hours) If the grain growth due to the heating of the oriented crystallites is suppressed, the thermal fatigue characteristics of the belt substrate 101 are significantly improved, that is, in the following thermal fatigue test, 300,000 times or more even under the maximum tension of 700 MPa. It was found that the number of repetitions was preferably 500,000 times or more, and more preferably 1,000,000 times or more, and excellent thermal fatigue characteristics were exhibited. The change rate of the average particle diameter of the crystallites by heating at 250 ° C. for 2 hours is preferably 40% or less. Further, the amount of change in the average particle size of the crystallites by heating at 250 ° C. for 2 hours is more preferably 50 μm or less.

いうまでもなく、各結晶配向面に配向する結晶子の平均粒径は、X線回折装置を用いて測定することができる。結晶子の平均粒径は、市販の解析ソフトにより求めることができる。   Needless to say, the average particle diameter of the crystallites oriented in each crystal orientation plane can be measured using an X-ray diffractometer. The average particle size of the crystallites can be determined by commercially available analysis software.

上記加熱による結晶子の粒径の変化量あるいは変化率が最も大きい結晶配向面に配向する結晶子は、表面(111)結晶子、裏面(111)結晶子、表面(200)結晶子および裏面(200)結晶子から構成されるベルト基体においては、裏面(111)結晶子である。この加熱による結晶子の変化量あるいは変化率が最も大きい結晶配向面に配向する結晶子の選択は、他の結晶配向面を有するニッケル電鋳製ベルト基体にも適用することができることはいうまでもない。   The crystallites oriented in the crystal orientation plane having the largest change amount or rate of change of the crystallite grain size due to the heating are the front surface (111) crystallite, the back surface (111) crystallite, the front surface (200) crystallite, and the back surface ( 200) In a belt substrate composed of crystallites, it is the back (111) crystallite. It goes without saying that the selection of crystallites oriented in the crystal orientation plane where the change or rate of change of crystallites due to heating is the largest can also be applied to nickel electroformed belt substrates having other crystal orientation faces. Absent.

本発明のベルト基体が耐熱疲労特性の向上する詳細は詳らかではないが、硫黄を0.0045質量%以上、0.017質量%未満の含有量で含むことによって、結晶子の成長が抑制されるとともに、硫黄脆化も抑制されるものと考えられる。硫黄含有量が0.0045質量%未満であると、電解時の結晶の成長が有意に抑制されず、また硫黄含有量が0.017質量%以上であると、硫黄脆化により高張力下での耐熱耐久性が低下する。本発明のベルト基体は、炭素を0.005〜0.08質量%の含有率で含有することができる。   Although details of improving the heat fatigue resistance of the belt substrate of the present invention are not detailed, the growth of crystallites is suppressed by containing sulfur in a content of 0.0045 mass% or more and less than 0.017 mass%. At the same time, it is thought that sulfur embrittlement is also suppressed. When the sulfur content is less than 0.0045% by mass, crystal growth during electrolysis is not significantly suppressed, and when the sulfur content is 0.017% by mass or more, under high tension due to sulfur embrittlement. The heat resistance durability of the is reduced. The belt substrate of the present invention can contain carbon at a content of 0.005 to 0.08 mass%.

このようなベルト基体101は、一般に、硫酸ニッケルや塩化ニッケルを主成分とするワット浴やスルファミン酸ニッケルを主成分とするスルファミン酸浴等のニッケルメッキ浴を用いて、電鋳法により形成することができる。電鋳法は、母型の表面に厚メッキを行ない、これを母型から剥離して製品を得る方法である。すなわち、ベルト基体101の裏面(内周面)101bは、母型と接触する側の面である。   Such a belt substrate 101 is generally formed by electroforming using a nickel plating bath such as a watt bath mainly composed of nickel sulfate or nickel chloride or a sulfamic acid bath mainly composed of nickel sulfamate. Can do. The electroforming method is a method of obtaining a product by performing thick plating on the surface of a mother die and peeling it from the mother die. That is, the back surface (inner peripheral surface) 101b of the belt base 101 is a surface on the side in contact with the mother die.

