JP2006105706A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2006105706A
JP2006105706A JP2004290928A JP2004290928A JP2006105706A JP 2006105706 A JP2006105706 A JP 2006105706A JP 2004290928 A JP2004290928 A JP 2004290928A JP 2004290928 A JP2004290928 A JP 2004290928A JP 2006105706 A JP2006105706 A JP 2006105706A
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement tube
tube
ultrasonic transducer
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290928A
Other languages
Japanese (ja)
Inventor
Akio Yasumatsu
彰夫 安松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004290928A priority Critical patent/JP2006105706A/en
Publication of JP2006105706A publication Critical patent/JP2006105706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection part excellent in operability, manufacturing, transporting, moreover in workability at the time of installation, and easy of keeping reliability and in securing of accuracy in an ultrasonic flow meter of sound tube type. <P>SOLUTION: The ultrasonic flowmeter comprises: a measurement tube made of synthetic resin; a 1st ultrasonic transducer made to close contact with the measurement tube; a 2nd ultrasonic transducer made to close contact with the measurement tube at the point apart from the 1st ultrasonic transducer along the tube axis of the measurement tube to be measured; the sound source for supplying an electric signal only to either transducer of the 1st ultrasonic transducer and the 2nd ultrasonic transducer; the delay measuring part for measuring the delay time between the electric signal and the reproduced electric signal which is converted by receiving the ultrasonic wave transmitted by converting the electric signal into mechanical vibration by another oscillator; and the operation unit for operating the flow of the object fluid flowing in the measurement tube on the basis of the difference of delay time observed at the time of switching either oscillator and another oscillator alternately. The 1st ultrasonic oscillator and the 2nd ultrasonic oscillator are provided on the flexible band which is formed in a sheet provided with a polymer piezoelectric film on the contact surface with the measurement tube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、音響管式の超音波流量計の検出部構成に関する。   The present invention relates to a configuration of a detection unit of an acoustic tube type ultrasonic flowmeter.

円環状圧電セラミックスに代表される超音波センサを用いた計測機器として、超音波流量計の先行技術として例えば次の文献がある。   As a measuring instrument using an ultrasonic sensor typified by an annular piezoelectric ceramic, for example, there is the following document as a prior art of an ultrasonic flowmeter.

特開平10−122923号公報JP-A-10-122923 特開平11−264750号公報JP-A-11-264750 特開2000−180228号公報JP 2000-180228 A

図2はこのような従来の音響管式の超音波流量計の一例を示す構成ブロック図である。   FIG. 2 is a block diagram showing an example of such a conventional acoustic tube type ultrasonic flowmeter.

図2の従来の超音波流量計は、ストレートのフッ素樹脂パイプである測定管1、測定管1への装着時の形状が一定幅の円環状に成型された圧電セラミックス2A及び2B,信号源3、遅延計測部4及び4B、演算回路5、制御スイッチ6A及び7とで構成されている。   The conventional ultrasonic flowmeter of FIG. 2 includes a measurement tube 1 that is a straight fluororesin pipe, piezoelectric ceramics 2A and 2B that are formed into an annular shape with a fixed width when mounted on the measurement tube 1, and a signal source 3 The delay measuring units 4 and 4B, the arithmetic circuit 5, and the control switches 6A and 7 are configured.

被測定流体が流れる測定管1に対して所定の距離を隔て圧電セラミックス2A及び2Bを配置する。このとき圧電セラミックス2A及び2Bは、測定管1の外周に沿った全周に密着してあり、それぞれの信号入力端には共通の信号源3に対してそれぞれ制御スイッチ6A及び6Bを介して接続している。   Piezoelectric ceramics 2A and 2B are arranged at a predetermined distance from the measurement tube 1 through which the fluid to be measured flows. At this time, the piezoelectric ceramics 2A and 2B are in close contact with the entire circumference along the outer circumference of the measuring tube 1, and are connected to the common signal source 3 via control switches 6A and 6B, respectively, at the respective signal input ends. is doing.

遅延計測部4Aおよび4Bは、信号源3の他にそれぞれ圧電セラミックス2A及び2Bの信号出力端と接続している。
また、遅延計測部4Aおよび4Bが出力する各計測値は、それぞれ演算部5へ接続している。
The delay measuring units 4A and 4B are connected to signal output terminals of the piezoelectric ceramics 2A and 2B in addition to the signal source 3, respectively.
Each measurement value output from the delay measurement units 4A and 4B is connected to the calculation unit 5, respectively.

