JP2006104549A - High strength bolt having excellent delayed fracture resistance and method for improving its delayed fracture resistance - Google Patents

High strength bolt having excellent delayed fracture resistance and method for improving its delayed fracture resistance Download PDF

Info

Publication number
JP2006104549A
JP2006104549A JP2004295857A JP2004295857A JP2006104549A JP 2006104549 A JP2006104549 A JP 2006104549A JP 2004295857 A JP2004295857 A JP 2004295857A JP 2004295857 A JP2004295857 A JP 2004295857A JP 2006104549 A JP2006104549 A JP 2006104549A
Authority
JP
Japan
Prior art keywords
bolt
delayed fracture
ultrasonic
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004295857A
Other languages
Japanese (ja)
Other versions
JP4299758B2 (en
Inventor
Toshizo Tarui
敏三 樽井
Takashi Fujita
崇史 藤田
Taku Yoshida
卓 吉田
Tetsushi Senda
徹志 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004295857A priority Critical patent/JP4299758B2/en
Publication of JP2006104549A publication Critical patent/JP2006104549A/en
Application granted granted Critical
Publication of JP4299758B2 publication Critical patent/JP4299758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength bolt having satisfactory delayed fracture resistance and having a strength of ≥1,500 MPa, and to provide a method for improving its delayed fracture resistance. <P>SOLUTION: The high strength bolt having excellent delayed fracture resistance is composed of a steel having a composition comprising, by mass, 0.65 to 1.1% C, 0.05 to 2% Si, 0.2 to 2% Mn and 0.002 to 0.1% Al, and the balance Fe with inevitable impurities, and having a tensile strength of ≥1,500 MPa, and in which the compressive residual stress in the surface layer of the under head part in the bolt is 20 to 90% of the tensile strength in the steel. The method for improving its delayed fracture resistance is further provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、土木・建築、自動車や各種産業機械等に広く使用されているボルトに関するものであり、特に強度が1500MPa以上で且つ耐遅れ破壊特性に優れた高強度ボルトおよびその耐遅れ破壊特性向上方法に関する。   The present invention relates to a bolt that is widely used in civil engineering / architecture, automobiles, various industrial machines, and the like, and in particular, a high-strength bolt having a strength of 1500 MPa or more and excellent delayed fracture resistance and improved delayed fracture resistance. Regarding the method.

自動車や各種産業機械の軽量化、高性能化あるいは土木・建築構造物の建設費削減のために、高強度ボルトのニーズが高まっている。高強度ボルトは、例えばJIS G4105で規定されているSCM435やSCM440などの低合金鋼を使い、所定の形状に冷間成形後、焼入れ・焼戻し処理によって製造されている。しかし、引張強さが1200MPaを超えると遅れ破壊が発生しやすくなるという問題があった。
高強度鋼の耐遅れ破壊特性を向上させる技術として、例えば、特許文献1にはP、S含有量を低減することが有効であり、また、特許文献2にはSi、Mn含有量を規制するとともに焼入れ処理後、焼戻し工程中で曲げ加工または引き抜き加工を施す方法が開示されている。更に、特許文献3〜6には、合金元素や熱処理時に析出する炭化物に着目した耐遅れ破壊特性向上技術が開示されている。更に、特許文献7、8には、パーライト鋼を伸線加工により強化したボルトが開示されている。これらの技術によって、高強度ボルトの耐遅れ破壊特性は、ある程度向上するものの、抜本的な解決には至っていなかった。
特公平5−59967号公報 特公平5−41684号公報 特開平7−70695号公報 特開平8−60291号公報 特開平11−236617号公報 特開2001−32044号公報 特開昭54−101743号公報 特開平11−315348号公報
There is a growing need for high-strength bolts to reduce the weight and performance of automobiles and various industrial machines, or to reduce construction costs for civil engineering and building structures. The high-strength bolt is manufactured by using a low alloy steel such as SCM435 or SCM440 defined in JIS G4105, and cold-forming into a predetermined shape, followed by quenching and tempering. However, when the tensile strength exceeds 1200 MPa, there is a problem that delayed fracture is likely to occur.
As a technique for improving delayed fracture resistance of high-strength steel, for example, Patent Document 1 is effective to reduce the P and S contents, and Patent Document 2 regulates the contents of Si and Mn. In addition, a method of bending or drawing in the tempering process after quenching is disclosed. Further, Patent Documents 3 to 6 disclose delayed fracture resistance improvement technology focusing on alloy elements and carbides precipitated during heat treatment. Furthermore, Patent Documents 7 and 8 disclose bolts in which pearlite steel is reinforced by wire drawing. Although these techniques improve the delayed fracture resistance of high-strength bolts to some extent, they have not yet led to a radical solution.
Japanese Patent Publication No. 5-59967 Japanese Patent Publication No. 5-41684 Japanese Patent Laid-Open No. 7-70695 JP-A-8-60291 Japanese Patent Laid-Open No. 11-236617 JP 2001-32044 A JP 54-101743 A JP 11-315348 A

本発明は、前述のような従来技術の問題点を解決し、強度が1500MPa以上の耐遅れ破壊特性に優れた高強度ボルトおよびその耐遅れ破壊特性向上方法を提供することを課題とする。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-strength bolt excellent in delayed fracture resistance having a strength of 1500 MPa or more and a method for improving the delayed fracture resistance.

ボルトの高強度化と耐遅れ破壊特性を両立する鋼材成分や組織について詳細に解析した。この結果、高強度ボルトの耐遅れ破壊特性を向上させるためには、従来使用されていなかった高C鋼を用いて、焼戻しマルテンサイト組織もしくは伸線加工したパーライト組織にすることが有効であることを明らかにした。また、析出強化と水素トラップ効果のある合金炭化物を利用することが高強度ボルトの耐遅れ破壊特性の向上に対して極めて有効であることを明らかにした。更に、合金炭化物による析出強化と水素トラップ効果を最大限に発揮するための鋼材成分、熱処理条件を明確にした。これらの知見を元に、種々の強度レベルの実ボルトを用いて、遅れ破壊特性を詳細に解析した。この結果、ナットを完全に締め付けた場合、ボルトの強度が1500MPaを超えると、ねじ部よりもボルト首下部で遅れ破壊しやすいことが明らかになった。そこで、ボルト首下部の耐遅れ破壊特性を向上させる手段について種々検討した結果、圧縮残留応力を付与させることが有効なこと、更に圧縮残留応力の付与方法として従来のショットピーニングよりも超音波打撃処理が遅れ破壊特性の向上に対して極めて有効なことを見出した。   The steel materials and structures that achieve both high strength and delayed fracture resistance are analyzed in detail. As a result, in order to improve the delayed fracture resistance of high-strength bolts, it is effective to use tempered martensite structure or drawn pearlite structure using high-C steel that has not been used in the past. Revealed. In addition, it has been clarified that the use of alloy carbide with precipitation strengthening and hydrogen trapping effect is extremely effective in improving the delayed fracture resistance of high-strength bolts. Furthermore, the steel material components and heat treatment conditions for maximizing the precipitation strengthening and hydrogen trap effect by alloy carbide were clarified. Based on these findings, the delayed fracture characteristics were analyzed in detail using real bolts of various strength levels. As a result, it was found that when the nut is completely tightened, if the bolt strength exceeds 1500 MPa, it is more likely to be delayed and broken at the lower part of the bolt neck than at the threaded part. Therefore, as a result of various investigations on means for improving the delayed fracture resistance at the bottom of the bolt neck, it is effective to apply compressive residual stress, and moreover, ultrasonic impact treatment than conventional shot peening is applied as a method of applying compressive residual stress. Has been found to be extremely effective in improving delayed fracture characteristics.

