JP2006101876A - Method for producing lactic acid and apparatus for lactic acid production - Google Patents

Method for producing lactic acid and apparatus for lactic acid production Download PDF

Info

Publication number
JP2006101876A
JP2006101876A JP2005264396A JP2005264396A JP2006101876A JP 2006101876 A JP2006101876 A JP 2006101876A JP 2005264396 A JP2005264396 A JP 2005264396A JP 2005264396 A JP2005264396 A JP 2005264396A JP 2006101876 A JP2006101876 A JP 2006101876A
Authority
JP
Japan
Prior art keywords
lactic acid
polymerization
concentration
polylactic acid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264396A
Other languages
Japanese (ja)
Inventor
Rei Oda
玲 小田
Koji Takamura
孝次 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN KANKYO TECHNOLOGY KK
Original Assignee
GREEN KANKYO TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN KANKYO TECHNOLOGY KK filed Critical GREEN KANKYO TECHNOLOGY KK
Priority to JP2005264396A priority Critical patent/JP2006101876A/en
Publication of JP2006101876A publication Critical patent/JP2006101876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/14Drying

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polylactic acid having a desired molecular weight in high efficiency in a short time and an apparatus for producing lactic acid having high concentration in high efficiency. <P>SOLUTION: The method for the production of a polylactic acid comprises the fermentation of vegetable starch and lactobacillus and the dehydrative polycondensation of the produced lactic acid to synthesize the polylactic acid. The polylactic acid production method contains a fermentation and concentration step to pass a DC current through a mixture containing the vegetable starch, the lactobacillus and the lactic acid in a fermentation tank having at least one pair of electrodes, a diaphragm and a concentration part separated by the diaphragm and placed at the cathode side of the electrodes and transfer and store the lactic acid to the concentration part by electro-osmosis, and a polymerization step to perform the thermal dehydrative polycondensation of the lactic acid to form the polylactic acid in a polymerization tank charged with the lactic acid stored in the concentration part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生分解性プラスチックであるポリ乳酸の製造方法、並びに、乳酸製造装置に関する。   The present invention relates to a method for producing polylactic acid, which is a biodegradable plastic, and a lactic acid production apparatus.

生分解性プラスチックとは、使用している間は通常のプラスチックと同様に優れた機能を発揮し、使用後は微生物によって自然環境(例えば土壌中など)で速やかに分解され、最終的には土の有機成分や水及び二酸化炭素になるプラスチックのことをいい、現在廃棄物問題等で注目を浴びている。   Biodegradable plastics perform as well as normal plastics during use, and are quickly degraded by microorganisms in the natural environment (for example, in the soil) after use. It is a plastic that becomes water and carbon dioxide, and is currently attracting attention due to waste issues.

生分解性プラスチックとしては、これまでにも各種の製品が発表されている。
例えば、トウモロコシや馬鈴薯などのでんぷんを乳酸菌により発酵させて得た乳酸を脱水重合したポリ乳酸が挙げられ、農業用マルチフィルムやコンポストバッグなどに利用されている。
Various products have been announced as biodegradable plastics.
For example, polylactic acid obtained by dehydration polymerization of lactic acid obtained by fermenting starch such as corn and potato with lactic acid bacteria is used for agricultural multi-films and compost bags.

ポリ乳酸は乳酸を脱水縮重合したものであり、従来から、植物性澱粉に乳酸菌を作用させると乳酸発酵により乳酸が得られることが知られている。しかし、従来の工法によると、発酵の過程で反応液のpHが低下し、乳酸菌の活性が阻害されることが多く、高濃度の乳酸を効率良く得ることが困難であった。係る反応液のpH低下は、植物性澱粉と乳酸菌とを作用させる際、その発酵により生じた乳酸が、発酵槽内において残存していることに起因していると推測される。   Polylactic acid is obtained by dehydrating polycondensation of lactic acid. Conventionally, it is known that lactic acid can be obtained by lactic acid fermentation when lactic acid bacteria are allowed to act on plant starch. However, according to the conventional method, the pH of the reaction solution is lowered during the fermentation process and the activity of lactic acid bacteria is often inhibited, and it is difficult to efficiently obtain a high concentration of lactic acid. The pH drop of the reaction solution is presumed to be caused by the fact that the lactic acid produced by the fermentation remains in the fermenter when the plant starch and lactic acid bacteria are allowed to act.

また、ポリ乳酸は、濃縮処理された乳酸に、触媒(例えば、酸化ルテニウム等と酸化チタンとを等量混合したもの)を適量加えて攪拌しながら加熱することにより乳酸が脱水縮重合することで得られることが知られている。この際、脱水縮重合反応において生じた水を系外に排出することが必要であり、従来から、係る水を排出する方法として水を減圧蒸散させる方法が用いられている(例えば、特許文献1参照。)。   In addition, polylactic acid is added by adding an appropriate amount of a catalyst (for example, a mixture of equal amounts of ruthenium oxide and titanium oxide) to concentrated lactic acid, and heating while stirring to cause dehydration condensation polymerization of lactic acid. It is known to be obtained. At this time, it is necessary to discharge the water generated in the dehydration condensation polymerization reaction to the outside of the system, and conventionally, a method of evaporating water under reduced pressure is used as a method of discharging such water (for example, Patent Document 1). reference.).

しかし、水を減圧蒸散させる方法によると、重合反応が進むにつれて重合物の粘度が高くなることから、水の解離速度が遅くなり、効率よく脱水を行うことができないという欠点がある。   However, according to the method of evaporating water under reduced pressure, the viscosity of the polymer increases as the polymerization reaction proceeds, so that there is a disadvantage that the water dissociation rate becomes slow and the dehydration cannot be performed efficiently.

特開2003−335850公報JP 2003-335850 A

本発明は、上記に鑑み成されたものであり、所望の分子量を有するポリ乳酸を高効率且つ短時間で得ることのできるポリ乳酸の製造方法、並びに、高濃度乳酸を高効率で得られる乳酸製造装置を提供することを目的とする。   The present invention has been made in view of the above, and a method for producing polylactic acid capable of obtaining polylactic acid having a desired molecular weight in high efficiency and in a short time, and lactic acid from which high concentration lactic acid can be obtained with high efficiency An object is to provide a manufacturing apparatus.

上記目的を達成するために、本発明のポリ乳酸の製造方法は、植物性澱粉と乳酸菌とを発酵させて乳酸を生成し、前記乳酸を脱水縮重合させてポリ乳酸を合成するポリ乳酸の製造方法であって、少なくとも一対の電極と隔壁と前記隔壁によって仕切られた濃縮部を有し、且つ、前記濃縮部が前記電極の陰極側に設けられた発酵槽内で、前記植物性澱粉と前記乳酸菌と前記乳酸とを含有する混合物に直流電流を通じ、前記乳酸を電気浸透によって前記濃縮部に移動させ貯留する発酵濃縮工程と、
前記濃縮部に貯留された前記乳酸が供給される重合槽内で、前記乳酸を加熱し脱水縮重合させてポリ乳酸を合成する重合工程と、を含むことを特徴とする。
In order to achieve the above object, the method for producing polylactic acid according to the present invention produces polylactic acid by fermenting plant starch and lactic acid bacteria to produce lactic acid, and dehydrating condensation polymerization of the lactic acid to synthesize polylactic acid. A fermentor provided with at least a pair of electrodes, partition walls and the partition walls, and the concentration section provided on the cathode side of the electrodes, and the plant starch and the Fermentation concentration step of transferring and storing the lactic acid to the concentration part by electroosmosis through a direct current through a mixture containing lactic acid bacteria and the lactic acid,
And a polymerization step of synthesizing polylactic acid by heating and dehydrating and condensing the lactic acid in a polymerization tank to which the lactic acid stored in the concentrating unit is supplied.

本発明のポリ乳酸の製造方法(以下、「本発明の製造方法」と称する場合がある。)によれば、ポリ乳酸の生産に用いる乳酸製造過程において、電気浸透作用を利用して、発酵槽内の乳酸を、未発酵の乳酸菌及び植物性澱粉から分離することができる。従って、発酵槽内において直接乳酸の生成に係わる混合物中の乳酸濃度を低く保つことができ、前記混合物のpH低下を抑制することができる。これにより、本発明の製造方法によれば高濃度の乳酸を得ることができ、これを用いることで、所望の分子量を有するポリ乳酸を効率良く製造することができる。上記「電気浸透」とは、膜など多孔性物質を通しての電位差による電気的に中性溶媒の移動をいう。   According to the method for producing polylactic acid of the present invention (hereinafter sometimes referred to as “the production method of the present invention”), in the lactic acid production process used for the production of polylactic acid, an electroosmotic action is used to make a fermenter. The lactic acid inside can be separated from unfermented lactic acid bacteria and plant starch. Therefore, the lactic acid concentration in the mixture directly related to the production of lactic acid in the fermenter can be kept low, and the pH drop of the mixture can be suppressed. Thereby, according to the manufacturing method of this invention, high concentration lactic acid can be obtained and the polylactic acid which has a desired molecular weight can be efficiently manufactured by using this. The “electroosmosis” refers to the movement of an electrically neutral solvent by a potential difference through a porous substance such as a membrane.

また、本発明の製造方法によれば、少なくとも一対の電極と隔壁と前記隔壁によって仕切られた脱水部とを有し、且つ、前記脱水部が前記電極の陰極側に設けられた電気脱水槽内で、前記重合工程において脱水縮重合した乳酸重合体に直流電流を通じ、前記乳酸重合体内の水を電気浸透によって前記脱水部に移動させる電気脱水工程を含むことができる。   Further, according to the manufacturing method of the present invention, in an electric dehydration tank, which has at least a pair of electrodes, a partition, and a dehydration part partitioned by the partition, and the dehydration part is provided on the cathode side of the electrode In the polymerization step, an electric dehydration step may be included in which water in the lactic acid polymer is transferred to the dehydration unit by electroosmosis through a direct current through the lactic acid polymer subjected to dehydration condensation polymerization.

本発明の製造方法によれば、電気脱水工程において、重合工程で脱水縮重合された乳酸重合体(ポリ乳酸)中に含まれる水を電気浸透によって脱水部にまで移動させることができる。これにより、乳酸重合体の重合が進み粘度が高くなった状態であっても効率よく脱水をおこなうことができる。尚、本明細書において「乳酸重合体」とは、本発明の製造方法や各装置において目的とする分子量を有するポリ乳酸に至る前の段階、即ち乳酸のオリゴマー及び所望の分子量にまだ達しないポリ乳酸を意味し、係る乳酸重合体には、乳酸の脱水縮重合反応において発生した水分が含まれている状態が含まれる。   According to the production method of the present invention, in the electric dehydration step, water contained in the lactic acid polymer (polylactic acid) subjected to dehydration condensation polymerization in the polymerization step can be moved to the dehydration part by electroosmosis. Thereby, even if it is the state which superposition | polymerization of the lactic acid polymer advanced and the viscosity became high, it can dehydrate efficiently. In the present specification, the “lactic acid polymer” means the stage before reaching the polylactic acid having the target molecular weight in the production method and each apparatus of the present invention, that is, an oligomer of lactic acid and a polycrystal that has not yet reached the desired molecular weight. It means lactic acid, and the lactic acid polymer includes a state in which moisture generated in the dehydration condensation polymerization reaction of lactic acid is included.

本発明の製造方法においては植物性澱粉としてコーンスターチを好適に用いることができる。   In the production method of the present invention, corn starch can be suitably used as the vegetable starch.

本発明の乳酸製造装置は、少なくとも一対の電極、隔壁及び前記隔壁によって仕切られた濃縮部を有し、且つ、前記濃縮部が前記電極の陰極側に設けられた発酵槽と、植物性澱粉及び乳酸菌を前記発酵槽に導入する原料導入手段と、を備え、前記植物性澱粉及び前記乳酸菌を前記発酵槽内で発酵させて得られる乳酸と前記植物性澱粉と前記乳酸菌との混合物に直流電流を通じ、電気浸透によって前記乳酸を前記濃縮部に移動させることを特徴とする。   The lactic acid production apparatus of the present invention has at least a pair of electrodes, a partition wall, and a concentration section partitioned by the partition wall, and the fermentation section provided on the cathode side of the electrode, a vegetable starch, Raw material introduction means for introducing lactic acid bacteria into the fermenter, and direct current is passed through a mixture of lactic acid obtained by fermenting the plant starch and the lactic acid bacteria in the fermenter, the plant starch, and the lactic acid bacteria. The lactic acid is moved to the concentration part by electroosmosis.

