JP2006105703A - Tritium decontamination device - Google Patents

Tritium decontamination device Download PDF

Info

Publication number
JP2006105703A
JP2006105703A JP2004290871A JP2004290871A JP2006105703A JP 2006105703 A JP2006105703 A JP 2006105703A JP 2004290871 A JP2004290871 A JP 2004290871A JP 2004290871 A JP2004290871 A JP 2004290871A JP 2006105703 A JP2006105703 A JP 2006105703A
Authority
JP
Japan
Prior art keywords
tritium
decontamination
sealed
optical system
decontaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290871A
Other languages
Japanese (ja)
Inventor
Hideki Yamai
英樹 山井
Misoji Ebine
三十治 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2004290871A priority Critical patent/JP2006105703A/en
Publication of JP2006105703A publication Critical patent/JP2006105703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tritium decontamination device removing contamination, where after single body element-like tritium dissociates, it will not adhere to apparatus surface again. <P>SOLUTION: A decontamination object 9 of tritium is stored in a sealed decontamination vessel 1. The decontamination object 9 is irradiated with the ultraviolet light from an ultraviolet laser 3 via an irradiation optical system 3. A cylinder 5 supplies an inert gas containing anyone from among stable hydrogen isotopic molecular species, that is, hydrogen gas (H<SB>2</SB>, HD and D<SB>2</SB>)and steam (H<SB>2</SB>O, HDO and D<SB>2</SB>O) to the sealed decontamination vessel 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はトリチウム汚染された対象物を紫外線により除染するトリチウム装置に関する。   The present invention relates to a tritium apparatus for decontaminating tritium-contaminated objects with ultraviolet rays.

核融合研究炉または研究設備などのトリチウムを扱う施設において、トリチウムと接触する機器は、特にその表面がトリチウムによって汚染される。トリチウムは放射性元素であるために、保守、解体時には安全性の観点から機器のトリチウム除染が必要である。   In a facility that handles tritium, such as a nuclear fusion research reactor or research facility, the surface of equipment that comes into contact with tritium is particularly contaminated by tritium. Since tritium is a radioactive element, tritium decontamination of equipment is necessary from the viewpoint of safety during maintenance and dismantling.

トリチウムは表面のみならず内部にも浸透するが、特に表面が汚染される。したがって保守、解体時には先ず機器表面のトリチウムを除染する必要がある。機器表面に付着した水型(HTO、TOなど)あるいはガス型(HT、Tなど)は加熱により、容易に除去すなわち除染できるが、機器表面材料に化学結合したトリチウムに関してはその限りではない。 Tritium penetrates not only into the surface but also into the interior, but the surface is particularly contaminated. Therefore, it is necessary to first decontaminate the tritium on the device surface during maintenance and dismantling. Water type (HTO, T 2 O, etc.) or gas type (HT, T 2 etc.) adhering to the equipment surface can be easily removed or decontaminated by heating, but this is not the case with tritium chemically bonded to equipment surface materials. is not.

日本原子力研究所のホームページでは、トリチウムの化学結合より光子エネルギーの大きい紫外線ランプ光または紫外線レーザー光を照射して、化学結合を解離させる事により除染する方法が実施された旨が記載されている。また、下記非特許文献1に記載されているように、核融合装置のプラズマ対向材料表面に蓄積されたトリチウムを除去するためにパルスレーザー光を用いた基礎実験を行っている。ところで、解離した後の単体トリチウムはイオンとなり、近傍に単体元素状トリチウムがない限りガス化できずに再び機器表面に付着する。   The Japan Atomic Energy Research Institute website states that a decontamination method has been implemented by irradiating UV lamp light or UV laser light, which has a photon energy greater than that of tritium chemical bonds, to dissociate the chemical bonds. . In addition, as described in Non-Patent Document 1 below, basic experiments using pulsed laser light are performed in order to remove tritium accumulated on the plasma facing material surface of the fusion apparatus. By the way, single tritium after dissociation becomes ions, and unless it has single elemental tritium in the vicinity, it cannot be gasified and adheres to the device surface again.

日本原子力学会秋の大会予稿集VOL.2003,第1分冊、 第185頁Japan Atomic Energy Society Autumn Meeting Proceedings VOL. 2003, first volume, page 185

トリチウムで汚染された機器表面に紫外線レーザーを照射してトリチウムの除去すなわち除染を実施する場合、解離した後の単体元素状トリチウムは近傍に単体元素状トリチウムがない限りガス化できずに、再び機器表面に付着してしまい除染効果が低下するという問題がある。   When tritium-contaminated equipment surface is irradiated with ultraviolet laser to remove tritium, that is, decontamination, the elemental tritium after dissociation cannot be gasified unless there is elemental tritium in the vicinity. There exists a problem that it adheres to the apparatus surface and the decontamination effect falls.

