JP2006102558A - Coating method for particle - Google Patents

Coating method for particle Download PDF

Info

Publication number
JP2006102558A
JP2006102558A JP2004288316A JP2004288316A JP2006102558A JP 2006102558 A JP2006102558 A JP 2006102558A JP 2004288316 A JP2004288316 A JP 2004288316A JP 2004288316 A JP2004288316 A JP 2004288316A JP 2006102558 A JP2006102558 A JP 2006102558A
Authority
JP
Japan
Prior art keywords
coating
fluidized bed
particles
coating layer
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004288316A
Other languages
Japanese (ja)
Other versions
JP4685400B2 (en
Inventor
Susumu Natsuyama
晋 夏山
Takuya Nagato
琢也 長門
Yoshiyuki Kano
良幸 加納
Makoto Kobayashi
誠 小林
Daichi Tokuyama
大地 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Original Assignee
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powrex KK filed Critical Powrex KK
Priority to JP2004288316A priority Critical patent/JP4685400B2/en
Publication of JP2006102558A publication Critical patent/JP2006102558A/en
Application granted granted Critical
Publication of JP4685400B2 publication Critical patent/JP4685400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of dissolution and permeation of a particle component into a covering layer by a water based membrane agent liquid, to shorten a treatment time and to realize enhancement of productivity. <P>SOLUTION: A first covering layer L1 is formed on a surface of a chemical particle P by dry coating of a hydrophobic powder P'. Thereafter, a second covering layer L2 is formed on a surface of the particle P forming the first covering layer L1 by wet coating of the water based membrane agent liquid. The dry coating and the wet coating are successively performed in a single fluidized bed device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水溶性の高い薬物含有核粒子等の水溶性粒子に水系膜剤液の湿式コーティングにより被覆層を形成する方法に関する。   The present invention relates to a method for forming a coating layer on a water-soluble particle such as a drug-containing core particle having high water solubility by wet coating with an aqueous film agent solution.

例えば、医薬品業界では、薬物伝達を目的とした製剤設計の研究が進められており、原薬の溶出制御が重要な課題となっている。溶出制御としては、薬物粒子の表面に、腸溶性、胃溶性、徐放性、防湿性、光分解性、苦味マスク等の種々の機能性被膜を形成することが広く行われている。このような機能性被膜のコーティング処理は、流動層装置を用いて行われる場合が多く、近年は流動層装置の改良により、微粒原薬への直接コーティングが可能となり、固形製剤の細粒化やマイクロカプセル化等の多様な製剤設計を可能にしている。その一方で、微粒原薬へのコーティングは、原料の総表面積が大きくなることにより、多くの膜剤量と処理時間を要しているのが現状であり、生産効率、製品品質に関する問題も少なくない。   For example, in the pharmaceutical industry, research on formulation design for drug delivery is underway, and control of drug substance elution is an important issue. As elution control, various functional coatings such as enteric, gastric, sustained release, moisture-proof, photodegradable, bitterness mask, etc. are widely formed on the surface of drug particles. In many cases, such functional coating is performed using a fluidized bed apparatus. In recent years, the fluidized bed apparatus has been improved to enable direct coating on a fine drug substance. Various formulation designs such as microencapsulation are possible. On the other hand, the coating of fine drug substance requires a large amount of film agent and processing time due to the large total surface area of raw materials, and there are few problems related to production efficiency and product quality. Absent.

また、流動層装置を用いたコーティング操作は、一般的に膜剤液の液滴の噴霧による湿式コーティングであるが、近年は安全面や環境保護の観点から、有機溶剤系の膜剤液に代えて水系の膜剤液を使用する場合が増えてきている(水系コーティング)。しかしながら、水溶性の高い薬物粒子等の水溶性粒子のコーティングに水系膜剤液を使用すると、噴霧された膜剤液の液滴が粒子表面に付着して十分に乾燥されるまでの間に粒子成分(薬物)が被覆層中に溶解・浸透して、目的とする溶出制御が困難になる場合が多い。一方、コーティング操作をさらに進めることによって被覆層中の粒子成分濃度を低下させることはできるが、目的とする溶出制御性能を得るためには大量の被覆量が必要となり、生産効率の低下につながる。   In addition, the coating operation using a fluidized bed apparatus is generally wet coating by spraying droplets of a film agent solution. However, in recent years, from the viewpoint of safety and environmental protection, it has been replaced with an organic solvent-based film agent solution. The use of aqueous film solutions is increasing (aqueous coating). However, when an aqueous film agent solution is used for coating water-soluble particles such as drug particles with high water solubility, the particles are sprayed until the droplets of the sprayed film agent solution adhere to the particle surface and are sufficiently dried. In many cases, the component (drug) dissolves and penetrates into the coating layer, making it difficult to control the target elution. On the other hand, the particle component concentration in the coating layer can be reduced by further advancing the coating operation, but a large amount of coating is required to obtain the target elution control performance, leading to a reduction in production efficiency.

上記の点に関連して、下記の特許文献1には、薬理活性物質を含有する固形成型物の表面に、水不溶性高分子の微粉を粉末状態で添加し被膜形成した後、水系コーティング法によってコーティングする被コーティング製剤の製法が開示されている。
特開平9−143056号公報
In relation to the above point, the following Patent Document 1 discloses that a water-insoluble polymer fine powder is added in a powder state to the surface of a solid molded product containing a pharmacologically active substance to form a film, followed by an aqueous coating method. A method for producing a coated preparation to be coated is disclosed.
JP-A-9-143056

特許文献1に開示された製法は、固形成型物の表面に水不溶性高分子の微粉を粉末状態で添加して第1被覆層を形成する工程と、第1被覆層の表面に水系膜剤液を噴霧して第2被覆層を形成する工程とを有するものであるが、各工程をそれぞれ異なる装置で別々に行っている。例えば、同文献の実施例では、第1被覆層の形成を転動造粒機で行い、第2層被覆層の形成を流動層装置で行っている。そのため、工程間における原料の移送や各装置ごとの運転準備・監視作業が必要となり、処理時間が増大するという問題がある。   The manufacturing method disclosed in Patent Document 1 includes a step of forming a first coating layer by adding fine powder of water-insoluble polymer in a powder state to the surface of a solid molded product, and an aqueous film agent solution on the surface of the first coating layer. In which the second coating layer is formed by spraying, but each step is performed separately by different apparatuses. For example, in the example of this document, the first coating layer is formed by a rolling granulator, and the second coating layer is formed by a fluidized bed apparatus. Therefore, there is a problem that the processing time increases because it is necessary to transfer raw materials between processes and to prepare and monitor the operation of each device.