ベルト基体101を得るには、ステンレス鋼、黄銅、アルミニウム等からなる円筒を母型とし、その表面にニッケルメッキ浴を用いてニッケルメッキ膜を形成することができる。母型がシリコーン樹脂や石膏などの不導体である場合には、黒鉛、銅粉、銀鏡、スパッタリングなどにより、導電性処理を行う。金属母型への電鋳では、ニッケルメッキ膜の剥離を容易にするために、母型の表面に酸化膜、化合物膜、黒鉛粉塗布膜などの剥離膜を形成するなどの剥離処理を行うことが好ましい。   In order to obtain the belt base 101, a cylinder made of stainless steel, brass, aluminum or the like is used as a matrix, and a nickel plating film can be formed on the surface thereof using a nickel plating bath. When the matrix is a non-conductor such as silicone resin or gypsum, the conductive treatment is performed by graphite, copper powder, silver mirror, sputtering, or the like. In electroforming to a metal mother mold, in order to facilitate the peeling of the nickel plating film, a peeling process such as forming a peeling film such as an oxide film, a compound film, or a graphite powder coating film on the surface of the mother mold is performed. Is preferred.

ニッケルメッキ浴は、ニッケルイオン源、アノード溶解剤、pH緩衝剤、その他の添加剤を含む。ニッケルイオン源としては、スルファミン酸ニッケル、硫酸ニッケル、塩化ニッケルを例示することができる。アノード溶解剤としては、ワット浴の場合、塩化ニッケルがこの役割を果たしており、他のニッケル浴では、塩化アンモニウム、臭化ニッケルなどが用いられている。ニッケルメッキは、一般に、pH3.0〜6.2の範囲で行なわれるが、この間の望ましい範囲に調整するために、ホウ酸、ギ酸、酢酸ニッケルなどのpH緩衝剤が用いられる。その他の添加剤としては、平滑化、ピット防止、結晶微細化、残留応力の低減などを目的として、例えば、光沢剤、ピット防止剤、内部応力減少剤などが用いられる。   The nickel plating bath includes a nickel ion source, an anodic solubilizer, a pH buffer, and other additives. Examples of the nickel ion source include nickel sulfamate, nickel sulfate, and nickel chloride. As the anodic solubilizer, nickel chloride plays this role in the Watt bath, and in other nickel baths, ammonium chloride, nickel bromide and the like are used. Nickel plating is generally performed in the range of pH 3.0 to 6.2, but a pH buffering agent such as boric acid, formic acid, nickel acetate or the like is used in order to adjust the pH to a desired range. As other additives, for example, a brightener, a pit inhibitor, an internal stress reducer, and the like are used for the purpose of smoothing, prevention of pits, refinement of crystals, reduction of residual stress, and the like.

ニッケルメッキ浴としては、スルファミン酸浴が好ましい。スルファミン酸浴の組成としては、スルファミン酸ニッケル四水塩300〜600g/L、塩化ニッケル0〜30g/L、ホウ酸20〜40g/L、適量の界面活性剤、適量の光沢剤(一次光沢剤、二次光沢剤)等を含有するものを挙げることができる。一次光沢剤としては、ニッケル電鋳中への硫黄供給源ともなるナフタレン−1,3,6−トリスルホン酸三ナトリウム等を例示することができ、二次光沢剤としては、ニッケル電鋳中への炭素供給源ともなる2−ブチン−1,4−ジオールを例示することができる。スルファミン酸浴のpHは、好ましくは3.5〜4.5である。浴温は好ましくは40〜60℃である。電鋳の際の電流密度は、好ましくは、0.5〜15A/dm2の範囲とし、高濃度浴の場合には、3〜40A/dm2の範囲とすることが好ましい。 As the nickel plating bath, a sulfamic acid bath is preferable. The composition of the sulfamic acid bath is as follows: nickel sulfamate tetrahydrate 300 to 600 g / L, nickel chloride 0 to 30 g / L, boric acid 20 to 40 g / L, appropriate amount of surfactant, appropriate amount of brightener (primary brightener , Secondary brighteners) and the like. Examples of the primary brightener include naphthalene-1,3,6-trisulfonic acid trisodium, which is a sulfur supply source during nickel electroforming, and examples of the secondary brightener are during nickel electroforming. 2-butyne-1,4-diol, which is also a carbon supply source. The pH of the sulfamic acid bath is preferably 3.5 to 4.5. The bath temperature is preferably 40 to 60 ° C. The current density during electroforming is preferably in the range of 0.5 to 15 A / dm 2 , and in the case of a high concentration bath, it is preferably in the range of 3 to 40 A / dm 2 .

