JP2006103202A - Method of molding polylactic acid resin composition and its molding - Google Patents

Method of molding polylactic acid resin composition and its molding Download PDF

Info

Publication number
JP2006103202A
JP2006103202A JP2004294134A JP2004294134A JP2006103202A JP 2006103202 A JP2006103202 A JP 2006103202A JP 2004294134 A JP2004294134 A JP 2004294134A JP 2004294134 A JP2004294134 A JP 2004294134A JP 2006103202 A JP2006103202 A JP 2006103202A
Authority
JP
Japan
Prior art keywords
polylactic acid
resin composition
molding
acid resin
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004294134A
Other languages
Japanese (ja)
Other versions
JP4645971B2 (en
Inventor
Noriaki Kunimune
国宗  範彰
Akira Yamamoto
山本  明
Hiroshi Fujii
弘 藤井
Masami Fujita
雅巳 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNIMUNE KK
Unitika Ltd
Kunimune Co Ltd
Original Assignee
KUNIMUNE KK
Unitika Ltd
Kunimune Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUNIMUNE KK, Unitika Ltd, Kunimune Co Ltd filed Critical KUNIMUNE KK
Priority to JP2004294134A priority Critical patent/JP4645971B2/en
Publication of JP2006103202A publication Critical patent/JP2006103202A/en
Application granted granted Critical
Publication of JP4645971B2 publication Critical patent/JP4645971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of molding a polylactic acid resin composition having an excellent heat resistance and its molding. <P>SOLUTION: The method of molding the polylactic acid resin composition including the step of repeating quick heating and quick cooling of the surface of a mold cavity comprises the steps of feeding a polylactic acid resin composition improved in crystallization speed into the cavity with a surface temperature of 90-140°C, holding the state for 5-60 seconds for crystallization, quickly cooling the cavity surface to 40-80°C, holding the state for 5-30 seconds and taking out the molding. The polylactic acid resin composition molding is obtained by this molding method and has a heat resistance temperature of ≥110°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリ乳酸樹脂組成物の成形方法、およびその成形方法により得られるポリ乳酸樹脂組成物の成形体に関するものである。   The present invention relates to a method for molding a polylactic acid resin composition and a molded body of a polylactic acid resin composition obtained by the molding method.

近年、環境保全の見地からポリ乳酸をはじめとする生分解性樹脂が注目されている。生分解性樹脂のうちでポリ乳酸は最も耐熱性が高い樹脂の1つであり、大量生産可能なためコストも安く、有用性が高い。さらに、ポリ乳酸はトウモロコシやサツマイモ等の植物を原料として製造可能な植物由来樹脂で、石油等の枯渇資源の節約に貢献できる。   In recent years, biodegradable resins such as polylactic acid have attracted attention from the viewpoint of environmental conservation. Among the biodegradable resins, polylactic acid is one of the resins with the highest heat resistance, and can be mass-produced, so the cost is low and the utility is high. Furthermore, polylactic acid is a plant-derived resin that can be produced using plants such as corn and sweet potato as raw materials, and can contribute to saving depleted resources such as petroleum.

しかし、ポリ乳酸は結晶化速度が遅く、一般的には低温の金型で成形し、成形時に急冷することにより非晶状態で取り出すので、耐熱性のない成形品しか得られない。   However, polylactic acid has a slow crystallization rate and is generally molded with a low-temperature mold and is taken out in an amorphous state by quenching at the time of molding, so that only a molded product having no heat resistance can be obtained.

そこで、ポリ乳酸の耐熱性を引き出すため、結晶化速度の改善されたポリ乳酸樹脂組成物が種々報告されている。例えば、ポリ乳酸と層状粘土鉱物とからなる樹脂組成物(特許文献1)、ポリ乳酸と結晶性SiO2 とからなる樹脂組成物(特許文献2)、ポリ乳酸とタルクや窒化ホウ素の無機粒子とからなる樹脂組成物(特許文献3)、ポリ乳酸とタルクなどの結晶核剤とからなる樹脂組成物(特許文献4)、ポリ乳酸と層状珪酸塩とからなる樹脂組成物(特許文献5)、ポリ乳酸と(メタ)アクリル酸エステル化合物とからなる樹脂組成物(特許文献6)などがある。しかしながらそれでも通常の成形方法では、所望の耐熱性を得るためには非常に成形サイクルが長くなり、生産効率の悪いものである。ポリ乳酸の結晶化ピーク温度領域の金型温度で成形した場合、取り出し可能な状態に固化するまでの冷却時間が非常に長いという問題が生じる。   Thus, various polylactic acid resin compositions with improved crystallization speeds have been reported in order to bring out the heat resistance of polylactic acid. For example, a resin composition composed of polylactic acid and layered clay mineral (Patent Document 1), a resin composition composed of polylactic acid and crystalline SiO2 (Patent Document 2), polylactic acid and inorganic particles of talc and boron nitride. Resin composition (Patent Document 3), resin composition composed of polylactic acid and crystal nucleating agent such as talc (Patent Document 4), resin composition composed of polylactic acid and layered silicate (Patent Document 5), poly There is a resin composition (Patent Document 6) composed of lactic acid and a (meth) acrylic acid ester compound. However, the normal molding method still requires a very long molding cycle to obtain the desired heat resistance, resulting in poor production efficiency. In the case of molding at a mold temperature in the crystallization peak temperature region of polylactic acid, there is a problem that the cooling time until it is solidified to a take-out state is very long.

