JP2006100803A - Electronic control unit - Google Patents

Electronic control unit Download PDF

Info

Publication number
JP2006100803A
JP2006100803A JP2005243211A JP2005243211A JP2006100803A JP 2006100803 A JP2006100803 A JP 2006100803A JP 2005243211 A JP2005243211 A JP 2005243211A JP 2005243211 A JP2005243211 A JP 2005243211A JP 2006100803 A JP2006100803 A JP 2006100803A
Authority
JP
Japan
Prior art keywords
radiating member
housing
heat radiating
heat
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005243211A
Other languages
Japanese (ja)
Other versions
JP4353158B2 (en
Inventor
Satoru Yamauchi
知 山内
Teruhiro Mizutani
彰宏 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005243211A priority Critical patent/JP4353158B2/en
Publication of JP2006100803A publication Critical patent/JP2006100803A/en
Application granted granted Critical
Publication of JP4353158B2 publication Critical patent/JP4353158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic control unit capable of suppressing the deterioration of radiative property by securing a radiation path through a radiation member even if external force such as shock or vibration is applied. <P>SOLUTION: A circuit substrate 11 on which electronic parts including a heater element 12 is accommodated in a cubicle 1, and the heater element 12 and the cubicle 1 are thermally connected by interposing the radiation member 30 between the heater element 12 and the internal surface of the cubicle 1. As the radiation member 30, a polymer material having fluidity is used, and a film 40 that the radiation member 30 and the cubicle 1 are chemically or electrically bonded, which prevents the radiation member 30 from moving, is disposed between the radiation member 30 and the internal surface of the cubicle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子制御装置(ECU)における放熱構造に関するものである。   The present invention relates to a heat dissipation structure in an electronic control unit (ECU).

電子制御装置の筐体内において、図21に示すように、電子部品111を実装した回路基板(プリント基板)110が配置され、図22に示すように、回路基板110に実装した発熱素子112から発生する熱を、放熱部材101を介して筐体100に放熱することが知られている。特に車両用ECUにおいては放熱部材101は高温になる発熱素子112を冷却する手段としてよく使われている。この放熱部材101は通常、ゴムを代表する弾性物質や、放熱性を向上した樹脂系の接着剤やグリスが使われ、図22に示すように、筐体100と発熱素子112との間に挟み込んで使用する。あるいは、図23に示すように、放熱部材101は筐体100と回路基板110との間に挟み込んで使用する。   A circuit board (printed circuit board) 110 on which an electronic component 111 is mounted is arranged in the housing of the electronic control device as shown in FIG. 21, and is generated from a heating element 112 mounted on the circuit board 110 as shown in FIG. It is known to dissipate heat to the housing 100 via the heat dissipating member 101. Particularly in the vehicle ECU, the heat dissipating member 101 is often used as a means for cooling the heat generating element 112 that becomes high in temperature. The heat radiating member 101 is usually made of an elastic material such as rubber, or a resin adhesive or grease with improved heat radiating properties, and is sandwiched between the casing 100 and the heating element 112 as shown in FIG. Used in. Alternatively, as shown in FIG. 23, the heat dissipation member 101 is used by being sandwiched between the housing 100 and the circuit board 110.

ここで述べる発熱素子112とは大電流を流して高発熱する素子であり、通常、パワーMOSトランジスタやパワーダイオード等が使用される。
最近ではMOSトランジスタのSMDタイプの素子も開発され、小型かつ、大電流を扱える部品を回路基板に実装するようになり、この小型部品を小面積の放熱面積で冷却する技術開発が重要になってきた。この部品は、ECUの機能上では大電流で他の部品を制御する重要な部品であるとともに、製品品質上においても品質を決定付ける部品である。
The heating element 112 described here is an element that generates high heat by flowing a large current, and normally, a power MOS transistor, a power diode, or the like is used.
Recently, an SMD type element of a MOS transistor has been developed, and a small component capable of handling a large current is mounted on a circuit board, and it is important to develop a technology for cooling the small component with a small heat radiation area. It was. This part is an important part that controls other parts with a large current in terms of the function of the ECU, and is also a part that determines the quality in terms of product quality.

一方、放熱部材101として、ゲル等の流動性を有する材料を使用すると、応力が加わったときにもクラックが発生しない利点があるが、その一方で、衝撃や振動等の外力が加わった場合に、その外力を放熱部材101もしくは筐体100が受け、所定の位置から放熱部材101が移動し、狙いの放熱性が発揮できなくなる。   On the other hand, when a material having fluidity such as gel is used as the heat radiating member 101, there is an advantage that cracks do not occur even when stress is applied. On the other hand, when external force such as impact or vibration is applied. The heat radiating member 101 or the housing 100 receives the external force, and the heat radiating member 101 moves from a predetermined position, so that the target heat radiating property cannot be exhibited.

放熱部材101を移動しないようにする方法として筐体表面の面粗度を粗くする方法もあるが、放熱部材101として流動性を有する材料を使用すると放熱部材101の移動を抑制することは難しい。また、特許文献1の実施例3において開示されているように放熱部材101の配置面に突起(ダム)を設けて放熱部材101を移動しにくくする方法もある。しかし、この方法では発熱素子112の配置を特定しなければならないため、発熱素子112の配置が多種ある回路基板110に対し、少量多種の筐体100を使うことになり、筐体100のコストを上げる原因になってしまう。
特開2003−289191号公報
As a method for preventing the heat radiating member 101 from moving, there is a method for increasing the surface roughness of the housing surface. However, if a material having fluidity is used as the heat radiating member 101, it is difficult to suppress the movement of the heat radiating member 101. Further, as disclosed in Example 3 of Patent Document 1, there is a method in which a protrusion (dam) is provided on the arrangement surface of the heat dissipation member 101 to make it difficult to move the heat dissipation member 101. However, in this method, since the arrangement of the heating elements 112 must be specified, a small amount of various types of casings 100 are used for the circuit board 110 having various types of arrangements of the heating elements 112, thereby reducing the cost of the casing 100. It will cause to raise.
JP 2003-289191 A

本発明はこのような背景の下になされたものであり、その目的は、衝撃や振動等の外力が加わった場合においても放熱部材を介した放熱経路を確保して放熱性の低下を抑制することができる電子制御装置を提供することにある。   The present invention has been made under such a background, and its purpose is to secure a heat radiation path through the heat radiation member even when an external force such as an impact or vibration is applied to suppress a decrease in heat radiation performance. An object of the present invention is to provide an electronic control device that can perform the above-described operation.