本発明の乳酸製造装置は、発酵槽内の混合物に直流電流を通じることによって、電気浸透作用を利用して、発酵槽内の乳酸を未発酵の乳酸菌及び植物性澱粉から分離することができる。従って、発酵槽内において直接乳酸の生成に係わる混合物中の乳酸濃度を低く保つことができ、前記混合物のpH低下を抑制することができる。これにより、本発明の乳酸製造装置によれば、高濃度の乳酸を効率よく製造することができる。また、本発明の乳酸製造装置は、前記電極の陽極を、メッシュ状に構成することができる。   The lactic acid production apparatus of the present invention can separate lactic acid in the fermenter from unfermented lactic acid bacteria and plant starch using electroosmosis by passing a direct current through the mixture in the fermenter. Therefore, the lactic acid concentration in the mixture directly related to the production of lactic acid in the fermenter can be kept low, and the pH drop of the mixture can be suppressed. Thereby, according to the lactic acid manufacturing apparatus of this invention, high concentration lactic acid can be manufactured efficiently. Moreover, the lactic acid manufacturing apparatus of this invention can comprise the anode of the said electrode in mesh shape.

本発明の乳酸製造装置は、前記濃縮部に移動された乳酸を排出する排出管と、前記排出管から排出された前記乳酸が供給され且つ前記乳酸を貯留する乳酸貯留槽と、前記乳酸貯留槽内の乳酸を前記濃縮部に供給する供給管と、前記乳酸貯留槽内の前記乳酸を外部に排出する排出手段と、を備えることができる。   The lactic acid production apparatus of the present invention includes a discharge pipe that discharges lactic acid moved to the concentrating unit, a lactic acid storage tank that is supplied with the lactic acid discharged from the discharge pipe and stores the lactic acid, and the lactic acid storage tank The lactic acid in the lactic acid storage tank and discharge means for discharging the lactic acid in the lactic acid storage tank to the outside can be provided.

本発明の乳酸製造装置は、発酵槽の濃縮部と乳酸貯留槽とを排出管と供給管とを介して循環させることで、より乳酸の濃度を高めることができる。   The lactic acid production apparatus of the present invention can increase the concentration of lactic acid by circulating the concentration unit of the fermenter and the lactic acid storage tank through the discharge pipe and the supply pipe.

本発明のポリ乳酸製造装置は、乳酸が導入される乳酸導入手段と、前記乳酸導入手段から導入された乳酸を加熱して脱水縮重合させる重合手段と、少なくとも一対の電極、隔壁及び前記隔壁によって仕切られた脱水部を有し、且つ、前記脱水部が前記電極の陰極側に設けられた電気脱水手段と、を備え、前記電気脱水手段は、前記重合手段において脱水縮重合された乳酸重合体に直流電流を通じ、前記乳酸重合体内の水を電気浸透によって前記脱水部に移動させて脱水することを特徴とする。   The polylactic acid production apparatus of the present invention comprises a lactic acid introduction means for introducing lactic acid, a polymerization means for heating and dehydrating condensation polymerization of lactic acid introduced from the lactic acid introduction means, and at least a pair of electrodes, partition walls, and the partition walls. An electrodehydration means having a dehydration part partitioned and the dehydration part provided on the cathode side of the electrode, and the electric dehydration means is a lactic acid polymer subjected to dehydration condensation polymerization in the polymerization means The water in the lactic acid polymer is moved to the dehydrating part by electroosmosis through a direct current, and dehydrated.

本発明のポリ乳酸製造装置によれば、重合槽で脱水縮重合された乳酸(ポリ乳酸)中に含まれる水を電気浸透によって脱水部にまで移動させることができる。これにより、ポリ乳酸の重合が進み粘度が高くなった状態であっても効率よく脱水をおこなうことができ、所望の分子量を有するポリ乳酸を高効率且つ短時間で製造することができる。   According to the polylactic acid production apparatus of the present invention, water contained in lactic acid (polylactic acid) subjected to dehydration condensation polymerization in a polymerization tank can be moved to a dehydration part by electroosmosis. Thereby, even if the polymerization of polylactic acid progresses and the viscosity becomes high, dehydration can be performed efficiently, and polylactic acid having a desired molecular weight can be produced with high efficiency and in a short time.

また、本発明のポリ乳酸製造装置は、更に、植物性澱粉及び乳酸菌を導入する原料導入手段と、発酵槽と、を有し、前記発酵槽に、少なくとも一対の電極と隔壁と前記隔壁によって仕切られ前記電極の陰極側に設けられた濃縮部とが内装された発酵濃縮手段を備え、前記発酵濃縮手段は、前記原料導入手段から導入された前記植物性澱粉及び乳酸菌を前記発酵槽内で発酵させて得られる乳酸に直流電流を通じて電気浸透によって前記濃縮部に移動し、前記乳酸を前記濃縮部に貯留し、前記濃縮部に貯留された乳酸を前記重合手段に供給するように構成することができる。   The polylactic acid production apparatus of the present invention further includes a raw material introduction means for introducing plant starch and lactic acid bacteria, and a fermenter, and the fermenter is partitioned by at least a pair of electrodes, partition walls, and the partition walls. And a fermentation concentrating means equipped with a concentrating part provided on the cathode side of the electrode, the fermenting concentration means fermenting the plant starch and lactic acid bacteria introduced from the raw material introducing means in the fermenter The lactic acid obtained is transferred to the concentration unit by electroosmosis through direct current through direct current, the lactic acid is stored in the concentration unit, and the lactic acid stored in the concentration unit is supplied to the polymerization means. it can.

本発明のポリ乳酸製造装置は、更に発酵濃縮手段を備えることで、高濃度の乳酸を重合槽に供給することができる。また、乳酸生成工程とポリ乳酸重合工程を連続しておこなうことができ、効率よくポリ乳酸を製造することができる。   The polylactic acid production apparatus of the present invention can supply a high concentration of lactic acid to the polymerization tank by further comprising a fermentation concentration means. Moreover, a lactic acid production | generation process and a polylactic acid polymerization process can be performed continuously, and polylactic acid can be manufactured efficiently.

本発明のポリ乳酸製造装置は、前記発酵濃縮手段に、前記濃縮部に貯留された前記乳酸を排出する排出管と、前記排出官から排出された前記乳酸が供給され且つ前記乳酸を貯留する乳酸貯留槽と、前記乳酸貯留槽内の乳酸を前記濃縮部に供給する供給管と、前記乳酸貯留槽内の前記乳酸を前記重合手段に供給する供給手段と、を備えることができる。   The polylactic acid production apparatus of the present invention is configured such that the fermentation concentration means is supplied with a discharge pipe for discharging the lactic acid stored in the concentration unit, and the lactic acid discharged from the discharger and stores the lactic acid. A storage tank, a supply pipe that supplies the lactic acid in the lactic acid storage tank to the concentrating unit, and a supply means that supplies the lactic acid in the lactic acid storage tank to the polymerization means.

本発明のポリ乳酸製造装置は、発酵槽の濃縮部と乳酸貯留槽とを排出管と供給管とを介して循環させることで、より乳酸の濃度を高めることができる。また、本発明の乳酸製造装置は、前記電極の陽極を、メッシュ状に構成してもよい。   The polylactic acid production apparatus of the present invention can further increase the concentration of lactic acid by circulating the concentration unit of the fermenter and the lactic acid storage tank through the discharge pipe and the supply pipe. Moreover, the lactic acid manufacturing apparatus of this invention may comprise the anode of the said electrode in mesh shape.

本発明のポリ乳酸製造装置は、前記重合手段が、両端に開口部を有し、一方の開口部から前記乳酸が供給される中空基体と、前記中空基体に内装され、前記一方の開口部から前記他方の開口部に向けて溝幅が狭くなる螺旋状溝を有する棒状回転体と、前記中空基体の内部を加熱する加熱手段と、を備え、前記棒状回転体を回転させることによって前記乳酸を前記一方の開口部から前記他方の開口部に向かって加熱圧送して圧縮するように構成することができる。前記棒状回転体は、前記一方の開口部から前記他方の開口部に向けて溝幅が狭くなる螺旋状溝を有していてもよい。   In the polylactic acid production apparatus of the present invention, the polymerization means has an opening at both ends, the hollow base to which the lactic acid is supplied from one opening, the interior of the hollow base, and from the one opening A rod-shaped rotating body having a spiral groove whose groove width becomes narrower toward the other opening, and a heating means for heating the inside of the hollow base, and rotating the rod-shaped rotating body to rotate the lactic acid. It can comprise so that it may compress by heating-pressing toward the said other opening part from said one opening part. The rod-shaped rotating body may have a spiral groove whose groove width becomes narrower from the one opening to the other opening.

本発明のポリ乳酸製造装置によれば、棒状回転体が回転されたときにその螺旋状溝にしたがって乳酸を中空基体の一方に設けられた乳酸供給側から他方の圧出口側に向かって熱せられながら圧送され、所望圧のもとで圧縮することができる。これにより、乳酸を効率良く加熱して脱水縮重合をおこなうことができる。   According to the polylactic acid production apparatus of the present invention, when the rod-like rotating body is rotated, lactic acid is heated from the lactic acid supply side provided on one side of the hollow base toward the other pressure outlet side according to the spiral groove. While being pumped, it can be compressed under a desired pressure. Thereby, lactic acid can be heated efficiently and dehydration condensation polymerization can be performed.

中空基体の内部構造は、断面が円形、楕円形、矩形、方形など任意の形状に構成することができるが、基体内部で回転する棒状回転体によって乳酸に与えられる圧力が均一になる点から断面円形とするのが好ましい。また、螺旋状溝は、中空基体に内装されたときに乳酸供給側から出口側へ螺旋ピッチ(溝幅)が次第に狭くなるように棒状回転体の一端から他端に向かって設けることができ、植物原料を圧送する。そのため、効率良く均一な圧縮が可能な点から、棒状回転体は断面が略円形の棒状体とするのが好ましい。   The internal structure of the hollow substrate can be configured in any shape such as circular, elliptical, rectangular, rectangular, etc., but the cross section is from the point that the pressure applied to lactic acid is uniform by the rod-shaped rotating body rotating inside the substrate. A circular shape is preferred. In addition, the spiral groove can be provided from one end of the rod-shaped rotating body toward the other end so that the helical pitch (groove width) gradually narrows from the lactic acid supply side to the outlet side when the spiral groove is embedded in the hollow base body, Pumping plant material. Therefore, it is preferable that the rod-shaped rotating body is a rod-shaped body having a substantially circular cross section from the viewpoint that uniform compression can be performed efficiently.

本発明のポリ乳酸製造装置は、前記電気脱水手段が、前記乳酸を挿通する中空体と、前記中空体の内部に設けられ、前記乳酸の挿通方向を回転軸として相互に逆回転するように隣接配置された複数の回転羽根と、を備えるように構成することができる。   In the polylactic acid production apparatus of the present invention, the electric dehydration means is provided adjacent to the hollow body through which the lactic acid is inserted and the hollow body so as to reversely rotate with the insertion direction of the lactic acid as a rotation axis. And a plurality of arranged rotating blades.

本発明のポリ乳酸製造装置は、回転羽根を中空体内部を挿通する流体、すなわち重合槽において重合された乳酸重合体(ポリ乳酸)の流れによる流体圧を受けて回転する構造(例えば、流れ方向の力を受けて回転するように捻りを付けた羽根状のステーター等)が望ましく、駆動部を接続せずに連続攪拌することができる。この回転羽根は、隣接する複数個が流体の挿通方向を回転軸として相互に逆回転(即ち、交互に逆方向に回転)するように設けることができるので、乳酸重合体を攪拌することで、電気浸透により、水を分離しやすくすることができる。その結果、脱水効率の低下を伴なうことなく、脱水装置を小型化することもできる。回転羽根は、電源と接続されたモータや磁力によって回転するように構成してもよい。また、中空体の内部構造は、乳酸重合体等を挿通し得るように構成され、断面が円形、楕円形、矩形、方形など任意形状に構成することができ、特に断面円形の中空体が好ましい。   The polylactic acid production apparatus of the present invention has a structure that rotates by receiving fluid pressure due to the flow of a fluid passing through the inside of a hollow body through a rotating blade, that is, a lactic acid polymer (polylactic acid) polymerized in a polymerization tank (for example, flow direction). A blade-shaped stator that is twisted so as to rotate under the force of the above is desirable, and continuous stirring can be performed without connecting a drive unit. The rotating blades can be provided so that a plurality of adjacent blades rotate reversely with each other with the fluid insertion direction as a rotation axis (that is, alternately rotate in the reverse direction), so by stirring the lactic acid polymer, Water can be easily separated by electroosmosis. As a result, the dehydrating apparatus can be reduced in size without deteriorating the dehydrating efficiency. You may comprise a rotary blade so that it may rotate with the motor and magnetic force which were connected with the power supply. Further, the internal structure of the hollow body is configured so that a lactic acid polymer or the like can be inserted, and the cross section can be configured in an arbitrary shape such as a circular shape, an elliptical shape, a rectangular shape, a rectangular shape, and a hollow body having a circular cross section is particularly preferable. .