また、金型の温度を繰り返し急冷急熱する成形方法が、特許文献7、8に開示されている。この成形方法をポリ乳酸のように結晶化の遅い樹脂の成形方法として利用したものが特許文献9に開示されている。しかし、ポリ乳酸にこの方法を用いても耐熱性が向上するレベルまで結晶化するのに要する時間が長く、実用的でない。さらに、樹脂を供給する際の金型温度に関する記述はあるものの、その保持時間や冷却後の温度、保持時間に関する具体的な条件については開示されておらず、この方法に基づいて、実際に耐熱性を高めたポリ乳酸樹脂組成物の成形体を得る成形条件を想到することは困難である。   Further, Patent Documents 7 and 8 disclose molding methods in which the mold temperature is repeatedly rapidly cooled and rapidly heated. Patent Document 9 discloses that this molding method is used as a molding method of a resin having a slow crystallization, such as polylactic acid. However, even if this method is used for polylactic acid, it takes a long time to crystallize to a level where the heat resistance is improved, which is not practical. Furthermore, although there is a description of the mold temperature when the resin is supplied, the specific conditions regarding the holding time, the temperature after cooling, and the holding time are not disclosed. It is difficult to conceive of molding conditions for obtaining a molded article of a polylactic acid resin composition having improved properties.

上述したように、結晶化速度の改善されたポリ乳酸樹脂組成物に最適の成形条件というものは現在のところ、知られていないのが現実である。
特開2003−73538号公報 特開平10−87976号公報 特開平8−3432号公報 特開2003−253009号公報 特開平9−169893号公報 特開2003−128901号公報 特開平10−100216号公報 特開2001−150506号公報 特開2001−191378号公報
As described above, the optimum molding conditions for the polylactic acid resin composition having an improved crystallization rate are currently unknown.
JP 2003-73538 A Japanese Patent Laid-Open No. 10-87976 JP-A-8-3432 JP 2003-253209 A Japanese Patent Laid-Open No. 9-169893 JP 2003-128901 A Japanese Patent Laid-Open No. 10-100196 JP 2001-150506 A JP 2001-191378 A

本発明は、上記の問題点を解決しようとするものであり、本発明によれば容易に耐熱性に優れるポリ乳酸樹脂組成物の成形体を得ることができる。   The present invention is intended to solve the above problems, and according to the present invention, a molded body of a polylactic acid resin composition having excellent heat resistance can be easily obtained.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、耐熱性に優れるポリ乳酸樹脂組成物の成形体を得るための成形方法として、結晶化速度の改善されたポリ乳酸樹脂組成物を用いて金型キャビティの表面を特定の温度条件、保持時間、加熱冷却速度で繰り返し急冷急熱する方法を見いだし、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have made polylactic acid resin with improved crystallization speed as a molding method for obtaining a molded product of polylactic acid resin composition having excellent heat resistance. The present inventors have found a method of repeatedly quenching and rapidly heating the surface of a mold cavity with a specific temperature condition, holding time, and heating / cooling rate by using the composition.

すなわち、本発明のポリ乳酸樹脂組成物の成形方法は、金型キャビティの表面を繰り返し急冷急熱する成形方法において、表面温度を90〜140℃としたキャビティ内に結晶化速度の改善されたポリ乳酸樹脂組成物を供給して5〜60秒保持、結晶化し、その後キャビティ表面を40〜80℃まで急冷、5〜30秒保持して成形体を取り出すことを特徴とするものである。   That is, the molding method of the polylactic acid resin composition of the present invention is a molding method in which the surface of the mold cavity is repeatedly rapidly cooled and heated, and the crystallization rate is improved in the cavity having a surface temperature of 90 to 140 ° C. The lactic acid resin composition is supplied, held and crystallized for 5 to 60 seconds, and then the cavity surface is rapidly cooled to 40 to 80 ° C. and held for 5 to 30 seconds, and the molded product is taken out.

本発明のポリ乳酸樹脂組成物の成形方法において、結晶化速度の改善されたポリ乳酸樹脂組成物は、降温速度2℃/分で示差熱分析(DSC)を行った時の結晶化熱が20J/g以上の樹脂組成物であるものとしている。   In the method for molding a polylactic acid resin composition of the present invention, the polylactic acid resin composition having an improved crystallization rate has a heat of crystallization of 20 J when differential thermal analysis (DSC) is performed at a temperature drop rate of 2 ° C./min. / G or more of the resin composition.

本発明のポリ乳酸樹脂組成物の成形方法において、金型温度の加熱および冷却速度は、60℃/分以上であるものとしている。   In the method for molding a polylactic acid resin composition of the present invention, the mold temperature heating and cooling rates are 60 ° C./min or more.