以上の検討結果に基づき、鋼材組成、組織、圧縮残留応力および超音波打撃処理による圧縮残留応力の付与方法を最適に選択すれば、耐遅れ破壊特性の優れた高強度ボルトを実現できると言う結論に達し、本発明をなしたものである。
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、次の通りである。
(1)質量%で、C:0.65〜1.1%、Si:0.05〜2%、Mn:0.2〜2%、Al:0.002〜0.1%を含有し、残部がFe及び不可避的不純物からなり、かつ、引張強さが1500MPa以上の鋼材で構成された高強度ボルトであって、前記ボルトの首下部表層の圧縮残留応力が前記鋼材の引張強さの20〜90%であることを特徴とする耐遅れ破壊特性に優れた高強度ボルト。
(2)さらに、質量%で、Cr:0.1〜2%、Mo:0.05〜3%、V:0.05〜1%、Ti:0.002〜0.5%、Nb:0.002〜0.5%の1種または2種以上を含有することを特徴とする(1)に記載の耐遅れ破壊特性に優れた高強度ボルト。
(3)(1)または(2)に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を900℃以上に加熱し、熱間でボルト成形した後、焼入れ処理および500〜700℃で焼戻し処理を行った後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。
(4)(1)または(2)に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を用いてボルト成形した後、焼入れ温度:900℃以上、焼戻し温度:500〜700℃の条件で熱処理を行い、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。
(5)(1)または(2)に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を熱間圧延後、30℃/s以上で550〜700℃の温度範囲に冷却し、前記温度範囲に30〜300s保持しパーライト変態させた後、真歪みが0.15〜1.0の範囲で伸線加工を行い、次いで冷間でボルト成形し、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。
(6)(1)または(2)に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を熱間圧延後、900℃以上に再加熱し、30℃/s以上で550〜700℃の温度範囲に冷却し、前記温度範囲に30〜300s保持しパーライト変態させた後、真歪みが0.15〜1.0の範囲で伸線加工を行い、次いで冷間でボルト成形し、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。
(7)前記ボルトを成形後、200〜600℃の温度範囲に加熱し冷却した後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする(5)または(6)に記載の高強度ボルトの耐遅れ破壊特性向上方法。
(8)前記ボルトを成形後、該ボルトに引張強さの20〜95%の張力を負荷しながら200〜600℃の温度範囲に加熱し冷却した後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする(5)または(6)に記載の高強度ボルトの耐遅れ破壊特性向上方法。
Based on the above examination results, it is concluded that high strength bolts with excellent delayed fracture resistance can be realized by optimally selecting the steel material composition, structure, compressive residual stress and compressive residual stress application method by ultrasonic impact treatment. To achieve the present invention.
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.65-1.1%, Si: 0.05-2%, Mn: 0.2-2%, Al: 0.002-0.1%, The balance is a high-strength bolt made of a steel material having Fe and inevitable impurities and having a tensile strength of 1500 MPa or more, and the compressive residual stress in the lower layer of the neck of the bolt is 20% of the tensile strength of the steel material. A high-strength bolt excellent in delayed fracture resistance, characterized by being -90%.
(2) Further, in terms of mass%, Cr: 0.1 to 2%, Mo: 0.05 to 3%, V: 0.05 to 1%, Ti: 0.002 to 0.5%, Nb: 0 The high-strength bolt excellent in delayed fracture resistance according to (1), comprising 0.002 to 0.5% of one kind or two or more kinds.
(3) The method for improving delayed fracture resistance of high-strength bolts according to (1) or (2), wherein the steel material is heated to 900 ° C. or higher, hot-formed with bolts, quenched, and 500 to After tempering at 700 ° C., the hardness ratio of the ultrasonic vibrator to the bolt: 1.2 or more, the vibration frequency of the ultrasonic vibrator: 10 to 60 kHz, the output of the ultrasonic wave: 500 to 5000 W, the ultrasonic vibration A method for improving the delayed fracture resistance of a high-strength bolt, characterized in that ultrasonic striking treatment is performed on the lower part of the bolt neck under the condition of the pressing force of the child on the lower part of the bolt neck: 10 to 1000N.
(4) The method for improving delayed fracture resistance of a high-strength bolt according to (1) or (2), wherein after quenching with the steel material, the quenching temperature is 900 ° C. or higher, and the tempering temperature is 500 to 700. Heat treatment is performed under the condition of ° C., and thereafter the hardness ratio of the ultrasonic vibrator to the bolt is 1.2 or more, the vibration frequency of the ultrasonic vibrator is 10 to 60 kHz, the output of the ultrasonic wave is 500 to 5000 W, the ultrasonic vibration A method for improving the delayed fracture resistance of a high-strength bolt, characterized in that ultrasonic striking treatment is performed on the lower part of the bolt neck under the condition of the pressing force of the child on the lower part of the bolt neck: 10 to 1000N.
(5) The method for improving delayed fracture resistance of high-strength bolts according to (1) or (2), wherein the steel material is cooled to a temperature range of 550 to 700 ° C. at 30 ° C./s or higher after hot rolling. Then, after maintaining in the temperature range for 30 to 300 s and performing pearlite transformation, wire drawing is performed in a range of true strain of 0.15 to 1.0, followed by cold bolt forming, and thereafter The hardness ratio of the ultrasonic vibrator: 1.2 or more, the vibration frequency of the ultrasonic vibrator: 10 to 60 kHz, the output of the ultrasonic wave: 500 to 5000 W, the pressing force of the ultrasonic vibrator on the bolt neck lower part: 10 to 1000 N A method for improving delayed fracture resistance of high-strength bolts, characterized in that ultrasonic hitting is performed on the lower part of the bolt neck under conditions.
(6) The method for improving delayed fracture resistance of a high-strength bolt according to (1) or (2), wherein the steel material is hot-rolled and then reheated to 900 ° C or higher, and 550 at 30 ° C / s or higher. After cooling to a temperature range of ˜700 ° C., maintaining in the temperature range for 30 to 300 s and performing pearlite transformation, wire drawing is performed in a range of true strain of 0.15 to 1.0, followed by cold bolt formation Thereafter, the hardness ratio of the ultrasonic vibrator to the bolt: 1.2 or more, the vibration frequency of the ultrasonic vibrator: 10 to 60 kHz, the output of the ultrasonic wave: 500 to 5000 W, to the lower part of the bolt neck of the ultrasonic vibrator A method for improving the delayed fracture resistance of high-strength bolts, characterized in that ultrasonic striking treatment is performed on the lower part of the bolt neck under the condition of a pressing force of 10 to 1000 N.
(7) After forming the bolt, after heating and cooling to a temperature range of 200 to 600 ° C., the hardness ratio of the ultrasonic vibrator to the bolt: 1.2 or more, the frequency of the ultrasonic vibrator: 10 to 60 kHz (5) or (6), characterized in that ultrasonic output processing is performed on the lower part of the bolt neck under the conditions of ultrasonic output: 500 to 5000 W and pressing force of the ultrasonic vibrator to the lower part of the bolt neck: 10 to 1000 N. The method for improving delayed fracture resistance of high-strength bolts as described in 1).
(8) After forming the bolt, after heating and cooling to a temperature range of 200 to 600 ° C. while applying a tension of 20 to 95% of the tensile strength to the bolt, the hardness ratio of the ultrasonic vibrator to the bolt : 1.2 or more, frequency of ultrasonic vibrator: 10 to 60 kHz, output of ultrasonic wave: 500 to 5000 W, pressing force of ultrasonic vibrator to lower part of bolt neck: 10 to 1000 N on lower part of bolt neck The method for improving delayed fracture resistance of high-strength bolts according to (5) or (6), wherein ultrasonic hitting is performed.

本発明によれば、高強度ボルトの首下部に超音波打撃処理を施すことにより、強度が1500MPa以上の耐遅れ破壊特性に優れた高強度ボルトおよびその耐遅れ破壊特性を大幅に向上させる方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, there is provided a high-strength bolt excellent in delayed fracture resistance having a strength of 1500 MPa or more and a method for greatly improving the delayed fracture resistance by applying an ultrasonic impact treatment to the lower neck portion of the high-strength bolt. It is possible to provide a significant effect that is industrially useful.