請求項1に記載の電子制御装置は、放熱部材として、流動性を有する高分子材料を用いるとともに、放熱部材と筐体内面または台座表面との間に、放熱部材および筐体または台座と化学的または電気的に結合して放熱部材の移動を阻止する膜を配したことを特徴としている。よって、放熱部材として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材もしくは筐体に衝撃や振動等の外力が加わった場合に、放熱部材および筐体または台座と化学的または電気的に結合して放熱部材の移動を阻止する膜により、放熱部材の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材を介した放熱経路を確保して放熱性の低下を抑制することができる。   The electronic control device according to claim 1 uses a polymer material having fluidity as the heat radiating member, and between the heat radiating member and the housing inner surface or the pedestal surface, Alternatively, a film that is electrically coupled to prevent movement of the heat radiating member is provided. Therefore, by using a flowable polymer material as the heat radiating member, cracks do not occur even when stress is applied, and in this case, when external force such as shock or vibration is applied to the heat radiating member or the case Further, the movement of the heat radiating member is blocked by the film that chemically or electrically couples with the heat radiating member and the housing or the pedestal to block the movement of the heat radiating member. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path through the heat dissipation member can be secured to prevent a decrease in heat dissipation.

請求項2に記載の電子制御装置は、放熱部材として、流動性を有する高分子材料を用いるとともに、放熱部材と発熱素子または回路基板との間に、放熱部材および発熱素子または回路基板と化学的または電気的に結合して放熱部材の移動を阻止する膜を配したことを特徴としている。よって、放熱部材として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材もしくは筐体に衝撃や振動等の外力が加わった場合に、放熱部材および発熱素子または回路基板と化学的または電気的に結合して放熱部材の移動を阻止する膜により、放熱部材の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材を介した放熱経路を確保して放熱性の低下を抑制することができる。   The electronic control device according to claim 2 uses a polymer material having fluidity as the heat radiating member, and chemically connects the heat radiating member and the heat generating element or the circuit board between the heat radiating member and the heat generating element or the circuit board. Alternatively, a film that is electrically coupled to prevent movement of the heat radiating member is provided. Therefore, by using a flowable polymer material as the heat radiating member, cracks do not occur even when stress is applied, and in this case, when external force such as shock or vibration is applied to the heat radiating member or the case Further, the movement of the heat radiating member is blocked by the film that is chemically or electrically coupled to the heat radiating member and the heat generating element or the circuit board to block the movement of the heat radiating member. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path through the heat dissipation member can be secured to prevent a decrease in heat dissipation.

請求項3に記載の電子制御装置は、放熱部材として、流動性を有する高分子材料を用いるとともに、放熱部材と筐体内面または台座表面との間に、放熱部材および筐体または台座と化学的または電気的に結合して放熱部材の移動を阻止する膜を配し、さらに、放熱部材と発熱素子または回路基板との間に、放熱部材および発熱素子または回路基板と化学的または電気的に結合して放熱部材の移動を阻止する膜を配したことを特徴としている。よって、放熱部材として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材もしくは筐体に衝撃や振動等の外力が加わった場合に、放熱部材および筐体または台座と化学的または電気的に結合して放熱部材の移動を阻止する膜により、放熱部材の移動が阻止される。また、放熱部材もしくは筐体に衝撃や振動等の外力が加わった場合に、放熱部材および発熱素子または回路基板と化学的または電気的に結合して放熱部材の移動を阻止する膜により、放熱部材の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材を介した放熱経路を確保して放熱性の低下を抑制することができる。   The electronic control device according to claim 3 uses a polymer material having fluidity as the heat radiating member, and between the heat radiating member and the housing inner surface or the pedestal surface, Alternatively, a film that is electrically coupled to prevent movement of the heat radiating member is disposed, and further, chemically or electrically coupled to the heat radiating member and the heat generating element or circuit board between the heat radiating member and the heat generating element or circuit board. Thus, a film for preventing the movement of the heat radiating member is provided. Therefore, by using a flowable polymer material as the heat radiating member, cracks do not occur even when stress is applied, and in this case, when external force such as shock or vibration is applied to the heat radiating member or the case Further, the movement of the heat radiating member is blocked by the film that chemically or electrically couples with the heat radiating member and the housing or the pedestal to block the movement of the heat radiating member. Further, when an external force such as impact or vibration is applied to the heat radiating member or the housing, the heat radiating member is formed by a film that chemically or electrically couples with the heat radiating member and the heating element or the circuit board to prevent the heat radiating member from moving. Movement is prevented. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path through the heat dissipation member can be secured to prevent a decrease in heat dissipation.

請求項4に記載のように、請求項1または3に記載の電子制御装置において、筐体内面または台座表面における、発熱素子を配置し得る箇所全体に、放熱部材の移動を阻止する膜を配すると、筐体または台座の多様な箇所に移動を阻止する膜が配置してあるため、発熱素子の配置が異なる回路基板に対し共通の筐体を使用することができる。   According to a fourth aspect of the present invention, in the electronic control device according to the first or third aspect of the present invention, a film for preventing the movement of the heat radiating member is disposed on the entire surface of the housing inner surface or the pedestal surface where the heat generating element can be disposed. Then, since the film | membrane which prevents a movement is arrange | positioned at the various places of a housing | casing or a base, a common housing | casing can be used with respect to the circuit board from which arrangement | positioning of a heat generating element differs.