本発明の1つの態様において、上記ニッケルメッキ浴、特にスルファミン酸ニッケル浴にリン、ホウ素、および/またはマンガンの供給源を添加して上記条件で電鋳を行うことにより、結晶子の加熱による粒子成長をより一層効果的に抑制することができることがわかった。すなわち、リン、ホウ素、および/またはマンガンは、結晶子の結晶成長抑制剤として作用する。リン、ホウ素および/またはマンガンを含有するニッケルメッキ浴、特にスルファミン酸浴を用いて電鋳を行うと、その詳細な機構は明らかではないが、特にニッケル電鋳製ベルト基体の裏面において、母型表面上に初めに析出するニッケル皮膜にリン、ホウ素、マンガンが多く取り込まれ、その後に析出するニッケル皮膜ではリン、ホウ素、マンガンの量が相対的に少なくなる。その結果、得られるベルト基体は、その裏面において特に(111)面に配向する結晶子の粒子成長が抑制され、耐熱疲労特性が改善される。
リンは、例えば次亜リン酸ナトリウム一水和物のような水溶性リン含有酸の塩の形態でニッケルメッキ浴に添加することによりニッケルと共析させることができる。ホウ素は、例えばトリメチルアミンボランのような水溶性有機ホウ素化合物の形態でニッケルメッキ浴に添加することによりニッケルと共析させることができる。また、マンガンは、スルファミン酸マンガン四水和物のような水溶性マンガン化合物の形態でニッケルメッキ浴に添加することにより、ニッケルと共析させることができる。なお、ホウ酸は、ニッケル電鋳中へのホウ素の供給源とはならない。本発明のニッケル電鋳製ベルト基体は、リンについては、0.4質量%未満の含有率でリンを含有することが好ましい。通常、リンの含有率は、0.04質量%以上である。また、本発明のニッケル電鋳製ベルト基体は、ホウ素については、0.001質量%〜0.02質量%の含有率でホウ素を含有することが好ましい。さらに、本発明のニッケル電鋳製ベルト基体は、マンガンについては、0.04質量%〜0.5質量%の含有率でマンガンを含有することが好ましい。
In one embodiment of the present invention, by adding a source of phosphorus, boron, and / or manganese to the nickel plating bath, particularly a nickel sulfamate bath, and performing electroforming under the above conditions, particles by heating the crystallites It has been found that growth can be more effectively suppressed. That is, phosphorus, boron, and / or manganese acts as a crystal growth inhibitor for crystallites. When electroforming is carried out using a nickel plating bath containing phosphorus, boron and / or manganese, particularly a sulfamic acid bath, the detailed mechanism is not clear. A large amount of phosphorus, boron, and manganese is taken into the nickel film first deposited on the surface, and the amount of phosphorus, boron, and manganese is relatively reduced in the nickel film deposited after that. As a result, the obtained belt substrate is suppressed on the back surface thereof, in particular, crystal growth of crystallites oriented in the (111) plane, and the heat fatigue resistance is improved.
Phosphorus can be co-deposited with nickel by adding it to a nickel plating bath in the form of a water-soluble phosphorus-containing acid salt such as sodium hypophosphite monohydrate. Boron can be co-deposited with nickel by adding it to a nickel plating bath in the form of a water-soluble organoboron compound such as trimethylamine borane. Manganese can be co-deposited with nickel by adding it to the nickel plating bath in the form of a water-soluble manganese compound such as manganese sulfamate tetrahydrate. Boric acid is not a source of boron into nickel electroforming. The nickel electroformed belt substrate of the present invention preferably contains phosphorus at a content of less than 0.4% by mass with respect to phosphorus. Usually, the phosphorus content is 0.04% by mass or more. Moreover, it is preferable that the nickel electroformed belt base | substrate of this invention contains boron with the content rate of 0.001 mass%-0.02 mass% about boron. Furthermore, it is preferable that the nickel electroformed belt base body of the present invention contains manganese at a content of 0.04% by mass to 0.5% by mass with respect to manganese.