以下に本発明を実施するための最良の形態について説明する。
まず、本発明の対象とする鋼の成分の限定理由について述べる。
Cはボルトの強度を確保する上で必須の元素であるが、0.65%未満では所要の強度を得ることが困難であり、一方1.1%を越えるとボルト成形性の低下あるいは耐遅れ破壊特性が低下しやすくなるため、0.65〜1.1%の範囲に制限した。
Siは、リラクゼーション特性を向上させるとともに固溶体硬化作用によって強度を高める作用がある。0.05%未満では前記作用が発揮できず、一方、2%を超えても添加量に見合う効果が期待できないため、0.05〜2%の範囲に制限した。
Mnは、脱酸、脱硫のために必要であるばかりでなく、焼入性を高めるために有効な元素であるが、0.2%未満では上記の効果が得られず、一方2%を越えて添加しても添加量に見合う効果が得られないため、0.2〜2%の範囲に制限した。
Alは、脱酸および熱処理時においてAlNを形成することによりオーステナイト粒の粗大化を防止する効果がある。0.002%未満では上記の効果が発揮されず、0.1%を越えても効果が飽和するため0.002〜0.1%の範囲に限定した。
The best mode for carrying out the present invention will be described below.
First, the reasons for limiting the components of the steel that is the subject of the present invention will be described.
C is an essential element for securing the strength of the bolt, but if it is less than 0.65%, it is difficult to obtain the required strength, while if it exceeds 1.1%, the bolt formability is deteriorated or delayed. Since the fracture characteristics tend to be lowered, the content is limited to a range of 0.65 to 1.1%.
Si has an effect of improving relaxation properties and increasing strength by a solid solution hardening effect. If the content is less than 0.05%, the above-described effect cannot be exhibited. On the other hand, if the content exceeds 2%, an effect commensurate with the amount of addition cannot be expected.
Mn is not only necessary for deoxidation and desulfurization, but is also an effective element for improving hardenability. However, if it is less than 0.2%, the above effect cannot be obtained, while it exceeds 2%. Even if added, the effect commensurate with the amount added cannot be obtained, so the content was limited to 0.2 to 2%.
Al has the effect of preventing austenite grains from coarsening by forming AlN during deoxidation and heat treatment. If the content is less than 0.002%, the above effect is not exhibited. If the content exceeds 0.1%, the effect is saturated, so the content is limited to the range of 0.002 to 0.1%.

以上が本発明の対象とする鋼の基本成分であるが、本発明においては、更にこの鋼に、Cr:0.1〜2%、Mo:0.05〜3%、V :0.05〜1%、Ti:0.002〜0.5%、Nb:0.002〜0.5%の1種または2種以上を含有せしめることができる。
Crは、パーライト組織の場合はパテンティング処理時のラメラ微細化強化のためにパテンティング処理後の強度を高め、また、マルテンサイト組織の場合は焼戻し軟化抵抗を高める作用がある。Crが0.1%未満ではその効果が十分に発揮できず、一方2%を超えて添加しても効果が飽和するため、0.1〜2%の範囲に限定した。
Mo、V、Ti、Nbはいずれもパテンティング処理時あるいは焼戻し処理時に微細な合金炭化物として析出し、ボルトの高強度化に対して極めて有効な元素である。また、合金炭化物は水素をトラップさせる効果もあるため、耐遅れ破壊特性を向上させる作用も有している。Moが0.05%未満、Vが0.05%未満、Tiが0.002%未満、Nbが0.002%未満では上記の効果が十分に発揮できず、一方、それぞれMoが3%、Vが1%、Tiが0.5%、Nbが0.5%を超えて添加しても上記効果が飽和するため、Moは0.05〜3%、Vは0.05〜1%、Tiは0.002〜0.5%、Nbは0.002〜0.5%の範囲に限定した。
P、Sについては特に制限しないものの、高強度ボルトの耐遅れ破壊特性を向上させる観点から、それぞれ0.015%以下が好ましい範囲である。また、NはAl、V、Nb、Tiの炭窒化物を生成することによりオーステナイト粒の細粒化効果があるが、0.015%を越えると延性が低下するため、0.002〜0.015%が好ましい範囲である。
The above are the basic components of the steel that is the subject of the present invention. In the present invention, the steel further contains Cr: 0.1 to 2%, Mo: 0.05 to 3%, V: 0.05 to One or more of 1%, Ti: 0.002 to 0.5%, and Nb: 0.002 to 0.5% can be contained.
In the case of a pearlite structure, Cr has an effect of increasing the strength after the patenting process for strengthening the lamella refinement during the patenting process, and in the case of a martensite structure, there is an effect of increasing the temper softening resistance. If Cr is less than 0.1%, the effect cannot be sufficiently exhibited. On the other hand, even if added over 2%, the effect is saturated, so the content is limited to the range of 0.1 to 2%.
Mo, V, Ti, and Nb all precipitate as fine alloy carbides during patenting or tempering, and are extremely effective elements for increasing the strength of bolts. Further, since the alloy carbide has an effect of trapping hydrogen, it also has an action of improving delayed fracture resistance. When Mo is less than 0.05%, V is less than 0.05%, Ti is less than 0.002%, and Nb is less than 0.002%, the above effects cannot be sufficiently exerted, while Mo is 3%, Even if V is added to 1%, Ti is added to 0.5%, and Nb exceeds 0.5%, the above effect is saturated, so that Mo is 0.05 to 3%, V is 0.05 to 1%, Ti was limited to 0.002 to 0.5%, and Nb was limited to 0.002 to 0.5%.
P and S are not particularly limited, but from the viewpoint of improving the delayed fracture resistance of high-strength bolts, 0.015% or less is a preferable range. Further, N has an effect of refining austenite grains by forming carbonitrides of Al, V, Nb, and Ti. However, if it exceeds 0.015%, the ductility is lowered. 015% is a preferred range.

次にボルト首下部の圧縮残留応力の限定理由について説明する。下記に説明する超音波打撃処理による圧縮残留応力がボルト強度の20%未満では、耐遅れ破壊特性の向上効果が少ないために、圧縮残留応力の下限をボルト強度の20%に制限した。一方、ボルト強度の90%を超えるような圧縮残留応力を付与しても上記の効果が飽和するため、上限をボルト強度の90%に限定した。耐遅れ破壊特性の向上と超音波打撃処理のコストの観点で、好ましいボルト首下部の圧縮残留応力の範囲は、ボルト引張強さの30〜70%である。なお、本発明の残留応力はX線法で測定したものである。
本発明の高強度ボルトにおいて、焼入れ・焼戻し処理によって所定の強度を得る場合は、焼戻しマルテンサイトが主体の組織である。その他の組織として、フェライト、ベイナイト、パーライトの1種又は2種以上を面積率で10%以下を含有しても良い。また、パテンティング処理によってパーライト組織にした後、伸線加工およびボルト成形工程で所定の強度を得る場合は、加工パーライト組織が主体の組織である。その他の組織として、フェライト、ベイナイトの1種又は2種を面積率で15%以下を含有しても良い。これらの組織の面積率は、2mm2以上の視野を光学顕微鏡(500倍)で観察することによって測定できる。
Next, the reason for limiting the compressive residual stress at the bottom of the bolt neck will be described. When the compressive residual stress by the ultrasonic impact treatment described below is less than 20% of the bolt strength, the effect of improving the delayed fracture resistance is small, so the lower limit of the compressive residual stress is limited to 20% of the bolt strength. On the other hand, since the above effect is saturated even when compressive residual stress exceeding 90% of the bolt strength is applied, the upper limit is limited to 90% of the bolt strength. From the viewpoint of improving delayed fracture resistance and the cost of ultrasonic impact treatment, a preferable range of compressive residual stress under the bolt neck is 30 to 70% of the bolt tensile strength. The residual stress of the present invention is measured by the X-ray method.
In the high-strength bolt of the present invention, when a predetermined strength is obtained by quenching / tempering treatment, the tempered martensite is a main structure. As other structures, one or more of ferrite, bainite and pearlite may be contained in an area ratio of 10% or less. In addition, when a predetermined strength is obtained in the wire drawing process and the bolt forming process after forming a pearlite structure by the patenting process, the processed pearlite structure is a main structure. As other structures, one or two of ferrite and bainite may be contained in an area ratio of 15% or less. The area ratio of these tissues can be measured by observing a visual field of 2 mm 2 or more with an optical microscope (500 times).

