JP2006105680A - Non-destructive inspection method of concrete structure - Google Patents

Non-destructive inspection method of concrete structure Download PDF

Info

Publication number
JP2006105680A
JP2006105680A JP2004290286A JP2004290286A JP2006105680A JP 2006105680 A JP2006105680 A JP 2006105680A JP 2004290286 A JP2004290286 A JP 2004290286A JP 2004290286 A JP2004290286 A JP 2004290286A JP 2006105680 A JP2006105680 A JP 2006105680A
Authority
JP
Japan
Prior art keywords
concrete structure
receiver
transmitter
damage
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290286A
Other languages
Japanese (ja)
Inventor
Takumi Ibarada
匠 茨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Engineering Co Ltd
Original Assignee
Sankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Engineering Co Ltd filed Critical Sankyo Engineering Co Ltd
Priority to JP2004290286A priority Critical patent/JP2006105680A/en
Publication of JP2006105680A publication Critical patent/JP2006105680A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive inspection method of a concrete structure constituted so as not only to sharply reduce the noise component contained in a detected waveform but also to make the change in the waveform caused by back damage or inside damage clear. <P>SOLUTION: In the non-destructive inspection method of the concrete structure 6 using ultrasonic waves, a transmitter 2 and a receiver 3 are brought into contact with a part or the whole of the water immersion part of the concrete structure 6 and the resonance vibration of the concrete structure 6 is detected by the receiver 3 while allowing transversal ultrasonic waves to enter the concrete structure 6 from the transmitter 2. On the basis of the detected waveform of the receiver 3, the back damage and/or inside damage of the concrete structure 6 is judged. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波を用いたコンクリート構造物の非破壊検査方法に係り、特に、水路を形成する水路用コンクリート構造物の背面損傷検査に適した非破壊検査方法に関する。   The present invention relates to a nondestructive inspection method for a concrete structure using ultrasonic waves, and more particularly, to a nondestructive inspection method suitable for a back surface damage inspection of a concrete structure for a water channel forming a water channel.

超音波を用いたコンクリート構造物の非破壊検査方法が知られている(例えば、特許文献1〜3参照。)。超音波を発生させる手法は、電気音響変換を行う振動子を用いる場合と、測定部表面の小さい面積に瞬間的な衝撃を与えることにより圧縮歪を生じさせ、その反動で発生する衝撃弾性波(超音波成分を含む弾性波動)を用いる場合の二種類がある。一般的な超音波探傷では前者を用いることが多い。   A nondestructive inspection method for a concrete structure using ultrasonic waves is known (for example, see Patent Documents 1 to 3). The method of generating ultrasonic waves includes the case where a transducer that performs electroacoustic conversion is used, and the generation of compressive strain by applying a momentary impact to a small area on the surface of the measurement unit, and the impact elastic wave ( There are two types when using an elastic wave including an ultrasonic component. In the general ultrasonic flaw detection, the former is often used.

超音波には、個体内を伝搬する場合に密度変化を生じさせる縦波と、形状変化を生じる横波の二種類が存在し、超音波を対象部材に垂直に伝搬させる場合、縦波を用いるのが一般的である。また、横波は、振動の方向により、伝達面に垂直なSV波と、平行なSH波に分類される。   There are two types of ultrasonic waves: longitudinal waves that cause density changes when propagating within an individual and transverse waves that cause shape changes. When ultrasonic waves are propagated vertically to a target member, longitudinal waves are used. Is common. Further, the transverse wave is classified into an SV wave perpendicular to the transmission surface and a parallel SH wave depending on the direction of vibration.

縦波超音波では、測定時の分解能に波長が大きく関わっており、一般に、数値的に分解できる大きさは、1/4〜1/2λ(波長)といわれている。
音速、周波数及び波長には、次式のような関係がある。
C(音速)=f(周波数)・λ(波長)
固体は、それぞれが固有の音速を持っているため、周波数を高くすると、波長が小さくなり、分解能が向上する。
In longitudinal wave ultrasonic waves, the wavelength is greatly related to the resolution at the time of measurement, and generally, the size that can be numerically resolved is said to be 1/4 to 1 / 2λ (wavelength).
The sound velocity, frequency, and wavelength have the following relationship.
C (sound speed) = f (frequency) · λ (wavelength)
Each solid has its own speed of sound, so increasing the frequency reduces the wavelength and improves resolution.

ただし、コンクリートのような混和材の場合、密度変化を使用する縦波は、骨材や鉄筋などの影響を受けて反射が起こり易いため、波長を小さくすると、音波の反射位置を特定できなかったり、音波が減衰して底面まで届かないことがある。一方、横波は、波長の大小が垂直方向に関係しないため、周波数の低い可聴帯周波数(20kHz以下)を用いた場合でも、薄板の厚さ等を精度良く測定できる利点があるが、内部の小さい空隙等の形状変化を伝搬させる傷は検出できない。コンクリートの音速は、縦波音速=4,000m/sec、横波音速=2,000m/secが一般的な値として使われることが多く、現状のコンクリート超音波探傷では、縦波超音波で周波数100kHz〜400kHz程度のものが使用されている。   However, in the case of admixtures such as concrete, longitudinal waves that use density changes are likely to be reflected due to the influence of aggregates, reinforcing bars, etc., so if the wavelength is reduced, the reflection position of sound waves may not be specified. The sound wave may attenuate and may not reach the bottom surface. On the other hand, since the wavelength of the transverse wave does not relate to the vertical direction, there is an advantage that the thickness of the thin plate can be accurately measured even when an audible frequency (20 kHz or less) having a low frequency is used. Scratches that propagate shape changes such as voids cannot be detected. As for the sound velocity of concrete, longitudinal wave velocity = 4,000 m / sec and transverse wave velocity = 2,000 m / sec are often used as common values. In the current concrete ultrasonic flaw detection, longitudinal wave ultrasonic waves have a frequency of 100 kHz. The one of about ~ 400 kHz is used.

超音波を用いるコンクリート構造物の非破壊検査方法としては、衝撃弾性波反射法や横波超音波共振法が実用化されている。衝撃弾性波反射法は、鋼材の探傷等に用いられている超音波反射法と考え方は同じであるが、衝撃弾性波に含まれる超音波成分を用いて測定を行う点が相違している。また、一般的な電気音響変換振動子を用いた超音波反射法では、音波エネルギーを対象部材内部に伝搬させるために、送信器と対象部材表面を密着させるグリセリンペースト等の接触媒質を必要とするが、衝撃弾性波の超音波成分を利用する衝撃弾性波反射法では、送信器を点接触で使用することができるため、接触媒質を使用する必要がない。   As a nondestructive inspection method for a concrete structure using ultrasonic waves, a shock elastic wave reflection method and a transverse wave ultrasonic resonance method have been put into practical use. The impact elastic wave reflection method has the same concept as the ultrasonic reflection method used for flaw detection of steel materials, but is different in that measurement is performed using an ultrasonic component included in the impact elastic wave. In addition, in the ultrasonic reflection method using a general electroacoustic transducer, a contact medium such as glycerin paste for bringing the transmitter and the surface of the target member into close contact is required in order to propagate the sound wave energy into the target member. However, in the shock elastic wave reflection method using the ultrasonic component of the shock elastic wave, the transmitter can be used for point contact, so that it is not necessary to use a contact medium.