請求項5に記載のように、請求項1または3に記載の電子制御装置において、筐体内面または台座表面における、放熱が不要な箇所には、放熱部材の移動を阻止する膜に配しないようにすると、コストを低減することができる。   As described in claim 5, in the electronic control device according to claim 1 or 3, do not place a film on the inner surface of the housing or the surface of the pedestal where heat dissipation is not necessary, on a film that prevents movement of the heat dissipation member. In this case, the cost can be reduced.

請求項6に記載のように、請求項1〜5のいずれか1項に記載の電子制御装置において、放熱部材として、シリコーン系樹脂材料を用いると、移動を阻止する膜との関係において、シリコーン系樹脂材料の官能基を化学的な結合、もしくは電気的な結合に関与させることができる。   As described in claim 6, in the electronic control device according to any one of claims 1 to 5, when a silicone-based resin material is used as a heat dissipation member, silicone is used in relation to a film that prevents movement. The functional group of the resin material can be involved in chemical bonding or electrical bonding.

請求項7に記載のように、請求項1〜5のいずれか1項に記載の電子制御装置において、放熱部材として、エポキシ系樹脂材料を用いると、移動を阻止する膜との関係において、エポキシ系樹脂材料の官能基を化学的な結合、もしくは電気的な結合に関与させることができる。   As described in claim 7, in the electronic control device according to any one of claims 1 to 5, when an epoxy resin material is used as the heat dissipating member, epoxy is used in relation to the film that prevents movement. The functional group of the resin material can be involved in chemical bonding or electrical bonding.

請求項8に記載のように、請求項1,3〜7のいずれか1項に記載の電子制御装置において、筐体または台座の材料として、金属材料を用いると、移動を阻止する膜との関係において、金属材料側の水酸基を化学的な結合、もしくは電気的な結合に関与させることができる。特に、請求項9に記載のように、請求項8に記載の電子制御装置において、金属材料として、アルミを用いると、移動を阻止する膜との関係において、アルミ材料側の水酸基を化学的な結合、もしくは電気的な結合に関与させることができる。   As described in claim 8, in the electronic control device according to any one of claims 1, 3 to 7, when a metal material is used as a material of the housing or the pedestal, the film that prevents movement is used. In relation, the hydroxyl group on the metal material side can be involved in chemical bonding or electrical bonding. In particular, as described in claim 9, in the electronic control device according to claim 8, when aluminum is used as the metal material, the hydroxyl group on the aluminum material side is chemically changed in relation to the film that prevents movement. It can be involved in coupling or electrical coupling.

請求項10に記載のように、請求項1,3〜7のいずれか1項に記載の電子制御装置において、筐体または台座の少なくともその表面での材料として、樹脂を用いると、移動を阻止する膜との関係において、樹脂の官能基を化学的な結合、もしくは電気的な結合に関与させることができる。   As described in claim 10, in the electronic control device according to any one of claims 1, 3 to 7, when resin is used as a material on at least the surface of the housing or the pedestal, movement is prevented. In relation to the film to be bonded, the functional group of the resin can be involved in chemical bonding or electrical bonding.

請求項11に記載のように、請求項1〜10のいずれか1項に記載の電子制御装置において、放熱部材の移動を阻止する膜として、ベンゼン環または炭化水素長鎖を有する材料を用いると、ベンゼン環により高温材料特性を向上することができるとともに、炭化水素長鎖により低温材料特性を向上することができる。これにより、例えば、車載用の電子制御装置において、搭載環境に適合した移動を阻止する膜とすることが可能となる。   As described in claim 11, in the electronic control device according to any one of claims 1 to 10, when a material having a benzene ring or a hydrocarbon long chain is used as a film that prevents movement of the heat dissipation member. The high temperature material properties can be improved by the benzene ring, and the low temperature material properties can be improved by the hydrocarbon long chain. Thereby, for example, in a vehicle-mounted electronic control device, it is possible to form a film that prevents movement suitable for the mounting environment.

特に、請求項12に記載のように、請求項11に記載の電子制御装置において、ベンゼン環または炭化水素長鎖を有する材料として、ポリメチルポリベンゼンアルコール、ポリメチルポリベンゼンアミン、ポリメチルポリベンゼンエポキシ、ポリメチルポリベンゼンスルホン酸、ポリエチルポリベンゼンアルコールのいずれかを用いるとよい。   In particular, as described in claim 12, in the electronic control device according to claim 11, as a material having a benzene ring or a hydrocarbon long chain, polymethyl polybenzene alcohol, polymethyl polybenzene amine, polymethyl polybenzene Any of epoxy, polymethylpolybenzenesulfonic acid, and polyethylpolybenzene alcohol may be used.

(第1の実施の形態)
以下、本発明を具体化した第1の実施形態を図面に従って説明する。
図1に、本実施形態における電子制御装置の分解図を示す。図2に、図1の上ケース3の無い状態における、電子制御装置の斜視図を示す。図3には、回路基板に搭載した電子部品(発熱素子)の放熱構造を示す。本実施形態における電子制御装置は車載用電子制御装置であって、車載エンジンを制御するための装置である。即ち、エンジン制御ECUである。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an exploded view of the electronic control device according to this embodiment. FIG. 2 is a perspective view of the electronic control device in a state where the upper case 3 of FIG. 1 is not present. FIG. 3 shows a heat dissipation structure of an electronic component (heat generating element) mounted on a circuit board. The electronic control device in this embodiment is a vehicle-mounted electronic control device, and is a device for controlling a vehicle-mounted engine. That is, the engine control ECU.