また、第1被覆層を形成する工程において、水不溶性高分子の粉末を固形成型物の表面に付着させるために結合剤液を噴霧しているが、このようなコーティング操作は、医薬品原末のような微粒子に対しては粒子同士の凝集を生じやすく、良好なコーティング品質を確保することが難しい。また、結合剤液を噴霧するので上述した問題が生じる。すなわち、結合剤として、水系のものを使用した場合は被覆層中への粒子成分(薬物)の溶解・浸透の問題が生じ、有機溶媒系のものを使用した場合は安全面や環境上の問題が生じる。   Further, in the step of forming the first coating layer, the binder liquid is sprayed to adhere the water-insoluble polymer powder to the surface of the solid molded product. For such fine particles, the particles tend to aggregate and it is difficult to ensure good coating quality. Moreover, since the binder liquid is sprayed, the above-described problems occur. That is, when water-based binders are used, there is a problem of dissolution / penetration of particle components (drugs) into the coating layer, and when organic solvent-based binders are used, there are safety and environmental problems. Occurs.

本発明の課題は、水溶性の高い薬物粒子等の水溶性粒子に水系膜剤液の湿式コーティングにより被覆層を形成するに際し、水系膜剤液による被覆層中への粒子成分の溶解・浸透の問題を解決すると共に、処理時間を短縮し、生産性の向上を図ることである。   An object of the present invention is to dissolve and permeate particle components into a coating layer with an aqueous film agent solution when forming a coating layer on the water-soluble particles such as drug particles with high water solubility by wet coating of the aqueous film agent solution. It is to solve the problem, shorten the processing time, and improve the productivity.

上記課題を解決するため、本発明は、水溶性粒子の表面に疎水性粉末の乾式コーティングにより第1被覆層を形成する工程と、第1被覆層を形成した粒子の表面に水系膜剤液の湿式コーティングにより第2被覆層を形成する工程とを含む粒子のコーティング方法を提供する。   In order to solve the above problems, the present invention provides a step of forming a first coating layer on the surface of water-soluble particles by dry coating of hydrophobic powder, and an aqueous film agent solution on the surface of the particles on which the first coating layer has been formed. Forming a second coating layer by wet coating.

ここで、本発明における水溶性粒子とは、その表面に水系膜剤液を直接噴霧して被覆層を形成した場合、粒子成分が上記被覆層中に溶解移行(浸透)する程度の高い水溶性を示す粒子をいう。また、本発明における乾式コーティングとは、結合剤液等の液体を添加することなく、膜剤粉末を粒子の表面に直接付着させて被覆層を形成する操作をいう。さらに、本発明における湿式コーティングとは、粒子の表面に水系膜剤液の液滴を噴霧して被覆層を形成する操作をいう(水系湿式コーティング)。   Here, the water-soluble particles in the present invention are highly water-soluble so that the particle component is dissolved and transferred (penetrated) into the coating layer when the coating layer is formed by directly spraying the aqueous film agent liquid on the surface thereof. The particle which shows. The dry coating in the present invention refers to an operation of forming a coating layer by directly attaching a film agent powder to the surface of particles without adding a liquid such as a binder solution. Furthermore, the wet coating in the present invention refers to an operation of forming a coating layer by spraying droplets of an aqueous film agent solution on the surface of particles (aqueous wet coating).

水系湿式コーティングによる第2被覆層の下層に、疎水性粉末の乾式コーティングによる第1被覆層を形成することにより、水溶性粒子成分の第2被覆層中への溶解・浸透が防止又は抑制され、水溶性粒子成分の溶出制御が効果的になされる。   By forming the first coating layer by the dry coating of the hydrophobic powder under the second coating layer by the water-based wet coating, dissolution / penetration of the water-soluble particle component into the second coating layer is prevented or suppressed, Elution control of the water-soluble particle component is effectively performed.

第1被覆層を形成する工程と第2被覆層を形成する工程とを、単一の流動層装置内で連続して行うことにより、工程間における原料の移送や各装置ごとの個別的な運転準備・監視作業を不要にして、処理時間を短縮することができる。   By continuously performing the process of forming the first coating layer and the process of forming the second coating layer in a single fluidized bed apparatus, transfer of raw materials between processes and individual operation for each apparatus Preparation / monitoring work is unnecessary, and the processing time can be shortened.

上記の流動層装置として、例えば、流動層容器と、流動層容器内を流動循環する粒子の凝集を機械的な解砕力によって分散する整粒機構と、流動層容器内を流動循環する粒子に向けて水系膜剤液を噴霧するスプレーノズルとを備えた流動層装置を用いることができる(本出願人が先に提案している特開2004−148291号公報を参照)。ここで、機械的な解砕力とは、整粒機構を構成する部材の運動によって、粉粒体粒子に与えられる衝突力、衝撃力、反発力、圧壊力、剪断力、撹拌力、摩擦力などの力である。そのような機械的な解砕力によって粉粒体粒子の凝集を分散する整粒機構として、例えば、解砕羽根を有するインペラーを備えたもの、さらに、インペラーの解砕羽根と所定の間隙を設けて配設されたスクリーンを備えたものを採用することができる。また、上記の整粒機構として、同心状に配設され且つ複数の歯を有するロータ及びステータを備えたものを採用することができる。このようなロータ及びステータを備えた整粒機構はホモジナイザーとも呼ばれ、一般には、分散乳化装置に使用されている(例えば、株式会社パウレック製「ユニバーサルミキサーSRシリーズ」)。あるいは、上記の整粒機構として、相対回転する円盤に多数のピンを設けたもの(いわゆるピンミル)、多数のスイングハンマーを設けた円盤状のハンマープレートとインボリュート型のくぼみのあるライニングプレートとを備えたもの(例えば、株式会社パウレック製「Powrex Atomizer」)等を採用することもできる。   Examples of the fluidized bed apparatus include a fluidized bed container, a particle size adjusting mechanism that disperses aggregation of particles flowing and circulating in the fluidized bed container by mechanical crushing force, and particles flowing and circulating in the fluidized bed container. A fluidized bed apparatus equipped with a spray nozzle for spraying an aqueous film agent solution can be used (see Japanese Patent Application Laid-Open No. 2004-148291 previously proposed by the present applicant). Here, the mechanical crushing force is a collision force, impact force, repulsive force, crushing force, shearing force, stirring force, frictional force, etc. given to the granular particles by the movement of the members constituting the sizing mechanism. It is power. As a sizing mechanism that disperses the agglomeration of the granular particles by such mechanical pulverization force, for example, an impeller having pulverization blades and a predetermined gap between the impeller pulverization blades and a predetermined gap are arranged. The thing provided with the installed screen can be employ | adopted. Further, as the above sizing mechanism, a mechanism provided with a rotor and a stator arranged concentrically and having a plurality of teeth can be employed. Such a sizing mechanism including a rotor and a stator is also called a homogenizer, and is generally used in a dispersion emulsifier (for example, “Universal Mixer SR Series” manufactured by POWREC Co., Ltd.). Alternatively, as the sizing mechanism, a relatively rotating disk provided with a large number of pins (so-called pin mill), a disk-shaped hammer plate provided with a large number of swing hammers, and an involute-type recessed lining plate are provided. (For example, “Powrex Atomizer” manufactured by POWREC Co., Ltd.) or the like can also be employed.