さらに、本発明のポリ乳酸樹脂組成物の成形体は、前記成形方法により得られ、耐熱温度が110℃以上であるものとしている。   Furthermore, the molded body of the polylactic acid resin composition of the present invention is obtained by the molding method and has a heat resistant temperature of 110 ° C. or higher.

本発明によれば、優れた耐熱性を有するポリ乳酸樹脂組成物の成形方法および成形体が提供される。さらに、本発明によれば、植物由来のポリ乳酸樹脂組成物を利用しているので、石油系製品への依存度が低く、枯渇資源の節約に貢献できる。   ADVANTAGE OF THE INVENTION According to this invention, the molding method and molded object of the polylactic acid resin composition which have the outstanding heat resistance are provided. Furthermore, according to the present invention, since the plant-derived polylactic acid resin composition is used, the dependence on petroleum-based products is low, and it is possible to contribute to saving depleted resources.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明において結晶化速度の改善されたポリ乳酸樹脂組成物を金型キャビティに供給する際の金型表面温度は90〜140℃であることが必要である。好ましくは100〜120℃、さらに好ましくは105〜110℃の範囲が挙げられる。90℃未満であると、耐熱性を発現する程度まで結晶化が進行するまでの時間が長くかかり、成形サイクルが長くなり、シンリンダー内での樹脂の滞留劣化につながる。また、140℃を超えると逆にポリ乳酸樹脂の融点に近いため固化しにくく、結晶化が進行しない。   In the present invention, the mold surface temperature when supplying the polylactic acid resin composition with improved crystallization speed to the mold cavity needs to be 90 to 140 ° C. Preferably it is 100-120 degreeC, More preferably, the range of 105-110 degreeC is mentioned. If it is less than 90 ° C., it takes a long time until crystallization proceeds to the extent that heat resistance is expressed, the molding cycle becomes long, and the resin stays in the cylinder and deteriorates. On the other hand, if it exceeds 140 ° C., it is close to the melting point of the polylactic acid resin, so it is difficult to solidify and crystallization does not proceed.

また、本発明においてキャビティ内に樹脂を供給したのちの保持時間は5〜60秒、好ましくは5〜45秒、さらに好ましくは5〜30秒保持する必要がある。5秒未満であると、結晶化が十分進行せず、得られる成形品は耐熱性のないものになる。60秒を超えると、結晶化は充分進行しており、保持時間が長い割には耐熱性の向上は期待できず、トータルの成形サイクルも長くなる。   In the present invention, the holding time after supplying the resin into the cavity needs to be held for 5 to 60 seconds, preferably 5 to 45 seconds, and more preferably 5 to 30 seconds. If it is less than 5 seconds, crystallization does not proceed sufficiently, and the resulting molded product has no heat resistance. If it exceeds 60 seconds, the crystallization has progressed sufficiently, and the heat resistance cannot be improved for a long holding time, and the total molding cycle becomes long.

その後キャビティ表面を急冷し、成形品を取り出すが、その際のキャビティ表面温度は40〜80℃、好ましくは50〜70℃でなければならない。40℃未満であれば金型の冷却時間が長くなり問題である上に離型性の改善効果も飽和状態に達している。また、80℃を超えると成形品の離型性が悪くなり、成形性が劣るものになる。   Thereafter, the cavity surface is rapidly cooled, and the molded product is taken out. At this time, the cavity surface temperature should be 40 to 80 ° C., preferably 50 to 70 ° C. If it is less than 40 degreeC, the cooling time of a metal mold | die will become long, and also the improvement effect of mold release property has reached the saturation state. Moreover, when it exceeds 80 degreeC, the mold release property of a molded article will worsen and a moldability will be inferior.

さらに、冷却後の保持時間は5〜30秒、好ましくは10〜20秒保持する必要がある。5秒未満であると、冷却が十分ではなく、成形品の離型性が悪くなり、成形性が劣るものになる。30秒を超えると、充分冷却されており、離型性の改善効果も飽和状態に達しており、さらにトータルの成形サイクルも長くなる。   Furthermore, the holding time after cooling needs to be 5 to 30 seconds, preferably 10 to 20 seconds. If it is less than 5 seconds, the cooling is not sufficient, the releasability of the molded product is deteriorated, and the moldability is inferior. If it exceeds 30 seconds, it is sufficiently cooled, the effect of improving the releasability has reached saturation, and the total molding cycle becomes longer.

本発明における結晶化速度の改善されたポリ乳酸樹脂組成物は、降温速度2℃/分で示差熱分析(DSC)を行った時の結晶化熱が20J/g以上、好ましくは30J/g以上、さらに好ましくは40J/g以上の樹脂組成物である。20J/g未満であると、結晶化速度が十分でなく、本発明の成形方法でも耐熱性の発現した成形品を得ることは困難である。   The polylactic acid resin composition having an improved crystallization rate in the present invention has a heat of crystallization of 20 J / g or more, preferably 30 J / g or more when differential thermal analysis (DSC) is performed at a temperature drop rate of 2 ° C./min. More preferably, the resin composition is 40 J / g or more. If it is less than 20 J / g, the crystallization rate is not sufficient, and it is difficult to obtain a molded product exhibiting heat resistance even by the molding method of the present invention.