筐体(ケース)1は、下ケース2と上ケース3よりなる。筐体1(下ケース2および上ケース3)は鉄製またはアルミ製である。あるいは、筐体1(下ケース2および上ケース3)の少なくともその表面での材料として、樹脂を用いてもよい。具体的には、筐体全体を樹脂製とした場合、あるいは、金属の表面に樹脂コーティングをした場合である。下ケース2は四角形状の平板状をなしている。上ケース3は下面が開口した四角箱状をなしている。そして、上ケース3の開口部を下ケース2にて塞ぐように配置され、下ケース2と上ケース3とは例えばネジ止めされている。   The housing (case) 1 includes a lower case 2 and an upper case 3. The casing 1 (the lower case 2 and the upper case 3) is made of iron or aluminum. Alternatively, a resin may be used as a material on at least the surface of the housing 1 (the lower case 2 and the upper case 3). Specifically, it is the case where the entire casing is made of resin, or the case where resin coating is applied to the metal surface. The lower case 2 has a rectangular flat plate shape. The upper case 3 has a square box shape with an open bottom surface. And it arrange | positions so that the opening part of the upper case 3 may be plugged up with the lower case 2, and the lower case 2 and the upper case 3 are screwed, for example.

筐体1の内部において、電子部品10を実装した回路基板11が水平状態で(横にして)収容されている。回路基板11の上下面において電子部品10が半田付けにより実装されている。電子部品10は発熱素子12を含んでおり、発熱素子12は回路基板11の下面に配置されている。回路基板11に関して、図3に示すように、回路基板11は多層基板を用いており、絶縁層と導電層とが交互に積層されている。また、回路基板11にはビアホールが形成され、ビアホール内には導体11aが充填されている。回路基板11の母材としてセラミック基板やエポキシ基板を使用している。また、図3における発熱素子12に関して、発熱素子12はパッケージ部品であり、チップ12aが樹脂12bによりモールドされているとともに樹脂12bからリードフレーム12cが突出し、当該リードフレーム12cが回路基板11の表層での導電層に半田付けされている。チップ12aにはパワートランジスタやパワーダイオード等が作り込まれている。   Inside the housing 1, a circuit board 11 on which the electronic component 10 is mounted is accommodated in a horizontal state (sideways). Electronic components 10 are mounted on the upper and lower surfaces of the circuit board 11 by soldering. The electronic component 10 includes a heating element 12, and the heating element 12 is disposed on the lower surface of the circuit board 11. With respect to the circuit board 11, as shown in FIG. 3, the circuit board 11 uses a multilayer substrate, and insulating layers and conductive layers are alternately laminated. In addition, via holes are formed in the circuit board 11 and the via holes are filled with a conductor 11a. A ceramic substrate or an epoxy substrate is used as a base material of the circuit board 11. 3, the heating element 12 is a package component, the chip 12a is molded with the resin 12b, the lead frame 12c protrudes from the resin 12b, and the lead frame 12c is the surface layer of the circuit board 11. Soldered to the conductive layer. A power transistor, a power diode, or the like is built in the chip 12a.

このようにして、筐体1内において、発熱素子12を含めた電子部品10を搭載した回路基板11が収容されている。
また、筐体1にはコネクタ20が取り付けられ、コネクタ20のピンが回路基板11と電気的に接続されている。コネクタ20を介して筐体1の外部においてワイヤを通して当該電子制御装置(回路基板11)に対しバッテリー、各種センサ、エンジン制御用アクチュエータが接続される。そして、電子制御装置はセンサ信号にてエンジンの運転状態を検知し各種の演算を実行してインジェクタやイグナイタといったアクチュエータを駆動してエンジンを最適な状態で運転させる。
In this way, the circuit board 11 on which the electronic component 10 including the heating element 12 is mounted is accommodated in the housing 1.
A connector 20 is attached to the housing 1, and pins of the connector 20 are electrically connected to the circuit board 11. A battery, various sensors, and an engine control actuator are connected to the electronic control device (circuit board 11) through a wire through a connector 20 outside the housing 1. The electronic control unit detects the operating state of the engine based on the sensor signal, executes various calculations, and drives an actuator such as an injector or an igniter to operate the engine in an optimal state.

また、図3に示すように、発熱素子12と筐体1の内面(下ケース2の上面)との間に、熱伝導性を有する放熱部材30を介在させて発熱素子12と筐体1とを熱的に結合している。具体的には、放熱部材30として、母材としての樹脂材に対しフィラーとして金属酸化物を添加したゲル状の物質を用いており、放熱部材30として、流動性を有する高分子材料を用いている。さらには、放熱部材30と筐体内面との間には膜40が配置されている。この膜40は、放熱部材30および筐体1と化学的または電気的に結合して放熱部材30の横方向の移動を阻止している。図3の発熱素子12に関して、図3の素子背面から放熱部材30を介して下ケース2へと熱伝達する構成の場合は、発熱素子12の背面側(下ケース2と向き合う側)にチップ12aで発生する熱を逃がすための放熱プレート12dがチップ12aと直接接触するように樹脂12bにてモールドされ、且つ放熱部材30と直接接触するよう片側(片面)が外部に露出している。   Further, as shown in FIG. 3, the heat generating element 12 and the casing 1 are disposed with a heat radiating member 30 interposed between the heat generating element 12 and the inner surface of the casing 1 (the upper surface of the lower case 2). Are thermally coupled. Specifically, as the heat radiating member 30, a gel-like substance in which a metal oxide is added as a filler to a resin material as a base material is used, and as the heat radiating member 30, a fluid polymer material is used. Yes. Furthermore, the film | membrane 40 is arrange | positioned between the thermal radiation member 30 and the housing | casing inner surface. The film 40 is chemically or electrically coupled to the heat radiating member 30 and the housing 1 to prevent the heat radiating member 30 from moving in the lateral direction. 3, in the case of heat transfer from the element back surface of FIG. 3 to the lower case 2 via the heat dissipating member 30, the chip 12 a is placed on the back surface side (side facing the lower case 2) of the heat generating element 12. The heat radiating plate 12d for releasing the heat generated in the step is molded with the resin 12b so as to be in direct contact with the chip 12a, and one side (one side) is exposed to the outside so as to be in direct contact with the heat radiating member 30.