また、上記の回転羽根に電源を接続して、前記電気脱水手段における電極の陽極として機能させることが好ましい。これにより、回転羽根の攪拌に伴って、乳酸重合体に混在する水が陽極に接しやすくなり、より高効率で脱水を行うことができる。   Moreover, it is preferable to connect a power supply to said rotary blade and to function as an anode of the electrode in the said electrical dehydration means. Thereby, with stirring of the rotary blade, water mixed in the lactic acid polymer easily comes into contact with the anode, and dehydration can be performed with higher efficiency.

本発明の乳酸製造装置及びポリ乳酸製造装置において用いられる植物澱粉としては、コーンスターチを好適に用いることができる。本発明における植物性澱粉は、いずれのものでも用いることができるが、作業効率、入手容易性、得られるポリ乳酸の品質等の観点から、コーンスターチを用いることが好ましい。   As plant starch used in the lactic acid production apparatus and polylactic acid production apparatus of the present invention, corn starch can be suitably used. Any plant starch can be used in the present invention, but corn starch is preferably used from the viewpoints of work efficiency, availability, quality of polylactic acid obtained, and the like.

本発明によれば、所望の分子量を有するポリ乳酸を高効率且つ短時間で得ることのできるポリ乳酸の製造方法、並びに、高濃度乳酸を高効率で得られる乳酸製造装置を提供することができる。
また、本発明のポリ乳酸の製造方法、乳酸製造装置及びポリ乳酸製造装置を用いることで、乳酸の生成からポリ乳酸の重合までを連続的に行うことが可能であり、また、設備の小型化、低価格化、操作の簡便化及び製造コストの低減を図ることも可能である。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the polylactic acid which can obtain the polylactic acid which has a desired molecular weight highly efficiently in a short time, and the lactic acid manufacturing apparatus which can obtain high concentration lactic acid with high efficiency can be provided. .
In addition, by using the polylactic acid production method, lactic acid production apparatus, and polylactic acid production apparatus of the present invention, it is possible to carry out continuously from the production of lactic acid to the polymerization of polylactic acid, and downsizing of the equipment. It is also possible to reduce the price, simplify the operation, and reduce the manufacturing cost.

以下、図面を参照して、本発明の実施の形態を説明する。なお、下記においては植物性澱粉としてコーンスターチを用いた場合を中心に説明するが、本発明はこれら実施の形態に制限されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In the following, the case where corn starch is used as the vegetable starch will be mainly described, but the present invention is not limited to these embodiments.

本発明のポリ乳酸の製造方法は、コーンスターチと乳酸菌とを発酵させて乳酸を生成しそれを濃縮する発酵濃縮工程と、得られた乳酸を重合する重合工程とに大別される。以下、各工程において、本発明の乳酸製造装置とポリ乳酸製造装置とを用いた場合を例に説明する。   The method for producing polylactic acid according to the present invention is roughly divided into a fermentation and concentration step in which corn starch and lactic acid bacteria are fermented to produce and concentrate lactic acid, and a polymerization step in which the obtained lactic acid is polymerized. Hereinafter, the case where the lactic acid production apparatus and the polylactic acid production apparatus of the present invention are used in each step will be described as an example.

<発酵濃縮工程>
図1〜3を用いて本発明の乳酸製造装置について説明する。図1は、本発明の乳酸製造装置の構成を概念的に示す概略図である。図1に示すように、本発明の乳酸製造装置10は、混合装置20と、発酵槽30と、乳酸貯留槽50とを備えて構成される。乳酸製造装置10は、混合装置20において混合されたコーンスターチと乳酸菌とを含む混合物を、発酵槽30にて発酵して乳酸を生成し、生成した乳酸を他の混合物から分離し、乳酸貯留槽50との間で循環して濃縮することで、高濃度の乳酸を得るものである。
<Fermentation concentration process>
The lactic acid production apparatus of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view conceptually showing the structure of the lactic acid production apparatus of the present invention. As shown in FIG. 1, the lactic acid production apparatus 10 of the present invention includes a mixing device 20, a fermentation tank 30, and a lactic acid storage tank 50. The lactic acid production apparatus 10 ferments a mixture containing corn starch and lactic acid bacteria mixed in the mixing apparatus 20 in a fermenter 30 to produce lactic acid, separates the produced lactic acid from other mixtures, and a lactic acid storage tank 50. By circulating and concentrating between the two, a high concentration of lactic acid is obtained.

混合装置20は、特に限定されず攪拌機等公知の混合手段を備えた装置である。係る混合装置20には、コーンスターチ及び乳酸菌の他に水やその他酵素等の添加物などが供給される。この際、混合物中におけるコーンスターチ(x)と乳酸菌(y)との混合比(質量比x:y)は1,000:0.1〜1,000:10が好ましく、1,000:0.5〜1,000:5が更に好ましい。また、コーンスターチは予め糖化処理等を加えた後に乳酸菌と混合するように構成してもよい。前記添加物としては、食塩、炭酸カルシウム、各種酵素等が挙げられる。この際、前記炭酸カルシウムの含有量としては、混合物に対して0.5〜1質量%程度が好ましい。混合装置20は、供給されたコーンスターチ等を混合して混合物とし、該混合物を発酵槽30に導入する。   The mixing device 20 is not particularly limited, and is a device provided with known mixing means such as a stirrer. In addition to corn starch and lactic acid bacteria, such a mixing device 20 is supplied with water and other additives such as enzymes. At this time, the mixing ratio (mass ratio x: y) of corn starch (x) and lactic acid bacteria (y) in the mixture is preferably 1,000: 0.1 to 1,000: 10, and 1,000: 0.5. More preferably, ˜1,000: 5. Moreover, you may comprise a corn starch so that it may mix with lactic acid bacteria, after adding a saccharification process etc. previously. Examples of the additive include sodium chloride, calcium carbonate, and various enzymes. Under the present circumstances, as content of the said calcium carbonate, about 0.5-1 mass% is preferable with respect to a mixture. The mixing apparatus 20 mixes the supplied corn starch and the like to form a mixture, and introduces the mixture into the fermenter 30.

発酵槽30には、陽極32と陰極34とからなる少なくとも一対の電極が内装されており、これら電極は図示を省略する電源に接続されている。また、発酵槽30の槽内は陽極32と陰極34との間を隔てるように隔壁36で仕切られており、隔壁36を境に、陰極34が備えられている側には濃縮部38が、また、陽極32が備えられている側には発酵部40が設けられている。混合装置20から供給される混合物は発酵部40に導入される。また、発酵槽30を構成する材質としては、特に限定はないが、防錆性の観点からチタン(Ti)が好ましい。   The fermenter 30 includes at least a pair of electrodes including an anode 32 and a cathode 34, and these electrodes are connected to a power source (not shown). Further, the inside of the fermenter 30 is partitioned by a partition wall 36 so as to separate the anode 32 and the cathode 34, and a concentration unit 38 is provided on the side where the cathode 34 is provided with the partition wall 36 as a boundary. A fermentation unit 40 is provided on the side where the anode 32 is provided. The mixture supplied from the mixing device 20 is introduced into the fermentation unit 40. Moreover, as a material which comprises the fermenter 30, there is no limitation in particular, However, Titanium (Ti) is preferable from a viewpoint of rust prevention.

陽極32及び陰極34は、プラチナ(Pt)などの貴金属で構成されていることが好ましく、チタン(Ti)にプラチナをメッキしたものや、この表面にルテニウムを添着したもの等を好適に用いることができる。上記電極は、例えば、チタン(Ti)板材にプラチナ(Pt)を圧延添着した後、ルテニウム(Ru)を電気メッキし、これを酸素雰囲気中で焼成することで得ることができる。また、上記電極は、チタン板材にプラチナを電気メッキして酸素雰囲気中で焼成することで得ることもできる。尚、焼成温度はいずれも650〜700℃程度が好ましい。   The anode 32 and the cathode 34 are preferably made of a noble metal such as platinum (Pt), and it is preferable to use a material obtained by plating platinum on titanium (Ti) or a material obtained by attaching ruthenium to this surface. it can. The electrode can be obtained, for example, by rolling and attaching platinum (Pt) to a titanium (Ti) plate, electroplating ruthenium (Ru), and firing this in an oxygen atmosphere. The electrode can also be obtained by electroplating platinum on a titanium plate and firing in an oxygen atmosphere. The firing temperature is preferably about 650 to 700 ° C.

陽極32及び陰極34は図示を省略する電源に接続されており、係る電源から電流を供給することで発酵部40内の混合物に直流電流を通じさせることができる。このように、発酵部40内の混合物に直流電流を通じると、電気浸透作用により、液体である乳酸や水を陽極32側から陰極34側に向かう方向(図1における矢印A)に移動させることができる。   The anode 32 and the cathode 34 are connected to a power source (not shown), and a direct current can be passed through the mixture in the fermentation unit 40 by supplying a current from the power source. In this way, when a direct current is passed through the mixture in the fermentation unit 40, the lactic acid or water, which is a liquid, is moved in the direction from the anode 32 side to the cathode 34 side (arrow A in FIG. 1) by electroosmosis. Can do.

隔壁36は、混合物中の液体(乳酸)が通過でき、コースターチ等の固体物の通過を抑制することができるものであれば、いずれの構造であってもよく、例えば、メッシュ状にすることができる。また、隔壁36を構成する材料としては、乳酸等に対してある程度の耐性を有するものであれば特に制限なく用いることができるが、耐錆性の観点からチタン(Ti)が好ましい。また、後述するように隔壁36自体を、陽極32を構成する金属で形成し、係る隔壁36自体を陽極32とすることもできる。この場合、隔壁36によって濃縮部38と隔てられる空間が発酵部となる。更に、ポリイミド膜等も適宜用いることができる。   The partition wall 36 may have any structure as long as the liquid (lactic acid) in the mixture can pass therethrough and can suppress the passage of a solid material such as a coast starch, for example, a mesh shape. Can do. Moreover, as a material which comprises the partition 36, if it has a certain amount tolerance with respect to lactic acid etc., it can use without a restriction | limiting especially, However, Titanium (Ti) is preferable from a viewpoint of rust resistance. Further, as will be described later, the partition wall 36 itself may be formed of a metal constituting the anode 32, and the partition wall 36 itself may be used as the anode 32. In this case, the space separated from the concentration part 38 by the partition wall 36 becomes the fermentation part. Furthermore, a polyimide film or the like can be used as appropriate.

濃縮部38は、発酵槽30内を隔壁36で仕切ることによって形成されており、陰極34が備えられている側に設けられる。濃縮部38には、電気浸透作用によって隔壁36を通過してきた乳酸が貯留される。以下、隔壁36を通過し濃縮部にまで移動した乳酸を「高濃度乳酸」と称する。また、濃縮部38には、排出管42の一端と供給管44の一端とが接続されており、乳酸貯留槽50と間において高濃度乳酸を循環することができるように構成されている。   The concentrating part 38 is formed by partitioning the fermenter 30 with a partition wall 36 and is provided on the side where the cathode 34 is provided. The concentrating part 38 stores lactic acid that has passed through the partition wall 36 by electroosmosis. Hereinafter, the lactic acid that has passed through the partition wall 36 and has moved to the concentration section is referred to as “high-concentration lactic acid”. In addition, one end of the discharge pipe 42 and one end of the supply pipe 44 are connected to the concentrating unit 38 so that high-concentration lactic acid can be circulated between the lactic acid storage tank 50.