本発明の目的は、単体元素状トリチウムが解離した後に再び機器表面に付着することなく除染できるトリチウム除染装置を提供することにある。   An object of the present invention is to provide a tritium decontamination apparatus capable of decontamination without adhering to the device surface again after the elemental elemental tritium is dissociated.

本発明の特徴とするところは被除染対象物を収納する密閉型除染容器に安定水素同位体分子種すなわち水素ガス(H、HD、D)と水蒸気(HO、HDO、DO)のうち、いずれかを含有する不活性ガスを供給して紫外線による除染するようにしたことにある。 A feature of the present invention is that a stable hydrogen isotope molecular species, that is, hydrogen gas (H 2 , HD, D 2 ) and water vapor (H 2 O, HDO, D) are stored in a sealed decontamination container that houses an object to be decontaminated. 2 O), an inert gas containing any one of them is supplied to perform decontamination with ultraviolet rays.

本発明は密閉型除染容器内を安定水素同位体分子種雰囲気としているため、紫外線レーザー照射により発生した解離トリチウムが周辺の安定水素同位体と再結合し、解離トリチウムがガス化されるので、トリチウム汚染した機器の除染することができる。その結果として、保守・解体時の安全性を向上させることができる。   Since the present invention has a stable hydrogen isotope molecular species atmosphere in the sealed decontamination container, dissociated tritium generated by ultraviolet laser irradiation recombines with the surrounding stable hydrogen isotope, and the dissociated tritium is gasified. Tritiated equipment can be decontaminated. As a result, safety during maintenance and dismantling can be improved.

密閉型除染容器にはトリチウムで汚染された被除染対象物が収納される。密閉型除染容器は内部に照射光学系が配置されている。密閉型除染容器の外部に配置されている紫外線レーザーで発生する紫外線は照射光学系と紫外線レーザーの間を光学的に連結する誘導光学系を介して被除染対象物の照射される。ガス供給系は密閉型除染容器に安定水素同位体分子種を供給し、密閉型除染容器で除染された排気ガスが排気ガス系から排気される。   An object to be decontaminated contaminated with tritium is stored in the sealed decontamination container. The sealed decontamination container has an irradiation optical system disposed therein. Ultraviolet rays generated by an ultraviolet laser disposed outside the sealed decontamination container are irradiated on the object to be decontaminated via a guiding optical system that optically connects the irradiation optical system and the ultraviolet laser. The gas supply system supplies stable hydrogen isotope molecular species to the sealed decontamination container, and exhaust gas decontaminated in the sealed decontamination container is exhausted from the exhaust gas system.

図1に本発明の一実施例を示す。   FIG. 1 shows an embodiment of the present invention.

図1において、密閉型除染容器1の内部には被除染対象物9が収納されている。照射光学系2は密閉型除染容器1の内部に配置され、二次元的に移動する。紫外線レーザー3は密閉型除染容器1の外部に配置されている。紫外線レーザー3と照射光学系2は誘導光学系により光学的に連結されている。誘導光学系はレンズ7と光ファイバー4により構成されている。   In FIG. 1, an object 9 to be decontaminated is accommodated in a sealed decontamination container 1. The irradiation optical system 2 is disposed inside the sealed decontamination container 1 and moves two-dimensionally. The ultraviolet laser 3 is disposed outside the sealed decontamination container 1. The ultraviolet laser 3 and the irradiation optical system 2 are optically connected by a guiding optical system. The guiding optical system includes a lens 7 and an optical fiber 4.

ボンベ7は安定水素同位体分子種すなわち水素ガス(H、HD、D)と水蒸気(HO、HDO、DO)のうち、いずれかを含有する不活性ガスが充填されている。ボンベ7はバルブ10を介して密閉型除染容器1に接続されている。ボンベ7とバルブ10はガス供給系を構成する。 The cylinder 7 is filled with an inert gas containing any one of stable hydrogen isotope molecular species, that is, hydrogen gas (H 2 , HD, D 2 ) and water vapor (H 2 O, HDO, D 2 O). . The cylinder 7 is connected to the sealed decontamination container 1 through a valve 10. The cylinder 7 and the valve 10 constitute a gas supply system.

密閉型除染容器1にバルブ11を介して接続されている真空ポンプ6、酸化反応器13および脱湿器14は排気ガス系を構成している。   The vacuum pump 6, the oxidation reactor 13 and the dehumidifier 14 connected to the sealed decontamination container 1 via a valve 11 constitute an exhaust gas system.