次に、図2に示す従来例の作用を説明する。   Next, the operation of the conventional example shown in FIG. 2 will be described.

圧電セラミック2Aおよび2Bは電気エネルギーと機械的な振動エネルギーの相互変換作用を持つ素子であり、測定管1内の被測定流体を媒質として超音波を送受する。   Piezoelectric ceramics 2A and 2B are elements having an interconversion action between electric energy and mechanical vibration energy, and transmit and receive ultrasonic waves using a fluid to be measured in the measuring tube 1 as a medium.

このとき圧電セラミックス2Aおよび2Bは、互いに超音波の送信動作を排他的に実行する。すなわち制御スイッチ6Aと6Bの開閉を交互に実行して圧電セラミックスの何れか片方を信号源3と接続し、接続された側の圧電セラミックスのみが超音波を送信する。
一方、受信側となった圧電セラミックスでは、測定管1内の被測定流体を媒質として伝播してきた超音波を電気信号に再生する。
At this time, the piezoelectric ceramics 2A and 2B exclusively execute an ultrasonic wave transmission operation. That is, the control switches 6A and 6B are alternately opened and closed to connect one of the piezoelectric ceramics to the signal source 3, and only the piezoelectric ceramic on the connected side transmits ultrasonic waves.
On the other hand, in the piezoelectric ceramic on the receiving side, the ultrasonic wave propagated using the fluid to be measured in the measuring tube 1 as a medium is regenerated into an electrical signal.

受信側となった圧電セラミックスに対応する遅延計測部4Aまたは4Bでは、送信側で用いられた信号源3の電気信号と、受信された超音波から再生された再生電気信号の時間差を計測する。   The delay measurement unit 4A or 4B corresponding to the piezoelectric ceramic on the receiving side measures the time difference between the electric signal of the signal source 3 used on the transmitting side and the reproduced electric signal reproduced from the received ultrasonic wave.

しかし、被測定流体の下流側の圧電セラミックスが受信する超音波は、媒質の移動速度が加算される分静止している媒質を伝播した場合に比して早く到着する。逆に、被測定流体の上流側に位置する圧電セラミックスが受信する超音波は、媒質の移動速度が減算される分だけ遅れて到着する。   However, the ultrasonic wave received by the piezoelectric ceramic downstream of the fluid to be measured arrives faster than the case where it propagates through the stationary medium by the addition of the moving speed of the medium. On the contrary, the ultrasonic wave received by the piezoelectric ceramics located on the upstream side of the fluid to be measured arrives with a delay corresponding to the subtraction of the moving speed of the medium.

演算部5では、遅延計測部4Aと4Bでそれぞれ観測して得た互いの超音波が到着までに要した時間差を参照して、媒質移動速度に相当する被測定流体の移動速度を演算する。   The computing unit 5 computes the moving speed of the fluid to be measured corresponding to the medium moving speed with reference to the time difference required for the arrival of the ultrasonic waves obtained by the observation by the delay measuring units 4A and 4B.

ところが図2に示した従来の音響管方式の超音波流量計において、一般に用いられている圧電セラミックスには以下の問題点があった。   However, in the conventional acoustic tube type ultrasonic flow meter shown in FIG. 2, the piezoelectric ceramics generally used have the following problems.

第一の問題点は、材質がセラミックスであるため円環状に成型する際には加工が困難であり、多くの手間とコストを要していたことである。   The first problem is that since the material is ceramics, it is difficult to process when it is formed into an annular shape, which requires a lot of labor and cost.

第二の問題点は、測定管への装着の際にはセラミックスは重く嵩張り、現場での取り扱いが不便なことである。例えば超音波流量計の設置のとき、円環状のセラミックスの中央部の穴に測定管を位置させるには、半円状に2分割してから現場に持ち込み測定管を挟んで組立て工事をする場合や、測定管の一部を取り外し円環状の穴に通してから再度管路に戻す手間が必要であった。   The second problem is that ceramics are heavy and bulky when mounted on a measuring tube, and are difficult to handle on site. For example, when installing an ultrasonic flow meter, to place the measuring tube in the hole in the center of the ring-shaped ceramic, divide it into two semicircular shapes, bring it into the field, and then assemble it with the measuring tube in between. In addition, it is necessary to remove a part of the measuring tube, pass it through the annular hole, and return it to the pipe line again.