本発明によれば、水溶性の高い薬物粒子等の水溶性粒子に水系膜剤液の湿式コーティングにより被覆層を形成するに際し、水系膜剤液による被覆層中への粒子成分の溶解・浸透の問題を解決すると共に、処理時間を短縮し、生産性の向上を図ることができる。   According to the present invention, when a coating layer is formed on a water-soluble particle such as a drug particle having high water solubility by wet coating of an aqueous film agent solution, dissolution / penetration of the particle component into the coating layer by the aqueous film agent solution is performed. In addition to solving problems, the processing time can be shortened and productivity can be improved.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、この実施形態で用いる流動層装置の全体構成を概念的に示している。   FIG. 1 conceptually shows the overall configuration of the fluidized bed apparatus used in this embodiment.

流動層容器1は、例えば上方部分が円錐筒状、下方部分が円筒状をなし(上方部分が円筒状、下方部分が円錐筒状の場合もある。)、上部空間にフィルターシステム2が設置され、底部にパンチングメタル等の多孔板で構成された気体分散板3が配設されている。また、底部の中心に回転ロータ4が配設され、回転ロータ4の上方に整粒機構5が配設され、整粒機構5の上方に円筒状のドラフトチューブ6が設置されている。さらに、整粒機構5の側方に1又は複数のスプレーノズル7が配設されている。   The fluidized bed container 1 has, for example, a conical cylinder in the upper part and a cylindrical shape in the lower part (the upper part may be cylindrical and the lower part may be conical), and the filter system 2 is installed in the upper space. A gas dispersion plate 3 made of a perforated plate such as punching metal is disposed at the bottom. In addition, the rotary rotor 4 is disposed at the center of the bottom, the granulating mechanism 5 is disposed above the rotating rotor 4, and the cylindrical draft tube 6 is disposed above the granulating mechanism 5. Furthermore, one or a plurality of spray nozzles 7 are disposed on the side of the sizing mechanism 5.

図2は、流動層容器1の下方部分を示している。ドラフトチューブ6は、整粒機構5のスクリーン5bと共に、取付部材6aを介して流動層容器1の側壁に固定され、その上端部は開口している。例えば、ドラフトチューブ6の上方部分6bは円筒形状、下方部分6cは下方に向かって縮径する円錐形状になっている。   FIG. 2 shows the lower part of the fluidized bed container 1. The draft tube 6 is fixed to the side wall of the fluidized bed container 1 through the attachment member 6a together with the screen 5b of the granulating mechanism 5, and the upper end thereof is open. For example, the upper portion 6b of the draft tube 6 has a cylindrical shape, and the lower portion 6c has a conical shape whose diameter decreases downward.

整粒機構5は、複数、例えば2枚の解砕羽根5a1を有するインペラー5aと、所定径の多数の孔を有するスクリーン(ふるい)5bとを備えている。スクリーン5bは下方に向かって縮径する円錐台形状をなし、ドラフトチューブ6の下端部に適合される。インペラー5aは、回転軸5cの上方部分にボルト5dで着脱自在に固定され、その解砕羽根5a1の側縁はスクリーン5bの内面と所定の間隙を有している。回転軸5cは、気体分散板3の中心部を貫通して流動層容器1の下方に延び、流動層容器1のスタンド8に固定されたハウジング9に軸受10で回転自在に支持される。尚、ハウジング9の内部はシール部材11によってシールされる。また、回転軸5cと気体分散板3との間はラビリンスシールによってシールされる。   The particle size adjusting mechanism 5 includes a plurality of, for example, two impellers 5a having crushing blades 5a1 and a screen (sieving) 5b having a large number of holes having a predetermined diameter. The screen 5b has a truncated cone shape with a diameter decreasing downward, and is adapted to the lower end portion of the draft tube 6. The impeller 5a is detachably fixed to the upper portion of the rotating shaft 5c with a bolt 5d, and the side edge of the crushing blade 5a1 has a predetermined gap with the inner surface of the screen 5b. The rotating shaft 5 c passes through the central portion of the gas dispersion plate 3, extends below the fluidized bed container 1, and is rotatably supported by a bearing 9 on a housing 9 fixed to the stand 8 of the fluidized bed container 1. The interior of the housing 9 is sealed with a seal member 11. Further, a gap between the rotating shaft 5c and the gas dispersion plate 3 is sealed with a labyrinth seal.

回転軸5cのインペラー5aより下方部位に、スペーサ13、エアキャップ14、及び回転ロータ4が固定される。回転ロータ4は、気体分散板3の上面と所定の隙間を有し、気体分散板3の上面を覆うように配設される。   The spacer 13, the air cap 14, and the rotary rotor 4 are fixed to a portion below the impeller 5a of the rotary shaft 5c. The rotary rotor 4 has a predetermined gap from the upper surface of the gas dispersion plate 3 and is disposed so as to cover the upper surface of the gas dispersion plate 3.

回転軸5cは、図示されていない適宜の回転駆動手段に連結され、回転駆動手段によって回転駆動される。回転軸5cの回転に伴い、インペラー5a、エアキャップ14、及び回転ロータ4が一体となって高速回転する。尚、スクリーン5bの下端開口部は、インペラー5a及びエアキャップ14との間にラビリンスシール(又は接触シール)を構成する。また、インペラー5aと回転ロータ4は、相互に異なる速度で回転させるようにしても良い(例えば、回転ロータ4の回転速度をインペラー5aの回転速度をよりも遅くする。)。   The rotation shaft 5c is connected to an appropriate rotation driving unit (not shown) and is driven to rotate by the rotation driving unit. As the rotating shaft 5c rotates, the impeller 5a, the air cap 14, and the rotating rotor 4 are integrally rotated at a high speed. The lower end opening of the screen 5b forms a labyrinth seal (or contact seal) between the impeller 5a and the air cap 14. Further, the impeller 5a and the rotating rotor 4 may be rotated at different speeds (for example, the rotating speed of the rotating rotor 4 is made slower than the rotating speed of the impeller 5a).

スプレーノズル7は、例えば、回転軸5cの軸心を中心とする所定半径の円に対して、接線方向にスプレー液を噴霧するように配置される(いわゆるタンジェンシャルスプレー)。   For example, the spray nozzle 7 is disposed so as to spray the spray liquid in a tangential direction with respect to a circle having a predetermined radius centered on the axis of the rotation shaft 5c (so-called tangential spray).