結晶化速度の改善されたポリ乳酸樹脂組成物としては、ポリ乳酸とタルク、結晶性SiO2 、脂肪族カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール及び脂肪族カルボン酸エステル等の結晶核剤とからなる樹脂組成物や、ポリ乳酸と層状粘土鉱物、層状珪酸塩とからなる樹脂組成物や、ポリ乳酸と(メタ)アクリル酸エステル化合物とからなる樹脂組成物であり、具体的にはユニチカ株式会社製のポリ乳酸樹脂、テラマックTE−6100シリーズ、TE−7000シリーズ、TE−8000シリーズ等が挙げられるが、特にこれらに限定されるものではない。   Examples of polylactic acid resin compositions with improved crystallization speed include polylactic acid and talc, crystalline SiO2, aliphatic carboxylic acid amides, aliphatic carboxylates, aliphatic alcohols and aliphatic carboxylic acid esters. A resin composition comprising polylactic acid and a layered clay mineral, and a layered silicate, and a resin composition comprising polylactic acid and a (meth) acrylic acid ester compound. Examples include, but are not limited to, polylactic acid resin manufactured by Co., Ltd., Terramac TE-6100 series, TE-7000 series, TE-8000 series, and the like.

層状粘土鉱物としてはモンモリロナイト、バイデライト、サポナイト、ヘクトライト等のスメクタイト族;カオリナイト、ハロサイト等のカオリナイト族;ジオクタヘドラルバーミキュライト、トリオクタヘドラルバーミキュライト等のバーミキュライト族;テニオライト、テトラシリシックマイカ、マスコバイト、イライト、セリサイト、フロゴバイト、バイオタイト等のマイカ族などが挙げられる。   Layered clay minerals include smectites such as montmorillonite, beidellite, saponite and hectorite; kaolinites such as kaolinite and halosite; vermiculites such as dioctahedral vermiculite and trioctahedral vermiculite; teniolite and tetralithic Examples include mica, mascobite, illite, sericite, phlogopite and biotite.

層状珪酸塩としてはジヒドロキシエチルメチルオクタデシルアンモニウム、メチルドデシルビス(ポリエチレングリコール)アンモニウム、メチルジエチル(ポリプロピレングリコール)アンモニウム、2−ヒドロキシエチルトリフェニルホスホニウム等の、分子内に水酸基を1つ以上もつアンモニウム塩で処理したものが、ポリ乳酸樹脂との親和性が高く、層状珪酸塩の分散性が向上するため特に好ましい。   The layered silicate is an ammonium salt having one or more hydroxyl groups in the molecule, such as dihydroxyethylmethyloctadecylammonium, methyldodecylbis (polyethylene glycol) ammonium, methyldiethyl (polypropyleneglycol) ammonium, 2-hydroxyethyltriphenylphosphonium. The treated product is particularly preferred because of its high affinity with polylactic acid resin and improved dispersibility of the layered silicate.

(メタ)アクリル酸エステル化合物としてはグリシジルメタクリレート、グリシジルアクリレート、グリセロールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、アリロキシポリエチレングリコールモノアクリレート、アリロキシポリエチレングリコールモノメタクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジメタクリレート、またこれらのアルキレングリコール部が様々な長さのアルキレンの共重合体でもよく、さらにブタンジオールメタクリレート、ブタンジオールアクリレート等が挙げられるが、特にこれらに限定されるものではない。   (Meth) acrylic acid ester compounds include glycidyl methacrylate, glycidyl acrylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, allyloxy polyethylene glycol monoacrylate, allyloxy polyethylene glycol monomethacrylate, polyethylene glycol dimethacrylate, Polyethylene glycol diacrylate, polypropylene glycol dimethacrylate, polypropylene glycol diacrylate, polytetramethylene glycol dimethacrylate, and these alkylene glycol parts may be copolymers of alkylenes of various lengths, butanediol methacrylate, butanediol acrylate Etc. In particular the invention is not limited thereto.

これらのポリ乳酸樹脂組成物は、メルトフローレート(MFR)10〜50のポリ乳酸樹脂を用いて、上記化合物と配合させることによりMFR1〜15のポリ乳酸樹脂組成物とすることが好ましい。   These polylactic acid resin compositions are preferably made into a polylactic acid resin composition of MFR 1 to 15 by blending with the above compound using a polylactic acid resin having a melt flow rate (MFR) of 10 to 50.

さらに、金型温度の加熱および冷却速度は60℃/分以上、好ましくは70℃/分以上、さらに好ましくは80℃/分以上である。60℃/分未満であると所定の温度に達するのに時間がかかり、成形サイクルが長くなり、好ましくない。   Furthermore, the mold temperature heating and cooling rate is 60 ° C./min or more, preferably 70 ° C./min or more, more preferably 80 ° C./min or more. When the temperature is less than 60 ° C./min, it takes time to reach a predetermined temperature, and the molding cycle becomes long, which is not preferable.