なお、図3のように素子の背面から放熱する構造に代わり、図4に示すように、回路基板11から放熱する構造に適用してもよい。詳しくは、回路基板11と筐体1の内面(下ケース2の上面)との間に、熱伝導性を有する放熱部材30を介在させて発熱素子12と筐体1とを熱的に結合している。このとき、回路基板11における発熱素子12の配置領域にはビアホールが多数形成され、このビアホール内に充填した導体11aにより発熱素子12で発生する熱が回路基板11の裏面(図4での下面)に伝達しやすくなっている。また、回路基板11において、放熱部材30との接触部には導体パターン11bが形成され、熱を伝達しやすくなっている。導体パターン11bは熱伝達が十分に達成される場合には無くともよい。   Instead of the structure that radiates heat from the back surface of the element as shown in FIG. 3, it may be applied to a structure that radiates heat from the circuit board 11 as shown in FIG. Specifically, the heat generating element 12 and the housing 1 are thermally coupled by interposing a heat conductive heat dissipation member 30 between the circuit board 11 and the inner surface of the housing 1 (the upper surface of the lower case 2). ing. At this time, a large number of via holes are formed in the arrangement region of the heat generating elements 12 in the circuit board 11, and the heat generated in the heat generating elements 12 by the conductor 11a filled in the via holes is the back surface of the circuit board 11 (the lower surface in FIG. 4). Easy to communicate with. Moreover, in the circuit board 11, the conductor pattern 11b is formed in the contact part with the heat radiating member 30, and it is easy to transmit heat. The conductor pattern 11b may be omitted when heat transfer is sufficiently achieved.

また、図3の移動阻止膜40は下ケース2の上面に塗布することにより配置しており、その厚みは数μm〜数十μm程度である。そのため、放熱効率を極度に低下させずに放熱部材30を固定することができる。なお、移動阻止膜40の厚みを数μm〜数十μmとしたのは、厚みが厚すぎると放熱効率が低下し、また、薄すぎると均一に塗布することができないからである。   Further, the movement blocking film 40 of FIG. 3 is disposed by applying it to the upper surface of the lower case 2 and has a thickness of about several μm to several tens of μm. Therefore, the heat radiating member 30 can be fixed without extremely reducing the heat radiating efficiency. The reason why the thickness of the movement blocking film 40 is several μm to several tens of μm is that if the thickness is too thick, the heat dissipation efficiency decreases, and if it is too thin, it cannot be applied uniformly.

図5に示すように、移動阻止膜40は、筐体内面(詳しくは、下ケース2の上面)における、発熱素子12(放熱部材30)を配置し得る箇所全体に配している。つまり、放熱部材30が接触する筐体1の内面(下ケース2の上面)のすべてに配置している。このことにより、発熱素子12が回路基板11のどの座標にきても、同等の固定効果を得ることができ、共通した筐体1を使用することができる。   As shown in FIG. 5, the movement prevention film 40 is disposed on the entire surface of the housing inner surface (specifically, the upper surface of the lower case 2) where the heat generating element 12 (heat radiating member 30) can be disposed. That is, it arrange | positions to all the inner surfaces (upper surface of the lower case 2) of the housing | casing 1 which the heat radiating member 30 contacts. As a result, the same fixing effect can be obtained regardless of the coordinates of the heating element 12 on the circuit board 11, and the common housing 1 can be used.

また、図5に代わり図6に示すように、筐体内面(下ケース2の上面)における、放熱が不要な箇所には移動阻止膜40を配しないようにすることもできる。この図5や図6のように、移動阻止膜40は筐体1に対して塗布する構成としているので、筐体設計が完了後、放熱性が必要な発熱素子12のみに放熱部材30を配置すべく変更することができ、設計変更が容易であり、設計変更の開発コストも安価である。例えば、ECUの熱性能評価後に放熱部材30は放熱性が必要な発熱素子12のみに配置し、開発コストを低減することができる。それに加え、例えば、移動阻止膜40は材料コストと工程設備償却費のバランスを考慮し、図6に示したように移動阻止膜40の配置箇所を限定することもできる。つまり、図5と図6の比較において、移動阻止膜40のコストが部分塗布の設備償却コストよりも安価である場合には図5のように筐体内面(下ケース2の上面)での発熱素子12(放熱部材30)を配置し得る箇所全体に移動阻止膜40を配置する。また、移動阻止膜40のコストが部分塗布の設備償却コストよりも高価である場合には図6のように筐体内面(下ケース2の上面)での発熱素子12(放熱部材30)の配置箇所のみに部分的に移動阻止膜40を配置する。   Further, as shown in FIG. 6 instead of FIG. 5, the movement blocking film 40 may not be disposed at a location where heat radiation is unnecessary on the inner surface of the housing (the upper surface of the lower case 2). As shown in FIG. 5 and FIG. 6, since the movement blocking film 40 is applied to the housing 1, after the housing design is completed, the heat radiating member 30 is disposed only on the heat generating elements 12 that require heat dissipation. It can be changed as much as possible, the design change is easy, and the development cost of the design change is low. For example, after the evaluation of the thermal performance of the ECU, the heat radiating member 30 can be disposed only in the heat generating element 12 that requires heat dissipation, thereby reducing development costs. In addition, for example, the movement blocking film 40 can be arranged in a limited position as shown in FIG. 6 in consideration of the balance between material costs and process equipment depreciation costs. That is, in the comparison between FIG. 5 and FIG. 6, when the cost of the movement blocking film 40 is lower than the equipment amortization cost for partial coating, heat is generated on the inner surface of the casing (the upper surface of the lower case 2) as shown in FIG. The movement preventing film 40 is disposed over the entire portion where the element 12 (heat dissipation member 30) can be disposed. Further, when the cost of the movement blocking film 40 is higher than the equipment depreciation cost of the partial application, the arrangement of the heating element 12 (heat radiating member 30) on the inner surface of the casing (the upper surface of the lower case 2) as shown in FIG. The movement blocking film 40 is partially disposed only at the location.