流動化気体(例えば熱風)は、気体分散板3を介して流動層容器1内に給気される。気体分散板3から流動層容器1内に噴出した流動化気体は、回転ロータ4の下面と気体分散板3の上面との間の隙間部を通り、回転ロータ4の外周と流動層容器1の底部の内壁との間の隙間部を上昇し、さらに、整粒機構5と流動層容器1の内壁との間の空間部と、ドラフトチューブ6の外周と流動層容器1の内壁との間の空間部を上昇して、フィルターシステム2に達する。そして、フィルターシステム2で微粉等を濾過された後、装置外部に排気される。また、整粒機構5のインペラー5aの回転によるファン効果によって、スクリーン5bの内側から外側への気流が発生する。これにより、ドラフトチューブ6の内部は周囲に比べてごく弱い負圧になり、ドラフトチューブ6の上端部では周囲の粉粒体粒子を内部に吸引する効果が得られる。   Fluidized gas (for example, hot air) is supplied into the fluidized bed container 1 through the gas dispersion plate 3. The fluidized gas ejected from the gas dispersion plate 3 into the fluidized bed container 1 passes through a gap between the lower surface of the rotary rotor 4 and the upper surface of the gas dispersion plate 3, and the outer periphery of the rotary rotor 4 and the fluidized bed container 1. The gap between the bottom inner wall and the inner wall of the fluidized bed container 1 between the granulating mechanism 5 and the inner wall of the fluidized bed container 1, and between the outer periphery of the draft tube 6 and the inner wall of the fluidized bed container 1 are raised. The space is raised and reaches the filter system 2. And after filtering fine powder etc. with the filter system 2, it exhausts outside the apparatus. Further, an air flow from the inside to the outside of the screen 5b is generated by the fan effect caused by the rotation of the impeller 5a of the granulating mechanism 5. Thereby, the inside of the draft tube 6 becomes a very weak negative pressure compared with the circumference | surroundings, and the effect of attracting | sucking the surrounding granular material particle | grains inside is acquired in the upper end part of the draft tube 6.

図1に示すように、流動層容器1内に投入された粉粒体粒子Pは、回転ロータ4の外周と流動層容器1の底部の内壁との間の隙間部、整粒機構5と流動層容器1の内壁との間の空間部、ドラフトチューブ6の外周と流動層容器1の内壁との間の空間部を上昇する上昇気流に乗って上昇し、流動層容器1内をある程度上昇した後、自重によって下降し、さらに上記の吸引効果を受けて、ドラフトチューブ6の内部に流入する。そして、ドラフトチューブ6内に流入した粉粒体粒子Pは、ドラフトチューブ6内を下降して整粒機構5に達し、インペラー5aの回転に伴う遠心効果を受け、所定径の多数の孔を有するスクリーン5bを通過する際に二次凝集部分や団粒部分が解砕されて、単粒子状または所定粒径の粒子に分散される(整粒作用)。   As shown in FIG. 1, the powder particles P introduced into the fluidized bed container 1 are a gap between the outer periphery of the rotating rotor 4 and the inner wall of the bottom of the fluidized bed container 1, the particle size adjusting mechanism 5 and the fluidized particles. The space portion between the inner wall of the layered container 1 and the space portion between the outer periphery of the draft tube 6 and the inner wall of the fluidized bed container 1 are lifted by an ascending air current, and rise in the fluidized bed container 1 to some extent. Thereafter, it descends due to its own weight and further flows into the draft tube 6 under the above suction effect. And the granular material particle | grains P which flowed in in the draft tube 6 descend | fall in the draft tube 6, reach the sizing mechanism 5, receive the centrifugal effect accompanying rotation of the impeller 5a, and have many holes of a predetermined diameter. When passing through the screen 5b, the secondary agglomerated part and the aggregated part are crushed and dispersed into particles having a single particle shape or a predetermined particle size (size adjusting action).

整粒機構5を通過した粉粒体粒子Pは、回転ロータ4の遠心効果によって再び上記の上昇気流に戻される。このようにして、流動層容器1内の粉粒体粒子Pに、回転ロータ4の外周と流動層容器1の底部の内壁との間の隙間部、整粒機構5と流動層容器1の内壁との間の空間部、ドラフトチューブ6の外周と流動層容器1の内壁との間の空間部を上昇し、ドラフトチューブ6の内部に沿って下降する方向に浮遊循環する流動層が形成される。   The particulate particles P that have passed through the sizing mechanism 5 are returned again to the above-described updraft by the centrifugal effect of the rotating rotor 4. In this way, the gap between the outer periphery of the rotating rotor 4 and the inner wall at the bottom of the fluidized bed container 1, the sizing mechanism 5 and the inner wall of the fluidized bed container 1 is added to the granular particles P in the fluidized bed container 1. A fluidized bed that floats and circulates in the direction of descending along the interior of the draft tube 6 is formed by ascending the space between the outer periphery of the draft tube 6 and the space between the outer periphery of the draft tube 6 and the inner wall of the fluidized bed container 1. .

上記の流動層装置を用いて、水溶性粒子、例えば水溶性薬物粒子のコーティング操作を行う。   Using the fluidized bed apparatus described above, a water-soluble particle, for example, a water-soluble drug particle is coated.

まず、水溶性薬物原料に膜剤として疎水性粉末を添加し、混合した後、流動層容器1内に仕込む。そして、流動層装置を上記の態様で運転し、薬物粒子と疎水性粉末を流動層容器1内で流動循環させる。図3に示すように、薬物粒子Pと疎水性粉末P’は混合状態で流動層容器1内を流動循環し、整粒機構5を繰り返し通過する際に、整粒機構5から機械的せん断、展延作用を受け、疎水性粉末P’が薬物粒子Pの表面に展延付着して第1被覆層L1が形成される(乾式コーティング)。   First, a hydrophobic powder as a film agent is added to a water-soluble drug raw material, mixed, and then charged into the fluidized bed container 1. Then, the fluidized bed apparatus is operated in the above-described manner, and the drug particles and the hydrophobic powder are fluidly circulated in the fluidized bed container 1. As shown in FIG. 3, when the drug particles P and the hydrophobic powder P ′ flow and circulate in the fluidized bed container 1 in a mixed state and repeatedly pass through the sizing mechanism 5, mechanical shearing from the sizing mechanism 5, In response to the spreading action, the hydrophobic powder P ′ spreads and adheres to the surface of the drug particles P to form the first coating layer L1 (dry coating).