発酵槽30の発酵部40には、循環管46の一端が接続されている。また、循環管46の他端は混合装置20に接続されており、発酵部40内の反応未寄与のコーンスターチ(澱粉)や乳酸菌等を混合装置20に再び供給し、再利用できるように構成されている。更に、発酵部40には、図示を省略する排出口が設けられており、発酵後のコーンスターチ等の発酵残渣を措置外に排出できるように構成されている。尚、本実施の形態においては、混合物を混合装置20と発酵部40との間で循環させる態様としたが、係る循環態様は任意である。   One end of a circulation pipe 46 is connected to the fermentation unit 40 of the fermenter 30. In addition, the other end of the circulation pipe 46 is connected to the mixing device 20, and is configured so that corn starch (starch), lactic acid bacteria, and the like that have not contributed to the reaction in the fermentation unit 40 can be supplied to the mixing device 20 and reused. ing. Further, the fermentation unit 40 is provided with a discharge port (not shown) so that fermentation residues such as corn starch after fermentation can be discharged outside the measure. In the present embodiment, the mixture is circulated between the mixing device 20 and the fermentation unit 40. However, the circulation manner is arbitrary.

乳酸貯留槽50は、発酵槽30において発酵・分離された高濃度乳酸が供給され該高濃度乳酸を貯留できるように構成される。また、乳酸貯留槽50には、排出管42の一端と供給管44の一端とがそれぞれ接続されており、高濃度乳酸を発酵槽30の濃縮部38と間で循環できるようになっている。このように、濃縮部38と乳酸貯留槽50との間を、高濃度乳酸を循環させることで、より濃縮された乳酸を得ることができる。尚、本実施の形態においては、高濃度乳酸を濃縮部38と乳酸貯留槽50との間で循環させる態様としたが、係る循環態様は任意である。   The lactic acid storage tank 50 is configured so that the high-concentration lactic acid fermented and separated in the fermenter 30 is supplied and the high-concentration lactic acid can be stored. In addition, one end of the discharge pipe 42 and one end of the supply pipe 44 are connected to the lactic acid storage tank 50 so that high-concentration lactic acid can be circulated between the concentration section 38 of the fermentation tank 30. In this way, more concentrated lactic acid can be obtained by circulating high-concentration lactic acid between the concentration unit 38 and the lactic acid storage tank 50. In the present embodiment, the high-concentration lactic acid is circulated between the concentrating unit 38 and the lactic acid storage tank 50. However, such a circulation mode is arbitrary.

乳酸貯留槽50には、乳酸排出管52が接続されており、乳酸貯留槽50に貯留された高濃度乳酸を装置外に排出できるように構成されている。   A lactic acid discharge pipe 52 is connected to the lactic acid storage tank 50 so that high-concentration lactic acid stored in the lactic acid storage tank 50 can be discharged out of the apparatus.

本発明の乳酸製造装置における乳酸製造の流れについて説明する。まず、乳酸菌、コーンスターチ及び水等は、混合装置20に供給され混合された後、発酵槽30の発酵部40に導入される。発酵部40内は、温度がおおよそ40℃程度、混合物のpHが5〜6程度に保たれており、数時間かけて発酵される。この際、発酵部40内の混合物は、混合装置20との間で例えば毎分10質量%で循環されている。   The flow of lactic acid production in the lactic acid production apparatus of the present invention will be described. First, lactic acid bacteria, corn starch, water, and the like are introduced into the fermentation unit 40 of the fermenter 30 after being supplied to the mixing device 20 and mixed. In the fermentation part 40, the temperature is maintained at about 40 ° C. and the pH of the mixture is maintained at about 5 to 6, and fermentation takes place over several hours. Under the present circumstances, the mixture in the fermentation part 40 is circulated between the mixing apparatuses 20 at 10 mass% per minute, for example.

発酵部40内で混合物が発酵されている際、該混合物には陽極32と陰極34とによって直流電流が通じられている。この際の直流電圧としては、電極により生成される遊離塩酸イオン等による乳酸菌の活性阻害を防止する観点から、1.0〜4.0Vが好ましく、1.2〜3.0Vが更に好ましい。すると、発酵により生成した乳酸は、電気浸透作用により、電流方向(図1の矢印Aの方向)に移動し、隔壁36を通過して濃縮部38において貯留される。この際、水も濃縮部38に移動するが、乳酸の移動速度の方が早いため、乳酸が濃縮されていくことになる。また、発酵部40内で一定量の発酵残渣がたまった場合には、図示を省略する排出口から発酵残渣を排出する。   When the mixture is fermented in the fermentation unit 40, a direct current is passed to the mixture by the anode 32 and the cathode 34. The direct current voltage at this time is preferably 1.0 to 4.0 V, more preferably 1.2 to 3.0 V, from the viewpoint of preventing lactic acid bacteria activity inhibition by free hydrochloric acid ions or the like generated by the electrode. Then, the lactic acid produced | generated by fermentation moves to an electric current direction (direction of the arrow A of FIG. 1) by electroosmosis, passes through the partition wall 36, and is stored in the concentration part 38. FIG. At this time, water also moves to the concentrating unit 38, but lactic acid is concentrated because the moving speed of lactic acid is faster. Further, when a certain amount of fermentation residue is accumulated in the fermentation unit 40, the fermentation residue is discharged from an outlet not shown.

濃縮部38に貯留された高濃度乳酸は、乳酸貯留槽50との間で循環され、更に濃縮された後、乳酸排出管52から高濃度乳酸を得ることができる。尚、高濃度乳酸の循環は、濃度センサーを設け、一定の濃度以上となった際に乳酸を排出するようにしてもよいし、一定時間循環させた後に乳酸を排出するような構成としてもよい。   The high-concentration lactic acid stored in the concentration unit 38 is circulated between the lactic acid storage tank 50 and further concentrated, and then high-concentration lactic acid can be obtained from the lactic acid discharge pipe 52. The circulation of high-concentration lactic acid may be provided with a concentration sensor so that lactic acid is discharged when the concentration exceeds a certain level, or the lactic acid is discharged after being circulated for a certain time. .

次に、図2及び3を用いて本発明の乳酸製造装置に用いられる発酵槽の具体的な態様について説明する。図2は、本発明における発酵槽の具体的な態様を説明するための断面図であり、図3、本発明における発酵槽の具体的な態様を説明するための説明図である。   Next, the specific aspect of the fermenter used for the lactic acid manufacturing apparatus of this invention is demonstrated using FIG. 2 and 3. FIG. FIG. 2 is a cross-sectional view for explaining a specific mode of the fermenter according to the present invention, and FIG. 3 is an explanatory diagram for explaining a specific mode of the fermenter according to the present invention.

図2に示すように、本発明における発酵槽は、筒状に形成することができる。また、図3に示すように筒状発酵槽60の内部には、内壁に沿って筒状の陰極62が設けられており、更に、その内側には、メッシュ構造を有する筒状の陽極隔壁64が備えられている。係る態様においては、図2及び3で示されるように陰極62と陽極隔壁64とで囲まれる空間が濃縮部66となり、陽極隔壁のみで囲まれている空間が発酵部68となる。   As shown in FIG. 2, the fermenter in this invention can be formed in a cylinder shape. Moreover, as shown in FIG. 3, a cylindrical cathode 62 is provided inside the cylindrical fermenter 60 along the inner wall, and further, a cylindrical anode partition 64 having a mesh structure is provided inside thereof. Is provided. 2 and 3, the space surrounded by the cathode 62 and the anode partition 64 is the concentration unit 66, and the space surrounded only by the anode partition is the fermentation unit 68.

筒状発酵槽60には、更に、原料供給口70と循環液供給口72とが設けられている。原料供給口70は発酵部68と通じており、原料(混合物)を発酵部68に導入できるように構成されている。また、発酵部68内の混合物は一定の割合で原料排出口74から排出され図1における混合装置20に戻られるようになっている。これにより、発酵部68内で反応に寄与しなかったコーンスターチ等を混合物に混入することで再利用することができる。また、循環液供給口72は、図1における乳酸貯留槽50と濃縮部66との間で高濃度乳酸を循環させるために設けられており、循環液供給口72から供給された高濃度乳酸は濃縮部66から新たに発酵部68から濃縮部66にまで移動した乳酸と共に乳酸排出口76から図1における乳酸貯留槽50に送られる。   The cylindrical fermenter 60 is further provided with a raw material supply port 70 and a circulating liquid supply port 72. The raw material supply port 70 communicates with the fermentation unit 68 and is configured so that the raw material (mixture) can be introduced into the fermentation unit 68. Moreover, the mixture in the fermentation part 68 is discharged | emitted from the raw material discharge port 74 in a fixed ratio, and is returned to the mixing apparatus 20 in FIG. Thereby, the corn starch etc. which did not contribute to reaction within the fermentation part 68 can be reused by mixing in a mixture. The circulating liquid supply port 72 is provided for circulating high-concentration lactic acid between the lactic acid storage tank 50 and the concentrating unit 66 in FIG. 1, and the high-concentration lactic acid supplied from the circulating liquid supply port 72 is Along with lactic acid newly transferred from the concentrating unit 66 to the concentrating unit 66 from the fermenting unit 68, the lactic acid discharge port 76 sends the lactic acid to the lactic acid storage tank 50 in FIG.

筒状発酵槽60においては、筒状の陽極隔壁64内の発酵部68においてコーンスターチと乳酸菌との発酵により生成した乳酸は、これらを含む混合物に陰極62及び陽極隔壁64から直流電流が流されると、発酵部68から濃縮部66に向かって移動する。これにより、混合物から乳酸を分離することができる。このように、発酵槽を筒状に構成することで、効率よく、乳酸の分離・濃縮をおこなうことができる。   In the cylindrical fermenter 60, lactic acid produced by fermentation of corn starch and lactic acid bacteria in the fermentation section 68 in the cylindrical anode partition 64 is supplied with a direct current from the cathode 62 and the anode partition 64 to the mixture containing them. , Moving from the fermentation unit 68 toward the concentration unit 66. Thereby, lactic acid can be separated from the mixture. Thus, by constituting the fermenter in a cylindrical shape, lactic acid can be separated and concentrated efficiently.

また、上記においては、発酵槽を一つのみ用いる態様としたが、本発明はこの構成に限定されるものではなく、複数の発酵槽を連結したものであってもよい。   Moreover, in the above, although it was set as the aspect which uses only one fermenter, this invention is not limited to this structure, The thing which connected several fermenters may be used.

<重合工程>
次に図4〜6を用いて本発明のポリ乳酸製造装置について説明する。図4は、本発明のポリ乳酸製造装置の構成を概念的に示す概略図である。図4に示すように本発明のポリ乳酸製造装置80は、混合装置82と、重合槽90と、電気脱水槽100とを備えて構成される。ポリ乳酸製造装置80は、混合装置82において乳酸と共に触媒を混合し、該混合物を重合槽90にて加熱して脱水縮重合し、更に、電気脱水槽100において電気浸透作用によって脱水することで、所望のポリ乳酸を得ることができる。本発明のポリ乳酸製造装置80は、重合槽90と電気脱水槽100とが循環管116で連結されており、予め定められた回数や時間、重合・乾燥を繰り返すことで、所望の分子量を有するポリ乳酸を得ることができる。
<Polymerization process>
Next, the polylactic acid production apparatus of the present invention will be described with reference to FIGS. FIG. 4 is a schematic view conceptually showing the structure of the polylactic acid production apparatus of the present invention. As shown in FIG. 4, the polylactic acid production apparatus 80 of the present invention includes a mixing apparatus 82, a polymerization tank 90, and an electric dehydration tank 100. The polylactic acid production apparatus 80 mixes the catalyst together with lactic acid in the mixing apparatus 82, heats the mixture in the polymerization tank 90 to perform dehydration condensation polymerization, and further dehydrates the electrodehydration tank 100 by electroosmotic action, Desired polylactic acid can be obtained. In the polylactic acid production apparatus 80 of the present invention, a polymerization tank 90 and an electric dehydration tank 100 are connected by a circulation pipe 116, and have a desired molecular weight by repeating polymerization and drying for a predetermined number of times and time. Polylactic acid can be obtained.