衝撃弾性波反射法によるコンクリート構造物の非破壊検査を実施する場合には、図1の(A)に示すように、予め並列法や透過法を用いて、対象部材固有の基準音速を調べておく必要がある。コンクリート構造物は、セメントの種類や骨材の配合状態により超音波の透過音速が異なるため、基準音速は対象部材の測定点近傍で測定することが望ましい。   When conducting a nondestructive inspection of a concrete structure by the shock elastic wave reflection method, as shown in FIG. 1A, the reference sound speed specific to the target member is checked in advance using the parallel method or the transmission method. It is necessary to keep. In concrete structures, since the transmitted sound speed of ultrasonic waves varies depending on the type of cement and the composition of aggregates, it is desirable to measure the reference sound speed near the measurement point of the target member.

衝撃弾性波反射法によれば、コンクリート構造物の厚さを測定することができる。図1の(B)に示すように、衝撃弾性波反射法による厚さ測定は、コンクリート構造物の表面から送信器の打撃により衝撃弾性波を入射すると共に、背面部からの反射波を受信器で検出することにより行われる。つまり、事前に測定した基準音速をもとに、コンクリート構造物の内部より探査して得られた反射点までの時間からコンクリート構造物の厚さを算出する。   According to the shock elastic wave reflection method, the thickness of the concrete structure can be measured. As shown in FIG. 1 (B), the thickness measurement by the shock elastic wave reflection method is such that a shock elastic wave is incident from the surface of a concrete structure by striking a transmitter and a reflected wave from the back surface is received by a receiver. This is done by detecting with. That is, the thickness of the concrete structure is calculated from the time to the reflection point obtained by exploring from the inside of the concrete structure based on the reference sound velocity measured in advance.

また、衝撃弾性波反射法によれば、コンクリート構造物の背面損傷を探査することができる。図1の(C)に示すように、衝撃弾性波反射法では、背面の形状により、衝撃弾性波の反射が乱れるため、この反射波の状態(反射エコーの大きさ・形状等)を見極めることにより、背面の状態を判定することが可能である。例えば、健全部の検出波形を基準波形とし、この基準波形と各測定点の検出波形を比較することにより、損傷部及び損傷程度を特定することができる。   Moreover, according to the shock elastic wave reflection method, the back surface damage of the concrete structure can be investigated. As shown in FIG. 1C, in the shock elastic wave reflection method, the reflection of the shock elastic wave is disturbed due to the shape of the back surface. Therefore, the state of the reflected wave (size, shape, etc. of the reflected echo) should be determined. Thus, it is possible to determine the state of the back surface. For example, the damaged part and the degree of damage can be specified by using the detection waveform of the healthy part as a reference waveform and comparing the reference waveform with the detection waveform of each measurement point.

横波超音波共振法に用いる横波は、固体のみで存在する音波波動であり、横波超音波共振法では、SH波と呼ばれる水平横波を使用するため、波長は水平方向のみに作用し、垂直方向には関係しない。このため音波の持つ波長が深さ方向(伝搬して進む方向)に対して相関がなく、任意の周波数を使用することが可能である。また、密度変化を使用しないため、微細な気泡や内部の小径鉄筋等の密度変動に影響されないという利点がある。   The transverse wave used in the transverse ultrasonic resonance method is an acoustic wave that exists only in a solid. In the transverse ultrasonic resonance method, a horizontal transverse wave called an SH wave is used, so the wavelength acts only in the horizontal direction, and in the vertical direction. Does not matter. For this reason, the wavelength of the sound wave has no correlation with the depth direction (the direction of propagation and travel), and an arbitrary frequency can be used. Moreover, since density change is not used, there is an advantage that it is not affected by density fluctuations such as fine bubbles and internal small-diameter reinforcing bars.

固体は、無数の固有振動数を持っているが、コンクリート構造物のような複合材料では特にその現象が顕著である。このような部材に広帯域の横波を入射すると、対象部材の固有振動数により透過しやすい波長が伝搬して不可視部の情報が容易に検出できるようになる。また、固体の固有振動数は、固体の強度や厚さに関係しており、内部剥離や部材厚の減少という形状的な不連続部では、固有振動数が変化するため、容易に検出が可能である。ただし、横波の特性上、微細不連続部では横波の形状変化が伝搬するため、ある程度の面積を持つことが必要となるが、コンクリート構造物の補修要否を基本として捉えると、ある程度の面積を有する損傷の検出が優先されると考えられ、都合がよい場合もある。   Solids have an infinite number of natural frequencies, but this phenomenon is particularly noticeable in composite materials such as concrete structures. When a broadband transverse wave is incident on such a member, a wavelength that is likely to be transmitted propagates depending on the natural frequency of the target member, and information on the invisible part can be easily detected. In addition, the natural frequency of a solid is related to the strength and thickness of the solid, and it can be easily detected because the natural frequency changes at a discontinuous shape such as internal peeling or a decrease in member thickness. It is. However, due to the characteristics of the transverse wave, the shape change of the transverse wave propagates in the fine discontinuous part, so it is necessary to have a certain area, but if it is based on the necessity of repair of the concrete structure, a certain amount of area is required. It may be convenient to detect the damage it has and may be convenient.

横波超音波共振法によれば、コンクリート構造物の厚さを測定することができる。図2に示すように、横波超音波共振法による厚さ測定は、コンクリート構造物の表面から送信器を用いて、低周波成分を含む広帯域な超音波を伝播させ、コンクリート構造物に膜振動を発生させる。この膜振動は共振振動と呼ばれ、この共振振動を受信器で捉えることにより、コンクリート厚さを推定しようとする検査手法である。   According to the transverse wave ultrasonic resonance method, the thickness of the concrete structure can be measured. As shown in FIG. 2, the thickness measurement by the transverse wave ultrasonic resonance method uses a transmitter from the surface of the concrete structure to propagate wideband ultrasonic waves including low-frequency components, and causes membrane vibration to the concrete structure. generate. This membrane vibration is called resonance vibration, and it is an inspection method for estimating the concrete thickness by capturing this resonance vibration with a receiver.