上記の乾式コーティング操作における流動化気体の給気風量は、例えば、流動層容器1内で薬物粒子Pと疎水性粉末P’とが分離しない程度の低風量に設定する。また、流動化気体の給気温度は、疎水性粉末の熱的特性により、室温から疎水性粉末の軟化点の範囲で設定する。尚、薬物原料のみを先に流動層容器1内に仕込み、薬物粒子を流動層容器1内で流動循環させつつ、疎水性粉末を流動層の下部などから適量づつ添加するようにしても良い。   The supply air amount of the fluidized gas in the dry coating operation is set to a low air amount that does not separate the drug particles P and the hydrophobic powder P ′ in the fluidized bed container 1, for example. Further, the supply temperature of the fluidizing gas is set in the range from room temperature to the softening point of the hydrophobic powder, depending on the thermal characteristics of the hydrophobic powder. Alternatively, only the drug raw material may be charged into the fluidized bed container 1 first, and the hydrophobic powder may be added in an appropriate amount from the lower part of the fluidized bed while fluidly circulating the drug particles in the fluidized bed container 1.

上記の乾式コーティングにより、薬物粒子Pの表面に疎水性粉末P’の第1被覆層L1を形成した後、湿式コーティングに移行する。図3に示すように、湿式コーティングは、疎水性粉末P’の第1被覆層L1を形成した薬物粒子Pの表面に水系膜剤液の液滴を噴霧し、水系膜剤液中に含まれる膜剤成分(固形分)を薬物粒子Pの表面に付着乾燥させて、膜剤成分からなる第2被覆層L2を形成する工程である。乾式コーティングから湿式コーティングへの移行は、流動層装置の運転状態を継続しつつ、操作条件を切り替えることによって行う。この湿式コーティング操作は、流動層装置を用いた通常のスプレーコーティング操作と同じ条件で行うことができる。   After the first coating layer L1 of the hydrophobic powder P ′ is formed on the surface of the drug particle P by the dry coating, the process proceeds to the wet coating. As shown in FIG. 3, the wet coating is included in the aqueous film preparation liquid by spraying droplets of the aqueous film preparation liquid onto the surface of the drug particles P on which the first coating layer L1 of the hydrophobic powder P ′ is formed. In this step, the film agent component (solid content) is attached to the surface of the drug particles P and dried to form the second coating layer L2 made of the film agent component. The transition from the dry coating to the wet coating is performed by switching the operating conditions while continuing the operation state of the fluidized bed apparatus. This wet coating operation can be performed under the same conditions as a normal spray coating operation using a fluidized bed apparatus.

図1に示すように、この実施形態において、整粒機構5を通過し、回転ロータ4の遠心効果によって上記の上昇気流に戻された薬物粒子P(乾式コーティングにより疎水性粉末P’の第1被覆層L1を形成した薬物粒子P)は、この位置で、スプレーノズル7から水系膜剤液の噴霧を受ける。そして、水系膜剤液の噴霧を受けた薬物粒子Pは、ドラフトチューブ6の外周と流動層容器1の内壁との間の空間部を上昇する際に乾燥を受け、再びドラフトチューブ6の内部に流入し、整粒機構5に送られて整粒作用を受ける。このようにして、水系膜剤液噴霧→乾燥→整粒というサイクルが繰り返されることによって、薬物粒子P同士が二次凝集を起こすことなく、水系膜剤液の液滴中に含まれる膜剤成分が薬物粒子Pの表面に付着乾燥して第2被覆層L2が形成される(水系湿式コーティング)。   As shown in FIG. 1, in this embodiment, the drug particles P that have passed through the sizing mechanism 5 and returned to the above-described updraft by the centrifugal effect of the rotating rotor 4 (the first of the hydrophobic powder P ′ by dry coating). The drug particles P) on which the coating layer L1 is formed are sprayed with the aqueous film agent solution from the spray nozzle 7 at this position. Then, the drug particles P that have been sprayed with the aqueous film agent liquid are dried when rising in the space between the outer periphery of the draft tube 6 and the inner wall of the fluidized bed container 1, and again enter the draft tube 6. It flows into the sizing mechanism 5 and receives a sizing action. In this way, the film agent component contained in the droplets of the aqueous film agent liquid without causing secondary aggregation of the drug particles P by repeating the cycle of the aqueous film agent liquid spray → drying → size control. Adheres to the surface of the drug particles P and is dried to form the second coating layer L2 (aqueous wet coating).

水溶性薬物として微小粒径(平均粒径D50=53μm)かつ比較的高い水溶性(溶解性)を示す無水カフェイン粉末を用い、これに疎水性粉末としてカルナウバロウ(ワックス)粉末を加えて混合した後、上記の流動層装置の流動層容器1内に仕込み、上述した態様で乾式コーティング→湿式コーティングを連続的に行った。被覆量は、無水カフェイン重量に対して、乾式コーティングでは5%、湿式コーティングでは90%(無水カフェイン重量と、噴霧した水系膜剤液中の固形分重量との割合)とした。操作条件は表1に示す通りである。
Anhydrous caffeine powder having a fine particle size (average particle size D50 = 53 μm) and a relatively high water solubility (solubility) was used as a water-soluble drug, and carnauba wax (wax) powder was added as a hydrophobic powder and mixed. Then, it charged in the fluidized bed container 1 of said fluidized bed apparatus, and performed dry coating-> wet coating continuously in the aspect mentioned above. The coating amount was 5% for dry coating and 90% for wet coating (ratio of the weight of anhydrous caffeine and the weight of solid content in the sprayed aqueous film solution) relative to the weight of anhydrous caffeine. The operating conditions are as shown in Table 1.

無水カフェイン原末、乾式コーティング後の粒子、湿式コーティング後の粒子のSEM観察結果を図4〜図6にそれぞれ示す。図5に示す観察結果により、乾式コーティング操作後の粒子表面に疎水性粉末の被覆層(第1被覆層)が形成されていることが確認された。また、図6に示す観察結果により、湿式コーティング操作後の粒子表面に水系膜剤液の被覆層(第2被覆層)が形成されていることが確認された。また、乾式コーティング後の粒子、湿式コーティング後の粒子は、いずれも、整粒機構5の整粒作用により、二次凝集を起こすことなく比較的均一な粒径に整粒されていることが確認された。   The SEM observation results of the anhydrous caffeine bulk powder, the particles after dry coating, and the particles after wet coating are shown in FIGS. From the observation results shown in FIG. 5, it was confirmed that a hydrophobic powder coating layer (first coating layer) was formed on the particle surface after the dry coating operation. Moreover, the observation result shown in FIG. 6 confirmed that the coating layer (second coating layer) of the aqueous film agent solution was formed on the particle surface after the wet coating operation. In addition, it is confirmed that both the particles after dry coating and the particles after wet coating are sized to a relatively uniform particle size without causing secondary aggregation due to the sizing action of the sizing mechanism 5. It was done.