この構成において、除染する場合にはトリチウムで汚染された機器を図示のように板状に加工あるいはパイプであれば数分割として被除染対象物9にして密閉型除染容器1内に汚染面を上向きに収納する。   In this configuration, in the case of decontamination, a device contaminated with tritium is processed into a plate shape as shown in the figure, or if it is a pipe, it is divided into several decontamination objects 9 and contaminated in the sealed decontamination container 1. Store face up.

この状態でバルブ10を閉、バルブ11を開き、真空ポンプ6により10―2Mpa未満に排気する。真空ポンプ6は2次汚染物が発生しないベローズポンプが好ましい。その後、バルブ11を閉じてバルブ10を開き、ボンベ5からガスを供給し、一定圧10―2Mpa以上でバルブ10を閉じる。密閉型除染容器1内の排気時圧力とガス供給時圧力は、圧力計12を用いて計測する。 In this state, the valve 10 is closed, the valve 11 is opened, and the vacuum pump 6 evacuates to less than 10 −2 Mpa. The vacuum pump 6 is preferably a bellows pump that does not generate secondary contaminants. Thereafter, the valve 11 is closed and the valve 10 is opened, gas is supplied from the cylinder 5, and the valve 10 is closed at a constant pressure of 10 −2 Mpa or more. The pressure during exhaust and the pressure during gas supply in the sealed decontamination container 1 are measured using a pressure gauge 12.

紫外線源(紫外線レーザー)3で発生する紫外線レーザー光8はレンズ7によって集光されて光ファイバー4に導入する。光ファイバー4で誘導された紫外線レーザー光8は2次元の移動が可能な照射光学系2によって集光し、かつ移動させて被除染対象物9の表面を照射する。被除染対象物9を汚染したトリチウムは雰囲気中にトリチウム化分子として移行して、除染が行われる。   The ultraviolet laser beam 8 generated by the ultraviolet source (ultraviolet laser) 3 is condensed by the lens 7 and introduced into the optical fiber 4. The ultraviolet laser beam 8 guided by the optical fiber 4 is condensed by the irradiation optical system 2 capable of two-dimensional movement and moved to irradiate the surface of the object 9 to be decontaminated. Tritium contaminating the object 9 to be decontaminated is transferred to the atmosphere as tritiated molecules, and decontamination is performed.

その後、バルブ11を開き、トリチウム汚染した排気ガスを真空ポンプ6により排気する。排気された水素ガス型のトリチウムを酸化反応器13で水蒸気型に変換し、水蒸気型のトリチウムと共に脱湿器14で回収する。脱湿器14の充填材はモルキュラーシーブが好ましい。   Thereafter, the valve 11 is opened, and the exhaust gas contaminated with tritium is exhausted by the vacuum pump 6. The exhausted hydrogen gas type tritium is converted into a water vapor type by the oxidation reactor 13 and recovered by the dehumidifier 14 together with the water vapor type tritium. The filler of the dehumidifier 14 is preferably a molecular sieve.

図2に照射光学系の一例を示す。レンズ16が3本のリニアガイド15に支持されている。これによりレンズ16を2次元的に移動させる事が可能となり、被除染対象物9の汚染表面の除染が行える。   FIG. 2 shows an example of the irradiation optical system. A lens 16 is supported by three linear guides 15. Thereby, the lens 16 can be moved two-dimensionally, and the contaminated surface of the object 9 to be decontaminated can be decontaminated.

このようにしてトリチウムの除染を行うのであるが、本発明は密閉型除染容器内を安定水素同位体分子種雰囲気としているため、紫外線レーザー照射により発生した解離トリチウムが周辺の安定水素同位体と再結合し、解離トリチウムがガス化されるので、トリチウム汚染した機器の除染することができる。その結果として、保守・解体時の安全性を向上させることができる。   Tritium is decontaminated in this way, but since the present invention uses a stable hydrogen isotope molecular species atmosphere in the sealed decontamination vessel, the dissociated tritium generated by ultraviolet laser irradiation is the stable hydrogen isotope around it. Since the dissociated tritium is gasified, the device contaminated with tritium can be decontaminated. As a result, safety during maintenance and dismantling can be improved.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 本発明の照射光学系の一例を示す構成図である。It is a block diagram which shows an example of the irradiation optical system of this invention.