トナー定着ベルトは200℃あるいはそれ以上に加熱されることがある。本発明で考慮されている250℃の加熱温度は、上記200℃の温度に対し余裕度を見込んだ温度である。また、本発明で考慮されている300℃の加熱温度は、さらに厳しい条件であり、ここでは、トナー定着ベルトが誘導加熱等で一時的にでも遭遇し得る最大温度として考慮されている。   The toner fixing belt may be heated to 200 ° C. or higher. The heating temperature of 250 ° C. considered in the present invention is a temperature allowing for a margin with respect to the temperature of 200 ° C. The heating temperature of 300 ° C. considered in the present invention is a more severe condition, and is considered here as the maximum temperature that the toner fixing belt can encounter even temporarily by induction heating or the like.

なお、本発明により、加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する250℃で2時間加熱した後の平均粒径の変化率が60%以下であると、ニッケル電鋳製ベルト基体の耐熱疲労特性が大幅に向上することが見いだされたので、ニッケル電鋳製ベルト基体を製造した後、加熱前後の平均粒径の変化率を測定し、その変化率が60%以下のものを製品化することにより耐熱疲労特性に優れた定着ベルトを安定に製造することができるともいえる。同様に、ニッケル電鋳製ベルト基体を製造した後、加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について加熱前後の平均粒径の変化量を算出し、その変化量が120Å以下であるものを製品化することにより耐熱疲労特性に優れた定着ベルトを安定に製造することができる。同様に、300℃で2時間加熱前後の平均粒径の変化率を測定し、その変化率が70%以下のものを製品化することができるし、300℃で2時間加熱前後の平均粒径の変化量を算出し、その変化量が90Å以下のものを製品化することもできる。   According to the present invention, the change rate of the average particle size after heating at 250 ° C. for 2 hours with respect to the average particle size before heating for the crystallites oriented in the crystal orientation plane where the change in the crystallite particle size by heating is large. It was found that the heat resistance fatigue characteristics of the nickel electroformed belt base material were significantly improved when the ratio was 60% or less. Therefore, after the nickel electroformed belt base material was manufactured, the rate of change in the average particle diameter before and after heating was found. It can be said that a fixing belt excellent in heat-resistant fatigue characteristics can be stably manufactured by measuring the above and measuring a change rate of 60% or less. Similarly, after producing a nickel electroformed belt substrate, the amount of change in the average particle size before and after heating is calculated for the crystallites oriented in the crystal orientation plane where the amount of change in the crystallite size due to heating is large, and the change By producing a product having an amount of 120% or less, a fixing belt excellent in heat fatigue resistance can be stably produced. Similarly, the change rate of the average particle diameter before and after heating at 300 ° C. for 2 hours can be measured, and the change rate of 70% or less can be commercialized, and the average particle diameter before and after heating at 300 ° C. for 2 hours. It is also possible to calculate the amount of change and to produce a product whose change amount is 90 mm or less.

以下、本発明を実施例により説明するが、本発明を限定するものではない。
比較例1〜6および実施例1〜7
スルファミン酸ニッケル四水塩を500g/Lおよびホウ酸を35g/Lの割合で含有する水溶液を作り、活性炭を充填した容器で0.5μmのフィルターを用いてろ過しながら、低電流で電解精製を行った。次に、活性炭を取り出し、必要量のピット防止剤を加えた後、一次光沢剤としてナフタレン−1,3,6−トリスルホン酸三ナトリウムを、二次光沢剤として2−ブチン−1,4−ジオールを、さらに場合に応じてリン供給源として次亜リン酸ナトリウム一水和物を、ホウ素供給源としてトリメチルアミンボランを、マンガン供給源としてスルファミン酸マンガン四水和物を用い、それぞれ下記表1に示す割合で所望のスルファミン酸浴(電解浴)を調製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited.
Comparative Examples 1-6 and Examples 1-7
Make an aqueous solution containing nickel sulfamate tetrahydrate at a rate of 500 g / L and boric acid at a rate of 35 g / L, and perform electrolytic purification at a low current while filtering with a 0.5 μm filter in a container filled with activated carbon. went. Next, after taking out activated carbon and adding a required amount of pit inhibitors, trisodium naphthalene-1,3,6-trisulfonate as a primary brightener and 2-butyne-1,4-as a secondary brightener. In Table 1 below, the diol was further used, optionally using sodium hypophosphite monohydrate as the phosphorus source, trimethylamine borane as the boron source, and manganese sulfamate tetrahydrate as the manganese source. The desired sulfamic acid bath (electrolytic bath) was prepared at the indicated ratio.