図7は、図6に示す湿式コーティング後の粒子(実施例品:◆で表示)と、上記の流動層装置を用いて同じ操作条件で湿式コーティングのみを実施した粒子(比較例品:◇で表示)について行った溶出試験の結果を示している。同図に示す結果から、実施例品(◆)では、疎水性の乾式コーティング層(第1被覆層)により、核粒子成分(カフェイン)の湿式コーティング層(第2被覆層)への溶解・浸透が防止又は抑制され、比較例品(◇)に比べて、良好な溶出制御性能を示すことが確認された。   FIG. 7 shows particles after wet coating shown in FIG. 6 (example product: indicated by ◆) and particles that were subjected only to wet coating under the same operating conditions using the above fluidized bed apparatus (comparative example product: ◇). The result of the dissolution test conducted for (Display) is shown. From the results shown in the figure, in the example product (♦), the hydrophobic dry coating layer (first coating layer) dissolves the core particle component (caffeine) into the wet coating layer (second coating layer). It was confirmed that permeation was prevented or suppressed, and better elution control performance was exhibited compared to the comparative product (◇).

図8は、80%溶出時間とコーティング率との関係を示している。80%溶出時間5分で必要な湿式コーティング量は、比較例品(◆)では82%(無水カフェイン重量と、噴霧した水系膜剤液中の固形分重量との割合)であるのに対し、実施例品(◇)では45%であり、実施例品(◇)はより少量の湿式コーティング量で比較例品(◆)と同じ溶出制御性能を得ることができる。   FIG. 8 shows the relationship between the 80% elution time and the coating rate. The amount of wet coating required for an elution time of 80% for 5 minutes is 82% for the comparative product (◆) (ratio of the weight of anhydrous caffeine and the weight of the solid content in the sprayed aqueous film solution). The example product (() is 45%, and the example product (◇) can obtain the same elution control performance as the comparative product (◆) with a smaller amount of wet coating.

操作時間で比較すると、図9に示すように、実施例(左側)では乾式コーティングに20分の時間を要するものの、湿式コーティングを連続して行うことにより、比較例(右側)に比べて約90分の時間短縮を実現できた。すなわち、実施例では、比較例で要した全コーティング時間に対して、約37%という大幅な時間短縮を実現できた。   Compared with the operation time, as shown in FIG. 9, in the example (left side), the dry coating requires 20 minutes, but by performing the wet coating continuously, it is about 90% compared to the comparative example (right side). Minute time savings were realized. That is, in the example, it was possible to realize a significant time reduction of about 37% with respect to the total coating time required in the comparative example.

[乾式コーティング操作]
実施例1と同様に、水溶性薬物には微小粒径(平均粒径D50=53μm)かつ比較的高い水溶性(溶解性)を示す無水カフェイン粉末を用いた。無水カフェイン粉末500gに対し、物性の異なる7種類の乾式膜剤(グリセリン酸脂肪酸エステル、食用油脂、ロウ、硬化油、徐放性コーティング粉末)のうち1種類をそれぞれ重量比10%で混合し、上記の流動層装置の流動層容器1内で20分間循環流動させて乾式コーティングを行った。この時の操作条件を表2に示す。
[Dry coating operation]
As in Example 1, anhydrous caffeine powder having a fine particle size (average particle size D50 = 53 μm) and relatively high water solubility (solubility) was used as the water-soluble drug. 500 g of anhydrous caffeine powder is mixed with one of 7 types of dry film agents (glyceric acid fatty acid ester, edible oil and fat, wax, hardened oil, sustained-release coating powder) with different physical properties at a weight ratio of 10%. Then, dry coating was performed by circulating and flowing in the fluidized bed container 1 of the fluidized bed apparatus for 20 minutes. Table 2 shows the operating conditions at this time.

上記の乾式コーティング操作において、流動層容器1内の粒子の流動状態を観察した結果、粒子の流動状態は乾式膜剤の種類によって表3に示す3つの態様に類別できた。
In the dry coating operation described above, the flow state of the particles in the fluidized bed container 1 was observed. As a result, the flow state of the particles could be classified into three modes shown in Table 3 depending on the type of the dry film agent.

無水カフェイン原末、乾式コーティング後の粒子のSEM観察結果を図10に示す。粒子の流動状態と成膜性には関係があり、流動状態の悪化は粒子表面への乾式膜剤被膜の展延を示すものと考えられる。乾式膜剤Aは操作初期に被膜が展延されると考えられ、最も均一な被膜が形成されている。乾式膜剤Bは操作後期で被膜展延する。乾式膜剤Cでは流動悪化状態がなく若干の粒子表面の変化はみられるものの、多くの未付着の膜剤粉体がカフェイン原末粒子と混在していた。また、原末粒子表面に膜剤粉体が散在し不規則な表面形状であった。   The SEM observation results of the anhydrous caffeine bulk powder and the particles after dry coating are shown in FIG. There is a relationship between the flow state of the particles and the film formability, and the deterioration of the flow state is considered to indicate the spread of the dry film agent film on the particle surface. In the dry film agent A, it is considered that the film is spread at the initial stage of operation, and the most uniform film is formed. The dry film agent B spreads the film at a later stage of operation. In the dry film agent C, although there was no flow deterioration state and a slight change in the particle surface was observed, many unattached film agent powders were mixed with the caffeine powder particles. Further, the film powder was scattered on the surface of the raw powder particles, resulting in an irregular surface shape.

図11は、上記の乾式コーティングのみを行った粒子についての溶出試験の結果を示している。尚、乾式コーティング粒子には粒子表面が疎水化し、試験液に浮遊し評価できない粒子も存在したことから、2(KN)の低圧で圧縮成型して試験用サンプルとした。また、即時崩壊するように成型品500(mmg)中の半分量は崩壊剤L−HPCを混合して作製した。比較のためにカフェイン原末についても同様に成型品を作製し評価した。溶出試験は、日本薬局方試験(パドル法)に準じて、パドル回転数50rpm、溶出試験液は37°Cの精製水900mlで実施した。   FIG. 11 shows the results of a dissolution test on particles that were only subjected to the dry coating described above. In addition, since the particle surface of the dry coating particles became hydrophobic and some particles floated in the test solution and could not be evaluated, they were compression molded at a low pressure of 2 (KN) to obtain test samples. Further, half of the molded product 500 (mmg) was prepared by mixing the disintegrant L-HPC so that it would disintegrate immediately. For comparison, a molded product was similarly prepared and evaluated for caffeine bulk powder. The dissolution test was carried out according to the Japanese Pharmacopoeia test (paddle method) with paddle rotation speed of 50 rpm and dissolution test solution with 900 ml of 37 ° C purified water.