上述の加熱速度、冷却速度で金型キャビティ表面を繰り返し急冷急熱する方法としては、加熱媒体と冷却媒体を金型内流路に循環させる方法がある。加熱媒体は熱水、加圧水、蒸気から選ばれる少なくとも1種であり、冷却媒体は冷却水であることが好ましい。なお、加熱方式はヒーターを用いたものとしたり誘導加熱などとしてもよい。   As a method of repeatedly quenching and rapidly heating the mold cavity surface at the heating rate and the cooling rate described above, there is a method of circulating the heating medium and the cooling medium through the flow path in the mold. The heating medium is at least one selected from hot water, pressurized water, and steam, and the cooling medium is preferably cooling water. The heating method may use a heater or induction heating.

また、本発明で使用される金型は、金型キャビティの表面を短時間で加熱と冷却の切替えを行える構造であることが好ましい。例えば、金型がキャビティ表面近傍に加熱媒体と冷却媒体を交互に流入できる流路を設けたものであることが好ましい。   Moreover, it is preferable that the metal mold | die used by this invention is a structure which can switch the heating and cooling of the surface of a metal mold cavity in a short time. For example, it is preferable that the mold is provided with a flow path capable of alternately flowing a heating medium and a cooling medium in the vicinity of the cavity surface.

また、本発明のポリ乳酸樹脂組成物の成形体として具体的には、配膳トレー、皿、椀、鉢、箸、スプーン、フォーク、ナイフ等の食器、容器用キャップ、定規、筆記具、CDケース等の事務用品、台所用三角コーナー、ゴミ箱、洗面器、歯ブラシ、櫛、ハンガー等の日用品、プラモデル等の各種玩具類、エアコンパネル、冷蔵庫トレー、各種筐体等の電化製品用樹脂部品、バンパー、インパネ、ドアトリム等の自動車用樹脂部品等が挙げられる。なお、成形体の形態は特に限定されず、射出成形機で製造できるものであればいかなる形態であってもよい。   In addition, as a molded product of the polylactic acid resin composition of the present invention, specifically, dishes such as serving trays, dishes, bowls, bowls, chopsticks, spoons, forks, knives, caps for containers, rulers, writing instruments, CD cases, etc. Office supplies, kitchen triangle corners, trash cans, washbasins, toothbrushes, combs, hangers and other daily necessities, plastic toys, air conditioner panels, refrigerator trays, various resin cases for appliances, bumpers, instrument panels And resin parts for automobiles such as door trims. In addition, the form of a molded object is not specifically limited, What kind of form may be sufficient if it can manufacture with an injection molding machine.

以下、本発明を実施例によりさらに具体的に説明するが、本発明は実施例のみに限定されるものではない。実施例および比較例の樹脂組成物の評価に用いた測定法は次のとおりである。
(1)引張試験:
ISO規格(ISO−527)に従い、引張強度、引張伸度を測定した。
(2)曲げ試験:
ISO規格(ISO−178)に従い、曲げ強さ、曲げ弾性率を測定した。
(3)衝撃強度:
ISO規格(ISO−179)に従い、ノッチ付きシャルピー衝撃強さを測定した。
(4)熱変形温度(DTUL):
ISO規格(ISO−75)に従い、荷重0.45MPaで熱変形温度を測定した。
(5)結晶化熱:
DSC装置(パーキンエルマー社製Pyrisl DSC)を用い、完全溶融後、2℃/分で降温した際の結晶化ピークより求めた。
(6)メルトフローレート(MFR):
JIS K7210に従い、附属書A表1のFの条件にて測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples. The measuring method used for evaluation of the resin composition of an Example and a comparative example is as follows.
(1) Tensile test:
Tensile strength and tensile elongation were measured in accordance with ISO standards (ISO-527).
(2) Bending test:
The flexural strength and flexural modulus were measured according to the ISO standard (ISO-178).
(3) Impact strength:
The notched Charpy impact strength was measured according to the ISO standard (ISO-179).
(4) Thermal deformation temperature (DTUL):
According to the ISO standard (ISO-75), the heat distortion temperature was measured at a load of 0.45 MPa.
(5) Heat of crystallization:
It calculated | required from the crystallization peak at the time of temperature-falling at 2 degree-C / min after complete melting using a DSC apparatus (Pyrisl DSC by Perkin Elmer).
(6) Melt flow rate (MFR):
In accordance with JIS K7210, measurement was performed under the conditions of Appendix A, Table 1, F.

〔実施例1〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−7000(MFR1)を用いて、表面温度を120℃としたキャビティ内に樹脂を供給して20秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を60℃まで急冷、10秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を120℃まで急熱し、次のショットを始める。結果を表1に示す。
[Example 1]
Using Unitika Terramac resin TE-7000 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the resin is supplied into a cavity with a surface temperature of 120 ° C., held for 20 seconds, crystallized, and then cooled. The cavity surface was rapidly cooled to 60 ° C. at a rate of 60 ° C./min and held for 10 seconds, and the molded body was taken out. Subsequently, the cavity surface is rapidly heated to 120 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 1.