また、衝撃弾性波反射法によれば、コンクリート構造物の背面損傷を探査することができる。つまり、上記の共振振動数は、部材の厚さに応じて変化するため、健全部で基準となる共振振動数を記録し、測定点の共振法探査結果と比較して共振振動数の変化幅や探傷波形の形状により、背面損傷に伴う部材厚変化の推定が可能となる。センサーの設置間隔は任意に設定が可能であり、検出したい傷の大きさに応じて変化させることができる。   Moreover, according to the shock elastic wave reflection method, the back surface damage of the concrete structure can be investigated. In other words, since the above-mentioned resonance frequency changes depending on the thickness of the member, the reference resonance frequency is recorded in the sound part, and the change width of the resonance frequency is compared with the resonance method search result at the measurement point. And the shape of the flaw detection waveform, it is possible to estimate the change in the thickness of the member due to the rear surface damage. The sensor installation interval can be arbitrarily set, and can be changed according to the size of the wound to be detected.

共振振動数の捉え方は、横波音速が2,000m/secと仮定すると、10cmの長さを伝搬する時間は、
10cm÷2,000m/sec=50μsec
となり、
1波長が50μsecとなる周波数は、
10cm÷50μsec=20kHz
となる。
Assuming that the shear wave velocity is 2,000 m / sec, the time to propagate the length of 10 cm is as follows.
10cm ÷ 2,000m / sec = 50μsec
And
The frequency at which one wavelength is 50 μsec is
10cm ÷ 50μsec = 20kHz
It becomes.

このように健全部の部材厚さが既知の場合、弾性波反射法と同様に基準音速を調べることにより、部材厚との関係から対象部材の固有振動数を知ることができる。これらの関係から固有振動数と基準音速を知ることにより、部材厚さ及び損傷程度の推定が可能となる。
WO00/13008号公報 特開2003−329593号公報 特開2003−329656号公報
Thus, when the member thickness of the healthy part is known, the natural frequency of the target member can be known from the relationship with the member thickness by examining the reference sound velocity in the same manner as the elastic wave reflection method. Knowing the natural frequency and the reference sound speed from these relationships makes it possible to estimate the member thickness and the degree of damage.
WO00 / 13008 JP 2003-329593 A JP 2003-329656 A

上記の衝撃弾性波反射法や横波超音波共振法は、コンクリート構造物の非破壊検査方法として有用であり、様々な建築土木分野で実用化されているが、実際の測定波形は、多くのノイズ成分を含むことが経験的に知られている。このような測定波形から損傷部を特定するには、相当の経験が要求されるだけでなく、測定作業者毎に判定基準が微妙に相違し、判定結果にばらつきが生じるという問題がある。   The above shock elastic wave reflection method and shear wave ultrasonic resonance method are useful as non-destructive inspection methods for concrete structures and have been put to practical use in various fields of construction and civil engineering. It is empirically known to contain ingredients. In order to identify a damaged part from such a measurement waveform, not only a considerable experience is required, but also the determination criteria are slightly different for each measurement operator, and there is a problem that the determination results vary.

また、近年では、コンクリート管(PC管)、ボックスカルバート(3面又は4面)、覆工コンクリートなどの水路用コンクリート構造物を対象として、超音波を用いた非破壊検査を実施することが提案されている。その目的は、水路用コンクリート構造物の周囲を掘削することなく、水路用コンクリート構造物の背面損傷(外周損傷)を点検することにあり、これが可能になれば、水路用コンクリート構造物の点検コストを飛躍的に削減することができる。   In recent years, non-destructive inspection using ultrasonic waves has been proposed for concrete structures for waterways such as concrete pipes (PC pipes), box culverts (3 or 4 faces), and lining concrete. Has been. The purpose is to inspect the backside damage (peripheral damage) of the concrete structure for waterways without excavating the surroundings of the concrete structure for waterways, and if this is possible, the inspection cost of the concrete structure for waterways Can be drastically reduced.