この様に、超音波流量計の移設や設置、撤去などの際は工事作業手順が煩雑となり設置後の試験調整や検査にも時間を取られていた。   As described above, when the ultrasonic flowmeter is moved, installed, or removed, the construction work procedure becomes complicated, and it takes time for test adjustment and inspection after the installation.

第三の問題点として、特に測定管の材質が樹脂パイプの場合は、セラミックスとフッ化樹脂との熱膨張係数が大きく異なることである。このため、温度変化に伴う膨張と圧縮の繰り返しストレスにより、圧電セラミックスと測定管との接着面で恒常的な剥離や、温度変化に伴う一時的な接着不良部位の発生などの不具合を生じていた。   The third problem is that, particularly when the material of the measuring tube is a resin pipe, the thermal expansion coefficients of ceramics and fluororesin are greatly different. For this reason, the repeated stresses of expansion and compression accompanying temperature changes have caused problems such as permanent peeling on the bonding surface between the piezoelectric ceramics and the measuring tube and the occurrence of temporary bonding failure sites due to temperature changes. .

この様に、運用中の従来の超音波流量計においては信頼性の確保や精度を維持する必要から定期点検などにメンテナンス工数が多く費やされてきた。   As described above, in the conventional ultrasonic flowmeter in operation, a lot of maintenance man-hours have been expended for periodic inspection and the like because it is necessary to ensure reliability and maintain accuracy.

本発明は、上述した問題点を解決するためになされ、その目的は音響管式の超音波流量計において、取り扱いや製造運搬更には設置時の作業性にも優れて信頼性の維持と精度の確保が容易な検出部を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object thereof is an acoustic tube type ultrasonic flowmeter, which is excellent in handling, manufacturing transportation and workability during installation, and maintaining reliability and accuracy. An object of the present invention is to provide a detection unit that can be easily secured.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
樹脂製の測定管と、前記測定管に密着させた第一超音波振動子と、前記第一超音波振動子から前記被測定管の管軸に沿い所定の距離を隔てた箇所で前記測定管に密着させた第二超音波振動子と、前記第一超音波振動子と前記第二超音波振動子の一方のみに電気信号を与える信号源と、前記電気信号を機械振動に変換して発信された超音波を受信した他方で変換された再生電気信号が前記電気信号から遅延した遅延時間を計測する遅延計測部と、前記一方と前記他方とを交互に入れ換えた際に観測される前記遅延時間の差に基づき前記測定管を流れる被測定流体の流速を演算する演算器を備えた超音波流量計において、
前記第一超音波振動子及び前記第二超音波振動子を、前記測定管との接触面側に高分子圧電膜を備えてシート状に加工したフレキシブルバンドに設けたことを特徴とする超音波流量計である。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
A measurement tube made of resin, a first ultrasonic transducer closely attached to the measurement tube, and the measurement tube at a predetermined distance from the first ultrasonic transducer along the tube axis of the tube to be measured A second ultrasonic transducer in close contact with the first ultrasonic transducer, a signal source for applying an electrical signal to only one of the first ultrasonic transducer and the second ultrasonic transducer, and transmitting the electrical signal by converting it into mechanical vibration A delay measuring unit that measures a delay time in which the reproduced electrical signal converted by the other receiving the received ultrasonic wave is delayed from the electrical signal, and the delay observed when the one and the other are alternately switched In an ultrasonic flowmeter provided with a calculator that calculates the flow velocity of the fluid to be measured flowing through the measurement tube based on the difference in time,
The ultrasonic wave characterized in that the first ultrasonic vibrator and the second ultrasonic vibrator are provided on a flexible band having a polymer piezoelectric film on the contact surface side with the measurement tube and processed into a sheet shape. It is a flow meter.

請求項2記載の発明は、
請求項1記載の発明である超音波流量計において、前記フレキシブルバンドが、フレキシブルプリント板を更に備えてその一方の端部に前記高分子圧電膜の電極を収容する第一勘合部を有し、他方の端部に前記信号源及び前記遅延計測部とインタフェースする第二勘合部を有することを特徴とする。
The invention according to claim 2
The ultrasonic flowmeter according to claim 1, wherein the flexible band further includes a flexible printed board and has a first fitting portion that accommodates the electrode of the polymer piezoelectric film at one end thereof. The other end portion has a second fitting portion that interfaces with the signal source and the delay measuring portion.