また、図3に代わり、図7に示すように、発熱素子12(または回路基板11)と、筐体1に熱的に結合した台座50の表面との間に、熱伝導性を有する放熱部材30を介在させて、発熱素子12と筐体1とを熱的に結合した場合に適用してもよい。詳しくは、図7において、筐体1内に台座50がネジ51により固定されている。ここで、台座50は筐体1と別体であっても、図8に示すように筐体1と一体化していてもよい(筐体1の内面に台座55を一体形成してもよい)。   Further, instead of FIG. 3, as shown in FIG. 7, a heat radiating member having thermal conductivity between the heating element 12 (or the circuit board 11) and the surface of the pedestal 50 thermally coupled to the housing 1. 30 may be applied when the heating element 12 and the housing 1 are thermally coupled with each other. Specifically, in FIG. 7, a pedestal 50 is fixed in the housing 1 with screws 51. Here, the pedestal 50 may be separate from the casing 1 or may be integrated with the casing 1 as shown in FIG. 8 (the pedestal 55 may be integrally formed on the inner surface of the casing 1). .

次に、図3の放熱部材30にシリコーン系材料(シリコーン系樹脂材料)を使用する場合における、移動阻止膜40と放熱部材30の化学結合について説明する。
化1に示すように、シリコーン系材料は、官能基として、水酸基やメチル基を有する、あるいはエーテル結合を有している。そこで、図9(a)に示すように、放熱部材30におけるメチル基と移動阻止膜40におけるエポキシ基との開環反応による共有結合によって結合させる。あるいは、図9(b)に示すように、放熱部材30における水酸基と移動阻止膜40における水酸基との脱水反応による共有結合によって結合させる。あるいは、図9(c)に示すように、放熱部材30における水酸基と移動阻止膜40におけるメチル基との脱水反応による共有結合によって結合させる。あるいは、図9(d)に示すように、放熱部材30におけるメチル基と移動阻止膜40における水酸基との脱水反応による共有結合によって結合させる。
Next, a chemical bond between the movement prevention film 40 and the heat dissipation member 30 when a silicone material (silicone resin material) is used for the heat dissipation member 30 of FIG. 3 will be described.
As shown in Chemical Formula 1, the silicone material has a hydroxyl group or a methyl group as a functional group, or has an ether bond. Therefore, as shown in FIG. 9A, the methyl group in the heat radiating member 30 and the epoxy group in the movement blocking film 40 are bonded by a covalent bond by a ring-opening reaction. Alternatively, as shown in FIG. 9B, the hydroxyl groups in the heat radiating member 30 and the hydroxyl groups in the movement blocking film 40 are bonded by a covalent bond due to a dehydration reaction. Alternatively, as shown in FIG. 9C, the hydroxyl groups in the heat dissipation member 30 and the methyl groups in the movement blocking film 40 are bonded by a covalent bond by a dehydration reaction. Alternatively, as shown in FIG. 9 (d), they are bonded by a covalent bond by a dehydration reaction between a methyl group in the heat dissipation member 30 and a hydroxyl group in the movement blocking film 40.

このように、放熱部材30の官能基(メチル基、水酸基)と移動阻止膜40の官能基により、縮合反応や開環反応によって、水素結合、分子間力結合、イオン結合、共有結合等により、放熱部材(シリコーン系材料)と膜40とを結合させる。つまり、放熱部材30での移動阻止膜40との関係において、シリコーン系樹脂材料の官能基を化学的な結合に関与させる。   Thus, by the functional group (methyl group, hydroxyl group) of the heat dissipation member 30 and the functional group of the movement blocking film 40, by a condensation reaction or a ring-opening reaction, by a hydrogen bond, an intermolecular force bond, an ionic bond, a covalent bond, etc. The heat radiating member (silicone material) and the film 40 are combined. That is, the functional group of the silicone-based resin material is involved in chemical bonding in relation to the movement blocking film 40 in the heat dissipation member 30.

Figure 2006100803
次に、放熱部材30にエポキシ系材料(エポキシ系樹脂材料)を使用する場合における、移動阻止膜40と放熱部材30の化学結合について説明する。
Figure 2006100803
Next, a chemical bond between the movement prevention film 40 and the heat dissipation member 30 when using an epoxy material (epoxy resin material) for the heat dissipation member 30 will be described.

化2に示すように、エポキシ系材料は、官能基として、水酸基、メチル基、エポキシ基を有している。そこで、図10(a)に示すように、放熱部材30におけるエポキシ基と移動阻止膜40におけるメチル基との開環反応による共有結合によって結合させる。あるいは、図10(b)に示すように、放熱部材30における水酸基と移動阻止膜40における水酸基との脱水反応による共有結合によって結合させる。あるいは、図10(c)に示すように、放熱部材30における水酸基と移動阻止膜40におけるメチル基との脱水反応による共有結合によって結合させる。あるいは、図10(d)に示すように、放熱部材30におけるメチル基と移動阻止膜40における水酸基との脱水反応による共有結合によって結合させる。   As shown in Chemical Formula 2, the epoxy-based material has a hydroxyl group, a methyl group, and an epoxy group as functional groups. Therefore, as shown in FIG. 10A, the epoxy group in the heat radiating member 30 and the methyl group in the movement blocking film 40 are bonded by a covalent bond by a ring-opening reaction. Alternatively, as shown in FIG. 10 (b), the hydroxyl groups in the heat dissipation member 30 and the hydroxyl groups in the movement blocking film 40 are bonded by a covalent bond by a dehydration reaction. Alternatively, as shown in FIG. 10 (c), the hydroxyl group in the heat radiating member 30 and the methyl group in the movement blocking film 40 are bonded by a covalent bond due to a dehydration reaction. Alternatively, as shown in FIG. 10 (d), they are bonded by a covalent bond by a dehydration reaction between a methyl group in the heat dissipation member 30 and a hydroxyl group in the movement blocking film 40.