〔実施例2〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−7000(MFR1)を用いて、表面温度を135℃としたキャビティ内に樹脂を供給して5秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を80℃まで急冷、15秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を135℃まで急熱し、次のショットを始める。結果を表1に示す。
[Example 2]
Using Unitika Terramac resin TE-7000 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the resin is supplied into a cavity having a surface temperature of 135 ° C., held for 5 seconds, crystallized, and then cooled. The cavity surface was rapidly cooled to 80 ° C. at a rate of 60 ° C./min and held for 15 seconds, and the molded body was taken out. Subsequently, the cavity surface is rapidly heated to 135 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 1.

〔実施例3〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−7000(MFR1)を用いて、表面温度を105℃としたキャビティ内に樹脂を供給して45秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を45℃まで急冷、5秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を105℃まで急熱し、次のショットを始める。結果を表1に示す。
Example 3
Using Unitika Terramac resin TE-7000 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the resin is supplied into a cavity having a surface temperature of 105 ° C., held for 45 seconds, crystallized, and then cooled. The cavity surface was rapidly cooled to 45 ° C. at a rate of 60 ° C./min and held for 5 seconds, and the molded body was taken out. Subsequently, the cavity surface is rapidly heated to 105 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 1.

〔実施例4〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−7307(MFR1)を用いて、表面温度を120℃としたキャビティ内に樹脂を供給して20秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を60℃まで急冷、10秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を120℃まで急熱し、次のショットを始める。結果を表1に示す。
Example 4
Using Unitika Terramac resin TE-7307 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the resin is supplied into a cavity having a surface temperature of 120 ° C., held for 20 seconds, crystallized, and then cooled. The cavity surface was rapidly cooled to 60 ° C. at a rate of 60 ° C./min and held for 10 seconds, and the molded body was taken out. Subsequently, the cavity surface is rapidly heated to 120 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 1.

〔実施例5〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−8210(MFR1)を用いて、表面温度を120℃としたキャビティ内に樹脂を供給して20秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を60℃まで急冷、10秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を120℃まで急熱し、次のショットを始める。結果を表1に示す。
Example 5
Using Unitika Terramac resin TE-8210 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the resin is supplied into a cavity having a surface temperature of 120 ° C., held for 20 seconds, crystallized, and then cooled. The cavity surface was rapidly cooled to 60 ° C. at a rate of 60 ° C./min and held for 10 seconds, and the molded body was taken out. Subsequently, the cavity surface is rapidly heated to 120 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 1.

〔比較例1〕
結晶化速度の改善されたポリ乳酸樹脂組成物としてユニチカテラマック樹脂TE−7000(MFR1)を用いて、通常の成形方法にて金型温度を105℃として150秒保持、結晶化し、成形体を取り出した。結果を表2に示す。
[Comparative Example 1]
Using Unitika Terramac resin TE-7000 (MFR1) as a polylactic acid resin composition with improved crystallization speed, the mold temperature is maintained at 105 ° C. for 150 seconds and crystallized by a normal molding method, and the molded product is taken out. It was. The results are shown in Table 2.

〔比較例2〕
通常のポリ乳酸樹脂としてユニチカテラマック樹脂TE−4000(MFR20)を用いて、通常の成形方法にて金型温度を105℃として150秒保持、結晶化し、成形体を取り出した。結果を表2に示す。
[Comparative Example 2]
Using Unitika Terramac resin TE-4000 (MFR20) as a normal polylactic acid resin, the mold temperature was held at 150 ° C. for 150 seconds and crystallized by a normal molding method, and the molded body was taken out. The results are shown in Table 2.

〔比較例3〕
通常のポリ乳酸樹脂としてユニチカテラマック樹脂TE−4000(MFR20)を用いて、表面温度を105℃としたキャビティ内に樹脂を供給して60秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を45℃まで急冷、5秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を105℃まで急熱し、次のショットを始める。結果を表2に示す。
[Comparative Example 3]
Using Unitika Terramac resin TE-4000 (MFR20) as a normal polylactic acid resin, the resin is supplied into a cavity with a surface temperature of 105 ° C., held for 60 seconds, crystallized, and then cooled at a cooling rate of 60 ° C./min. The surface was rapidly cooled to 45 ° C. and held for 5 seconds, and the molded product was taken out. Subsequently, the cavity surface is rapidly heated to 105 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 2.

〔比較例4〕
通常のポリ乳酸樹脂としてユニチカテラマック樹脂TP−4000(MFR5)を用いて、表面温度を105℃としたキャビティ内に樹脂を供給して60秒保持、結晶化し、その後冷却速度60℃/分でキャビティ表面を45℃まで急冷、5秒保持して成形体を取り出した。続いて加熱速度60℃/分でキャビティ表面を105℃まで急熱し、次のショットを始める。結果を表2に示す。
[Comparative Example 4]
Using Unitika Terramac resin TP-4000 (MFR5) as a normal polylactic acid resin, the resin is supplied into a cavity having a surface temperature of 105 ° C., held for 60 seconds, crystallized, and then cooled at a cooling rate of 60 ° C./min. The surface was rapidly cooled to 45 ° C. and held for 5 seconds, and the molded product was taken out. Subsequently, the cavity surface is rapidly heated to 105 ° C. at a heating rate of 60 ° C./min, and the next shot is started. The results are shown in Table 2.