請求項3記載の発明は、前記フレキシブルバンドが、所定の外周寸法規格内の前記測定管に巻き付けて固定することを特徴とする、請求項1及び請求項2に記載の超音波流量計である。   The invention according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, characterized in that the flexible band is wound around and fixed to the measuring tube within a predetermined outer peripheral dimension standard. .

請求項4記載の発明は、前記フレキシブルバンドが、所定の外周寸法規格内の前記測定管に巻き付けて固定する面ファスナーを更に備えたことを特徴とする、請求項1から請求項3までに記載の超音波流量計である。   The invention according to claim 4 is characterized in that the flexible band further comprises a hook-and-loop fastener that is wound around and fixed to the measuring tube within a predetermined outer peripheral dimension standard. This is an ultrasonic flowmeter.

本発明によれば次のような効果がある。
請求項1,2,3,及び請求項4の発明によれば、音響管方式の検出部に相当する超音波流量計の第一超音波振動子と第二超音波振動子とをそれぞれフレキシブルバンド上に搭載した。
The present invention has the following effects.
According to the first, second, third, and fourth aspects of the present invention, the first ultrasonic transducer and the second ultrasonic transducer of the ultrasonic flowmeter corresponding to the detection unit of the acoustic tube type are respectively connected to the flexible band. Mounted on top.

従来の円環状に成型加工済みの圧電セラミックスに較べて、やわらかく柔軟性を持った素材で超音波振動子を提供できる。このため測定管の断面形状による制約を受けること無く測定箇所を自在に選定できる。   Compared with conventional piezoelectric ceramics molded into an annular shape, it is possible to provide an ultrasonic vibrator with a soft and flexible material. For this reason, the measurement location can be freely selected without being restricted by the cross-sectional shape of the measurement tube.

すなわち、測定管路の外周長が所定の範囲内にあれば、円形断面を有している必要はない。更に、超音波振動子は第二勘合部を有しているので、信号源、遅延測定部などの演算に係る本体部との接続組立て作業が容易に行える。また第一勘合部は、フィルム状で電極を有する同一シリースで他の高分子圧電膜と交換が可能である。   That is, it is not necessary to have a circular cross section if the outer peripheral length of the measurement pipe line is within a predetermined range. Furthermore, since the ultrasonic transducer has the second fitting portion, connection and assembly work with the main body portion relating to the calculation such as the signal source and the delay measurement portion can be easily performed. The first fitting portion can be exchanged with another polymer piezoelectric film in the same series having a film-like electrode.

このためフレキシブルバンドに収納する高分子圧電膜は、第一勘合部の部分から必要に応じて切り離し、別の定格値の高分子圧電膜と交換することができる。すなわち検出部のグレードアップや、メンテナンス等が容易に行える。   For this reason, the polymer piezoelectric film accommodated in the flexible band can be separated from the first fitting portion as necessary, and replaced with a polymer piezoelectric film having another rated value. That is, the detection unit can be easily upgraded and maintained.

以下、本発明を図面によって説明する。図1は本発明に係る超音波流量計の検出部の一実施例を示す構成図である。図1Aは、測定管の表側に相当する面を示し、図1Bは、測定管との接触面すなわち裏側の面を示している。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a detection unit of an ultrasonic flowmeter according to the present invention. FIG. 1A shows a surface corresponding to the front side of the measurement tube, and FIG. 1B shows a contact surface with the measurement tube, that is, a surface on the back side.

図1においてフレキシブルシート10は、超音波流量計の検出部である第一または第二超音波振動子の本体部を構成している。高分子圧電膜11はシート状に加工された長方形のフィルムであり一組の電極12を備えている。   In FIG. 1, a flexible sheet 10 constitutes a main body of a first or second ultrasonic transducer that is a detection unit of an ultrasonic flowmeter. The polymer piezoelectric film 11 is a rectangular film processed into a sheet shape, and includes a pair of electrodes 12.

フレキシブルプリント板13は、第一勘合部15を介して2箇所の電極12と電気的及び機械的に固定されている。高分子圧電膜11、フレキシブルシート10及びフレキシブルプリント板13とは3個のリベット18を用いている。   The flexible printed board 13 is electrically and mechanically fixed to the two electrodes 12 via the first fitting portion 15. Three rivets 18 are used for the polymer piezoelectric film 11, the flexible sheet 10 and the flexible printed board 13.