例えば、水路用コンクリート構造物の内周面に送信器及び受信器を接触させ、送信器から水路用コンクリート構造物に衝撃弾性波や横波超音波を入射しつつ、水路用コンクリート構造物の反射波や共振振動を受信器で検出すれば、受信器の検出波形に基づいて、水路用コンクリート構造物の背面損傷を判定できると考えられるが、現実的には、点検時に水路用コンクリート構造物内の水を抜かなければならないという問題や、検出波形に多くのノイズ成分が含まれるという問題があり、実施が困難であった。   For example, a transmitter and a receiver are brought into contact with the inner peripheral surface of a waterway concrete structure, and a shock elastic wave or a transverse ultrasonic wave is incident on the waterway concrete structure from the transmitter while a reflected wave of the waterway concrete structure is reflected. It is considered that if the receiver detects resonance vibration and the resonance vibration, it is possible to determine the back damage of the concrete structure for the water channel based on the detected waveform of the receiver. Implementation has been difficult due to the problem that water must be drained and the detection waveform contains many noise components.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、超音波を用いたコンクリート構造物の非破壊検査方法であって、一部又は全体が浸水したコンクリート構造物の浸水部分に送信器及び受信器を接触させ、前記送信器からコンクリート構造物に横波超音波を入射しつつ、コンクリート構造物の共振振動を前記受信器で検出し、該受信器の検出波形に基づいて、コンクリート構造物の背面損傷及び/又は内部損傷を判定することを特徴とする。このようにすれば、横波超音波共振法によるコンクリート構造物の非破壊検査において、検出波形に含まれるノイズ成分を大幅に削減できるだけでなく、背面損傷や内部損傷による波形変化を明確化することができる。これは、水が接触媒質となって、横波超音波が効率良くコンクリート構造物に入射されることや、コンクリート構造物の共振振動を効率良く取り出せることに加え、コンクリート構造物自体が浸透した水によって均質化されることが原因と考えられる。その結果、熟練した作業者でなくとも、損傷部を容易に判定できるだけでなく、測定作業者毎に判定結果にばらつきが生じるという問題を解消することができる。
また、前記コンクリート構造物は、水路を形成する水路用コンクリート構造物であり、該水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の内周面に前記送信器及び前記受信器を接触させ、前記送信器から水路用コンクリート構造物に横波超音波を入射しつつ、水路用コンクリート構造物の共振振動を前記受信器で検出し、該受信器の検出波形に基づいて、水路用コンクリート構造物の背面損傷を判定することを特徴とする。このようにすれば、水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の背面損傷を検査できるだけでなく、水路用コンクリート構造物から水を抜いて検査した場合に比べ、検査精度も向上させることができる。
また、超音波成分を含む衝撃弾性波を用いたコンクリート構造物の非破壊検査方法であって、一部又は全体が浸水したコンクリート構造物の浸水部分に送信器及び受信器を接触させ、前記送信器からコンクリート構造物に衝撃弾性波を入射しつつ、コンクリート構造物内で反射した超音波を前記受信器で検出し、該受信器の検出波形に基づいて、コンクリート構造物の背面損傷及び/又は内部損傷を判定することを特徴とする。このようにすれば、衝撃弾性波反射法によるコンクリート構造物の非破壊検査において、検出波形に含まれるノイズ成分を大幅に削減できるだけでなく、背面損傷や内部損傷による波形変化を明確化することができる。これは、水が接触媒質となって、衝撃弾性波が効率良くコンクリート構造物に入射されることや、コンクリート構造物の反射波を効率良く取り出せることに加え、コンクリート構造物自体が浸透した水によって均質化されることが原因と考えられる。その結果、熟練した作業者でなくとも、損傷部を容易に判定できるだけでなく、測定作業者毎に判定結果にばらつきが生じるという問題を解消することができる。
また、前記コンクリート構造物は、水路を形成する水路用コンクリート構造物であり、該水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の内周面に前記送信器及び前記受信器を接触させ、前記送信器から水路用コンクリート構造物に衝撃弾性波を入射しつつ、水路用コンクリート構造物内で反射した超音波を前記受信器で検出し、該受信器の検出波形に基づいて、水路用コンクリート構造物の背面損傷を判定することを特徴とする。このようにすれば、水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の背面損傷を検査できるだけでなく、水路用コンクリート構造物から水を抜いて検査した場合に比べ、検査精度も向上させることができる。
The present invention was created for the purpose of solving these problems in view of the above circumstances, and is a non-destructive inspection method for concrete structures using ultrasonic waves, part or all of which is provided. A transmitter and a receiver are brought into contact with the flooded portion of the submerged concrete structure, and a transverse wave ultrasonic wave is incident on the concrete structure from the transmitter, and the resonance vibration of the concrete structure is detected by the receiver. It is characterized in that the back damage and / or internal damage of the concrete structure is determined based on the detection waveform of the container. In this way, in the non-destructive inspection of concrete structures by the transverse ultrasonic resonance method, not only can the noise component contained in the detected waveform be significantly reduced, but also the change in the waveform due to back damage and internal damage can be clarified. it can. This is because water acts as a contact medium, so that transverse ultrasonic waves are efficiently incident on the concrete structure, and the resonance vibration of the concrete structure can be efficiently extracted, and the water that has penetrated the concrete structure itself. The cause is considered to be homogenization. As a result, not only a skilled worker but also a damaged part can be easily determined, and the problem that the determination result varies for each measurement worker can be solved.
Further, the concrete structure is a concrete structure for a water channel forming a water channel, and the transmitter and the receiver are arranged on the inner peripheral surface of the concrete structure for water channel without draining water from the concrete structure for water channel. , And the resonant vibration of the concrete structure for a water channel is detected by the receiver while a transverse wave ultrasonic wave is incident on the concrete structure for a water channel from the transmitter. Based on the detected waveform of the receiver, It is characterized by judging the back damage of the concrete structure. In this way, it is possible not only to inspect the backside damage of the concrete structure for a canal without draining water from the concrete structure for a canal, but also the inspection accuracy compared with the case of inspecting after removing the water from the concrete structure for a canal. Can also be improved.
Further, it is a nondestructive inspection method for a concrete structure using a shock elastic wave containing an ultrasonic component, and a transmitter and a receiver are brought into contact with a flooded portion of a concrete structure partially or entirely submerged, and the transmission is performed. The ultrasonic wave reflected in the concrete structure is detected by the receiver while an impact elastic wave is incident on the concrete structure from the vessel, and based on the detected waveform of the receiver, the back damage of the concrete structure and / or It is characterized by determining internal damage. In this way, in non-destructive inspection of concrete structures by the impact elastic wave reflection method, not only can the noise component contained in the detected waveform be significantly reduced, but also the change in waveform due to backside damage or internal damage can be clarified. it can. This is because water becomes a contact medium, impact elastic waves are efficiently incident on the concrete structure, and reflected waves from the concrete structure can be extracted efficiently, as well as by the water that has penetrated the concrete structure itself. The cause is considered to be homogenization. As a result, not only a skilled worker but also a damaged part can be easily determined, and the problem that the determination result varies for each measurement worker can be solved.
Further, the concrete structure is a concrete structure for a water channel forming a water channel, and the transmitter and the receiver are arranged on the inner peripheral surface of the concrete structure for water channel without draining water from the concrete structure for water channel. The ultrasonic wave reflected in the concrete structure for water channel is detected by the receiver while the impact elastic wave is incident on the concrete structure for water channel from the transmitter, and based on the detection waveform of the receiver. The rear surface damage of the concrete structure for waterways is judged. In this way, it is possible not only to inspect the backside damage of the concrete structure for a canal without draining water from the concrete structure for a canal, but also the inspection accuracy compared with the case of inspecting after removing the water from the concrete structure for a canal. Can also be improved.

以上のように、本発明によれば、横波超音波共振法や衝撃弾性波反射法によるコンクリート構造物の非破壊検査において、検出波形に含まれるノイズ成分を大幅に削減できるだけでなく、背面損傷や内部損傷による波形変化を明確化することができる。ことにより、熟練した作業者でなくとも、損傷部を容易に判定できるだけでなく、測定作業者毎に判定結果にばらつきが生じるという問題を解消することができる。
また、本発明の非破壊検査方法を、水路用コンクリート構造物に適用すると、水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の背面損傷を検査できるだけでなく、水路用コンクリート構造物から水を抜いて検査した場合に比べ、検査精度も向上させることができる。
As described above, according to the present invention, in the nondestructive inspection of a concrete structure by the transverse ultrasonic resonance method or the impact elastic wave reflection method, not only can the noise component contained in the detected waveform be significantly reduced, Waveform changes due to internal damage can be clarified. Thus, not only a skilled worker but also a damaged part can be easily determined, and the problem that the determination result varies among measurement workers can be solved.
In addition, when the nondestructive inspection method of the present invention is applied to a concrete structure for a waterway, it is possible not only to inspect the back surface damage of the concrete structure for a waterway without draining water from the concrete structure for a waterway, but also to a concrete structure for a waterway. The inspection accuracy can be improved as compared with the case where the inspection is performed by removing water from the object.

次に、本発明の実施形態について、図面に基づいて説明する。図3において、1は超音波検査装置であって、該超音波検査装置1は、横波超音波共振法又は衝撃弾性波反射法に適合したものであり、送信器2(送信用探触子)、受信器3(受信用探触子)、オシロスコープ4(検出波形表示装置)、コンピュータ5(検出波形記憶装置)などを接続して使用される。   Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 3, reference numeral 1 denotes an ultrasonic inspection apparatus, which is adapted to the transverse ultrasonic resonance method or the impact elastic wave reflection method, and has a transmitter 2 (transmission probe). The receiver 3 (reception probe), the oscilloscope 4 (detection waveform display device), the computer 5 (detection waveform storage device), etc. are connected to be used.