このように、放熱部材30の官能基(メチル基、水酸基、エポキシ基)と移動阻止膜40の官能基により、縮合反応や開環反応によって、水素結合、分子間力結合、イオン結合、共有結合等により、放熱部材(エポキシ系材料)と膜40とを結合させる。つまり、放熱部材30での移動阻止膜40との関係において、エポキシ系樹脂材料の官能基を化学的な結合に関与させる。   As described above, hydrogen bonds, intermolecular force bonds, ionic bonds, and covalent bonds are formed by the condensation reaction or ring-opening reaction by the functional groups (methyl group, hydroxyl group, epoxy group) of the heat dissipation member 30 and the functional groups of the movement blocking film 40. The heat radiating member (epoxy-based material) and the film 40 are bonded by, for example. That is, the functional group of the epoxy resin material is involved in chemical bonding in relation to the movement blocking film 40 in the heat dissipation member 30.

Figure 2006100803
次に、放熱部材30にシリコーン系材料を使用する場合における、電気的結合により移動阻止膜40と放熱部材30を結合する場合について説明する。
Figure 2006100803
Next, the case where the movement prevention film 40 and the heat radiating member 30 are coupled by electrical coupling in the case where a silicone material is used for the heat radiating member 30 will be described.

前述のごとくシリコーン系材料は、官能基として水酸基やメチル基を有する、あるいは、エーテル結合を有している。そこで、図11(a)に示すように、放熱部材30におけるメチル基と移動阻止膜40におけるエポキシ基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びているエポシキ基により結合させる。あるいは、図11(b)に示すように、放熱部材30における水酸基と移動阻止膜40における水素との間の電荷の偏り、即ち、正の電荷δ+を帯びている水素と負の電荷δ−を帯びている水酸基により結合させる。あるいは、図11(c)に示すように、放熱部材30における水酸基と移動阻止膜40におけるメチル基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びている水酸基により結合させる。あるいは、図11(d)に示すように、放熱部材30におけるメチル基と移動阻止膜40における水酸基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びている水酸基により結合させる。   As described above, the silicone material has a hydroxyl group or a methyl group as a functional group, or has an ether bond. Therefore, as shown in FIG. 11 (a), the bias of the charge between the methyl group in the heat dissipation member 30 and the epoxy group in the movement blocking film 40, that is, the methyl group having a positive charge δ + and the negative charge. It is linked by an epoxy group bearing a δ-. Alternatively, as shown in FIG. 11B, the charge bias between the hydroxyl group in the heat radiating member 30 and the hydrogen in the movement blocking film 40, that is, the hydrogen having a positive charge δ + and the negative charge δ− Bonded by a hydroxyl group. Alternatively, as shown in FIG. 11C, the charge bias between the hydroxyl group in the heat dissipating member 30 and the methyl group in the movement blocking film 40, that is, the methyl group carrying the positive charge δ + and the negative charge δ. It is bonded by a hydroxyl group having a minus sign. Alternatively, as shown in FIG. 11D, the charge bias between the methyl group in the heat dissipation member 30 and the hydroxyl group in the movement blocking film 40, that is, the methyl group having a positive charge δ + and the negative charge δ. It is bonded by a hydroxyl group having a minus sign.

このように、放熱部材30の官能基(メチル基、水酸基)と移動阻止膜40の官能基における電荷の偏り、即ち、正の電荷δ+を帯びているものと負の電荷δ−を帯びているものの電荷の偏りにより結合させる。つまり、放熱部材30での移動阻止膜40との関係において、シリコーン系樹脂材料の官能基を電気的な結合に関与させる。   In this way, the charge bias between the functional group (methyl group, hydroxyl group) of the heat dissipation member 30 and the functional group of the movement blocking film 40, that is, a positive charge δ + and a negative charge δ−. Bonds due to the bias of the charge of things. That is, the functional group of the silicone-based resin material is involved in electrical coupling in relation to the movement blocking film 40 in the heat dissipation member 30.

次に、放熱部材30にエポキシ系材料を使用する場合における、電気的結合により移動阻止膜40と放熱部材30を結合する場合について説明する。
前述のごとくエポキシ系材料は、官能基として、水酸基、メチル基、エポキシ基を有している。そこで、図12(a)に示すように、放熱部材30におけるエポシキ基と移動阻止膜40におけるメチル基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びているエポシキ基により結合させる。あるいは、図12(b)に示すように、放熱部材30における水酸基と移動阻止膜40における水素との間の電荷の偏り、即ち、正の電荷δ+を帯びている水素と負の電荷δ−を帯びている水酸基により結合させる。あるいは、図12(c)に示すように、放熱部材30における水酸基と移動阻止膜40におけるメチル基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びている水酸基により結合させる。あるいは、図12(d)に示すように、放熱部材30におけるメチル基と移動阻止膜40における水酸基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びている水酸基により結合させる。
Next, the case where the movement prevention film 40 and the heat radiating member 30 are coupled by electrical coupling when using an epoxy-based material for the heat radiating member 30 will be described.
As described above, the epoxy-based material has a hydroxyl group, a methyl group, and an epoxy group as functional groups. Therefore, as shown in FIG. 12A, the charge bias between the epoxy group in the heat dissipation member 30 and the methyl group in the movement blocking film 40, that is, the methyl group having a positive charge δ + and the negative charge. It is linked by an epoxy group bearing a δ-. Alternatively, as shown in FIG. 12B, the charge bias between the hydroxyl group in the heat dissipating member 30 and the hydrogen in the movement blocking film 40, that is, the hydrogen having a positive charge δ + and the negative charge δ− Bonded by a hydroxyl group. Alternatively, as shown in FIG. 12C, the charge bias between the hydroxyl group in the heat dissipating member 30 and the methyl group in the movement blocking film 40, that is, a methyl group bearing a positive charge δ + and a negative charge δ. It is bonded by a hydroxyl group having a minus sign. Alternatively, as shown in FIG. 12D, the charge bias between the methyl group in the heat dissipation member 30 and the hydroxyl group in the movement blocking film 40, that is, the methyl group having a positive charge δ + and the negative charge δ. It is bonded by a hydroxyl group having a minus sign.