Figure 2006103202
Figure 2006103202

Figure 2006103202
Figure 2006103202

実施例1〜5は本発明の成形方法である、結晶化速度の改善されたポリ乳酸樹脂組成物を用いて金型キャビティの表面を特定の温度条件、保持時間、加熱冷却速度で繰り返し急冷急熱する方法を用いているため、成形性に優れ、特に110℃以上の耐熱性を有するポリ乳酸樹脂組成物の成形体を得ることができた。   Examples 1 to 5 are molding methods according to the present invention, and the surface of the mold cavity is repeatedly rapidly and rapidly quenched at a specific temperature condition, holding time, and heating / cooling rate using the polylactic acid resin composition having an improved crystallization rate. Since a heating method was used, a molded article of a polylactic acid resin composition having excellent moldability and particularly heat resistance of 110 ° C. or higher could be obtained.

比較例1は結晶化速度の改善されたポリ乳酸樹脂組成物を用いているが、通常の成形方法であるため、耐熱性を有するポリ乳酸樹脂の成形体を得ることができるものの、成形サイクルが長く、さらに離型時に成形体が一部変形する問題が生じる。   Comparative Example 1 uses a polylactic acid resin composition having an improved crystallization speed. However, since it is a normal molding method, a molded product of heat-resistant polylactic acid resin can be obtained, but the molding cycle is There is a problem that the molded body is partially deformed at the time of mold release.

比較例2は通常のポリ乳酸樹脂を用いた通常成形方法なので、成形中に結晶化が進まず、さらに金型温度も高温のままなので、成形体を変形させずに金型から取出すことはできなかった。   Since Comparative Example 2 is a normal molding method using ordinary polylactic acid resin, crystallization does not proceed during molding, and the mold temperature remains high, so that it can be taken out from the mold without deforming the molded body. There wasn't.

比較例3〜4は金型キャビティの表面を特定の温度条件、保持時間、加熱冷却速度で繰り返し急冷急熱する方法を用いたものの、通常のポリ乳酸樹脂を用いたため、本発明の成形条件内では結晶化が十分に進行せず、耐熱性を有するポリ乳酸樹脂の成形体を得ることができなかった。   Although Comparative Examples 3 to 4 used a method in which the surface of the mold cavity was repeatedly rapidly and rapidly heated at a specific temperature condition, holding time, and heating / cooling rate, a normal polylactic acid resin was used. However, crystallization did not proceed sufficiently, and a molded product of polylactic acid resin having heat resistance could not be obtained.

Claims (4)

金型キャビティの表面を繰り返し急冷急熱する成形方法において、表面温度を90〜140℃としたキャビティ内に結晶化速度の改善されたポリ乳酸樹脂組成物を供給して5〜60秒保持、結晶化し、その後キャビティ表面を40〜80℃まで急冷、5〜30秒保持して成形体を取り出すことを特徴とするポリ乳酸樹脂組成物の成形方法。   In a molding method in which the surface of a mold cavity is repeatedly rapidly cooled and rapidly heated, a polylactic acid resin composition having an improved crystallization rate is supplied into a cavity having a surface temperature of 90 to 140 ° C. and held for 5 to 60 seconds. Then, the cavity surface is rapidly cooled to 40 to 80 ° C., held for 5 to 30 seconds, and the molded product is taken out. 結晶化速度の改善されたポリ乳酸樹脂組成物が降温速度2℃/分で示差熱分析(DSC)を行った時の結晶化熱が20J/g以上の樹脂組成物であることを特徴とする請求項1記載のポリ乳酸樹脂組成物の成形方法。   The polylactic acid resin composition having an improved crystallization rate is a resin composition having a heat of crystallization of 20 J / g or more when differential thermal analysis (DSC) is performed at a temperature drop rate of 2 ° C./min. A method for molding the polylactic acid resin composition according to claim 1. 金型温度の加熱および冷却速度が60℃/分以上であることを特徴とする請求項1〜2のいずれかに記載のポリ乳酸樹脂組成物の成形方法。   The method for molding a polylactic acid resin composition according to any one of claims 1 to 2, wherein the mold temperature heating and cooling rates are 60 ° C / min or more. 請求項1〜3のいずれかに記載の成形方法により得られ、耐熱温度が110℃以上であることを特徴とするポリ乳酸樹脂組成物の成形体。   A molded article of a polylactic acid resin composition obtained by the molding method according to any one of claims 1 to 3 and having a heat resistant temperature of 110 ° C or higher.
JP2004294134A 2004-10-06 2004-10-06 Method for molding polylactic acid resin composition and molded body thereof Active JP4645971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294134A JP4645971B2 (en) 2004-10-06 2004-10-06 Method for molding polylactic acid resin composition and molded body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294134A JP4645971B2 (en) 2004-10-06 2004-10-06 Method for molding polylactic acid resin composition and molded body thereof

Publications (2)