図11に示すように、溶出時間2分までは、乾式膜剤品A、B、Cはいずれも原末成型品に比べて溶出が抑制されているが、溶出時間2分以降、乾式膜剤品B、Cでは速やかに溶出する結果となった。乾式膜剤品Aについては全体的に原末成型品と比較して溶出が遅延した。乾式膜剤品Aは上述したように粒子表面全体が疎水化され、水の薬物への浸透が抑制されている。一方、乾式膜剤B、Cではある一定時間までは被膜の性能が確認できるが、これを超えると水が薬物に浸透し溶解する結果を示した。   As shown in FIG. 11, up to 2 minutes elution time, elution of dry film products A, B, and C is suppressed as compared with the raw powder molded product. In the products B and C, the results were eluted quickly. As for the dry film product A, elution was delayed as a whole compared with the bulk molded product. As described above, the dry film agent product A has the entire particle surface hydrophobized, and water penetration into the drug is suppressed. On the other hand, in the case of the dry film agents B and C, the performance of the film can be confirmed up to a certain time.

[湿式コーティング操作]
上記の乾式被覆粒子(乾式膜剤品A、B、C)に対して、エチルセルロース系水溶液{アクアコート(大日本製薬)93%、トリアセチン(有機合成薬品工業)7%}を用いて湿式コーティングを行った。この時の操作条件を表4に示す。
[Wet coating operation]
Wet coating using the above-mentioned dry-coated particles (dry-type film products A, B, C) using ethyl cellulose aqueous solution {Aquacoat (Dainippon Pharmaceutical) 93%, Triacetin (Organic Synthetic Chemicals) 7%} went. Table 4 shows the operating conditions at this time.

被覆量(コーティング率)は、無水カフェイン重量に対して60%(無水カフェイン重量と、噴霧した水系膜剤液中の固形分重量との割合)とし、途中40%コーティング時にサンプリングを実施した。得られたコーティング粒子は、棚型乾燥機にて60°C、2時間キュアリングを実施した。また、比較例品として、乾式コーティングを行わずに、同じ操作条件で湿式コーティングのみを行ったサンプルを作製した。そして、コーティング率40%、60%の実施例品及び比較例品について溶出試験を行い、溶出制御性能を比較した。溶出試験は、日本薬局方試験(パドル法)に準じて、パドル回転数50rpm、溶出試験液は37°Cの精製水900mlで実施した。その結果を図12、13に示す。尚、溶出制御性の確認のために、無水カフェイン原末の溶出試験結果も併記した。   The coating amount (coating rate) was 60% with respect to the weight of anhydrous caffeine (the ratio between the weight of anhydrous caffeine and the weight of the solid content in the sprayed aqueous film solution), and sampling was performed during 40% coating. . The obtained coating particles were cured at 60 ° C. for 2 hours in a shelf dryer. Moreover, the sample which performed only the wet coating on the same operating conditions as a comparative example product without performing dry coating was produced. And the elution test was done about the Example goods and the comparative example goods with a coating rate of 40% and 60%, and the elution control performance was compared. The dissolution test was carried out according to the Japanese Pharmacopoeia test (paddle method) with paddle rotation speed of 50 rpm and dissolution test solution with 900 ml of 37 ° C purified water. The results are shown in FIGS. In addition, in order to confirm elution controllability, the dissolution test result of anhydrous caffeine bulk powder is also shown.

図12、13に示す試験結果から、乾式膜剤品B(○)の場合、比較例品(△)に比べて高い溶出制御性能を発揮することが確認された。乾式膜剤品A(黒四角)については、40%コーティングまでは溶出制御性能の向上は認められたが、コーティング率を増加させると溶出制御性能が低下した。乾式膜剤品Aの粒子表面をSEM観察すると、エチルセルロース被膜の破断がみられたことから、乾式膜剤Aの被覆によりエチルセルロース被膜の固着性が低下したことが原因と考えられる。乾式膜剤品C(□)については、乾式コーティング操作の効果は認められなかった。これは、未付着の乾式膜剤や原末粒子表面に散在して付着した乾式膜剤がエチルセルロースの被膜性能を低下させたためと考えられる。また、乾式膜剤が水に溶解するため、薬物が被膜側へ移行したことも一因であると考えられる。   From the test results shown in FIGS. 12 and 13, it was confirmed that the dry film preparation B (◯) exhibited higher elution control performance than the comparative example (Δ). For dry film product A (black square), improvement in elution control performance was observed up to 40% coating, but elution control performance decreased as the coating rate was increased. When the surface of the particles of the dry film agent A was observed with an SEM, the ethyl cellulose film was broken, which is considered to be caused by a decrease in the fixing property of the ethyl cellulose film due to the coating of the dry film agent A. For dry film product C (□), the effect of the dry coating operation was not recognized. This is presumably because the dry film agent that was not adhered or the dry film agent that was scattered and adhered to the surface of the raw powder particles reduced the coating performance of ethyl cellulose. In addition, since the dry film agent dissolves in water, it is considered that the drug has moved to the film side.

実施形態で用いる流動層装置の全体構成を概念的に示す図である。It is a figure which shows notionally the whole structure of the fluidized bed apparatus used by embodiment. 図1の流動層容器1の主要部分を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the fluidized bed container 1 of FIG. 被覆層の形成過程を示す模式図である。It is a schematic diagram which shows the formation process of a coating layer. 無水カフェイン原末粒子のSEM観察結果を示す図である。It is a figure which shows the SEM observation result of the anhydrous caffeine bulk particle. 乾式コーティング後の粒子のSEM観察結果を示す図である。It is a figure which shows the SEM observation result of the particle | grains after dry coating. 湿式コーティング後の粒子のSEM観察結果を示す図である。It is a figure which shows the SEM observation result of the particle | grains after wet coating. 溶出試験の結果を示す図である。It is a figure which shows the result of a dissolution test. 80%溶出時間とコーティング率との関係を示す図である。It is a figure which shows the relationship between 80% elution time and a coating rate. 操作時間の比較を示す図である。It is a figure which shows the comparison of operation time. 無水カフェイン原末と乾式コーティング後の粒子のSEM観察結果を示す図である。It is a figure which shows the SEM observation result of the particle | grains after an anhydrous caffeine bulk powder and dry-type coating. 溶出試験の結果を示す図である。It is a figure which shows the result of a dissolution test. 溶出試験の結果を示す図である。It is a figure which shows the result of a dissolution test. 溶出試験の結果を示す図である。It is a figure which shows the result of a dissolution test.