この電解浴を用い、外径34mmのステンレス鋼製の円筒状母型を陰極として、所定の浴温度で電鋳を行ない、母型の外周面に電析体を50μmの厚さに形成した。なお、電流密度は、実施例3および4については、16.1A/dm2に設定し、他の例では10.7A/dm2に設定した。得られた電析体を純水で洗浄した後、母型から取り外し、内径34mm、厚さ50μmのニッケル電鋳製ベルト基体を得た。 Using this electrolytic bath, electrocasting was performed at a predetermined bath temperature using a stainless steel cylindrical mother die having an outer diameter of 34 mm as a cathode, and an electrodeposit was formed on the outer peripheral surface of the mother die to a thickness of 50 μm. The current density is, for Examples 3 and 4, is set to 16.1A / dm 2, in another example was set to 10.7A / dm 2. The obtained electrodeposit was washed with pure water and then removed from the mother die to obtain a nickel electroformed belt substrate having an inner diameter of 34 mm and a thickness of 50 μm.

比較例1〜6および実施例1〜7で得たニッケル電鋳製ベルト基体について、硫黄および炭素の含有率(質量%)を燃焼−赤外線吸収法を用いて分析し、リンおよびホウ素の含有率(質量%)をICP発光分析装置を用いて分析し、マンガンの含有率(質量%)を原子吸光分光光度計を用いて分析した。結果を表2に示す。

Figure 2006106350
The nickel electroformed belt bases obtained in Comparative Examples 1 to 6 and Examples 1 to 7 were analyzed for sulfur and carbon content (mass%) using a combustion-infrared absorption method, and phosphorus and boron content rates. (% By mass) was analyzed using an ICP emission spectrometer, and the manganese content (% by mass) was analyzed using an atomic absorption spectrophotometer. The results are shown in Table 2.
Figure 2006106350

Figure 2006106350
Figure 2006106350

次に、比較例1〜6および実施例1〜7で得たベルト基体について、それぞれ、裏面(111)結晶子、表面(111)結晶子、裏面(200)結晶子、および表面(200)結晶子の加熱前の平均粒径、250℃で2時間加熱後の平均粒径、および300℃で2時間加熱後の平均粒径をX線回折装置(理学電気(株)製RINT−2100)を用い、回折データを解析ソフト(JADE(登録標章))により求めるとともに、平均粒径の変化量および変化率を算出した。結果を下記表3〜表6に示す。

Figure 2006106350
Next, with respect to the belt substrates obtained in Comparative Examples 1 to 6 and Examples 1 to 7, the back surface (111) crystallite, the front surface (111) crystallite, the back surface (200) crystallite, and the front surface (200) crystal, respectively. The average particle size before heating the child, the average particle size after heating at 250 ° C. for 2 hours, and the average particle size after heating at 300 ° C. for 2 hours are measured with an X-ray diffractometer (RINT-2100 manufactured by Rigaku Corporation). The diffraction data was obtained by analysis software (JADE (registered mark)), and the change amount and change rate of the average particle diameter were calculated. The results are shown in Tables 3 to 6 below.
Figure 2006106350