次に、本発明の耐遅れ破壊特性向上方法の限定理由について説明する。
まず、焼入れ・焼戻し処理によって所定のボルト強度を得る場合の限定理由を説明する。熱間でボルト成形する場合は、鋼材を900℃以上に加熱する必要がある。900℃未満では、未溶解の炭化物や合金炭化物が多すぎて、析出強化能が低下するためである。上限は特に限定しないものの、1100℃を超えるとオーステナイト粒が粗大化して耐遅れ破壊特性が低下するため、好ましい加熱温度の上限は1100℃である。なお、熱間でのボルト成形後は、水冷または油冷による焼入れ処理を行い、マルテンサイト組織にするものである。また、冷間でボルト成形した後、焼入れ処理を行う場合は、焼入れ処理の加熱温度が900℃未満では、未溶解の炭化物や合金炭化物が多すぎて、析出強化能が低下するため、焼入れ温度の下限を900℃に限定した。上限は特に限定しないものの、上記と同様に1100℃を超えるとオーステナイト粒が粗大化して耐遅れ破壊特性が低下するため、好ましい加熱温度の上限は1100℃である。焼入れは水冷または油冷を行い、マルテンサイト組織にするものである。焼戻し処理温度は、熱間でのボルト成形、冷間でのボルト成形のいずれにおいても、500〜700℃に限定した。焼戻し温度が500℃未満ではボルトの耐遅れ破壊特性が劣化し、また、合金炭化物の析出が不十分なため、合金炭化物による析出強化と耐遅れ破壊特性の向上が期待できない。一方、焼戻し温度が700℃を超えると強度低下や合金炭化物の粗大化が起き、合金炭化物の析出強化能と水素トラップ能が低下する。以上の理由で、焼戻し温度範囲を500〜700℃に制限した。
Next, the reason for limiting the method for improving delayed fracture resistance of the present invention will be described.
First, the reason for limitation when a predetermined bolt strength is obtained by quenching / tempering treatment will be described. When the bolt is formed hot, the steel material needs to be heated to 900 ° C. or higher. If it is less than 900 ° C., there are too many undissolved carbides and alloy carbides, and the precipitation strengthening ability is lowered. The upper limit is not particularly limited, but if it exceeds 1100 ° C., the austenite grains become coarse and delayed fracture resistance decreases, so the preferable upper limit of the heating temperature is 1100 ° C. In addition, after the hot bolt forming, a quenching process by water cooling or oil cooling is performed to obtain a martensite structure. In addition, when quenching is performed after cold bolting, if the heating temperature of the quenching process is less than 900 ° C., the amount of undissolved carbides and alloy carbides is too much and the precipitation strengthening ability decreases, so the quenching temperature Was limited to 900 ° C. Although the upper limit is not particularly limited, when the temperature exceeds 1100 ° C. as described above, the austenite grains become coarse and the delayed fracture resistance deteriorates, so the preferable upper limit of the heating temperature is 1100 ° C. Quenching is performed by water cooling or oil cooling to form a martensite structure. The tempering treatment temperature was limited to 500 to 700 ° C. in both hot bolt forming and cold bolt forming. If the tempering temperature is less than 500 ° C., the delayed fracture resistance of the bolt deteriorates, and the precipitation of alloy carbide is insufficient, so that it is not possible to expect precipitation strengthening and improved delayed fracture resistance due to the alloy carbide. On the other hand, when the tempering temperature exceeds 700 ° C., strength reduction and alloy carbide coarsening occur, and the precipitation strengthening ability and hydrogen trapping ability of the alloy carbide deteriorate. For the above reasons, the tempering temperature range was limited to 500 to 700 ° C.

次に、パーライト組織にし、伸線加工および冷間でのボルト成形工程で所定の強度を得る場合の耐遅れ破壊特性向上方法について説明する。この場合の耐遅れ破壊特性向上方法は、鋼材を熱間圧延後に急冷し、パーライト変態させる温度域で保持して引張強さを高め、伸線加工し、冷間でのボルト成形を行うものである。熱間圧延後に再加熱しても良い。また、ボルト成形後に加熱しても良く、この加熱を行う際には張力を負荷しても良い。以下、それぞれの限定理由について説明する。
熱間圧延後または熱間圧延後に再加熱した後、パーライト変態させる温度範囲までは急冷することが必要である。冷却速度は、30℃/s未満では、冷却途中にパーライト変態が生じ、パーライト変態後の引張強さが低下するため、30℃/sを下限とした。好ましい冷却速度は、50℃/s以上である。冷却速度の上限は規定しないが、500℃/sを超えることは技術的に困難である。
Next, a method for improving delayed fracture resistance when a predetermined strength is obtained in a pearlite structure by wire drawing and a cold bolt forming process will be described. The method for improving delayed fracture resistance in this case is to rapidly cool the steel material after hot rolling, hold it in a temperature range where pearlite transformation is performed, increase the tensile strength, perform wire drawing, and perform cold bolt forming. is there. You may reheat after hot rolling. Moreover, you may heat after bolt shaping | molding, and when performing this heating, you may load tension | tensile_strength. Hereinafter, each limitation reason is demonstrated.
After re-heating after hot rolling or after hot rolling, it is necessary to rapidly cool to the temperature range for pearlite transformation. When the cooling rate is less than 30 ° C./s, pearlite transformation occurs during cooling, and the tensile strength after pearlite transformation decreases, so 30 ° C./s was set as the lower limit. A preferable cooling rate is 50 ° C./s or more. Although the upper limit of the cooling rate is not specified, it is technically difficult to exceed 500 ° C./s.

本発明において、パーライト変態させる温度範囲は550〜700℃である。これは、熱間圧延後または熱間圧延後に急冷して保持する温度が550℃未満では、ベイナイトが発生しやすく、高強度ボルトの耐水素脆化特性を劣化させ、更にMo、V、Ti、Nbが添加されている鋼では合金炭化物の析出が不十分なため、下限を550℃に限定した。一方、700℃を超えると、パーライト変態後の引張強さが低下するため目的とする高強度ボルトを実現することが困難であり、また合金炭化物の粗大化が起きて析出強化能と水素トラップ能が低下することから、上限を700℃に制限した。
550〜700℃の温度範囲で、パーライト変態が終了するまで保持することが必要である。これは、パーライト変態途中で冷却を開始すると、耐遅れ破壊特性に対して有害なベイナイトあるいはマルテンサイトが発生するためである。550〜700℃の温度範囲での保持時間は、化学成分の含有量によって異なるが、本発明の成分範囲では、30〜300sである。
本発明において、熱間圧延後または再加熱後、550〜700℃のソルト浴又は鉛浴に浸漬することにより、パーライト変態させることができる。また、熱間圧延後、再加熱する場合には、再加熱温度が900℃未満では、溶体化が不十分であり、未溶解炭化物が残存しやすくなるため、下限温度を900℃に限定した。上限は特に限定しないが、1100℃を超えるとオーステナイト粒が粗大化し、伸線加工後の延性低下が起きるため、好ましい再加熱温度の上限は1100℃である。
In the present invention, the temperature range for pearlite transformation is 550 to 700 ° C. This is because bainite is likely to be generated at a temperature lower than 550 ° C. after hot rolling or after hot rolling, and deteriorates the hydrogen embrittlement resistance of high-strength bolts, and Mo, V, Ti, In steel to which Nb is added, precipitation of alloy carbide is insufficient, so the lower limit was limited to 550 ° C. On the other hand, when the temperature exceeds 700 ° C., the tensile strength after pearlite transformation is reduced, so that it is difficult to realize the intended high-strength bolt, and the alloy carbides are coarsened, resulting in precipitation strengthening ability and hydrogen trapping ability. The upper limit was limited to 700 ° C.
It is necessary to hold in the temperature range of 550 to 700 ° C. until the pearlite transformation is completed. This is because bainite or martensite harmful to delayed fracture resistance is generated when cooling is started during the pearlite transformation. The holding time in the temperature range of 550 to 700 ° C. varies depending on the content of the chemical component, but is 30 to 300 s in the component range of the present invention.
In the present invention, after hot rolling or after reheating, pearlite transformation can be performed by dipping in a salt bath or lead bath at 550 to 700 ° C. Moreover, when reheating after hot rolling, if the reheating temperature is less than 900 ° C., solutionization is insufficient and undissolved carbide tends to remain, so the lower limit temperature is limited to 900 ° C. The upper limit is not particularly limited, but if it exceeds 1100 ° C., the austenite grains become coarse and ductility decreases after wire drawing. Therefore, the preferable upper limit of the reheating temperature is 1100 ° C.