混合装置82は、特に限定されず攪拌機等公知の混合手段を備えた装置である。係る混合装置82には、乳酸と触媒とが供給される。この際、混合物中における乳酸(q)と触媒(w)との混合比(質量比q:w)は100:1〜100:10が好ましく、100:3〜100:5が更に好ましい。前記触媒としては、乳酸の脱水縮重合に用いられる触媒であれば特に限定なく用いることができ、例えば、酸化ルテニウム及び酸化チタンを質量比50質量%で混合したものが好ましい。また、前記触媒の重量平均体積粒径としては0.1〜1μm程度が好ましい。混合装置82は、供給された乳酸と触媒とを混合して混合物とし、該混合物を重合槽90に導入する。   The mixing device 82 is not particularly limited, and is a device provided with known mixing means such as a stirrer. The mixing device 82 is supplied with lactic acid and a catalyst. At this time, the mixing ratio (mass ratio q: w) of lactic acid (q) and catalyst (w) in the mixture is preferably 100: 1 to 100: 10, and more preferably 100: 3 to 100: 5. The catalyst is not particularly limited as long as it is a catalyst used for dehydration condensation polymerization of lactic acid. For example, a mixture of ruthenium oxide and titanium oxide at a mass ratio of 50% by mass is preferable. The weight average volume particle size of the catalyst is preferably about 0.1 to 1 μm. The mixing device 82 mixes the supplied lactic acid and the catalyst into a mixture, and introduces the mixture into the polymerization tank 90.

重合槽90は、混合装置82から供給された乳酸と触媒との混合物を加熱することで脱水縮重合を行う。重合槽90において、乳酸は2段階の乳酸重合工程を経て所望の分子量を有するポリ乳酸とすることができる。第1の乳酸重合工程は、乳酸からオリゴマーを合成する工程であり、この際の加熱温度はおおよそ、110〜160℃程度が好ましく、130〜150℃程度が更に好ましい。また、第2の乳酸重合工程は、オリゴマーを連結して所望の分子量を有するポリ乳酸を合成する工程であり、その際の加熱温度はおおよそ110〜140℃程度であり、115〜120℃程度が更に好ましい。   The polymerization tank 90 performs dehydration condensation polymerization by heating a mixture of lactic acid and a catalyst supplied from the mixing device 82. In the polymerization tank 90, lactic acid can be converted into polylactic acid having a desired molecular weight through a two-stage lactic acid polymerization process. The first lactic acid polymerization step is a step of synthesizing an oligomer from lactic acid, and the heating temperature at this time is preferably about 110 to 160 ° C, more preferably about 130 to 150 ° C. The second lactic acid polymerization step is a step of synthesizing polylactic acid having a desired molecular weight by linking oligomers, and the heating temperature at that time is about 110 to 140 ° C, and about 115 to 120 ° C. Further preferred.

また、重合槽90は、後述のように重合効率を向上させるために攪拌手段を用いて攪拌しながら、乳酸を加熱し、重合反応を進めることが好ましい。   In addition, the polymerization tank 90 preferably proceeds with the polymerization reaction by heating lactic acid while stirring using a stirring means in order to improve the polymerization efficiency as described later.

重合槽90には、一定時間加熱され脱水縮重合した乳酸重合体(オリゴマーや所望の分子量にまで達しないポリ乳酸や水を含む)を電気脱水槽100に供給するための乳酸重合体排出管92が設けられている。   In the polymerization tank 90, a lactic acid polymer discharge pipe 92 for supplying the electric dehydration tank 100 with a lactic acid polymer (including oligomers and polylactic acid that does not reach the desired molecular weight) heated for a certain period of time and dehydrated and polymerized. Is provided.

電気脱水槽100には、陽極102と陰極104とからなる少なくとも一対の電極が内装されており、これら電極は図示を省略する電源に接続されている。また、電気脱水槽100の槽内は陽極102と陰極104との間を隔てるように隔壁106で仕切られており、隔壁106を境に、陰極104が備えられている側には脱水部108が、また、陽極102が備えられている側には被脱水部110が設けられている。重合槽90から供給される混合物は被脱水部110に導入される。   The electric dehydration tank 100 includes at least a pair of electrodes including an anode 102 and a cathode 104, and these electrodes are connected to a power source (not shown). Further, the inside of the electric dehydration tank 100 is partitioned by a partition wall 106 so as to separate the anode 102 and the cathode 104, and a dehydration unit 108 is provided on the side where the cathode 104 is provided with the partition wall 106 as a boundary. In addition, a portion to be dehydrated 110 is provided on the side where the anode 102 is provided. The mixture supplied from the polymerization tank 90 is introduced into the portion to be dehydrated 110.

陽極102及び陰極104は、プラチナ(Pt)などの貴金属で構成されていることが好ましく、チタン(Ti)にプラチナをメッキしたものや、この表面にルテニウムを添着したもの等を好適に用いることができる。陽極102及び陰極104は図示を省略する電源に接続されており、係る電源から電流を供給することで被脱水部110内の乳酸重合体に直流電流を通じさせることができる。このように、被脱水部110内の乳酸重合体に直流電流を通じると、電気浸透作用により、乳酸重合体中に含まれる水を陽極102側から陰極104側に向かう方向(図4における矢印B)に移動させることができる。   The anode 102 and the cathode 104 are preferably made of a noble metal such as platinum (Pt), and a material obtained by plating platinum on titanium (Ti) or a material obtained by attaching ruthenium to this surface is preferably used. it can. The anode 102 and the cathode 104 are connected to a power supply (not shown), and a direct current can be passed through the lactic acid polymer in the portion to be dehydrated 110 by supplying a current from the power supply. In this way, when a direct current is passed through the lactic acid polymer in the portion to be dehydrated 110, water contained in the lactic acid polymer is directed from the anode 102 side to the cathode 104 side (arrow B in FIG. 4) by electroosmosis. ).

隔壁106は、混合物中の水が通過でき、ポリ乳酸等の固体物の通過を抑制することができるものであれば、いずれの構造であってもよく、例えば、メッシュ状にすることができる。また、隔壁36を構成する材料としては、乳酸等に対してある程度の耐性を有するものであれば特に制限なく用いることができる。また、隔壁106自体を、陽極102を構成する金属で形成し、係る隔壁36自体を陽極102とすることもできる。この場合、隔壁106によって脱水部108と隔てられる空間が被脱水部となる。更に、ポリイミド膜等も適宜用いることができる。   The partition wall 106 may have any structure as long as it can pass water in the mixture and can suppress the passage of a solid material such as polylactic acid. For example, the partition wall 106 may have a mesh shape. Moreover, as a material which comprises the partition 36, if it has a certain amount of tolerance with respect to lactic acid etc., it can use without a restriction | limiting in particular. Alternatively, the partition wall 106 itself may be formed of a metal constituting the anode 102, and the partition wall 36 itself may be used as the anode 102. In this case, the space separated from the dewatering unit 108 by the partition wall 106 is the dewatered unit. Furthermore, a polyimide film or the like can be used as appropriate.

脱水部108は、電気脱水槽100内を隔壁106で仕切ることによって形成されており、電気脱水槽100の陰極104が備えられている側に設けられる。脱水部108にはグリセリン供給管112と、グリセリン排出管114とが接続されており、脱水部108内をグリセリンが循環するように構成されている。被脱水部110から脱水部108にまで移動した水分は無水グリセリンに吸収されて含水グリセリンとして脱水部108から排出される。脱水部108から排出された含水グリセリンは例えば減圧蒸留等の公知の手段により水分が除去されて無水グリセリンとして再利用される。   The dehydrating unit 108 is formed by partitioning the inside of the electric dehydration tank 100 with a partition wall 106 and is provided on the side of the electric dehydration tank 100 where the cathode 104 is provided. A glycerin supply pipe 112 and a glycerin discharge pipe 114 are connected to the dehydration unit 108, and the glycerin circulates in the dehydration unit 108. The moisture that has moved from the dehydration unit 110 to the dehydration unit 108 is absorbed by anhydrous glycerin and discharged from the dehydration unit 108 as hydrous glycerin. The water-containing glycerin discharged from the dehydration unit 108 is reused as anhydrous glycerin after the water is removed by a known means such as vacuum distillation.

電気脱水槽100の被脱水部110には、循環管116の一端が接続されている。また、循環管116の他端は重合槽90に接続されており、被脱水部110内のポリ乳酸が所望の分子量になるまで重合槽90及び電気脱水槽100間を循環するように構成されている。更に、被脱水部110には、図示を省略する排出口が設けられており、所望の分子量に達したポリ乳酸を措置外に排出できるように構成されている。尚、上記排出口は重合槽に設けられていてもよい。重合槽90及び電気脱水槽100を構成する材質としては特に限定はないが、防錆性の点からチタン(Ti)であることが好ましい。   One end of a circulation pipe 116 is connected to the portion to be dehydrated 110 of the electric dehydration tank 100. Further, the other end of the circulation pipe 116 is connected to the polymerization tank 90 and is configured to circulate between the polymerization tank 90 and the electric dehydration tank 100 until the polylactic acid in the dewatered part 110 reaches a desired molecular weight. Yes. Furthermore, the dehydrating part 110 is provided with a discharge port (not shown) so that polylactic acid having a desired molecular weight can be discharged out of the measure. The discharge port may be provided in the polymerization tank. The material constituting the polymerization tank 90 and the electric dehydration tank 100 is not particularly limited, but titanium (Ti) is preferable from the viewpoint of rust prevention.

本発明のポリ乳酸製造装置におけるポリ乳酸製造の流れについて説明する。まず、乳酸及び触媒は、混合装置82に供給され混合された後、電気脱水槽100の被脱水部110に導入される。被脱水部110に導入された乳酸は、重合槽90内で脱水縮重合された後、電気脱水槽100で脱水され、係る工程を所望の回数や一定時間繰り返すことにより目的とするポリ乳酸が得られる。係る工程を繰り返す回数や時間は、目的とするポリ乳酸の分子量を考慮して適宜設定することができる。この際、重合槽90と電気脱水槽100との間は、例えば毎分10質量%で循環されている。   The flow of polylactic acid production in the polylactic acid production apparatus of the present invention will be described. First, lactic acid and a catalyst are supplied to the mixing device 82 and mixed, and then introduced into the portion to be dehydrated 110 of the electric dehydration tank 100. The lactic acid introduced into the portion to be dehydrated 110 is subjected to dehydration condensation polymerization in the polymerization tank 90 and then dehydrated in the electric dehydration tank 100, and the desired polylactic acid is obtained by repeating such a process a desired number of times or for a predetermined time. It is done. The number and time of repeating such steps can be appropriately set in consideration of the molecular weight of the target polylactic acid. At this time, the polymerization tank 90 and the electric dehydration tank 100 are circulated at, for example, 10% by mass per minute.

重合槽90内の温度は上述の第1の乳酸重合工程と第2の乳酸重合工程とで異なる。この際、重合槽90内の温度の切り替えは、予め定めた回数や時間によって切り替えるようにすることができる。また、本発明においては第1の乳酸重合工程を行う前に、110〜120℃程度において乳酸内の水分を蒸発させる工程を経ることが好ましい。   The temperature in the polymerization tank 90 is different between the first lactic acid polymerization step and the second lactic acid polymerization step. At this time, the temperature in the polymerization tank 90 can be switched according to a predetermined number of times and time. In the present invention, it is preferable to pass a step of evaporating water in lactic acid at about 110 to 120 ° C. before performing the first lactic acid polymerization step.

電気脱水槽100内において乳酸重合体には陽極102と陰極104とによって直流電流が通じられている。この際の直流電圧としては3.0〜6.0V程度が好ましく、4.0〜5.0Vが更に好ましい。すると、乳酸の重合反応により生成した水分は、電気浸透作用により、電流方向(図4の矢印Bの方向)に移動し、隔壁106を通過して脱水部108にまで移動する。また、所望の回数又は時間、重合槽90と電気脱水槽間循環することで、所望の分子量にまで合成されたポリ乳酸を得ることができる。   In the electric dehydration tank 100, a direct current is passed to the lactic acid polymer by the anode 102 and the cathode 104. The DC voltage at this time is preferably about 3.0 to 6.0 V, more preferably 4.0 to 5.0 V. Then, the water generated by the polymerization reaction of lactic acid moves in the current direction (in the direction of arrow B in FIG. 4) due to electroosmosis, passes through the partition wall 106 and moves to the dehydrating unit 108. Moreover, the polylactic acid synthesize | combined to the desired molecular weight can be obtained by circulating between the polymerization tank 90 and an electric dehydration tank for the desired frequency | count or time.

次に、図5を用いて本発明のポリ乳酸製造装置に用いられる重合槽及び電気脱水槽の具体的な態様について説明する。図5は、本発明における重合槽及び電気脱水槽の具体的な態様を説明するための断面図である。   Next, specific modes of the polymerization tank and the electric dehydration tank used in the polylactic acid production apparatus of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view for explaining specific embodiments of the polymerization tank and the electric dehydration tank in the present invention.