横波超音波共振法に適合した超音波検査装置1では、コンクリート構造物6に送信器2及び受信器3を接触させ、送信器2からコンクリート構造物6に横波超音波を入射しつつ、コンクリート構造物6の共振振動を受信器3で検出し、この検出波形に基づいて、コンクリート構造物6の背面損傷や内部損傷を判定することができる。   In the ultrasonic inspection apparatus 1 adapted to the transverse wave ultrasonic resonance method, the transmitter 2 and the receiver 3 are brought into contact with the concrete structure 6, and the transverse wave ultrasonic wave is incident on the concrete structure 6 from the transmitter 2. Resonant vibration of the object 6 is detected by the receiver 3, and based on this detected waveform, damage to the back surface or internal damage of the concrete structure 6 can be determined.

また、衝撃弾性波反射法に適合した超音波検査装置1では、コンクリート構造物6に送信器2及び受信器3を接触させ、送信器2からコンクリート構造物6に衝撃弾性波を入射しつつ、コンクリート構造物6内で反射した超音波を受信器3で検出し、この検出波形に基づいて、コンクリート構造物6の背面損傷や内部損傷を判定することができる。   Further, in the ultrasonic inspection apparatus 1 adapted to the shock elastic wave reflection method, the transmitter 2 and the receiver 3 are brought into contact with the concrete structure 6 and a shock elastic wave is incident on the concrete structure 6 from the transmitter 2. The ultrasonic waves reflected in the concrete structure 6 can be detected by the receiver 3, and based on this detected waveform, the back surface damage and internal damage of the concrete structure 6 can be determined.

なお、超音波検査装置1の構成は、横波超音波共振法又は衝撃弾性波反射法に適合するものであれば、特に制限はなく、公知の構成からなる超音波検査装置1を用いることができる。   The configuration of the ultrasonic inspection apparatus 1 is not particularly limited as long as it conforms to the transverse wave ultrasonic resonance method or the impact elastic wave reflection method, and the ultrasonic inspection apparatus 1 having a known configuration can be used. .

[コンクリート構造物の非破壊検査方法1]
本発明に係るコンクリート構造物の非破壊検査方法1は、図4に示すように、一部又は全体が浸水したコンクリート構造物6の浸水部分に送信器2及び受信器3を接触させ、送信器2からコンクリート構造物6に横波超音波を入射しつつ、コンクリート構造物6の共振振動を受信器3で検出し、該受信器3の検出波形に基づいて、コンクリート構造物6の背面損傷及び/又は内部損傷を判定することに特徴がある。
[Non-destructive inspection method 1 for concrete structures]
As shown in FIG. 4, a non-destructive inspection method 1 for a concrete structure according to the present invention brings a transmitter 2 and a receiver 3 into contact with a submerged portion of a concrete structure 6 partially or entirely submerged, thereby transmitting the transmitter. 2, while the transverse wave ultrasonic wave is incident on the concrete structure 6, the resonance vibration of the concrete structure 6 is detected by the receiver 3, and based on the detected waveform of the receiver 3, damage to the back surface of the concrete structure 6 and / or It is also characterized by determining internal damage.

このような方法によれば、横波超音波共振法によるコンクリート構造物6の非破壊検査において、検出波形に含まれるノイズ成分を大幅に削減できるだけでなく、背面損傷や内部損傷による波形変化を明確化することができる。これは、水が接触媒質となって、横波超音波が効率良くコンクリート構造物6に入射されることや、コンクリート構造物6の共振振動を効率良く取り出せることに加え、コンクリート構造物6自体が浸透した水によって均質化されることが原因と考えられる。これにより、熟練した作業者でなくとも、損傷部を容易に判定できるだけでなく、測定作業者毎に判定結果にばらつきが生じるという問題を解消することができる。   According to such a method, in the nondestructive inspection of the concrete structure 6 by the transverse wave ultrasonic resonance method, not only can the noise component contained in the detected waveform be significantly reduced, but also the change in the waveform due to backside damage or internal damage is clarified. can do. This is because water acts as a contact medium, so that the transverse ultrasonic waves are efficiently incident on the concrete structure 6 and the resonance vibration of the concrete structure 6 can be efficiently extracted, and the concrete structure 6 itself penetrates. This is considered to be caused by homogenization by the water. Thereby, even if it is not a skilled worker, not only a damaged part can be determined easily, but the problem that the determination result varies for every measurement worker can be solved.

非破壊検査方法1の検査対象となるコンクリート構造物6に制限はないが、コンクリート管、ボックスカルバート、覆工コンクリートなどの水路用コンクリート構造物6を検査対象とした場合、多くのメリットがある。つまり、水路用コンクリート構造物6から水を抜くことなく、水路用コンクリート構造物6の内周面に送信器2及び受信器3を接触させ、送信器2から水路用コンクリート構造物6に横波超音波を入射しつつ、水路用コンクリート構造物6の共振振動を受信器3で検出し、該受信器3の検出波形に基づいて、水路用コンクリート構造物6の背面損傷を判定する。このような検査方法によれば、水路用コンクリート構造物6から水を抜くことなく、水路用コンクリート構造物6の背面損傷を検査できるだけでなく、水路用コンクリート構造物6から水を抜いて検査した場合に比べ、検査精度も向上させることができる。   Although there is no restriction | limiting in the concrete structure 6 used as the test object of the nondestructive inspection method 1, There are many merits when the concrete structure 6 for waterways, such as a concrete pipe, a box culvert, and lining concrete, is made into a test object. That is, the transmitter 2 and the receiver 3 are brought into contact with the inner peripheral surface of the waterway concrete structure 6 without draining water from the waterway concrete structure 6, and the transverse wave is transmitted from the transmitter 2 to the waterway concrete structure 6. Resonant vibration of the waterway concrete structure 6 is detected by the receiver 3 while the sound wave is incident, and damage to the back surface of the waterway concrete structure 6 is determined based on the detected waveform of the receiver 3. According to such an inspection method, it is possible not only to inspect the back surface damage of the waterway concrete structure 6 without draining water from the waterway concrete structure 6, but also to drain water from the waterway concrete structure 6 and inspect it. Compared to the case, the inspection accuracy can also be improved.