パーライト変態後の鋼材に真歪みが1.0超の伸線加工を行うと、高強度ボルトの耐遅れ破壊特性が劣化する。そこで、本発明では、伸線加工の真歪みの上限を1.0に限定した。また、真歪みが0.15未満では、本発明で目的とする高強度ボルトの製造が困難になり、また、耐遅れ破壊特性の向上効果が少ないため、真歪みの下限を0.15に限定した。ここで、伸線加工の真歪みとは、2×ln(伸線前の線径/伸線後の線径)で表す値である(lnは、自然対数を示す)。
伸線後およびボルト成形後の熱処理は、耐遅れ破壊特性の向上を目的に行うものである。加熱温度が200℃未満では、上記向上効果が少なく、一方、600℃を超えると強度低下が著しいため、加熱温度範囲を200〜600℃に制限した。加熱時間は、加熱炉の方法によって変化するため特に限定しないが、上記効果を十分に発揮するために10〜600sが好ましい範囲である。
また、伸線後の鋼材又は成形後のボルトに張力を負荷しつつ加熱処理を行うことによって、耐遅れ破壊特性が一層向上する。この場合、張力の下限が、引張強さの20%未満では、耐遅れ破壊特性の向上効果が少なく、一方、95%を超えて張力を負荷しても効果が飽和するため、20〜95%の範囲に限定した。
If the steel material after pearlite transformation is subjected to wire drawing with a true strain exceeding 1.0, the delayed fracture resistance of high-strength bolts deteriorates. Therefore, in the present invention, the upper limit of the true strain of wire drawing is limited to 1.0. Further, if the true strain is less than 0.15, it becomes difficult to produce the high-strength bolt intended in the present invention, and the effect of improving the delayed fracture resistance is small, so the lower limit of the true strain is limited to 0.15. did. Here, the true strain of the wire drawing is a value represented by 2 × ln (wire diameter before wire drawing / wire diameter after wire drawing) (ln indicates a natural logarithm).
Heat treatment after wire drawing and bolt forming is performed for the purpose of improving delayed fracture resistance. When the heating temperature is less than 200 ° C., the above-described improvement effect is small. On the other hand, when the heating temperature exceeds 600 ° C., the strength is significantly reduced, so the heating temperature range is limited to 200 to 600 ° C. The heating time is not particularly limited because it varies depending on the method of the heating furnace, but 10 to 600 s is a preferable range in order to sufficiently exhibit the above effect.
Moreover, the delayed fracture resistance is further improved by performing the heat treatment while applying tension to the steel material after drawing or the bolt after forming. In this case, if the lower limit of the tension is less than 20% of the tensile strength, the effect of improving the delayed fracture resistance is small. On the other hand, the effect is saturated even if a tension exceeding 95% is applied. It was limited to the range.

図1は、本発明の高強度ボルトの耐遅れ破壊特性向上方法の実施形態を例示する図である。
図1において、1は首下部、2は超音波振動端子を示す。
図1に示すように、焼入れ・焼戻し処理を行った高強度ボルトの首下部1に超音波振動端子2を押付けて、図1の矢印の方向に超音波打撃処理を施して、高強度ボルトの首下部1の表層に前記ボルトを構成する鋼材の引張強さの20〜90%の高圧縮残留応力を付与することによって、高強度ボルトの耐遅れ破壊特性を著しく向上させることができる。
本発明は、前述のようにボルト成形し、必要な処理を行った後、ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする。
FIG. 1 is a diagram illustrating an embodiment of a method for improving delayed fracture resistance of a high-strength bolt of the present invention.
In FIG. 1, 1 is a neck lower part, 2 shows an ultrasonic vibration terminal.
As shown in FIG. 1, the ultrasonic vibration terminal 2 is pressed against the lower neck portion 1 of the high-strength bolt that has been quenched and tempered, and subjected to ultrasonic striking treatment in the direction of the arrow in FIG. By applying a high compressive residual stress of 20 to 90% of the tensile strength of the steel material constituting the bolt to the surface layer of the lower neck portion 1, the delayed fracture resistance of the high strength bolt can be remarkably improved.
In the present invention, the bolt is molded as described above, and after necessary processing, the hardness ratio of the ultrasonic transducer to the bolt: 1.2 or more, the frequency of the ultrasonic transducer: 10 to 60 kHz, The ultrasonic striking process is performed on the lower part of the bolt neck under the conditions of output: 500 to 5000 W, pressing force of the ultrasonic vibrator to the lower part of the bolt neck: 10 to 1000 N.

以下に超音波打撃処理の条件について説明する。
超音波振動子の硬度がボルトの硬度の1.2倍未満では、超音波打撃処理によるボルト首下部への圧縮残留応力を効率的に付与することが困難であるため、ボルトに対する超音波振動子の硬度比を1.2以上に限定した。なお、超音波振動子の先端の曲率半径は特に限定しないものの、ボルト首下部の曲率半径(首下部丸み)よりも大きい場合は効率的に圧縮残留応力を付与することが出来ないため、超音波振動子の先端半径は首下部の曲率半径と同等以下にすることが好ましい条件である。超音波振動子の振動数が10kHz未満では、効率的に圧縮残留応力を付与することができないため、下限を10kHzに限定した。一方、60kHzを超える振動数で超音波打撃処理を行っても圧縮残留応力の導入効果が飽和するため、振動数の上限を60kHzに制限した。振動数の好ましい範囲は、20〜40kHzである。超音波の出力が500W未満では、所定の圧縮残留応力を付与させるための超音波打撃処理時間が長くなり経済的でないため、下限を500Wに限定した。超音波出力が5000Wを超えても効果が飽和するため、5000Wを上限にした。超音波振動子のボルト首下部への押し付け力が10N未満では、効率的に圧縮残留応力を付与することができず経済的でないため、下限を10Nに制限した。一方、押し付け力が1000Nを超えて超音波打撃処理を行っても効果が飽和するため、上限を1000Nに制限した。
The conditions for the ultrasonic hitting process will be described below.
If the hardness of the ultrasonic vibrator is less than 1.2 times the hardness of the bolt, it is difficult to efficiently apply the compressive residual stress to the lower part of the bolt neck by ultrasonic striking treatment. The hardness ratio was limited to 1.2 or more. The radius of curvature of the tip of the ultrasonic transducer is not particularly limited, but if it is larger than the radius of curvature of the bottom of the bolt neck (roundness of the bottom of the neck), compressive residual stress cannot be applied efficiently, so ultrasonic waves It is a preferable condition that the tip radius of the vibrator is equal to or less than the curvature radius of the lower neck. If the frequency of the ultrasonic vibrator is less than 10 kHz, the compressive residual stress cannot be applied efficiently, so the lower limit is limited to 10 kHz. On the other hand, since the effect of introducing the compressive residual stress is saturated even if the ultrasonic impact treatment is performed at a frequency exceeding 60 kHz, the upper limit of the frequency is limited to 60 kHz. A preferable range of the frequency is 20 to 40 kHz. If the output of the ultrasonic wave is less than 500 W, the ultrasonic striking treatment time for applying a predetermined compressive residual stress becomes long and not economical, so the lower limit is limited to 500 W. Even if the ultrasonic output exceeds 5000 W, the effect is saturated, so 5000 W was made the upper limit. If the pressing force of the ultrasonic vibrator to the lower part of the bolt neck is less than 10N, it is not economical because compressive residual stress cannot be efficiently applied, so the lower limit is limited to 10N. On the other hand, since the effect is saturated even if the pressing force exceeds 1000 N and the ultrasonic impact treatment is performed, the upper limit is limited to 1000 N.

超音波打撃処理による圧縮残留応力付与は、ショットピーニングによる圧縮残留応力付与よりも、耐遅れ破壊特性が優れている。この理由は、
1)超音波打撃処理による圧縮残留応力はショットピーニングよりも高い
2)超音波打撃処理による圧縮残留応力はショットピーニングよりも鋼材内部まで付与されている
3)超音波打撃処理の部位は塑性変形されており、耐遅れ破壊特性が向上する
4)超音波打撃処理による表面粗さがショットピーニングよりも小さい
ことに起因すると推定される。
The application of compressive residual stress by ultrasonic impact treatment is superior in delayed fracture resistance to the application of compressive residual stress by shot peening. The reason is
1) The compressive residual stress by ultrasonic hitting treatment is higher than that of shot peening 2) The compressive residual stress by ultrasonic hitting treatment is applied to the inside of the steel material rather than shot peening 3) The site of ultrasonic hitting treatment is plastically deformed 4) The delayed fracture resistance is improved. 4) It is estimated that the surface roughness due to the ultrasonic hitting process is smaller than that of shot peening.