図5に示すように筒状重合槽120は、乳酸供給部122が設けられた中空のシリンダー(中空基体)124の内部に、乳酸供給部122が設けられた一方の側から他方の側(即ち、スクリュー先端側)に向けて螺旋状溝を有するスクリュー(棒状回転体)126を内装して構成され、さらに乳酸供給部122が設けられていないシリンダー124の他方(スクリュー先端側)には乳酸重合体出口128が設けられており、スクリュー126を回転させることによって乳酸を加熱すると共に攪拌しながら乳酸重合体出口128から重合された乳酸重合体を移送できるようになっている。乳酸重合体出口128から排出された乳酸重合体は電気脱水槽150に導入される。また、スクリュー126の乳酸供給部122が設けられた側には、モータ(駆動手段)130が設けられ、スクリュー126は図示しない原動歯車及び従動歯車を有する減速ギアを介在させてモータ130と接続されて電源(不図示)からの電力供給を受けて回転可能なようになっている。   As shown in FIG. 5, the cylindrical polymerization tank 120 has a hollow cylinder (hollow substrate) 124 provided with a lactic acid supply unit 122, and from one side where the lactic acid supply unit 122 is provided to the other side (that is, And a screw (rod-like rotating body) 126 having a spiral groove toward the screw tip side, and the other side (screw tip side) of the cylinder 124 where the lactic acid supply unit 122 is not provided is provided with lactic acid weight. A coalescence outlet 128 is provided so that the lactic acid polymer polymerized from the lactic acid polymer outlet 128 can be transferred while heating and stirring the lactic acid by rotating the screw 126. The lactic acid polymer discharged from the lactic acid polymer outlet 128 is introduced into the electric dehydration tank 150. A motor (driving means) 130 is provided on the side of the screw 126 where the lactic acid supply unit 122 is provided, and the screw 126 is connected to the motor 130 via a reduction gear having a driving gear and a driven gear (not shown). It can be rotated by receiving power from a power source (not shown).

シリンダー内でスクリュー126が回転することによって、供給された乳酸は第1及び第2の乳酸重合工程に応じた温度で脱水縮重合される。シリンダー124の外側には、シリンダー壁を介して内部を加熱するための電気ヒーター132がシリンダー周囲を覆うように設けられ、シリンダー内部の加熱を均一に行なえるようになっている。   As the screw 126 rotates in the cylinder, the supplied lactic acid undergoes dehydration condensation polymerization at a temperature corresponding to the first and second lactic acid polymerization processes. An electric heater 132 for heating the inside through the cylinder wall is provided outside the cylinder 124 so as to cover the periphery of the cylinder so that the inside of the cylinder can be uniformly heated.

また、筒状重合槽120には、電気脱水槽150において脱水された乳酸重合体が導入される乳酸重合体導入口134が設けられており、電気脱水槽150との間でポリ乳酸が循環可能なように構成されている。   The cylindrical polymerization tank 120 is provided with a lactic acid polymer inlet 134 into which the lactic acid polymer dehydrated in the electric dehydration tank 150 is introduced, and polylactic acid can be circulated between the electric dehydration tank 150. It is configured as follows.

図5において、電気脱水槽150は、乳酸重合体出口128に接続された配管を介して筒状重合槽120に連通されている。電気脱水槽150は、図5に示すように、一端に乳酸重合体供給口152を有し、且つ、他端に脱水物排出口154を有する円筒体156と、円筒体156の内部に設けられた円筒状の筒状ポリイミド膜158と、筒状ポリイミド膜158の内部に挿通方向(図4中の矢印方向C)と平行な軸心を回転軸として交互に逆回転するように捻り羽根が隣接して3段配置されたスタチックミキサー160と、から構成されており、乳酸重合体供給口152から供給された乳酸重合体を挿通させながら順次逆回流させて混練して脱水処理を行なうようになっている。また、円筒体156の壁面はチタン(Ti)で構成されている。   In FIG. 5, the electric dehydration tank 150 is communicated with the cylindrical polymerization tank 120 through a pipe connected to the lactic acid polymer outlet 128. As shown in FIG. 5, the electric dehydration tank 150 is provided inside a cylindrical body 156 having a lactic acid polymer supply port 152 at one end and a dehydrated discharge port 154 at the other end. The cylindrical cylindrical polyimide film 158 and the twisted blades are adjacent to the inside of the cylindrical polyimide film 158 so as to alternately rotate in reverse directions about the axis parallel to the insertion direction (arrow direction C in FIG. 4). And a static mixer 160 arranged in three stages, so that the lactic acid polymer supplied from the lactic acid polymer supply port 152 is inserted in reverse and sequentially reversely kneaded for dehydration. It has become. The wall surface of the cylindrical body 156 is made of titanium (Ti).

円筒体156の内部に設けられる筒状ポリイミド膜158は目の細かいメッシュ構造を有しており、乳酸重合体と水とのうち、水のみを透過させるようになっている。円筒体156の内部は、筒状ポリイミド膜158を境にして、筒状ポリイミド膜内部が被脱水部162となり、筒状ポリイミド膜158の外側に脱水部164が形成されている。   The cylindrical polyimide film 158 provided inside the cylindrical body 156 has a fine mesh structure, and allows only water to permeate through the lactic acid polymer and water. The inside of the cylindrical body 156 has a cylindrical polyimide film 158 as a boundary, and the inside of the cylindrical polyimide film serves as a portion to be dehydrated 162, and a dewatering portion 164 is formed outside the cylindrical polyimide film 158.

また、円筒体156の壁面には、脱水部164に無水グリセリンを供給するためのグリセリン供給口166と、脱水部内部の含水グリセリンを排出するためのグリセリン排出口165とが設けられており、脱水部164内をグリセリンが循環するように構成されている。   In addition, the wall surface of the cylindrical body 156 is provided with a glycerin supply port 166 for supplying anhydrous glycerin to the dehydration unit 164 and a glycerin discharge port 165 for discharging water-containing glycerin inside the dehydration unit. Glycerin is configured to circulate in the portion 164.

電気脱水槽150において、スタチックミキサー160と円筒体156の壁面とにはそれぞれ図示を省略する電源が接続されており、スタチックミキサー160が陽極電極を構成し、円筒体156が陰極電極を構成している。このため、筒状重合槽120から導入された混合物に電流が流されると、電気浸透作用により、乳酸重合物から解離した水分が円筒体156の内側から外側に向かう方向に移動する。円筒体156の内側から外側に向かって移動した水分は、筒状ポリイミド膜158を透過して、脱水部164に移動する。脱水部164には無水グリセリンが供給されており、筒状ポリイミド膜158を透過した水分は、無水グリセリンに吸収され、含水グリセリンととなって電気脱水槽150外に排出される。電気脱水槽150外に排出された含水グリセリンは系外にて例えば減圧蒸留等の適当な手段により水分が除去され、無水グリセリンとして再びグリセリン供給口166から供給される。   In the electric dehydration tank 150, a static power supply (not shown) is connected to the static mixer 160 and the wall surface of the cylindrical body 156. The static mixer 160 constitutes an anode electrode, and the cylindrical body 156 constitutes a cathode electrode. is doing. For this reason, when an electric current is passed through the mixture introduced from the cylindrical polymerization tank 120, the water dissociated from the lactic acid polymer moves in the direction from the inside to the outside of the cylindrical body 156 due to the electroosmotic action. The moisture moved from the inside to the outside of the cylindrical body 156 passes through the cylindrical polyimide film 158 and moves to the dehydrating unit 164. Anhydrous glycerin is supplied to the dehydration unit 164, and moisture that has permeated through the tubular polyimide film 158 is absorbed by the anhydrous glycerin and becomes hydrous glycerin and is discharged outside the electric dehydration tank 150. The water-containing glycerin discharged to the outside of the electric dehydration tank 150 is removed from the system by an appropriate means such as vacuum distillation, and is supplied again from the glycerin supply port 166 as anhydrous glycerin.

電気脱水槽150の陽極電極となるスタチックミキサー160は、例えば図6に示すようにチタン(Ti)にプラチナ(Pt)をメッキし、さらにその表面にルテニウム(Ru)を添着したメッキ板を、左捻り又は右捻り(例えば捻り角度90°)した捻り羽根160a〜160cが3段階隣接した構成を有する。スタチックミキサー160は、乳酸重合物が円筒体156の内部を挿通するときに矢印方向Cの流体圧を受けて捻りの向きにしたがって回転するようになっている。電気脱水槽150内にこのような構成のスタチックミキサー160を設けることで、乳酸重合体中の水分が陽極に接しやすく、効率的に電気浸透作用を発揮することができ、乳酸重合体の脱水効率を高めることができる。   For example, as shown in FIG. 6, the static mixer 160 serving as an anode electrode of the electric dehydration tank 150 is plated with platinum (Pt) on titanium (Ti) and further has a plated plate on which ruthenium (Ru) is attached. The twisted blades 160a to 160c that are left-handed or right-handed (for example, twisted at 90 °) have a configuration in which three stages are adjacent to each other. The static mixer 160 receives fluid pressure in the direction of arrow C when the lactic acid polymer passes through the inside of the cylindrical body 156 and rotates according to the direction of twisting. By providing the static mixer 160 having such a configuration in the electric dehydration tank 150, the water in the lactic acid polymer can easily come into contact with the anode, and the electroosmotic action can be efficiently exhibited. Efficiency can be increased.

また、電気脱水槽150において脱水された乳酸重合体は、所望の回数又は時間等所望の分子量となるまで、筒状重合槽120と電気脱水槽150との間を循環させられる。電気脱水槽150内で脱水された乳酸重合体は、脱水物排出口154から排出され、再び、筒状重合槽120に導入される。   The lactic acid polymer dehydrated in the electric dehydration tank 150 is circulated between the cylindrical polymerization tank 120 and the electric dehydration tank 150 until a desired molecular weight such as a desired number of times or time is reached. The lactic acid polymer dehydrated in the electric dehydration tank 150 is discharged from the dehydrated discharge port 154 and is again introduced into the cylindrical polymerization tank 120.

このように所望の分子量となるように予め定められた回数又は時間、筒状重合槽120及び電気脱水槽150間を循環した乳酸重合体は、所望の分子量を有するポリ乳酸として筒状重合槽120のポリ乳酸排出口136から排出される。このように本発明のポリ乳酸重合装置を用いると、従来の減圧脱水方式を用いた場合に比して、低エネルギー且つ約半分の時間で所望の分子量を有するポリ乳酸を製造することができる。所望の分子量を有するポリ乳酸の合成が短時間及び低エネルギーでおこなうことができ、高効率且つ短時間で十分な分子量を有するポリ乳酸を得ることができる。   Thus, the lactic acid polymer circulated between the cylindrical polymerization tank 120 and the electric dehydration tank 150 for a predetermined number of times or time so as to have a desired molecular weight is the cylindrical polymerization tank 120 as polylactic acid having a desired molecular weight. Are discharged from the polylactic acid outlet 136. As described above, when the polylactic acid polymerization apparatus of the present invention is used, polylactic acid having a desired molecular weight can be produced with low energy and about half the time as compared with the case of using the conventional vacuum dehydration method. Synthesis of polylactic acid having a desired molecular weight can be performed in a short time and with low energy, and polylactic acid having a sufficient molecular weight can be obtained with high efficiency and in a short time.

このように、本発明のポリ乳酸製造装置によれば、乳酸の生成からポリ乳酸の重合まですべて、連続的に実施することも可能であり、設備の小型化、低コスト化、操作の簡便化、及び、製造コストの低減化が可能となる。また、上記においては、重合槽及び電気脱水槽をそれぞれ一つのみ用いる態様としたが、本発明はこの構成に限定されるものではなく、複数の重合槽や電気脱水槽を連結したものであってもよい。   Thus, according to the polylactic acid production apparatus of the present invention, it is possible to continuously carry out everything from the production of lactic acid to the polymerization of polylactic acid, making the equipment smaller, lowering the cost, and simplifying the operation. Further, the manufacturing cost can be reduced. In the above, only one polymerization tank and one electric dehydration tank are used. However, the present invention is not limited to this configuration, and a plurality of polymerization tanks and electric dehydration tanks are connected. May be.

以下、実施例において本発明をより具体的に説明する。但し、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this.

[実施例1]
1.乳酸の生成
図2及び3に示す筒状の発酵槽を有する乳酸製造装置を用いて乳酸を下記の手順に従って生成した。
[Example 1]
1. Production of lactic acid Lactic acid was produced according to the following procedure using a lactic acid production apparatus having a cylindrical fermenter shown in FIGS.