[コンクリート構造物の非破壊検査方法2]
また、本発明に係るコンクリート構造物の非破壊検査方法2は、図5に示すように、一部又は全体が浸水したコンクリート構造物6の浸水部分に送信器2及び受信器3を接触させ、送信器2からコンクリート構造物6に衝撃弾性波を入射しつつ、コンクリート構造物6内で反射した超音波を受信器3で検出し、該受信器3の検出波形に基づいて、コンクリート構造物6の背面損傷及び/又は内部損傷を判定することに特徴がある。
[Non-destructive inspection method 2 for concrete structures]
Further, the nondestructive inspection method 2 for a concrete structure according to the present invention, as shown in FIG. 5, the transmitter 2 and the receiver 3 are brought into contact with the flooded portion of the concrete structure 6 partially or entirely submerged. The ultrasonic wave reflected in the concrete structure 6 is detected by the receiver 3 while the impact elastic wave is incident on the concrete structure 6 from the transmitter 2, and the concrete structure 6 is detected based on the detected waveform of the receiver 3. It is characterized by determining the back surface damage and / or internal damage.

このような方法によれば、衝撃弾性波反射法によるコンクリート構造物6の非破壊検査において、検出波形に含まれるノイズ成分を大幅に削減できるだけでなく、背面損傷や内部損傷による波形変化を明確化することができる。これは、水が接触媒質となって、衝撃弾性波が効率良くコンクリート構造物6に入射されることや、コンクリート構造物6の反射波を効率良く取り出せることに加え、コンクリート構造物6自体が浸透した水によって均質化されることが原因と考えられる。これにより、熟練した作業者でなくとも、損傷部を容易に判定できるだけでなく、測定作業者毎に判定結果にばらつきが生じるという問題を解消することができる。   According to such a method, in the nondestructive inspection of the concrete structure 6 by the shock elastic wave reflection method, not only the noise component included in the detected waveform can be greatly reduced, but also the waveform change due to the back surface damage or internal damage is clarified. can do. This is because water acts as a contact medium and impact elastic waves are efficiently incident on the concrete structure 6 and the reflected waves of the concrete structure 6 can be efficiently extracted, and the concrete structure 6 itself penetrates. This is considered to be caused by homogenization by the water. Thereby, even if it is not a skilled worker, not only a damaged part can be determined easily, but the problem that the determination result varies for every measurement worker can be solved.

非破壊検査方法2の検査対象となるコンクリート構造物6に制限はないが、コンクリート管、ボックスカルバート、覆工コンクリートなどの水路用コンクリート構造物6を検査対象とした場合、多くのメリットがある。つまり、水路用コンクリート構造物6から水を抜くことなく、水路用コンクリート構造物6の内周面に送信器2及び受信器3を接触させ、送信器2から水路用コンクリート構造物6に衝撃弾性波を入射しつつ、水路用コンクリート構造物6内で反射した超音波を受信器3で検出し、該受信器3の検出波形に基づいて、水路用コンクリート構造物6の背面損傷を判定する。このような検査方法によれば、水路用コンクリート構造物6から水を抜くことなく、水路用コンクリート構造物6の背面損傷を検査できるだけでなく、水路用コンクリート構造物6から水を抜いて検査した場合に比べ、検査精度も向上させることができる。   Although there is no restriction | limiting in the concrete structure 6 used as the test object of the nondestructive inspection method 2, There are many merits when the concrete structure 6 for waterways, such as a concrete pipe, a box culvert, and lining concrete, is made into a test object. That is, the transmitter 2 and the receiver 3 are brought into contact with the inner peripheral surface of the waterway concrete structure 6 without draining water from the waterway concrete structure 6, and the impact elasticity of the transmitter 2 to the waterway concrete structure 6 is obtained. While receiving the wave, the ultrasonic wave reflected in the concrete structure for water channel 6 is detected by the receiver 3, and based on the detected waveform of the receiver 3, the rear surface damage of the concrete structure for water channel 6 is determined. According to such an inspection method, it is possible not only to inspect the back surface damage of the waterway concrete structure 6 without draining water from the waterway concrete structure 6, but also to drain water from the waterway concrete structure 6 and inspect it. Compared to the case, the inspection accuracy can also be improved.

[実施例]
前述した非破壊検査方法1を用い、図6に示すコンクリート管7の背面探傷検査を行った。コンクリート管7の外周面(背面)には、図7に示すような模擬的な損傷が複数形成してあり、損傷面積は、300mm×300mm〜400mm×400mm程度とし、損傷深さは、20mm〜60mm程度とした。また、各損傷部には、図8に示すように、測線A、B、Cを設定し、各測線A、B、C上に8個の測点を設定した。
[Example]
Using the nondestructive inspection method 1 described above, the back flaw inspection of the concrete pipe 7 shown in FIG. 6 was performed. A plurality of simulated damages as shown in FIG. 7 are formed on the outer peripheral surface (back surface) of the concrete pipe 7, the damage area is about 300 mm × 300 mm to 400 mm × 400 mm, and the damage depth is 20 mm to About 60 mm. Further, as shown in FIG. 8, survey lines A, B, and C were set for each damaged portion, and eight measurement points were set on each of the survey lines A, B, and C.

上記のコンクリート管7を水槽内に設置し、全ての測点が浸水するように、水槽内の水位を調節した。その後、コンクリート管7の内周面から測点に送信器2及び受信器3を接触させ、送信器2からコンクリート管7に横波超音波を入射しつつ、コンクリート管7の共振振動を受信器3で検出し、該受信器3の検出波形を記録した。全24点の測点において記録した検出波形のうち、測線C上の8点における検出波形を図9及び図10に示す。   The concrete pipe 7 was installed in the water tank, and the water level in the water tank was adjusted so that all the measurement points were submerged. Thereafter, the transmitter 2 and the receiver 3 are brought into contact with the measuring point from the inner peripheral surface of the concrete pipe 7, and the transverse vibration is incident on the concrete pipe 7 from the transmitter 2, and the resonance vibration of the concrete pipe 7 is received by the receiver 3. And the detection waveform of the receiver 3 was recorded. Of the detection waveforms recorded at all 24 measurement points, the detection waveforms at 8 points on the measurement line C are shown in FIGS.

図9及び図10に示すように、本発明の非破壊検査方法1によれば、ノイズ成分の少ない検出波形が得られるだけでなく、健全部と損傷部とで検出波形(特に振幅)に明確な変化が現れた。これは、水が接触媒質となって、横波超音波が効率良くコンクリート管7に入射されることや、コンクリート管7の共振振動を効率良く取り出せることに加え、コンクリート管7自体が浸透した水によって均質化されることが原因と考えられる。   As shown in FIGS. 9 and 10, according to the nondestructive inspection method 1 of the present invention, not only a detection waveform with a small noise component can be obtained, but also the detection waveform (particularly the amplitude) is clear between the healthy part and the damaged part. Changes appeared. This is because water becomes a contact medium, so that the transverse ultrasonic waves are efficiently incident on the concrete pipe 7 and the resonance vibration of the concrete pipe 7 can be taken out efficiently, and the water that has penetrated the concrete pipe 7 itself. The cause is considered to be homogenization.