以下、実施例により本発明の効果をさらに具体的に説明する。
表1に示す化学成分の鋼材を用いて、図1に示す形状のM6の六角ボルトを冷間または熱間で成形した。熱間でボルト成形した場合は、ボルト成形後に直ちに焼入れ処理を行い、その後焼戻し処理を行った。冷間でボルト成形を行った場合は、その後、焼入れ・焼戻し処理を行った。ミクロ組織は、いずれも焼戻しマルテンサイトが面積率で95〜100%であり、残部はフェライト、ベイナイト、パーライトの1種又は2種以上であった。焼入れ・焼戻し処理後に、ボルトに超音波打撃処理を施した。ボルトの熱処理条件、超音波打撃処理条件を表2に示す。また、ボルトの引張強さ、首下部の残留応力を表2に併せて示す。遅れ破壊試験は、同一の条件で製造したボルトをそれぞれ100本の大気暴露試験を行い、遅れ破壊の破断比率(%)で評価した。なお、大気暴露試験におけるボルトの締め付け荷重はボルト破断荷重の90%であり、大気暴露期間は2年間で評価した。大気暴露試験の破断比率(%)も表2に示した。表2の試験No.1〜19が本発明例で、試験No.20〜39が比較例である。同表に見られるように本発明例は、いずれもボルトの引張強さが1500MPa以上であるとともにボルト首下部に高い圧縮残留応力が導入されている。この結果、遅れ破壊の破断比率が全て0%であり、耐遅れ破壊特性に優れた高強度ボルトが実現されている。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Using steel materials having chemical components shown in Table 1, M6 hexagon bolts having the shape shown in FIG. 1 were formed cold or hot. When the bolt was formed hot, a quenching treatment was performed immediately after the bolt formation, followed by a tempering treatment. When the bolt was formed cold, quenching / tempering treatment was performed thereafter. As for the microstructure, tempered martensite was 95 to 100% in area ratio, and the balance was one or more of ferrite, bainite and pearlite. After the quenching and tempering treatment, the bolt was subjected to ultrasonic hitting treatment. Table 2 shows the heat treatment conditions of the bolts and the ultrasonic hitting conditions. Table 2 also shows the tensile strength of the bolt and the residual stress at the bottom of the neck. In the delayed fracture test, 100 bolts manufactured under the same conditions were each subjected to an atmospheric exposure test, and the fracture rate (%) of delayed fracture was evaluated. The bolt tightening load in the air exposure test was 90% of the bolt breaking load, and the air exposure period was evaluated for 2 years. Table 2 also shows the fracture ratio (%) in the air exposure test. Test Nos. 1 to 19 in Table 2 are examples of the present invention, and Test Nos. 20 to 39 are comparative examples. As can be seen from the table, in all of the examples of the present invention, the tensile strength of the bolt is 1500 MPa or more and a high compressive residual stress is introduced to the lower part of the bolt neck. As a result, all fracture rates of delayed fracture are 0%, and a high-strength bolt excellent in delayed fracture resistance is realized.

これに対して、比較例であるNo.21、25、27、29、33、35は、いずれも焼入れ・焼戻し処理ままのボルトの例である。首下部の残留応力が高い圧縮残留応力になっていないために、遅れ破壊の破断比率が高い例である。
比較例であるNo.22、24、26、28、34、36、37、39は、いずれも超音波打撃処理の条件が不適切な例である。即ち、No.22はボルトに対する超音波振動子の硬度比が低いために、No.24は超音波振動子の振動数が低いために、No.28は超音波振動子のボルト首下部への押し付け力が低すぎるために、No.28は超音波出力が低すぎるために、No.34は超音波振動子の振動数と押し付け力が低すぎるために、No.36はボルトに対する超音波振動子の硬度比及び押し付け力が低すぎるために、No.37は超音波振動子の振動数と超音波出力が低すぎるために、No.39はボルトに対する超音波振動子の硬度比及び超音波出力が低すぎるために、いずれもボルト首下部の残留応力が高い圧縮残留応力状態になっていない。この結果、暴露試験で遅れ破壊の破断比率が高く、遅れ破壊を防止できなかった例である。
On the other hand, No. 21, 25, 27, 29, 33, and 35, which are comparative examples, are all examples of bolts that are still quenched and tempered. This is an example in which the fracture ratio of delayed fracture is high because the residual stress of the lower neck is not a high compressive residual stress.
Nos. 22, 24, 26, 28, 34, 36, 37, and 39, which are comparative examples, are all examples in which the conditions of the ultrasonic hitting process are inappropriate. That is, No. 22 has a low hardness ratio of the ultrasonic vibrator to the bolt, and No. 24 has a low frequency of the ultrasonic vibrator. Since No. 28 is too low in ultrasonic output because the pressing force is too low, No. 34 is too low in the vibration frequency and pressing force of No. 34, and No. 36 is an ultrasonic vibration against the bolt. Since the hardness ratio and pressing force of the child are too low, No. 37 is too low in the vibration frequency and ultrasonic output of the ultrasonic vibrator. Since the output is too low, none of them is in a compressive residual stress state in which the residual stress under the bolt neck is high. As a result, the fracture rate of delayed fracture was high in the exposure test, and this was an example in which delayed fracture could not be prevented.

比較例であるNo.23、30、38は、いずれも従来のショットピーニング処理で首下部の残留応力を圧縮残留応力に変化させた例である。ショットピーニング処理では首下部に効率的に高い圧縮残留応力を付与することが困難であるため、大気暴露試験で遅れ破壊が発生した例である。
比較例であるNo.20、31は、いずれも焼戻し処理の熱処理条件が不適切な例である。No.20は焼戻し温度が低すぎるために遅れ破壊試験で遅れ破壊が発生した例である。No.31は、焼戻し温度が高すぎるために目的とするボルトの高強度化が実現できなかった例である。
比較例であるNo.32は、ボルトのC含有量が高すぎるために耐遅れ破壊特性が劣化し、遅れ破壊試験で遅れ破壊が発生した例である。
Nos. 23, 30, and 38, which are comparative examples, are examples in which the residual stress at the bottom of the neck is changed to a compressive residual stress by a conventional shot peening process. In shot peening, it is difficult to efficiently apply high compressive residual stress to the lower neck, so this is an example of delayed fracture in an atmospheric exposure test.
Comparative examples Nos. 20 and 31 are examples in which the heat treatment conditions of the tempering treatment are inappropriate. No. 20 is an example in which delayed fracture occurred in the delayed fracture test because the tempering temperature was too low. No. 31 is an example in which the intended strength of the bolt could not be increased because the tempering temperature was too high.
No. 32, which is a comparative example, is an example in which delayed fracture resistance deteriorates because the C content of the bolt is too high, and delayed fracture occurs in the delayed fracture test.

次に、パーライト組織にし、伸線加工および冷間でボルト成形した場合の実施例について説明する。表1に示す化学成分の鋼材を用いて、表3に示した条件で、熱間圧延後直ちに、550〜700℃のソルト浴に浸漬し、または熱間圧延後に再加熱し、550〜700℃の鉛浴に浸漬し、パーライト変態させた。熱間圧延温度または再加熱温度からの冷却速度は50℃/s以上、ソルト浴、鉛浴への浸漬時間は30〜300sとした。さらにパーライト変態後の鋼材に、表3に示す真歪みの伸線加工を行った後、冷間で図1に示すM6サイズのボルトに成形した。ボルト成形後に、表3に示す条件での熱処理及び超音波打撃処理を行った。ボルトの遅れ破壊試験は、表2で実施した方法を用いた。表3の試験No.1〜20が本発明例で、No.21〜41が比較例である。同表に見られるように本発明例は、いずれもボルトの引張強さが1500MPa以上であるとともにボルト首下部に高い圧縮残留応力が導入されている。この結果、遅れ破壊の破断比率が全て0%であり、耐遅れ破壊特性に優れた高強度ボルトが実現されている。   Next, an example in which a pearlite structure is formed and bolted by wire drawing and cold will be described. Using steel materials having chemical components shown in Table 1, immediately after hot rolling under the conditions shown in Table 3, it is immersed in a salt bath at 550 to 700 ° C. or reheated after hot rolling, and 550 to 700 ° C. Was immersed in a lead bath and pearlite transformed. The cooling rate from the hot rolling temperature or the reheating temperature was 50 ° C./s or more, and the immersion time in the salt bath and lead bath was 30 to 300 s. Further, the steel material after the pearlite transformation was subjected to a true strain drawing process shown in Table 3, and then cold-formed into a M6 size bolt shown in FIG. After bolt formation, heat treatment and ultrasonic impact treatment were performed under the conditions shown in Table 3. For the delayed fracture test of the bolt, the method implemented in Table 2 was used. Test Nos. 1 to 20 in Table 3 are examples of the present invention, and Nos. 21 to 41 are comparative examples. As can be seen from the table, in all of the examples of the present invention, the tensile strength of the bolt is 1500 MPa or more and a high compressive residual stress is introduced to the lower part of the bolt neck. As a result, all fracture rates of delayed fracture are 0%, and a high-strength bolt excellent in delayed fracture resistance is realized.