(1)原料懸濁液の調製
コーンスターチ(30質量部)と、食塩(0.5質量部)と、水(69.5質量部)とを、混合装置を用いて150rpmで5分間攪拌し、原料懸濁液を調製した。
(1) Preparation of raw material suspension Corn starch (30 parts by mass), sodium chloride (0.5 parts by mass), and water (69.5 parts by mass) were stirred at 150 rpm for 5 minutes using a mixing device, A raw material suspension was prepared.

(2)液化澱粉の調製
上記より得られた原料懸濁液を95℃で15分間蒸煮して、糊化澱粉を調製した。得られた糊化澱粉(99.4質量部)と、炭酸カルシウム(0.5質量部)と澱粉液化酵素(商品名:コクゲンT、大和化成(株)製)(0.1質量部)とを、酢酸でpH調製したのち(pH=6〜7)、混合装置にて30rpmで10分間、温度90℃で攪拌した。得られた混合物を、更に60分間、温度90℃及びpH6〜7で放置し、液化澱粉を調製した。
(2) Preparation of liquefied starch The raw material suspension obtained from the above was steamed at 95 ° C for 15 minutes to prepare gelatinized starch. The obtained gelatinized starch (99.4 parts by mass), calcium carbonate (0.5 parts by mass), and starch liquefying enzyme (trade name: Kokugen T, manufactured by Daiwa Kasei Co., Ltd.) (0.1 parts by mass) After adjusting pH with acetic acid (pH = 6-7), the mixture was stirred at 30 rpm for 10 minutes at a temperature of 90 ° C. with a mixing apparatus. The resulting mixture was left for a further 60 minutes at a temperature of 90 ° C. and a pH of 6-7 to prepare a liquefied starch.

(3)糖化澱粉の調製
上記より得られた液化澱粉(99.9質量部)を70℃以下にまで冷却した後、澱粉枝切酵素(商品名:クライスターゼPL、大和化成(株)製)(0.1質量部)を加え、酢酸にてpH調製したのち(pH=5〜6)、混合装置にて50rpmで10分間、温度65℃で攪拌した。得られた混合物を、更に60分間、温度65℃及びpH5〜6で放置し、糖化澱粉を調製した。
(3) Preparation of saccharified starch After cooling the liquefied starch (99.9 parts by mass) obtained above to 70 ° C. or less, starch debranching enzyme (trade name: Christase PL, manufactured by Daiwa Kasei Co., Ltd.) (0.1 parts by mass) was added, and the pH was adjusted with acetic acid (pH = 5 to 6), followed by stirring at 50 rpm for 10 minutes with a mixing apparatus at a temperature of 65 ° C. The resulting mixture was allowed to stand for a further 60 minutes at a temperature of 65 ° C. and a pH of 5-6 to prepare saccharified starch.

(4)乳酸の生成
上記より得られた糖化澱粉(99.9質量部)を45℃以下にまで冷却した後、乳酸菌(0.1質量部)を加え、混合装置Aにて150rpmで10分間、温度45℃で攪拌した。この際、混合物のpHは5〜6であった。
(4) Production of lactic acid After the saccharified starch (99.9 parts by mass) obtained above was cooled to 45 ° C. or less, lactic acid bacteria (0.1 parts by mass) were added, and the mixing apparatus A was used at 150 rpm for 10 minutes. The mixture was stirred at a temperature of 45 ° C. At this time, the pH of the mixture was 5-6.

得られた混合物を図2及び3に示す発酵槽に導入した。直流電流を通じながら発酵を行い、20質量%の乳酸が得られた。この際、発酵条件は、温度:40℃、pH:5〜6、反応時間240分、電気浸透電圧:直流2.4Vであった。また、混合物は、発酵槽と混合装置Aとの間を、毎分10質量%で循環させた。   The resulting mixture was introduced into the fermentor shown in FIGS. Fermentation was carried out through direct current, and 20% by mass of lactic acid was obtained. Under the present circumstances, fermentation conditions were temperature: 40 degreeC, pH: 5-6, reaction time 240 minutes, and electroosmosis voltage: DC2.4V. Moreover, the mixture was circulated between the fermenter and the mixing apparatus A at 10 mass% per minute.

《評価》
上記1.と同条件にて得られた糖化澱粉1kgに、乳酸菌1gを添加し、実施例1と同様の発酵槽を用いて40℃における電気浸透電極間に加える電圧と生成される乳酸の濃度との関係について測定した。この際、電気浸透電圧を0V、1.2V、2.4V及び3.6Vとしてそれぞれ測定した。結果を図7に示す。
図7は、乳酸濃度と電気浸透電圧との関係を示すグラフである。図7からわかるように、電極間に電流を流さないとき(0V)は、乳酸濃度が5.6質量%以上になることはなかったが、電気浸透電圧を1.2Vに変更した場合には、8時間後に16.3質量%にまで濃度が向上した。更に、電気浸透圧を2.4Vに変更した場合には、8時間後の乳酸濃度が24.5質量%にまで向上した。これに対し、電気浸透電圧を3.6Vに変更した場合には、得られる乳酸の濃度が14質量%程度であった。この結果、上記電気浸透電圧としては、1.2〜3.0Vの間が好ましいことがわかる。
<Evaluation>
Above 1. Of 1 g of lactic acid bacteria to 1 kg of saccharified starch obtained under the same conditions as above, and the relationship between the voltage applied between the electroosmotic electrodes at 40 ° C. and the concentration of lactic acid produced using the same fermentor as in Example 1 Was measured. At this time, the electroosmosis voltage was measured as 0 V, 1.2 V, 2.4 V, and 3.6 V, respectively. The results are shown in FIG.
FIG. 7 is a graph showing the relationship between the lactic acid concentration and the electroosmotic voltage. As can be seen from FIG. 7, when no current was passed between the electrodes (0 V), the lactic acid concentration did not become 5.6% by mass or more, but when the electroosmosis voltage was changed to 1.2 V, After 8 hours, the concentration was improved to 16.3% by mass. Furthermore, when the electroosmotic pressure was changed to 2.4 V, the lactic acid concentration after 8 hours was improved to 24.5% by mass. On the other hand, when the electroosmosis voltage was changed to 3.6 V, the concentration of lactic acid obtained was about 14% by mass. As a result, it is understood that the electroosmotic voltage is preferably between 1.2 and 3.0V.

2.ポリ乳酸の合成
図5に示す筒状の重合槽及び電気脱水槽を有する乳酸製造装置を用いて乳酸を下記の手順に従って生成した。
2. Synthesis of Polylactic Acid Lactic acid was produced according to the following procedure using a lactic acid production apparatus having a cylindrical polymerization tank and an electric dehydration tank shown in FIG.

(1)乾燥工程
上述より得られた濃度20%の乳酸99.5質量部と触媒(酸化ルテニウムと酸化チタンとを質量比50質量%で混合したもの)0.5質量部と、を混合装置を用いて150rpmで10分間攪拌した。この際、混合物のpHは3.5〜4程度であり、温度は90℃であった。次いで得られた混合物を110〜120℃で0.5時間蒸発乾燥した。この際、乳酸の濃度はおおよそ60質量%であった。
(1) Drying step 99.5 parts by mass of lactic acid having a concentration of 20% obtained from the above and 0.5 parts by mass of a catalyst (a mixture of ruthenium oxide and titanium oxide at a mass ratio of 50% by mass) are mixed. For 10 minutes at 150 rpm. At this time, the pH of the mixture was about 3.5 to 4, and the temperature was 90 ° C. The resulting mixture was then evaporated to dryness at 110-120 ° C. for 0.5 hour. At this time, the concentration of lactic acid was approximately 60% by mass.

(2)重合・脱水工程
得られた乳酸と触媒との混合物を、図5に示す重合槽と電気脱水槽とを用いて、毎分10質量%で重合槽及び電気脱水槽間を循環させながら、240分間重合・脱水を行った。この際、電気脱水槽においては電極間の電気浸透電圧4.8Vで直流電流をポリ乳酸に通じさせ、脱水を行った。また、重合槽の温度は、始めの90分間は140〜145℃とし、残りの150分間を115〜120℃とした。得られたポリ乳酸の重量平均分子量をDSCで測定したところ120,000であった。
(2) Polymerization / Dehydration Step The mixture of the obtained lactic acid and catalyst was circulated between the polymerization tank and the electric dehydration tank at 10% by mass per minute using the polymerization tank and the electric dehydration tank shown in FIG. Polymerization and dehydration were performed for 240 minutes. At this time, in the electric dehydration tank, dehydration was performed by passing a direct current through the polylactic acid at an electroosmotic voltage of 4.8 V between the electrodes. The temperature of the polymerization tank was 140 to 145 ° C. for the first 90 minutes, and 115 to 120 ° C. for the remaining 150 minutes. It was 120,000 when the weight average molecular weight of the obtained polylactic acid was measured by DSC.

《評価》
乳酸の重合・脱水工程について、上記2.と同様の手法を用いた本発明による方式(初期乳酸温度:60質量%、電気浸透電圧4.8V、終点ポリ乳酸質量分子量:120,000、図5に示す重合槽及び電気脱水槽を使用)と、特開2003−335850公報に記載の従来の減圧脱水法による方式(初期乳酸濃度:60質量%、減圧真空度:0.08(MPa)、終点ポリ乳酸重量平均分子量:120,000)との比較を行った。結果を図8に示す。図8は、ポリ乳酸の重合反応について重合温度と重合時間との関係を示すグラフである。
<Evaluation>
Regarding the polymerization / dehydration step of lactic acid, 2. (Initial lactic acid temperature: 60% by mass, electroosmotic voltage 4.8V, end point polylactic acid mass molecular weight: 120,000, using polymerization tank and electric dehydration tank shown in FIG. 5) And a method by a conventional vacuum dehydration method described in JP-A No. 2003-335850 (initial lactic acid concentration: 60 mass%, vacuum degree of vacuum: 0.08 (MPa), endpoint polylactic acid weight average molecular weight: 120,000) A comparison was made. The results are shown in FIG. FIG. 8 is a graph showing the relationship between the polymerization temperature and the polymerization time for the polymerization reaction of polylactic acid.

図8からわかるように電気浸透式脱水槽を用いた本発明による方式によって重合・脱水をおこなった場合、第1の乳酸重合工程に要した時間(T1’)は、おおよそ20分程度であり、第2の乳酸重合工程に要した時間(T2’)は、おおよそ160分程度であったため、乾燥蒸発工程を含めて240分ほどで、重量平均分子量120,000のポリ乳酸を得ることができた。   As can be seen from FIG. 8, when polymerization / dehydration is performed by the method according to the present invention using an electroosmotic dehydration tank, the time (T1 ′) required for the first lactic acid polymerization step is approximately 20 minutes, Since the time (T2 ′) required for the second lactic acid polymerization step was about 160 minutes, polylactic acid having a weight average molecular weight of 120,000 could be obtained in about 240 minutes including the drying and evaporation step. .

これに対し、従来の減圧脱水法による方式を用いて重合及び脱水をおこなった場合、第1の乳酸重合工程に要する時間(T1)は、おおよそ30分程度であり第2の乳酸重合工程に要した時間(T2)はおおよそ390分程度だったため、乾燥蒸発工程を含めて、重量平均分子量120,000のポリ乳酸を得るのに480分要した。このため、本発明の要に電気浸透式脱水槽を用いた本発明の重合時間は、従来の減圧脱水方式を用いた場合に比しておおよそ半分の時間で所望の分子量を有するポリ乳酸を得ることができた。   On the other hand, when polymerization and dehydration are performed using a conventional method using a vacuum dehydration method, the time (T1) required for the first lactic acid polymerization step is approximately 30 minutes, which is necessary for the second lactic acid polymerization step. Since the time (T2) was about 390 minutes, it took 480 minutes to obtain polylactic acid having a weight average molecular weight of 120,000 including the drying and evaporation step. For this reason, the polymerization time of the present invention using an electroosmotic dehydration tank at the heart of the present invention is approximately half the time compared to the case of using a conventional vacuum dehydration method, and polylactic acid having a desired molecular weight is obtained. I was able to.