符号の説明Explanation of symbols

1 流動層容器
5 整粒機構
7 スプレーノズル
P 水溶性粒子
P’ 疎水性粉末
L1 第1被覆層
L2 第2被覆層
DESCRIPTION OF SYMBOLS 1 Fluidized bed container 5 Size control mechanism 7 Spray nozzle P Water-soluble particle P 'Hydrophobic powder L1 1st coating layer L2 2nd coating layer

Claims (3)

水溶性粒子の表面に疎水性粉末の乾式コーティングにより第1被覆層を形成する工程と、前記第1被覆層を形成した粒子の表面に水系膜剤液の湿式コーティングにより第2被覆層を形成する工程とを含む粒子のコーティング方法。   Forming a first coating layer on the surface of the water-soluble particles by dry coating of hydrophobic powder, and forming a second coating layer on the surface of the particles on which the first coating layer has been formed by wet coating with an aqueous film agent solution. A method of coating particles comprising the steps of: 前記第1被覆層を形成する工程と、前記第2被覆層を形成する工程とを、単一の流動層装置内で連続して行う請求項1に記載の粒子のコーティング方法。   The particle coating method according to claim 1, wherein the step of forming the first coating layer and the step of forming the second coating layer are continuously performed in a single fluidized bed apparatus. 前記流動層装置は、流動層容器と、該流動層容器内を流動循環する粒子の凝集を機械的な解砕力によって分散する整粒機構と、該流動層容器内を流動循環する粒子に向けて水系膜剤液を噴霧するスプレーノズルとを備えている請求項2に記載の粒子のコーティング方法。   The fluidized bed apparatus includes a fluidized bed container, a sizing mechanism that disperses agglomeration of particles flowing and circulating in the fluidized bed container by mechanical crushing force, and an aqueous system toward the particles flowing and circulating in the fluidized bed container. The particle coating method according to claim 2, further comprising a spray nozzle for spraying the film agent solution.
JP2004288316A 2004-09-30 2004-09-30 Particle coating method Active JP4685400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288316A JP4685400B2 (en) 2004-09-30 2004-09-30 Particle coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288316A JP4685400B2 (en) 2004-09-30 2004-09-30 Particle coating method

Publications (2)

Publication Number Publication Date
JP2006102558A true JP2006102558A (en) 2006-04-20
JP4685400B2 JP4685400B2 (en) 2011-05-18

Family

ID=36372870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288316A Active JP4685400B2 (en) 2004-09-30 2004-09-30 Particle coating method

Country Status (1)

Country Link
JP (1) JP4685400B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766537A (en) * 2010-02-26 2010-07-07 罗彦凤 Dry-method coating machine
JP6067154B1 (en) * 2016-01-25 2017-01-25 株式会社樋口商会 Method for producing coating particles
JP2018095566A (en) * 2016-12-08 2018-06-21 アサヒグループ食品株式会社 Water-soluble functional raw material-containing composition, soft capsule, and degradation inhibiting method of water-soluble functional raw material in soft capsule
WO2020045456A1 (en) * 2018-08-28 2020-03-05 東和薬品株式会社 Drug-containing particle
JP2020138918A (en) * 2019-02-27 2020-09-03 株式会社ファンケル Arginine-containing tablet
CN112043596A (en) * 2017-12-11 2020-12-08 陈晓盛 Medical tablet coating processing-based technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214333A (en) * 1982-06-04 1983-12-13 Dai Ichi Seiyaku Co Ltd Granular substance
JPH09143056A (en) * 1995-11-20 1997-06-03 Sumitomo Pharmaceut Co Ltd Production of preparation to be coated
JPH09267035A (en) * 1996-01-30 1997-10-14 Kanegafuchi Chem Ind Co Ltd Production of nuclear particle
WO1998010756A1 (en) * 1996-09-13 1998-03-19 Shionogi & Co., Ltd. Sustained-release preparation utilizing thermal change and process for the production thereof
JP2004148291A (en) * 2002-09-04 2004-05-27 Pauretsuku:Kk Fluidized bed equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214333A (en) * 1982-06-04 1983-12-13 Dai Ichi Seiyaku Co Ltd Granular substance
JPH09143056A (en) * 1995-11-20 1997-06-03 Sumitomo Pharmaceut Co Ltd Production of preparation to be coated
JPH09267035A (en) * 1996-01-30 1997-10-14 Kanegafuchi Chem Ind Co Ltd Production of nuclear particle
WO1998010756A1 (en) * 1996-09-13 1998-03-19 Shionogi & Co., Ltd. Sustained-release preparation utilizing thermal change and process for the production thereof
JP2004148291A (en) * 2002-09-04 2004-05-27 Pauretsuku:Kk Fluidized bed equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766537A (en) * 2010-02-26 2010-07-07 罗彦凤 Dry-method coating machine
JP6067154B1 (en) * 2016-01-25 2017-01-25 株式会社樋口商会 Method for producing coating particles
WO2017130939A1 (en) * 2016-01-25 2017-08-03 株式会社樋口商会 Method for producing coated particles
JP2018095566A (en) * 2016-12-08 2018-06-21 アサヒグループ食品株式会社 Water-soluble functional raw material-containing composition, soft capsule, and degradation inhibiting method of water-soluble functional raw material in soft capsule
CN112043596A (en) * 2017-12-11 2020-12-08 陈晓盛 Medical tablet coating processing-based technology
CN112043596B (en) * 2017-12-11 2022-08-09 陈晓盛 Medical tablet coating processing-based technology
WO2020045456A1 (en) * 2018-08-28 2020-03-05 東和薬品株式会社 Drug-containing particle
JP2020138918A (en) * 2019-02-27 2020-09-03 株式会社ファンケル Arginine-containing tablet
JP7214504B2 (en) 2019-02-27 2023-01-30 株式会社ファンケル Arginine-containing tablet

Also Published As

Publication number Publication date
JP4685400B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US7297314B2 (en) Fluidized bed device
Saikh A technical note on granulation technology: a way to optimise granules
CN104853751B (en) For the solvent-free mixed method of coated drugs ingredient
Wieland-Berghausen et al. Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl
Passerini et al. Solid lipid microparticles produced by spray congealing: influence of the atomizer on microparticle characteristics and mathematical modeling of the drug release
US20100172969A1 (en) Hot-melt micropellets
US8807070B2 (en) Rotor processor for dry powders
JP4679696B2 (en) Granulation method for granular materials
EP0254791A1 (en) Process for coating solid particles
JP4685400B2 (en) Particle coating method
JPH06192113A (en) Method for granulating galenicals and solid pharmaceutical preparation
US20060115539A1 (en) Micropellets method for the production thereof, and use thereof
WO2007046291A1 (en) Dry coating using biaxial kneader
EP1592760A2 (en) Solid dispersion compositions
US20130101646A1 (en) Method of Producing Microparticles
JP6067154B1 (en) Method for producing coating particles
JP2006517929A (en) Method for producing agglomerates using melt agglomeration
JP2003275281A (en) Production method for composite particle containing drug
JP2012087073A (en) Method for producing coating particle, and the coating particle produced by the production method
JP4440278B2 (en) Fluidized bed equipment
JP4914850B2 (en) Powder processing equipment
US20070202182A1 (en) Preparing solid formulation of nanoparticles of pharmaceutical ingredient, including at least micron-sized particles
Khamanga et al. Science and practice of microencapsulation technology
JP5328240B2 (en) Fine particle drying equipment
KR20220163417A (en) Microspheres in which the subject matter is uniformly dispersed and sustained-release preparations containing the microspheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250