符号の説明Explanation of symbols

1 密閉型除染容器
2 照射光学系
3 紫外線レーザー
4 光ファイバー
5 ボンベ
6 真空ポンプ
7 レンズ
8 紫外線レーザー光
9 被除染対象物
10 バルブ
11 バルブ
12 圧力計
13 酸化反応器
14 脱湿器
15 リニアガイド
16 レンズ
DESCRIPTION OF SYMBOLS 1 Sealed decontamination container 2 Irradiation optical system 3 Ultraviolet laser 4 Optical fiber 5 Cylinder 6 Vacuum pump 7 Lens 8 Ultraviolet laser light 9 Object to be decontaminated 10 Valve 11 Valve 12 Pressure gauge 13 Oxidation reactor 14 Dehumidifier 15 Linear guide 16 lenses

Claims (1)

被除染対象物を収納する密閉型除染容器と、前記密閉型除染容器の内部に配置される照射光学系と、前記密閉型除染容器の外部に配置される紫外線レーザーと、前記照射光学系と紫外線レーザーの間を光学的に連結する誘導光学系と、前記密閉型除染容器に安定水素同位体分子種を供給するガス供給系と、前記密閉型除染容器で除染された排気ガスを排気する排気ガス系とを具備することを特徴とするトリチウム除染装置。

A sealed decontamination container for storing the object to be decontaminated, an irradiation optical system disposed inside the sealed decontamination container, an ultraviolet laser disposed outside the sealed decontamination container, and the irradiation Decontaminated by a guiding optical system that optically connects the optical system and the ultraviolet laser, a gas supply system that supplies a stable hydrogen isotope molecular species to the sealed decontamination container, and the sealed decontamination container A tritium decontamination apparatus comprising an exhaust gas system for exhausting exhaust gas.

JP2004290871A 2004-10-04 2004-10-04 Tritium decontamination device Pending JP2006105703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290871A JP2006105703A (en) 2004-10-04 2004-10-04 Tritium decontamination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290871A JP2006105703A (en) 2004-10-04 2004-10-04 Tritium decontamination device

Publications (1)

Publication Number Publication Date
JP2006105703A true JP2006105703A (en) 2006-04-20

Family

ID=36375627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290871A Pending JP2006105703A (en) 2004-10-04 2004-10-04 Tritium decontamination device

Country Status (1)

Country Link
JP (1) JP2006105703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158374A (en) * 2010-02-02 2011-08-18 Toyama Univ Method and system for decontaminating tritium contaminant
CN112331366A (en) * 2020-11-21 2021-02-05 中国工程物理研究院材料研究所 Deuterium-tritium fuel storage and supply demonstration system and application
WO2021064304A1 (en) * 2019-10-03 2021-04-08 Onet Technologies Cn Method for decontamining a metal part containing a gas by means of laser irradiation in a liquid medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158374A (en) * 2010-02-02 2011-08-18 Toyama Univ Method and system for decontaminating tritium contaminant
WO2021064304A1 (en) * 2019-10-03 2021-04-08 Onet Technologies Cn Method for decontamining a metal part containing a gas by means of laser irradiation in a liquid medium
FR3101558A1 (en) * 2019-10-03 2021-04-09 Onet Technologies Cn Process for decontaminating a metal part containing a gas by laser irradiation in a liquid medium
CN112331366A (en) * 2020-11-21 2021-02-05 中国工程物理研究院材料研究所 Deuterium-tritium fuel storage and supply demonstration system and application
CN112331366B (en) * 2020-11-21 2022-12-13 中国工程物理研究院材料研究所 Deuterium-tritium fuel storage and supply demonstration system and application

Similar Documents

Publication Publication Date Title
JP4346838B2 (en) Nuclide converter
WO1994026407A1 (en) Electron beam system
JP2006105703A (en) Tritium decontamination device
US20120219100A1 (en) Iodine-125 production system and method
KR100532774B1 (en) Tritium handling system
KR102236311B1 (en) Purification method for tritium-containing raw water and purification device therefor
JP2009162646A (en) Method for treating used ion-exchange resin
US20130101496A1 (en) Graphite thermal decontamination with reducing gases
Krasznai et al. UV/ozone treatment to decontaminate tritium contaminated surfaces
Perevezentsev et al. Experimental trials of methods for metal detritiation for JET
JP5717348B2 (en) Tritium contaminant decontamination method and system
JP2005127718A (en) Device and method for decontaminating tritium
JP2004045254A (en) Nuclide conversion method
JP2016008878A (en) Method and system for treating radioactive contaminated water
JP4347262B2 (en) Nuclide conversion device and nuclide conversion method
CZ2014627A3 (en) Installation for reducing organic carbon in boric acid solution
JP2022550787A (en) Method for decontaminating gas-containing metal parts using laser irradiation in liquid media
RU2214013C2 (en) Method for decontaminating radioactive wastes
JP5058373B2 (en) Processing method of used ion exchange resin
EP0730279A1 (en) Method and apparatus for non-catalytic oxidation of tritium, and system for removing tritium
KR20150118698A (en) Method and Apparatus for Radioactive Material Removal of Radioactive Waste
JP2004325177A (en) Treatment device for water solution containing organic acid
JP2005292154A (en) Nuclide transformation device and method
JP2021110585A (en) Hydrogen generation suppression device and hydrogen generation suppression method
JP6284457B2 (en) Method for recovering nuclear fuel material