フレキシブルプリント板の他端にはコネクタである第二勘合部16を備えている。また、フレキシブルシート10は、フレキシブルプリント板13の反対側に通し穴14を設けている。更に表側面の両端には面ファスナー17を備えている。   The other end of the flexible printed board is provided with a second fitting portion 16 that is a connector. The flexible sheet 10 has a through hole 14 on the opposite side of the flexible printed board 13. Further, hook fasteners 17 are provided at both ends of the front side.

次に、図1に示す実施例の作用について説明する。   Next, the operation of the embodiment shown in FIG. 1 will be described.

フレキシブルシート10は、耐久性が高く曲げや捻りが可能で温湿度による極端な形状変化を来たさない低剛性の素材を使用し、その裏側すなわち測定管との接触面では高分子圧電膜11を機械的に保持して、フレキシブルシート10の形状変化に追随し一体化させる作用をもつ。   The flexible sheet 10 is made of a low-rigidity material that is highly durable and can be bent and twisted and does not cause an extreme change in shape due to temperature and humidity. On the back side thereof, that is, on the contact surface with the measurement tube, the polymer piezoelectric film 11 is used. Are mechanically held and follow the shape change of the flexible sheet 10 to have an action of integration.

このため、シートフィルム状の高分子圧電膜11のみを必要に応じて交換して修理、メンテナンスを施すことや、交換によって振動子である高分子圧電膜11の定格値を容易に変更することができる。このような効果は、円環状に加工された圧電セラミックの振動子を用いる従来技術では望めなかった。   For this reason, only the sheet film-like polymer piezoelectric film 11 can be replaced and repaired and maintained as necessary, or the rated value of the polymer piezoelectric film 11 serving as a vibrator can be easily changed by replacement. it can. Such an effect cannot be expected in the prior art using a piezoelectric ceramic vibrator processed into an annular shape.

コネクタである第二勘合部16は、図示していない外部の遅延計測部及び演算部と電気的に一括してインタフェースする作用をもつ。従って、測定管に超音波流量計を設置する際は、検出部との電気的インタフェースが容易に行えて組立ての作業性を向上させる効果をもたらす。   The second fitting unit 16 as a connector has an action of interfacing electrically with an external delay measurement unit and a calculation unit (not shown). Therefore, when the ultrasonic flowmeter is installed in the measurement tube, an electrical interface with the detection unit can be easily performed, and the assembling workability is improved.

フレキシブルシート10に設けた通し穴14は、測定管に巻き付けて装着する際に、第二勘合部16側を穴に通して全体を締め付けマジックテープ(登録商標)等の面ファスナー17同士を接着する。   When the through hole 14 provided in the flexible sheet 10 is wound around the measuring tube and attached, the second fitting portion 16 side is passed through the hole and the whole is fastened to bond the hook-and-loop fasteners 17 such as Velcro (registered trademark). .

更に必要に応じ、フレキシブルシート10の外側から固定バンド等で締め付け固定して、測定管との密着度を向上させると共に併せて測定管からの脱落や位置ずれを防止する。   Further, if necessary, it is fastened and fixed with a fixing band or the like from the outside of the flexible sheet 10 to improve the close contact with the measurement tube and to prevent the measurement tube from dropping off or being displaced.

このような構成とした実施例1によれば、円環状の圧電セラミックスの替わりに柔らかい帯状のフレキシブルシートを測定管に巻き付けて超音波振動子を装着できる。このため測定管の断面形状が例えセラミックス内径と完全適合する円形でなくても、測定管断面の形状に従い自在に曲率を変化させる結果、全周表面を密着させた状態で超音波振動子を装着できる効果がある。   According to Example 1 having such a configuration, an ultrasonic vibrator can be mounted by winding a soft belt-like flexible sheet around a measurement tube instead of the annular piezoelectric ceramic. For this reason, even if the cross-sectional shape of the measuring tube is not a circle that perfectly matches the inner diameter of the ceramics, the ultrasonic transducer can be attached with the entire surface in close contact as a result of changing the curvature freely according to the cross-sectional shape of the measuring tube. There is an effect that can be done.