また、図11に示すように、損傷深さが異なる3つの測点(A−5、B−5、C−5)の検出波形を比較したところ、検出波形の振幅が損傷深さに応じて大きくなることが解った。ただし、検出波形の振幅は、損傷面積とも相関すると考えられるため、検出波形の振幅と損傷深さを数式化することは難しいが、検出波形の振幅に基づいて、損傷の程度を数段階にランク分けすることは十分に可能と思われる。   In addition, as shown in FIG. 11, when the detection waveforms at three measurement points (A-5, B-5, C-5) having different damage depths are compared, the amplitude of the detection waveform depends on the damage depth. I understood that it would grow. However, since the amplitude of the detected waveform is thought to correlate with the damage area, it is difficult to formulate the amplitude of the detected waveform and the damage depth, but based on the amplitude of the detected waveform, the degree of damage is ranked in several stages. It seems possible enough to divide.

[比較例]
コンクリート管7を浸水させなかったこと以外は、前記実施例と同じ条件でコンクリート管7の背面探傷検査を行った。全24点の測点において記録した検出波形のうち、測線C上の8点における検出波形を図12及び13に示す。図12及び図13に示すように、比較例によれば、検出波形に多くのノイズ成分が含まれるだけでなく、全体として検出波形の振幅が小さい。健全部と損傷部とでは、検出波形に僅かな違いが現れているが、前記実施例のように明確な変化ではないため、損傷部を正確に特定することは困難と思われる。
[Comparative example]
Except that the concrete pipe 7 was not submerged, the back flaw inspection of the concrete pipe 7 was performed under the same conditions as in the above-described example. Of the detection waveforms recorded at all 24 measurement points, the detection waveforms at 8 points on the measurement line C are shown in FIGS. As shown in FIGS. 12 and 13, according to the comparative example, not only a large noise component is included in the detected waveform, but also the amplitude of the detected waveform is small as a whole. Although a slight difference appears in the detected waveform between the healthy part and the damaged part, it is not a clear change as in the above-described embodiment, so it seems difficult to accurately identify the damaged part.

(A)〜(C)は衝撃弾性波反射法の説明図である。(A)-(C) are explanatory drawings of a shock elastic wave reflection method. 横波超音波共振法の説明図である。It is explanatory drawing of a transverse wave ultrasonic resonance method. 非破壊検査システムのブロック図である。It is a block diagram of a nondestructive inspection system. 本発明に係るコンクリート構造物の非破壊検査方法1(横波超音波共振法)を示す説明図である。It is explanatory drawing which shows the nondestructive inspection method 1 (transverse wave ultrasonic resonance method) of the concrete structure based on this invention. 本発明に係るコンクリート構造物の非破壊検査方法2(衝撃弾性波反射法)を示す説明図である。It is explanatory drawing which shows the nondestructive inspection method 2 (shock elastic wave reflection method) of the concrete structure based on this invention. 実施例及び比較例に用いたコンクリート管の断面図である。It is sectional drawing of the concrete pipe used for the Example and the comparative example. コンクリート管の損傷部を示す側面図である。It is a side view which shows the damaged part of a concrete pipe. コンクリート管の測点を示す側面図である。It is a side view which shows the measuring point of a concrete pipe. 実施例の測定結果を示す波形図である。It is a wave form diagram which shows the measurement result of an Example. 実施例の測定結果を示す波形図である。It is a wave form diagram which shows the measurement result of an Example. 実施例の測定結果を示す波形図である。It is a wave form diagram which shows the measurement result of an Example. 比較例の測定結果を示す波形図である。It is a wave form diagram which shows the measurement result of a comparative example. 比較例の測定結果を示す波形図である。It is a wave form diagram which shows the measurement result of a comparative example.

符号の説明Explanation of symbols

1 超音波検査装置
2 送信器
3 受信器
4 オシロスコープ
5 コンピュータ
6 コンクリート構造物
7 コンクリート管
DESCRIPTION OF SYMBOLS 1 Ultrasonic inspection apparatus 2 Transmitter 3 Receiver 4 Oscilloscope 5 Computer 6 Concrete structure 7 Concrete pipe

Claims (4)

超音波を用いたコンクリート構造物の非破壊検査方法であって、一部又は全体が浸水したコンクリート構造物の浸水部分に送信器及び受信器を接触させ、前記送信器からコンクリート構造物に横波超音波を入射しつつ、コンクリート構造物の共振振動を前記受信器で検出し、該受信器の検出波形に基づいて、コンクリート構造物の背面損傷及び/又は内部損傷を判定することを特徴とするコンクリート構造物の非破壊検査方法。   A non-destructive inspection method for a concrete structure using ultrasonic waves, in which a transmitter and a receiver are brought into contact with a flooded portion of a concrete structure partially or entirely submerged, and a transverse wave is transmitted from the transmitter to a concrete structure. Resonance vibration of a concrete structure is detected by the receiver while a sound wave is incident, and the back surface damage and / or internal damage of the concrete structure is determined based on a detection waveform of the receiver. Non-destructive inspection method for structures. 前記コンクリート構造物は、水路を形成する水路用コンクリート構造物であり、該水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の内周面に前記送信器及び前記受信器を接触させ、前記送信器から水路用コンクリート構造物に横波超音波を入射しつつ、水路用コンクリート構造物の共振振動を前記受信器で検出し、該受信器の検出波形に基づいて、水路用コンクリート構造物の背面損傷を判定することを特徴とする請求項1記載のコンクリート構造物の非破壊検査方法。   The concrete structure is a waterway concrete structure forming a waterway, and the transmitter and the receiver are brought into contact with the inner peripheral surface of the waterway concrete structure without draining water from the waterway concrete structure. And detecting the resonance vibration of the concrete structure for a water channel with the receiver while making a transverse wave ultrasonic wave incident on the concrete structure for a water channel from the transmitter, and based on the detected waveform of the receiver, the concrete structure for a water channel The non-destructive inspection method for a concrete structure according to claim 1, wherein damage on the back surface of the object is determined. 超音波成分を含む衝撃弾性波を用いたコンクリート構造物の非破壊検査方法であって、一部又は全体が浸水したコンクリート構造物の浸水部分に送信器及び受信器を接触させ、前記送信器からコンクリート構造物に衝撃弾性波を入射しつつ、コンクリート構造物内で反射した超音波を前記受信器で検出し、該受信器の検出波形に基づいて、コンクリート構造物の背面損傷及び/又は内部損傷を判定することを特徴とするコンクリート構造物の非破壊検査方法。   A non-destructive inspection method for a concrete structure using a shock elastic wave containing an ultrasonic component, wherein a transmitter and a receiver are brought into contact with a flooded portion of a concrete structure partially or entirely submerged, and the transmitter The ultrasonic wave reflected in the concrete structure is detected by the receiver while impact elastic waves are incident on the concrete structure, and the back damage and / or internal damage of the concrete structure is detected based on the detected waveform of the receiver. A non-destructive inspection method for a concrete structure, characterized in that 前記コンクリート構造物は、水路を形成する水路用コンクリート構造物であり、該水路用コンクリート構造物から水を抜くことなく、水路用コンクリート構造物の内周面に前記送信器及び前記受信器を接触させ、前記送信器から水路用コンクリート構造物に衝撃弾性波を入射しつつ、水路用コンクリート構造物内で反射した超音波を前記受信器で検出し、該受信器の検出波形に基づいて、水路用コンクリート構造物の背面損傷を判定することを特徴とする請求項3記載のコンクリート構造物の非破壊検査方法。   The concrete structure is a waterway concrete structure forming a waterway, and the transmitter and the receiver are brought into contact with the inner peripheral surface of the waterway concrete structure without draining water from the waterway concrete structure. The ultrasonic wave reflected in the concrete structure for water channel is detected by the receiver while the impact elastic wave is incident on the concrete structure for water channel from the transmitter, and the water channel is detected based on the detected waveform of the receiver. 4. The nondestructive inspection method for a concrete structure according to claim 3, wherein damage on the back surface of the concrete structure is determined.
JP2004290286A 2004-10-01 2004-10-01 Non-destructive inspection method of concrete structure Pending JP2006105680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290286A JP2006105680A (en) 2004-10-01 2004-10-01 Non-destructive inspection method of concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290286A JP2006105680A (en) 2004-10-01 2004-10-01 Non-destructive inspection method of concrete structure