これに対して、比較例である表3のNo.21、23、28、30、31、35、39、40は、いずれも製造ままのボルトの例である。首下部の残留応力が高い圧縮残留応力になっていないために、遅れ破壊の破断比率が高い例である。
比較例である表3のNo.22、24〜26、29、36、38は、いずれも超音波打撃処理の条件が不適切な例である。即ち、No.22はボルトに対する超音波振動子の硬度比が低いために、No.24は超音波振動子の振動数が低いために、No.25は超音波振動子のボルト首下部への押し付け力が低すぎるために、No.26は超音波出力が低すぎるために、No.29はボルトに対する超音波振動子の硬度比び超音波出力が低すぎるために、No.36はボルトに対する超音波振動子の硬度比及び押し付け力が低すぎるために、No.38は超音波振動子の振動数と超音波出力が低すぎるために、いずれもボルト首下部の残留応力が高い圧縮残留応力状態になっていない。この結果、暴露試験で遅れ破壊の破断比率が高く、遅れ破壊を防止できなかった例である。
比較例である表3のNo.27、37、41は、いずれも従来のショットピーニング処理で首下部の残留応力を圧縮残留応力に変化させた例である。ショットピーニング処理では首下部に効率的に高い圧縮残留応力を付与することが困難であるため、大気暴露試験で遅れ破壊が発生した例である。
比較例である表3のNo.32、33は、いずれも伸線加工歪みが不適切な例である。No.32は、伸線加工歪みが低すぎるために、目的とするボルトの高強度化が達成できなかった例である。No.33は、伸線加工歪みが高すぎるために耐遅れ破壊特性が劣化し、遅れ破壊試験で遅れ破壊が発生した例である。
比較例である表3のNo.34は、鋼材の化学成分が不適切な例である。即ち、C含有量が高すぎるために、パーライト変態処理時に初析セメンタイトが生成し、この結果、伸線工程で断線が発生した例である。

Figure 2006104549
Figure 2006104549
Figure 2006104549
On the other hand, No. 21, 23, 28, 30, 31, 35, 39, and 40 in Table 3, which are comparative examples, are all examples of bolts as manufactured. This is an example in which the fracture ratio of delayed fracture is high because the residual stress of the lower neck is not a high compressive residual stress.
Nos. 22, 24 to 26, 29, 36, and 38 in Table 3, which are comparative examples, are all examples in which the conditions of the ultrasonic impact treatment are inappropriate. That is, No. 22 has a low hardness ratio of the ultrasonic vibrator to the bolt, and No. 24 has a low vibration frequency of the ultrasonic vibrator. Since No. 26 is too low in ultrasonic power because the pressing force is too low, No. 29 is too low in hardness ratio and ultrasonic output of the ultrasonic vibrator to the bolt, No. 36 is low in the bolt. Since the hardness ratio and the pressing force of the ultrasonic vibrator are too low, No. 38 is too low in the vibration frequency and ultrasonic output of the ultrasonic vibrator. It is not in a state. As a result, the fracture rate of delayed fracture was high in the exposure test, and this was an example in which delayed fracture could not be prevented.
Nos. 27, 37, and 41 in Table 3, which are comparative examples, are examples in which the residual stress in the lower neck portion is changed to compressive residual stress by the conventional shot peening process. In shot peening, it is difficult to efficiently apply high compressive residual stress to the lower neck, so this is an example of delayed fracture in an atmospheric exposure test.
Nos. 32 and 33 in Table 3 as comparative examples are examples in which the wire drawing distortion is inappropriate. No. 32 is an example in which the intended strength of the bolt could not be increased because the wire drawing distortion was too low. No. 33 is an example in which the delayed fracture resistance deteriorated because the wire drawing distortion was too high, and delayed fracture occurred in the delayed fracture test.
No. 34 of Table 3 which is a comparative example is an example in which the chemical composition of the steel material is inappropriate. In other words, since the C content is too high, proeutectoid cementite is generated during the pearlite transformation treatment, and as a result, disconnection occurs in the wire drawing process.
Figure 2006104549
Figure 2006104549
Figure 2006104549

本発明の高強度ボルトの耐遅れ破壊特性向上方法の実施形態を例示する図である。It is a figure which illustrates embodiment of the delayed fracture-resistance improvement method of the high strength bolt of this invention.

符号の説明Explanation of symbols

1 首下部
2 超音波振動端子
1 Lower neck 2 Ultrasonic vibration terminal

Claims (8)

質量%で、
C:0.65〜1.1%、
Si:0.05〜2%、
Mn:0.2〜2%、
Al:0.002〜0.1%
を含有し、残部がFe及び不可避的不純物からなり、かつ、引張強さが1500MPa以上の鋼材で構成された高強度ボルトであって、前記ボルトの首下部表層の圧縮残留応力が前記鋼材の引張強さの20〜90%であることを特徴とする耐遅れ破壊特性に優れた高強度ボルト。
% By mass
C: 0.65-1.1%
Si: 0.05-2%
Mn: 0.2-2%
Al: 0.002 to 0.1%
A balance of Fe and inevitable impurities, and a high-strength bolt composed of a steel material having a tensile strength of 1500 MPa or more, wherein the compressive residual stress of the lower neck layer of the bolt is a tensile strength of the steel material. A high-strength bolt excellent in delayed fracture resistance, characterized by being 20 to 90% of strength.
さらに、質量%で、
Cr:0.1〜2%、
Mo:0.05〜3%、
V :0.05〜1%、
Ti:0.002〜0.5%、
Nb:0.002〜0.5%
の1種または2種以上を含有することを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度ボルト。
Furthermore, in mass%,
Cr: 0.1 to 2%,
Mo: 0.05-3%,
V: 0.05 to 1%
Ti: 0.002 to 0.5%,
Nb: 0.002 to 0.5%
The high-strength bolt excellent in delayed fracture resistance according to claim 1, comprising one or more of the following.
請求項1または請求項2に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を900℃以上に加熱し、熱間でボルト成形した後、焼入れ処理および500〜700℃で焼戻し処理を行った後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。   The method for improving delayed fracture resistance of a high-strength bolt according to claim 1 or 2, wherein the steel material is heated to 900 ° C or higher and hot-formed with a bolt, and then subjected to a quenching treatment and 500 to 700 ° C. After the tempering process, the hardness ratio of the ultrasonic vibrator to the bolt: 1.2 or more, the vibration frequency of the ultrasonic vibrator: 10 to 60 kHz, the output of the ultrasonic wave: 500 to 5000 W, the bolt of the ultrasonic vibrator A method of improving delayed fracture resistance of a high-strength bolt, characterized in that an ultrasonic impact treatment is performed on the lower part of the bolt neck under a condition of pressing force on the lower part of the neck: 10 to 1000N. 請求項1または請求項2に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を用いてボルト成形した後、焼入れ温度:900℃以上、焼戻し温度:500〜700℃の条件で熱処理を行い、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。   The method for improving delayed fracture resistance of a high-strength bolt according to claim 1 or 2, wherein after the bolt is formed using the steel material, the quenching temperature is 900 ° C or higher and the tempering temperature is 500 to 700 ° C. Then, the hardness ratio of the ultrasonic vibrator to the bolt is 1.2 or more, the vibration frequency of the ultrasonic vibrator is 10 to 60 kHz, the output of the ultrasonic wave is 500 to 5000 W, the bolt of the ultrasonic vibrator A method of improving delayed fracture resistance of a high-strength bolt, characterized in that an ultrasonic impact treatment is performed on the lower part of the bolt neck under a condition of pressing force on the lower part of the neck: 10 to 1000N. 請求項1または請求項2に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を熱間圧延後、30℃/s以上で550〜700℃の温度範囲に冷却し、前記温度範囲に30〜300s保持しパーライト変態させた後、真歪みが0.15〜1.0の範囲で伸線加工を行い、次いで冷間でボルト成形し、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。 The method for improving delayed fracture resistance of a high-strength bolt according to claim 1 or 2, wherein the steel material is hot-rolled and then cooled to a temperature range of 550 to 700 ° C at 30 ° C / s or more, After maintaining in the temperature range for 30 to 300 s and performing pearlite transformation, wire drawing is performed in the range of true strain of 0.15 to 1.0, followed by cold bolt forming, and then an ultrasonic transducer for the bolt Hardness ratio: 1.2 or higher, ultrasonic vibrator frequency: 10-60 kHz, ultrasonic output: 500-5000 W, force of ultrasonic vibrator to the bottom of bolt neck: 10 to 1000 N A method for improving delayed fracture resistance of high-strength bolts, characterized in that ultrasonic hitting is performed on the lower neck. 請求項1または請求項2に記載の高強度ボルトの耐遅れ破壊特性向上方法であって、前記鋼材を熱間圧延後、900℃以上に再加熱し、30℃/s以上で550〜700℃の温度範囲に冷却し、前記温度範囲に30〜300s保持しパーライト変態させた後、真歪みが0.15〜1.0の範囲で伸線加工を行い、次いで冷間でボルト成形し、その後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする高強度ボルトの耐遅れ破壊特性向上方法。   The method for improving delayed fracture resistance of high-strength bolts according to claim 1 or 2, wherein the steel material is hot-rolled and then reheated to 900 ° C or higher and 550 to 700 ° C at 30 ° C / s or higher. After cooling to the above temperature range and maintaining the temperature range for 30 to 300 s to transform pearlite, the wire is drawn in the range of true strain of 0.15 to 1.0, then cold-formed with bolts, and then The hardness ratio of the ultrasonic vibrator to the bolt is 1.2 or more, the vibration frequency of the ultrasonic vibrator is 10 to 60 kHz, the output of the ultrasonic wave is 500 to 5000 W, and the pressing force of the ultrasonic vibrator to the lower part of the bolt neck : A method for improving delayed fracture resistance of high-strength bolts, characterized in that an ultrasonic impact treatment is performed on the lower part of the bolt neck under conditions of 10 to 1000 N. 前記ボルトを成形後、200〜600℃の温度範囲に加熱し冷却した後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする請求項5または請求項6に記載の高強度ボルトの耐遅れ破壊特性向上方法。   After forming the bolt, it is heated and cooled to a temperature range of 200 to 600 ° C., then the hardness ratio of the ultrasonic vibrator to the bolt is 1.2 or more, the frequency of the ultrasonic vibrator is 10 to 60 kHz, and the ultrasonic wave The ultrasonic impact treatment is performed on the lower part of the bolt neck under the condition of the output of 500 to 5000 W and the pressing force of the ultrasonic vibrator on the lower part of the bolt neck: 10 to 1000 N. 8. To improve delayed fracture resistance of high-strength bolts. 前記ボルトを成形後、該ボルトに引張強さの20〜95%の張力を負荷しながら200〜600℃の温度範囲に加熱し冷却した後、前記ボルトに対する超音波振動子の硬度比:1.2以上、超音波振動子の振動数:10〜60kHz、超音波の出力:500〜5000W、超音波振動子のボルト首下部への押し付け力:10〜1000Nの条件でボルト首下部に超音波打撃処理を行うことを特徴とする請求項5または請求項6に記載の高強度ボルトの耐遅れ破壊特性向上方法。