また、測定管であるフッ化樹脂パイプと高分子圧電膜とは熱膨張係数が近く温度サイクル等に曝された場合も、接触面での剥離を防止できる。このため従来は圧電セラミックスを測定管に装着する際に補填していた、パッキンやグリース等の充填剤を接触面に追加する必要が無い。   Further, even when the fluororesin pipe as a measurement tube and the polymer piezoelectric film have close thermal expansion coefficients and are exposed to a temperature cycle or the like, peeling at the contact surface can be prevented. For this reason, it is not necessary to add a filler such as packing or grease, which has been conventionally supplemented when the piezoelectric ceramic is attached to the measuring tube, to the contact surface.

更に、体積があり嵩張っていた従来の圧電セラミックスに比して、本発明の実施例1はシートフィルム状の超音波振動子を採用していることから、持ち運びや組立て時の取り扱いは極めて容易である。   Furthermore, compared to conventional piezoelectric ceramics that are bulky and bulky, the first embodiment of the present invention employs a sheet film-like ultrasonic vibrator, so it is extremely easy to carry and handle during assembly. It is.

加えて、超音波振動子の材質を圧電セラミックから高分子圧電膜としたことから、音響インピーダンス値が樹脂配管及び測定流体と近くなり検出感度が向上する利点と、機械的Q値が極めて小さくパッキング部材等の挿入を必要とせずに歯切れの良い単発パルス送受信波形が得られ、演算部の信号処理が簡素化できる利点が得られる。   In addition, since the material of the ultrasonic transducer is changed from piezoelectric ceramic to polymer piezoelectric film, the acoustic impedance value is close to that of resin piping and measurement fluid, and the detection sensitivity is improved, and the mechanical Q value is extremely small and packed. A single-pulse transmission / reception waveform with good crispness can be obtained without requiring the insertion of a member or the like, and the advantage that the signal processing of the arithmetic unit can be simplified can be obtained.

以上説明した様に、本発明によれば、音響管式の超音波流量計において、高分子圧電膜の活用したことにより取り扱いや製造、運搬さらには設置時の作業性にも優れてなおかつ信頼性の確保と精度向上が可能な超音波流量計を提供できる。   As described above, according to the present invention, in the acoustic tube type ultrasonic flow meter, the use of the polymer piezoelectric film makes it easy to handle, manufacture, transport, and install, and is reliable. Can provide an ultrasonic flowmeter capable of ensuring and improving accuracy.

更に、本発明によれば測定管の断面が円形でなく不規則な形状であってもフレキシブルに形状を変更させて設置できる。   Furthermore, according to the present invention, even if the cross section of the measuring tube is not circular but irregular, it can be flexibly changed in shape and installed.

なお、本発明の超音波流量計の設置に際してフレキシブルシートを測定管に巻き付けた状態の外周から、更に金属またはプラスチック製の固定バンド等で締め付ける処置を施すことにより、測定管との接触面を外周から付加する機械的圧力で確実に固定し、必要かつ十分な耐久性を担保できる。   When installing the ultrasonic flowmeter of the present invention, the outer surface of the flexible tube is wound around the measurement tube, and then the surface to be contacted with the measurement tube is tightened with a metal or plastic fixing band. It can be securely fixed with the mechanical pressure applied to ensure the necessary and sufficient durability.

本発明の実施例を示す2面図である。It is a 2nd figure which shows the Example of this invention. 従来の音響管式の超音波流量計の一例を示す構成ブロック図である。It is a block diagram which shows an example of the conventional acoustic tube type ultrasonic flowmeter.

符号の説明Explanation of symbols

10 フレキシブルシート
11 高分子圧電膜
12 電極
13 フレキシブルプリント板
17 面ファスナー
18 リベット
DESCRIPTION OF SYMBOLS 10 Flexible sheet 11 Polymer piezoelectric film 12 Electrode 13 Flexible printed board 17 Surface fastener 18 Rivet

Claims (4)