Publications (1)

Publication Number Publication Date
JP2006105680A true JP2006105680A (en) 2006-04-20

Family

ID=36375610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290286A Pending JP2006105680A (en) 2004-10-01 2004-10-01 Non-destructive inspection method of concrete structure

Country Status (1)

Country Link
JP (1) JP2006105680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088305A (en) * 2011-10-19 2013-05-13 Kanagawa Noriyo Method and device for detecting crack of concrete structure
JP2014185945A (en) * 2013-03-22 2014-10-02 Toshiba Corp Ultrasonic inspection device and ultrasonic inspection method
JP2017111086A (en) * 2015-12-18 2017-06-22 株式会社Ihi System, apparatus, and method for detecting foreign object in concrete structure
CN110133105A (en) * 2019-05-31 2019-08-16 水利部交通运输部国家能源局南京水利科学研究院 A kind of non-contact non-destructive testing method of water logging concrete strength

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235216A (en) * 1985-08-09 1987-02-16 Noritoshi Nakabachi Method and device for measuring thickness of heterogeneous material layer nondestructively
JPS6337256A (en) * 1986-07-31 1988-02-17 Mitsubishi Heavy Ind Ltd Automatic tracking flaw detection of weld line of submerged structure
JPS63111661U (en) * 1987-01-13 1988-07-18
JPS63247653A (en) * 1987-04-03 1988-10-14 Touyoko Erumesu:Kk Method for surveying cracking in concrete bottom part
JPS6465407A (en) * 1987-09-07 1989-03-10 Touyoko Erumesu Kk Measuring instrument for thickness of concrete and position of internal cracking
JPH0271138A (en) * 1988-09-06 1990-03-09 Unyusho Daisan Kowan Kensetsu Kyokucho Apparatus for inspecting underwater structure
JPH0273151A (en) * 1988-09-09 1990-03-13 Japan Puroobu Kk Ultrasonic probe
JPH02150734A (en) * 1988-11-30 1990-06-11 Chubu Electric Power Co Inc Underwater inspecting device
JPH0466508U (en) * 1990-10-19 1992-06-11
JPH04323553A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Method and device for ultrasonic resonance flaw detection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235216A (en) * 1985-08-09 1987-02-16 Noritoshi Nakabachi Method and device for measuring thickness of heterogeneous material layer nondestructively
JPS6337256A (en) * 1986-07-31 1988-02-17 Mitsubishi Heavy Ind Ltd Automatic tracking flaw detection of weld line of submerged structure
JPS63111661U (en) * 1987-01-13 1988-07-18
JPS63247653A (en) * 1987-04-03 1988-10-14 Touyoko Erumesu:Kk Method for surveying cracking in concrete bottom part
JPS6465407A (en) * 1987-09-07 1989-03-10 Touyoko Erumesu Kk Measuring instrument for thickness of concrete and position of internal cracking
JPH0271138A (en) * 1988-09-06 1990-03-09 Unyusho Daisan Kowan Kensetsu Kyokucho Apparatus for inspecting underwater structure
JPH0273151A (en) * 1988-09-09 1990-03-13 Japan Puroobu Kk Ultrasonic probe
JPH02150734A (en) * 1988-11-30 1990-06-11 Chubu Electric Power Co Inc Underwater inspecting device
JPH0466508U (en) * 1990-10-19 1992-06-11
JPH04323553A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Method and device for ultrasonic resonance flaw detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088305A (en) * 2011-10-19 2013-05-13 Kanagawa Noriyo Method and device for detecting crack of concrete structure
JP2014185945A (en) * 2013-03-22 2014-10-02 Toshiba Corp Ultrasonic inspection device and ultrasonic inspection method
JP2017111086A (en) * 2015-12-18 2017-06-22 株式会社Ihi System, apparatus, and method for detecting foreign object in concrete structure
CN110133105A (en) * 2019-05-31 2019-08-16 水利部交通运输部国家能源局南京水利科学研究院 A kind of non-contact non-destructive testing method of water logging concrete strength

Similar Documents

Publication Publication Date Title
US7926349B2 (en) Detection of defects in welded structures
JP5237923B2 (en) Adhesion evaluation apparatus and method
JP2010266378A (en) Ultrasonic diagnosis/evaluation system
Demčenko et al. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure
Stepinski Novel instrument for inspecting rock bolt integrity using ultrasonic guided waves
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP3198840U (en) Prop road boundary inspection system
KR101027069B1 (en) Evaluation method for bonding state of shotcrete
JP2010054497A (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JP4144703B2 (en) Tube inspection method using SH waves
JP7216884B2 (en) Reflected wave evaluation method
JP2006105680A (en) Non-destructive inspection method of concrete structure
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2005017089A (en) Method and device for inspecting tank
JP2004347572A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2006162377A (en) Ultrasonic flaw detector
Gunn et al. Ultrasonic testing of laboratory samples representing monopile wind turbine foundations
Na et al. Underwater inspection of concrete-filled steel pipes using guided waves
JP2001305112A (en) Ultrasonic flaw detection method
Mohamed et al. Low frequency coded waveform for the inspection of concrete structures
JP2010223608A (en) Method for inspecting corrosion-proof coating
Goueygou et al. Non destructive evaluation of degraded concrete cover using high-frequency ultrasound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A131 Notification of reasons for refusal

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100401