After forming the bolt, after heating and cooling to a temperature range of 200 to 600 ° C. while applying a tension of 20 to 95% of the tensile strength to the bolt, the hardness ratio of the ultrasonic vibrator to the bolt: 1. 2 or more, ultrasonic vibrator frequency: 10 to 60 kHz, ultrasonic output: 500 to 5000 W, ultrasonic vibrator pressing force on bolt neck lower part: ultrasonic impact on bolt neck lower part under conditions of 10 to 1000 N The method for improving delayed fracture resistance of high-strength bolts according to claim 5 or 6, wherein the treatment is performed.



JP2004295857A 2004-10-08 2004-10-08 High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance Active JP4299758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295857A JP4299758B2 (en) 2004-10-08 2004-10-08 High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295857A JP4299758B2 (en) 2004-10-08 2004-10-08 High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2006104549A true JP2006104549A (en) 2006-04-20
JP4299758B2 JP4299758B2 (en) 2009-07-22

Family

ID=36374621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295857A Active JP4299758B2 (en) 2004-10-08 2004-10-08 High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4299758B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781466B1 (en) * 2007-04-11 2007-12-03 충청북도(관리기관:충청북도산림환경연구소) Wine utilizing the fruits of cudrania tricuspidata (carr.) bureau ex and its preparation method
JP2008081821A (en) * 2006-09-28 2008-04-10 Mine Seisakusho:Kk High-carbon steel material and hardening-treatment method therefor
JP2008261027A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp High-strength galvanized bolt having excellent hydrogen embrittlement resistance, and method for producing the same
WO2011030853A1 (en) * 2009-09-10 2011-03-17 独立行政法人物質・材料研究機構 High-strength bolt
JP2012153978A (en) * 2012-03-26 2012-08-16 Nippon Steel Corp Method for manufacturing high-strength galvanized bolt having excellent hydrogen embrittlement resistance
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same
JP2013213243A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Heat treatment method
JP2013212145A (en) * 2012-03-30 2013-10-17 Newgin Co Ltd Game machine
CN108504988A (en) * 2018-04-03 2018-09-07 辽宁工业大学 A kind of electric pulse assists the processing method of high chromium cold work die steel nitriding
JP2019123921A (en) * 2018-01-18 2019-07-25 大同特殊鋼株式会社 High strength bolt and manufacturing method therefor
CN114717398A (en) * 2022-04-08 2022-07-08 燕山大学 Electric field assisted post-forging heat treatment hydrogen diffusion method for large forging
CN114752858A (en) * 2022-04-24 2022-07-15 广东韶钢松山股份有限公司 Alloy hand tool steel wire rod without martensite structure, preparation method and hand tool steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081821A (en) * 2006-09-28 2008-04-10 Mine Seisakusho:Kk High-carbon steel material and hardening-treatment method therefor
KR100781466B1 (en) * 2007-04-11 2007-12-03 충청북도(관리기관:충청북도산림환경연구소) Wine utilizing the fruits of cudrania tricuspidata (carr.) bureau ex and its preparation method
JP2008261027A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp High-strength galvanized bolt having excellent hydrogen embrittlement resistance, and method for producing the same
US8876451B2 (en) 2009-09-10 2014-11-04 National Institute For Materials Science High-strength bolt
WO2011030853A1 (en) * 2009-09-10 2011-03-17 独立行政法人物質・材料研究機構 High-strength bolt
JP2012153978A (en) * 2012-03-26 2012-08-16 Nippon Steel Corp Method for manufacturing high-strength galvanized bolt having excellent hydrogen embrittlement resistance
JP2013204069A (en) * 2012-03-27 2013-10-07 Kobe Steel Ltd Wire rod and steel wire using same
JP2013213243A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Heat treatment method
JP2013212145A (en) * 2012-03-30 2013-10-17 Newgin Co Ltd Game machine
JP2019123921A (en) * 2018-01-18 2019-07-25 大同特殊鋼株式会社 High strength bolt and manufacturing method therefor
JP6992535B2 (en) 2018-01-18 2022-02-04 大同特殊鋼株式会社 High-strength bolts and their manufacturing methods
CN108504988A (en) * 2018-04-03 2018-09-07 辽宁工业大学 A kind of electric pulse assists the processing method of high chromium cold work die steel nitriding
CN114717398A (en) * 2022-04-08 2022-07-08 燕山大学 Electric field assisted post-forging heat treatment hydrogen diffusion method for large forging
CN114752858A (en) * 2022-04-24 2022-07-15 广东韶钢松山股份有限公司 Alloy hand tool steel wire rod without martensite structure, preparation method and hand tool steel

Also Published As

Publication number Publication date
JP4299758B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
CN108603271B (en) High-strength steel sheet and method for producing same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4555749B2 (en) Method for improving delayed fracture resistance of high strength bolts
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
TW528809B (en) Method for manufacturing high strength bolt excellent in resistance to delayed fracture and to relaxation
WO2005083141A1 (en) High strength bolt excellent in characteristics of resistance to delayed fracture and resistance to relaxation
WO2005056856A1 (en) Steel product for structural member of automobile and method for production thereof
WO2013051513A1 (en) Steel wire for bolt, bolt, and manufacturing processes therefor
WO2001075186A1 (en) Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JP4299758B2 (en) High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP2012036501A (en) High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP2005281860A (en) High strength bolt excellent in characteristics of resistance to delayed fracture and resistance to relaxation
WO2012133885A1 (en) Spring and method for producing same
JP2001294981A (en) High strength wire rod excellent in delayed fracture resistance and forgeability and/or under head toughness and its producing method
JP2006233269A (en) Steel parts with excellent balance between strength and torsional characteristic, method for manufacturing the steel parts, and steel for the steel parts
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP4009218B2 (en) Bolt with excellent hydrogen embrittlement resistance and method for producing the same
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP2005120397A (en) High strength forged parts with excellent drawability
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JP2019073763A (en) Method for producing steel processed component
JP2003193183A (en) High-strength steel wire with excellent delayed fracture resistance and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R151 Written notification of patent or utility model registration

Ref document number: 4299758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350