Figure 2006106350
Figure 2006106350

Figure 2006106350
Figure 2006106350

Figure 2006106350
Figure 2006106350

表3〜表6に示す結果からもわかるように、実施例1〜7で得たニッケル電鋳製ベルト基体を構成する結晶子は、加熱前に90〜200Åの平均粒径を有する。そして、比較例1〜6および実施例1〜7で得たニッケル電鋳製ベルト基体を構成する結晶子、すなわち裏面(111)結晶子、表面(111)結晶子、裏面(200)結晶子、および表面(200)結晶子のうち、加熱前後の平均粒径の変化量および変化率の最も大きい結晶子は、裏面(111)結晶子であることがわかる。   As can be seen from the results shown in Tables 3 to 6, the crystallites constituting the nickel electroformed belt substrate obtained in Examples 1 to 7 have an average particle diameter of 90 to 200 mm before heating. And the crystallites constituting the nickel electroformed belt substrate obtained in Comparative Examples 1 to 6 and Examples 1 to 7, that is, the back surface (111) crystallite, the front surface (111) crystallite, the back surface (200) crystallite, Of the surface (200) crystallites, the crystallite having the largest amount of change and average rate of change in the average particle diameter before and after heating is found to be the back surface (111) crystallite.

<熱疲労試験>
比較例1〜6と実施例1〜4および7で得たベルト基体からJISZ2201に規定された13B号試験片形状を切り出し、INSTRON社製INSTRON8871システムを用いて熱疲労試験を以下の条件で行った。
<Thermal fatigue test>
The shape of No. 13B test piece defined in JISZ2201 was cut out from the belt bases obtained in Comparative Examples 1 to 6 and Examples 1 to 4 and 7, and a thermal fatigue test was performed using the INSTRON 8871 system manufactured by INSTRON under the following conditions. .

繰り返し最大張力:650MPa;繰り返し最小張力:約80MPa;
雰囲気温度:250℃;繰り返し周期:15Hz。
Maximum repeated tension: 650 MPa; Minimum repeated tension: about 80 MPa;
Atmospheric temperature: 250 ° C .; repetitive cycle: 15 Hz.

この熱疲労試験は、試験片が破断するまで行い、そのときの繰り返し回数を記録した。なお、繰り返し回数は、上限を100万回に設定した。この熱疲労試験で、繰り返し回数が30万回未満のものを「×」とし、繰り返し回数が100万回に達しても破壊しなかったものを「○」として評価した。結果を下記表7に示す。   This thermal fatigue test was performed until the test piece broke, and the number of repetitions at that time was recorded. The upper limit of the number of repetitions was set to 1 million. In this thermal fatigue test, the case where the number of repetitions was less than 300,000 was evaluated as “X”, and the case where the number of repetitions reached 1 million was not evaluated as “◯”. The results are shown in Table 7 below.

「○」の評価を受けたベルト基体のうち、比較例6および実施例1〜4のベルト基体(いずれもリンを含有)について、繰り返し最大張力を700MPaに変更して同様に熱疲労試験を行った。結果と評価を表7に併記する。

Figure 2006106350
Among the belt bases that received the evaluation of “◯”, the thermal base test was similarly performed on the belt bases of Comparative Example 6 and Examples 1 to 4 (both containing phosphorus) by repeatedly changing the maximum tension to 700 MPa. It was. The results and evaluation are shown in Table 7.
Figure 2006106350