樹脂製の測定管と、前記測定管に密着させた第一超音波振動子と、前記第一超音波振動子から前記被測定管の管軸に沿い所定の距離を隔てた箇所で前記測定管に密着させた第二超音波振動子と、前記第一超音波振動子と前記第二超音波振動子の一方のみに電気信号を与える信号源と、前記電気信号を機械振動に変換して発信された超音波を受信した他方で変換された再生電気信号が前記電気信号から遅延した遅延時間を計測する遅延計測部と、前記一方と前記他方とを交互に入れ換えた際に観測される前記遅延時間の差に基づき前記測定管を流れる被測定流体の流速を演算する演算器を備えた超音波流量計において、
前記第一超音波振動子及び前記第二超音波振動子を、前記測定管との接触面側に高分子圧電膜を備えてシート状に加工したフレキシブルバンドに設けたことを特徴とする超音波流量計。
A measurement tube made of resin, a first ultrasonic transducer closely attached to the measurement tube, and the measurement tube at a predetermined distance from the first ultrasonic transducer along the tube axis of the tube to be measured A second ultrasonic transducer in close contact with the first ultrasonic transducer, a signal source for applying an electrical signal to only one of the first ultrasonic transducer and the second ultrasonic transducer, and transmitting the electrical signal by converting it into mechanical vibration A delay measuring unit that measures a delay time in which the reproduced electrical signal converted by the other receiving the received ultrasonic wave is delayed from the electrical signal, and the delay observed when the one and the other are alternately switched In an ultrasonic flowmeter provided with a calculator that calculates the flow velocity of the fluid to be measured flowing through the measurement tube based on the difference in time,
The ultrasonic wave characterized in that the first ultrasonic vibrator and the second ultrasonic vibrator are provided on a flexible band having a polymer piezoelectric film on the contact surface side with the measurement tube and processed into a sheet shape. Flowmeter.
前記フレキシブルバンドは、フレキシブルプリント板を更に備えてその一方の端部に前記高分子圧電膜の電極を収容する第一勘合部を有し、他方の端部に前記信号源及び前記遅延計測部とインタフェースする第二勘合部を有することを特徴とする、請求項1に記載の超音波流量計。   The flexible band further includes a flexible printed board and has a first fitting portion that accommodates the electrode of the polymer piezoelectric film at one end thereof, and the signal source and the delay measurement portion at the other end. The ultrasonic flowmeter according to claim 1, further comprising a second fitting portion that interfaces. 前記フレキシブルバンドは、所定の外周寸法規格内の前記測定管に巻き付けて固定することを特徴とする、請求項1及び請求項2に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1 or 2, wherein the flexible band is wound around and fixed to the measurement tube within a predetermined outer peripheral dimension standard. 前記フレキシブルバンドは、所定の外周寸法規格内の前記測定管に巻き付けて固定する面ファスナーを更に備えたことを特徴とする、請求項1から請求項3までに記載の超音波流量計。
The ultrasonic flowmeter according to any one of claims 1 to 3, wherein the flexible band further includes a hook-and-loop fastener that is wound around and fixed to the measurement tube within a predetermined outer peripheral dimension standard.
JP2004290928A 2004-10-04 2004-10-04 Ultrasonic flowmeter Pending JP2006105706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290928A JP2006105706A (en) 2004-10-04 2004-10-04 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290928A JP2006105706A (en) 2004-10-04 2004-10-04 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2006105706A true JP2006105706A (en) 2006-04-20

Family

ID=36375630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290928A Pending JP2006105706A (en) 2004-10-04 2004-10-04 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2006105706A (en)

Similar Documents

Publication Publication Date Title
JP6894863B2 (en) Clamp-on type ultrasonic flow sensor
US20130061686A1 (en) Ultrasonic flow measurement unit and ultrasonic flowmeter using same
WO2013065231A1 (en) Ultrasonic sensor and ultrasonic flowmeter using same
US9528867B2 (en) Ultrasonic flow meter and damper assembly for vibration reduction mounting
WO2005061997A1 (en) Ultrasonic flowmeter
JP5728657B2 (en) Ultrasonic flow measurement unit
US10451465B2 (en) Gas meter
WO2012011272A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
JP6089550B2 (en) Wind direction and wind speed measuring device
JP2006105706A (en) Ultrasonic flowmeter
TWI779664B (en) Ultrasonic flow measurement device
JP3079336B2 (en) Ultrasonic flow meter
JPS61132823A (en) Ultrasonic flowmeter
JP2003302264A (en) Ultrasonic propagation device
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP4400260B2 (en) Flow measuring device
JP2012103040A (en) Anemometer device
JP2012127654A (en) Ultrasonic wave measuring device
JP2022109346A (en) Ultrasonic flowmeter
TW202426867A (en) Clamp-on type ultrasonic flowmeter
TW202426865A (en) Clamp-on type ultrasonic flowmeter
JP2022109347A (en) Ultrasonic flowmeter
JPH1123340A (en) Coriolis mass flowmeter
JP2024070541A (en) Ultrasonic measurement device and fluid measurement method
JP2000346684A (en) Vortex flowmeter