また、図8からわかるように本発明の方式を用いた場合、第1の乳酸重合工程(T1’)に要する重合温度は137℃、また、第2の乳酸重合工程(T2’)に要する重合温度は118℃であったため、第1の乳酸重合工程(T1)に要する重合温度が145℃であり、また、第2の乳酸重合工程(T2)に要する重合温度が123℃であった、従来の減圧脱水方式を用いた場合よりも、4〜6%ほど重合温度を低くできることがわかる。   Further, as can be seen from FIG. 8, when the method of the present invention is used, the polymerization temperature required for the first lactic acid polymerization step (T1 ′) is 137 ° C., and the polymerization required for the second lactic acid polymerization step (T2 ′). Since the temperature was 118 ° C., the polymerization temperature required for the first lactic acid polymerization step (T1) was 145 ° C., and the polymerization temperature required for the second lactic acid polymerization step (T2) was 123 ° C. It can be seen that the polymerization temperature can be lowered by about 4 to 6% as compared with the case of using the reduced pressure dehydration method.

本発明の乳酸製造装置の構成を概念的に示す概略図である。It is the schematic which shows notionally the structure of the lactic acid manufacturing apparatus of this invention. 本発明における発酵槽の具体的な態様を説明するための断面図である。It is sectional drawing for demonstrating the specific aspect of the fermenter in this invention. 本発明における発酵槽の具体的な態様を説明するための説明図である。It is explanatory drawing for demonstrating the specific aspect of the fermenter in this invention. 本発明のポリ乳酸製造装置の構成を概念的に示す概略図である。It is the schematic which shows notionally the structure of the polylactic acid manufacturing apparatus of this invention. 本発明における重合槽及び電気脱水槽の具体的な態様を説明するための断面図である。It is sectional drawing for demonstrating the specific aspect of the superposition | polymerization tank and electric dehydration tank in this invention. 電気脱水槽に用いられるスタチックミキサーの構成例を示す斜視図である。It is a perspective view which shows the structural example of the static mixer used for an electric dehydration tank. 乳酸濃度と電気浸透電圧との関係を示すグラフである。It is a graph which shows the relationship between lactic acid concentration and electroosmosis voltage. ポリ乳酸の重合反応について重合温度と重合時間との関係を示すグラフである。It is a graph which shows the relationship between superposition | polymerization temperature and superposition | polymerization time about the polymerization reaction of polylactic acid.

符号の説明Explanation of symbols

10 乳酸製造装置
20 混合装置
30 発酵槽
32 陽極
34 陰極
36 隔壁
38 濃縮部
42 排出管
44 供給管
46 循環管
50 乳酸貯留槽
52 乳酸排出管
80 ポリ乳酸製造装置
82 混合装置
90 重合槽
92 乳酸重合体排出管
100 電気脱水槽
102 陽極
104 陰極
106 隔壁
108 脱水部
110 被脱水部
112 グリセリン供給管
114 グリセリン排出管
116 循環管
120 筒状重合槽
122 乳酸供給部
124 シリンダー
126 スクリュー
128 乳酸重合体出口
134 乳酸重合体導入口
136 ポリ乳酸排出口
150 電気脱水槽
152 乳酸重合体供給口
156 円筒体
158 筒状ポリイミド膜
160 スタチックミキサー
162 被脱水部
164 脱水部
DESCRIPTION OF SYMBOLS 10 Lactic acid production apparatus 20 Mixing apparatus 30 Fermenter 32 Anode 34 Cathode 36 Partition wall 38 Concentration part 42 Discharge pipe 44 Supply pipe 46 Circulation pipe 50 Lactic acid storage tank 52 Lactic acid discharge pipe 80 Polylactic acid production apparatus 82 Mixing apparatus 90 Polymerization tank 92 Lactic acid weight Combined discharge pipe 100 Electric dehydration tank 102 Anode 104 Cathode 106 Partition wall 108 Dehydration part 110 Dehydrated part 112 Glycerin supply pipe 114 Glycerin discharge pipe 116 Circulation pipe 120 Cylindrical polymerization tank 122 Lactic acid supply part 124 Cylinder 126 Screw 128 Lactic acid polymer outlet 134 Lactic acid polymer inlet 136 Polylactic acid outlet 150 Electric dehydration tank 152 Lactic acid polymer supply port 156 Cylindrical body 158 Cylindrical polyimide film 160 Static mixer 162 Dehydrated part 164 Dehydrated part

Claims (6)

植物性澱粉と乳酸菌とを発酵させて乳酸を生成し、前記乳酸を脱水縮重合させてポリ乳酸を合成するポリ乳酸の製造方法であって、
少なくとも一対の電極と隔壁と前記隔壁によって仕切られた濃縮部とを有し、且つ、前記濃縮部が前記電極の陰極側に設けられた発酵槽内で、前記植物性澱粉と前記乳酸菌と前記乳酸とを含有する混合物に直流電流を通じ、前記乳酸を電気浸透によって前記濃縮部に移動させ貯留する発酵濃縮工程と、
前記濃縮部に貯留された前記乳酸が供給される重合槽内で、前記乳酸を加熱し脱水縮重合させてポリ乳酸を合成する重合工程と、
を含むことを特徴とするポリ乳酸の製造方法。
A method for producing polylactic acid comprising fermenting plant starch and lactic acid bacteria to produce lactic acid, and dehydrating condensation polymerization of the lactic acid to synthesize polylactic acid,
The plant starch, the lactic acid bacteria, and the lactic acid are contained in a fermenter that has at least a pair of electrodes, a partition, and a concentration unit partitioned by the partition, and the concentration unit is provided on the cathode side of the electrode. A fermentation concentration step in which the lactic acid is transferred to the concentration part by electroosmosis through a direct current through a mixture containing
A polymerization step of synthesizing polylactic acid by heating and dehydrating condensation polymerization of the lactic acid in a polymerization tank to which the lactic acid stored in the concentration unit is supplied;
A process for producing polylactic acid, comprising:
前記植物性澱粉がコーンスターチであることを特徴とする請求項1に記載のポリ乳酸の製造方法。   The method for producing polylactic acid according to claim 1, wherein the vegetable starch is corn starch. 少なくとも一対の電極、隔壁及び前記隔壁によって仕切られた濃縮部を有し、且つ、前記濃縮部が前記電極の陰極側に設けられた発酵槽と、
植物性澱粉及び乳酸菌を前記発酵槽に導入する原料導入手段と、
を備え、前記植物性澱粉及び前記乳酸菌を前記発酵槽内で発酵させて得られる乳酸と前記植物性澱粉と前記乳酸菌との混合物に直流電流を通じ、電気浸透によって前記乳酸を前記濃縮部に移動させることを特徴とする乳酸製造装置。
A fermenter having at least a pair of electrodes, partition walls and a concentration section partitioned by the partition walls, and the concentration section provided on the cathode side of the electrodes;
Raw material introduction means for introducing plant starch and lactic acid bacteria into the fermentor;
The lactic acid obtained by fermenting the plant starch and the lactic acid bacteria in the fermenter, the plant starch and the lactic acid bacteria through a direct current, and transferring the lactic acid to the concentrating part by electroosmosis. Lactic acid production apparatus characterized by the above.
前記濃縮部に移動された乳酸を排出する排出管と、前記排出管から排出された前記乳酸が供給され且つ前記乳酸を貯留する乳酸貯留槽と、前記乳酸貯留槽内の乳酸を前記濃縮部に供給する供給管と、前記乳酸貯留槽内の前記乳酸を外部に排出する排出手段と、を備えた請求項3に記載の乳酸製造装置。   A discharge pipe for discharging the lactic acid moved to the concentration unit, a lactic acid storage tank for supplying the lactic acid discharged from the discharge pipe and storing the lactic acid, and lactic acid in the lactic acid storage tank for the concentration unit The lactic acid production apparatus according to claim 3, further comprising: a supply pipe to be supplied; and discharge means for discharging the lactic acid in the lactic acid storage tank to the outside. 前記植物澱粉がコーンスターチであることを特徴とする請求項3又は4に記載の乳酸製造装置。   The lactic acid production apparatus according to claim 3 or 4, wherein the plant starch is corn starch. 前記電極の陽極が、メッシュ状であることを特徴とする請求項3〜5のいずれか1項に記載の乳酸製造装置。   The lactic acid production apparatus according to any one of claims 3 to 5, wherein the anode of the electrode has a mesh shape.
JP2005264396A 2005-09-12 2005-09-12 Method for producing lactic acid and apparatus for lactic acid production Pending JP2006101876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264396A JP2006101876A (en) 2005-09-12 2005-09-12 Method for producing lactic acid and apparatus for lactic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264396A JP2006101876A (en) 2005-09-12 2005-09-12 Method for producing lactic acid and apparatus for lactic acid production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004286688A Division JP3734821B1 (en) 2004-09-30 2004-09-30 Polylactic acid production method and polylactic acid production apparatus

Publications (1)

Publication Number Publication Date
JP2006101876A true JP2006101876A (en) 2006-04-20

Family

ID=36372278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264396A Pending JP2006101876A (en) 2005-09-12 2005-09-12 Method for producing lactic acid and apparatus for lactic acid production

Country Status (1)

Country Link
JP (1) JP2006101876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603649B1 (en) 2006-03-31 2006-07-24 가부시키가이샤 그린칸쿄테크놀로지 Poly latic acid manufacturing apparatus and method
WO2010055874A1 (en) * 2008-11-13 2010-05-20 株式会社ロイヤル・バイオ・プラ Method for producing polylactic acid, apparatus for producing polylactic acid, method for producing biodegradable plastic and apparatus for producing biodegradable plastic
JP2011200177A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Culturing device and culturing method
WO2020185065A1 (en) * 2019-03-08 2020-09-17 Hoe Hui Huang Electrochemical production of polymers
EP3833801A4 (en) * 2018-08-08 2022-03-23 Commonwealth Scientific and Industrial Research Organisation Electrochemical flow reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603649B1 (en) 2006-03-31 2006-07-24 가부시키가이샤 그린칸쿄테크놀로지 Poly latic acid manufacturing apparatus and method
WO2010055874A1 (en) * 2008-11-13 2010-05-20 株式会社ロイヤル・バイオ・プラ Method for producing polylactic acid, apparatus for producing polylactic acid, method for producing biodegradable plastic and apparatus for producing biodegradable plastic
JP2011200177A (en) * 2010-03-26 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Culturing device and culturing method
EP3833801A4 (en) * 2018-08-08 2022-03-23 Commonwealth Scientific and Industrial Research Organisation Electrochemical flow reactor
WO2020185065A1 (en) * 2019-03-08 2020-09-17 Hoe Hui Huang Electrochemical production of polymers

Similar Documents

Publication Publication Date Title
KR100743953B1 (en) Process for manufacturing polylactic acid, lactic acid manufacturing apparatus, and polylactic acid manufacturing apparatus
JP2006101876A (en) Method for producing lactic acid and apparatus for lactic acid production
EP2657343B1 (en) Method for producing chemical by continuous fermentation
US20010006811A1 (en) Process for producing processed organic product and apparatus therefor
WO2010048225A2 (en) A system and method for thermophilic anaerobic digester process
JP6509448B1 (en) Modified polylactic acid, polymerized modified polylactic acid, and method and apparatus for producing the same
JP6279183B1 (en) Cell wall or cell membrane crushing apparatus and method of using the apparatus
CN108862484A (en) A kind of device of electric flocculation processing difficult for biological degradation industrial wastewater
CN102712745A (en) Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer
CN206033726U (en) White spirit production is with white spirit device that accelerates ripening
TWI280295B (en) Apparatus for manufacturing cellulose acetate
BR112012023892B1 (en) process to produce succinic acid
JP4313461B2 (en) Gas hydrate manufacturing apparatus and method
KR100674257B1 (en) A manufacturing method of the drinking water which used unpolished rice vinegar produced by deep sea water
AU2005244533A1 (en) Method of manufacturing polylactic acid, apparatus for manufacturing lactic acid, and apparatus for manufacturing polylactic acid
KR100603649B1 (en) Poly latic acid manufacturing apparatus and method
CN101811810A (en) Treatment box for enhancing degradation of sludge through ultrasonic waves
JPH10258265A (en) High speed vacuum drying and fermentation method for organic waste
CN211190194U (en) Reaction system for lactic acid oligomerization
WO2019008680A1 (en) Polylactic acid producing method and polylactic acid producing device
JP2003335850A (en) Method of manufacturing biodegradable plastic and apparatus for it
Tsubota et al. Partial Delignification as Pretreatment for Nanoporous Carbon Material from Biomass
CN112939233A (en) Preparation process of biological agent for treating water eutrophication
KR100693300B1 (en) Poly latic acid manufacturing apparatus using vertical type centrifugal and method
JP2002336826A (en) Horizontal helical vane stirring type methane fermentation tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060807

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070727