表7に示す最大張力650MPaでの結果からわかるように、硫黄含有量が、0.0045質量%≦S<0.017質量%を逸脱し、しかも結晶成長抑制剤を含有しない比較例1〜5のベルト基体は、繰り返し回数が11万回以下でも破断してしまう。そして、結晶成長抑制剤を含有するが硫黄含有量が0.017質量%である比較例6のベルト基体は、最大張力650MPaでは、100万回の繰り返し回数でも破断しないが、最大張力を700MPaに増加すると、25万回の繰り返しで破断してしまう。これに対し、実施例1〜4および7のベルト基体は、最大張力650MPaでは、100万回の繰り返し回数でも破断せず、実施例1〜4のベルト基体では、最大張力700MPaの下でも100万回の繰り返し回数でも破断しない。そして、実施例1〜4のベルト基体は、300℃2時間での裏面(111)結晶子の平均粒径変化率が70%以下であり、平均粒径変化量が90Å以下である。   As can be seen from the results at the maximum tension of 650 MPa shown in Table 7, Comparative Examples 1 to 5 in which the sulfur content deviates from 0.0045 mass% ≦ S <0.017 mass% and does not contain a crystal growth inhibitor. This belt substrate breaks even when the number of repetitions is 110,000 times or less. The belt substrate of Comparative Example 6 containing a crystal growth inhibitor but having a sulfur content of 0.017% by mass does not break at the maximum tension of 650 MPa, even if it is repeated 1 million times, but the maximum tension is 700 MPa. If it increases, it will break after repeating 250,000 times. On the other hand, the belt bases of Examples 1 to 4 and 7 do not break even when the maximum tension is 650 MPa, even if the belt bases of Examples 1 to 4 have a maximum tension of 700 MPa. It does not break even after repeated times. And as for the belt base | substrate of Examples 1-4, the average particle diameter change rate of a back surface (111) crystallite in 300 degreeC 2 hours is 70% or less, and an average particle diameter variation | change_quantity is 90 mm or less.

以上本発明を種々の態様に関して詳しく説明したが、本発明は、上記態様そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記態様に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、上記態様に示される全構成要素から幾つかの構成要素を削除してもよい。更には、異なる態様に亘る構成要素を適宜組み合せてもよい。   Although the present invention has been described in detail with respect to various aspects, the present invention is not limited to the above aspects as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, you may delete some components from all the components shown by the said aspect. Furthermore, you may combine suitably the component over a different aspect.

本発明に係る定着ベルトの正面図。1 is a front view of a fixing belt according to the present invention. 図1のII−II線に沿う断面の一部を拡大して示す図。The figure which expands and shows a part of cross section which follows the II-II line | wire of FIG.

符号の説明Explanation of symbols

10…定着ベルト
101…ベルト基体
101a…ベルト基体の表面
101b…ベルト基体の裏面
102…弾性層
103…離型層
104…摺動層
DESCRIPTION OF SYMBOLS 10 ... Fixing belt 101 ... Belt base 101a ... Belt base surface 101b ... Belt base back surface 102 ... Elastic layer 103 ... Release layer 104 ... Sliding layer

Claims (6)

転写材上のトナー像を定着するための定着ベルトであって、ニッケル電鋳製無端状ベルト基体を備え、前記ベルト基体は、硫黄を0.0045質量%以上、0.017質量%未満の割合で含有するとともに、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する250℃で2時間加熱した後の平均粒径の変化率が60%以下であることを特徴とする定着ベルト。   A fixing belt for fixing a toner image on a transfer material, comprising a nickel electroformed endless belt base, wherein the belt base is a ratio of 0.0045% by mass or more and less than 0.017% by mass of sulfur. The change rate of the average particle diameter after heating for 2 hours at 250 ° C. with respect to the average particle diameter before heating for the crystallites oriented in the crystal orientation plane with a large change in the crystallite particle diameter due to heating A fixing belt, wherein the fixing belt is 60% or less. 前記変化量が大きい結晶配向面に配向する結晶子は、250℃で2時間加熱した後の平均粒径と加熱前の平均粒径との差が120Å以下であることを特徴とする請求項1に記載の定着ベルト。   2. The crystallites oriented in a crystal orientation plane having a large change amount have a difference between an average grain size after heating at 250 ° C. for 2 hours and an average grain size before heating of 120 mm or less. The fixing belt described in 1. 前記ニッケル電鋳は、リン、ホウ素およびマンガンからなる群の中から選ばれる少なくとも1種の結晶成長抑制剤を含むことを特徴とする請求項1または2に記載の定着ベルト。   The fixing belt according to claim 1, wherein the nickel electroforming includes at least one crystal growth inhibitor selected from the group consisting of phosphorus, boron, and manganese. 転写材上のトナー像を定着するための定着ベルトであって、ニッケル電鋳製無端状ベルト基体を備え、前記ベルト基体は、硫黄を0.0045質量%以上、0.017質量%未満の割合で含有するとともに、その加熱による結晶子の粒径の変化量が大きい結晶配向面に配向する結晶子について、加熱前の平均粒径に対する300℃で2時間加熱した後の平均粒径の変化率が70%以下であることを特徴とする定着ベルト。   A fixing belt for fixing a toner image on a transfer material, comprising a nickel electroformed endless belt base, wherein the belt base is a ratio of 0.0045% by mass or more and less than 0.017% by mass of sulfur. The change rate of the average particle diameter after heating at 300 ° C. for 2 hours with respect to the average particle diameter before heating, with respect to the crystallite oriented in the crystal orientation plane with a large change amount of the crystallite particle diameter by heating. A fixing belt, wherein the fixing belt is 70% or less. 前記変化量が大きい結晶配向面に配向する結晶子は、300℃で2時間加熱した後の平均粒径と加熱前の平均粒径との差が90Å以下であることを特徴とする請求項4に記載の定着ベルト。   5. The crystallites oriented in the crystal orientation plane having a large change amount have a difference between an average grain size after heating at 300 ° C. for 2 hours and an average grain size before heating of 90 μm or less. The fixing belt described in 1. 前記ニッケル電鋳は、リン、ホウ素およびマンガンからなる群の中から選ばれる少なくとも1種の結晶成長抑制剤を含むことを特徴とする請求項4または5に記載の定着ベルト。   6. The fixing belt according to claim 4, wherein the nickel electroforming includes at least one crystal growth inhibitor selected from the group consisting of phosphorus, boron, and manganese.
JP2004292792A 2004-10-05 2004-10-05 Fixing belt Active JP4444778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292792A JP4444778B2 (en) 2004-10-05 2004-10-05 Fixing belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292792A JP4444778B2 (en) 2004-10-05 2004-10-05 Fixing belt