Publication Number Publication Date
JP2006103202A true JP2006103202A (en) 2006-04-20
JP4645971B2 JP4645971B2 (en) 2011-03-09

Family

ID=36373438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294134A Active JP4645971B2 (en) 2004-10-06 2004-10-06 Method for molding polylactic acid resin composition and molded body thereof

Country Status (1)

Country Link
JP (1) JP4645971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162856A (en) * 2008-12-17 2010-07-29 Toyota Motor Corp Method for injection-molding polylactic acid-based resin composition
EP2332711A1 (en) * 2008-09-10 2011-06-15 Michio Komatsu Molded article and method for production thereof
JP2019163372A (en) * 2018-03-19 2019-09-26 信越ポリマー株式会社 Method of producing molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342903A (en) * 1992-06-11 1993-12-24 Mitsui Toatsu Chem Inc On-vehicle lighting fixture and manufacture thereof
JPH11115013A (en) * 1997-10-17 1999-04-27 Tohoku Munekata Co Ltd Plastic injection molding method
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2001150506A (en) * 1999-11-25 2001-06-05 Ge Plastics Japan Ltd Method for obtaining injection-molded article of thermoplastic resin having high quality appearance
JP2001191378A (en) * 2000-01-06 2001-07-17 Ono Sangyo Kk Method for molding synthetic resin
JP2002155197A (en) * 2000-09-11 2002-05-28 Unitika Ltd Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom
JP2003192884A (en) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk Polylactic acid-based polymer composition, molded article and method for producing the molded article
JP2003192883A (en) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk Polylactic acid-based resin composition, molded article and method for producing the molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342903A (en) * 1992-06-11 1993-12-24 Mitsui Toatsu Chem Inc On-vehicle lighting fixture and manufacture thereof
JPH11115013A (en) * 1997-10-17 1999-04-27 Tohoku Munekata Co Ltd Plastic injection molding method
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2001150506A (en) * 1999-11-25 2001-06-05 Ge Plastics Japan Ltd Method for obtaining injection-molded article of thermoplastic resin having high quality appearance
JP2001191378A (en) * 2000-01-06 2001-07-17 Ono Sangyo Kk Method for molding synthetic resin
JP2002155197A (en) * 2000-09-11 2002-05-28 Unitika Ltd Biodegradable heat resistant resin composition, and sheet, molding, and expanded material therefrom
JP2003192884A (en) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk Polylactic acid-based polymer composition, molded article and method for producing the molded article
JP2003192883A (en) * 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk Polylactic acid-based resin composition, molded article and method for producing the molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332711A1 (en) * 2008-09-10 2011-06-15 Michio Komatsu Molded article and method for production thereof
EP2332711A4 (en) * 2008-09-10 2012-04-25 Michio Komatsu Molded article and method for production thereof
JP2010162856A (en) * 2008-12-17 2010-07-29 Toyota Motor Corp Method for injection-molding polylactic acid-based resin composition
JP2019163372A (en) * 2018-03-19 2019-09-26 信越ポリマー株式会社 Method of producing molded article
JP7045228B2 (en) 2018-03-19 2022-03-31 信越ポリマー株式会社 Manufacturing method of molded products

Also Published As

Publication number Publication date
JP4645971B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
CN101522798B (en) Moldings of polylactic acid compositions
KR100866367B1 (en) Biodegradable resin composition for molding and molded object obtained by molding the same
CN101180362B (en) Polylactic acid composition and molded product composed of the composition
CN100354367C (en) Biodegradable polyester resin compositon, process for producing the same and foamed article and molded article using the same
JP5305590B2 (en) Polylactic acid-containing resin composition and molded product obtained therefrom
KR101197105B1 (en) Resin composition, molding thereof and process for producing the same
JP5036318B2 (en) Flame retardant polylactic acid resin composition, method for producing the same, and molded product obtained therefrom
MXPA06014717A (en) High gloss pet molding composition and articles made therefrom.
JP2005171204A (en) Resin composition and molded article obtained from the same
JP4645971B2 (en) Method for molding polylactic acid resin composition and molded body thereof
JP6899639B2 (en) Metal / resin composite structure and method for manufacturing metal / resin composite structure
JP2009518514A5 (en)
JP2008163111A (en) Polylactic acid stereocomplex molded item and its manufacturing method
JP3945264B2 (en) Polylactic acid composite material and molded body
JP6612512B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure
JP2008173966A (en) Manufacturing method for polylactic acid resin molded body
JP5619638B2 (en) Polylactic acid resin composition, and molded product and foam obtained therefrom
JP2008037939A (en) Lactic acid resin composition
JP5113508B2 (en) Biodegradable polyester resin composition and foam and molded product obtained therefrom
JPWO2008069182A1 (en) Adhesive method and structure of resin material containing oxymethylene polymer
WO2012044362A1 (en) Fluid-assisted injection molded articles and process
JP2009091453A (en) Resin composition and injection-molded product
JPH0352953A (en) Polyamide resin composition
JP2020128469A (en) Monofilament for 3d printer and method for using the same, and molding method
JP2012117034A (en) Molten and crystallized composition of polylactic acid, its molding, and molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4645971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250