Publications (2)

Publication Number Publication Date
JP2006106350A true JP2006106350A (en) 2006-04-20
JP4444778B2 JP4444778B2 (en) 2010-03-31

Family

ID=36376168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292792A Active JP4444778B2 (en) 2004-10-05 2004-10-05 Fixing belt

Country Status (1)

Country Link
JP (1) JP4444778B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257548A (en) * 2005-02-18 2006-09-28 Ricoh Co Ltd Cylindrical nickel belt made by electrocasting, manufacturing method therefor, belt substrate for heating and fixing, belt for heating and fixing, and electronograph
JP2007286616A (en) * 2006-03-22 2007-11-01 Canon Inc Endless metallic belt, fixing belt using the same, and heat fixing assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257548A (en) * 2005-02-18 2006-09-28 Ricoh Co Ltd Cylindrical nickel belt made by electrocasting, manufacturing method therefor, belt substrate for heating and fixing, belt for heating and fixing, and electronograph
JP2007286616A (en) * 2006-03-22 2007-11-01 Canon Inc Endless metallic belt, fixing belt using the same, and heat fixing assembly

Also Published As

Publication number Publication date
JP4444778B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP5761518B2 (en) Electromagnetic induction heating element and fixing belt
JP4133728B2 (en) Fixing belt
JP4444648B2 (en) Fixing belt
JP4815126B2 (en) Fixing belt
JP4444778B2 (en) Fixing belt
US8965260B2 (en) Image-fixation member having multi-layer metallic structure
JP2014211630A (en) Fixing metal multi-layer member
JP5675303B2 (en) Nickel plating bath and electroforming method using the same
JP4414839B2 (en) Toner fixing belt
JP3905053B2 (en) Fixing belt
JP2010235974A (en) Production method of nickel alloy electroformed film, and nickel alloy electroformed film
JP5274817B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
US10947633B2 (en) Method of producing electrocast belt
JP5892664B2 (en) Metal multilayer member for fixing
JP7209276B2 (en) Brazing sheet manufacturing method
JP2007047817A (en) Fixing belt
JP5948979B2 (en) Endless metal thin film roll, method for manufacturing endless metal thin film roll, heat fixing belt, fixing unit, and image forming apparatus
JP2005089790A (en) Seamless belt substrate, production method therefor, and seamless belt for heat fixing
JP2019183207A (en) Base material with multi-layer coating film
Boiciuc et al. Technologies and Installation for Electrochemical Hardening of Wear Surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250