このように、放熱部材30の官能基(メチル基、水酸基、エポキシ基)と移動阻止膜40の官能基における電荷の偏り、即ち、正の電荷δ+を帯びているものと負の電荷δ−を帯びているものの電荷の偏りにより結合させる。つまり、放熱部材30での移動阻止膜40との関係において、エポキシ系樹脂材料の官能基を電気的な結合に関与させる。   In this way, the charge bias in the functional group (methyl group, hydroxyl group, epoxy group) of the heat dissipation member 30 and the functional group of the movement blocking film 40, that is, the positive charge δ + and the negative charge δ− Bonds due to the bias of the charge of the objects. That is, the functional group of the epoxy resin material is involved in the electrical coupling in relation to the movement blocking film 40 in the heat dissipation member 30.

次に、筐体1に金属材料(例えばアルミ)を使用する場合における、移動阻止膜40と筐体1の化学的あるいは電気的結合について説明する。
図13(a)に示すように、筐体1側の金属表面には通常、水酸基があり、移動阻止膜40におけるメチル基と筐体金属側における水酸基との脱水反応による共有結合によって結合させる。あるいは、図13(b)に示すように、移動阻止膜40における水酸基と筐体金属側における水酸基との脱水反応による共有結合によって結合させる。あるいは、図13(c)に示すように、移動阻止膜40における水素と筐体金属側における水酸基との脱水反応による共有結合によって結合させる。
Next, the chemical or electrical coupling between the movement blocking film 40 and the housing 1 when a metal material (for example, aluminum) is used for the housing 1 will be described.
As shown in FIG. 13A, the metal surface on the housing 1 side usually has a hydroxyl group, and is bonded by a covalent bond by a dehydration reaction between a methyl group in the movement blocking film 40 and a hydroxyl group on the housing metal side. Alternatively, as shown in FIG. 13B, the hydroxyl group in the movement blocking film 40 and the hydroxyl group on the housing metal side are bonded by a covalent bond by a dehydration reaction. Alternatively, as shown in FIG. 13C, the hydrogen is bonded by a covalent bond by a dehydration reaction between hydrogen in the movement blocking film 40 and a hydroxyl group on the housing metal side.

このように、移動阻止膜40における水酸基やメチル基や水素と、筐体側の金属表面に在る水酸基により、化学的に結合させる。つまり、筐体1での移動阻止膜40との関係において、金属材料(例えばアルミ)側の水酸基を化学的な結合に関与させる。   In this way, the hydroxyl group, methyl group, or hydrogen in the movement blocking film 40 is chemically bonded to the hydroxyl group present on the metal surface on the housing side. That is, the hydroxyl group on the metal material (for example, aluminum) side is involved in chemical bonding in relation to the movement blocking film 40 in the housing 1.

あるいは、図14(a)に示すように、移動阻止膜40におけるメチル基と筐体金属側の水酸基との間の電荷の偏り、即ち、正の電荷δ+を帯びているメチル基と負の電荷δ−を帯びている水酸基により結合させる。あるいは、図14(b)に示すように、移動阻止膜40における水素と筐体金属側における水酸基との間の電荷の偏り、即ち、正の電荷δ+を帯びている水素と負の電荷δ−を帯びている水酸基により結合させる。   Alternatively, as shown in FIG. 14A, the charge bias between the methyl group in the movement blocking film 40 and the hydroxyl group on the housing metal side, that is, the methyl group having a positive charge δ + and the negative charge. Bonding is performed by a hydroxyl group bearing δ-. Alternatively, as shown in FIG. 14 (b), a charge bias between hydrogen in the movement blocking film 40 and a hydroxyl group on the housing metal side, that is, hydrogen having a positive charge δ + and negative charge δ−. Bonded by a hydroxyl group bearing

このように、移動阻止膜40におけるメチル基または水素と、筐体側の金属表面に在る水酸基により、電気的に結合させる。つまり、筐体1での移動阻止膜40との関係において、金属材料(例えばアルミ)側の水酸基を電気的な結合に関与させる。   In this manner, the methyl group or hydrogen in the movement blocking film 40 is electrically coupled with the hydroxyl group present on the metal surface on the housing side. That is, the hydroxyl group on the metal material (for example, aluminum) side is involved in electrical coupling in relation to the movement blocking film 40 in the housing 1.

また、筐体全体を樹脂とした場合あるいは金属表面に樹脂コーティングをした場合は、この樹脂材料の表面に出る官能基を用いて移動阻止膜40と化学的な結合、もしくは電気的な結合を行うようにする。つまり、筐体または台座の少なくとも表面での材料として樹脂を用いる場合においては、移動阻止膜40との関係において、樹脂の官能基を化学的な結合、もしくは電気的な結合に関与させる。   In addition, when the entire casing is made of resin or resin coating is applied to the metal surface, a chemical bond or an electrical bond is made with the movement blocking film 40 using a functional group appearing on the surface of the resin material. Like that. In other words, when a resin is used as a material on at least the surface of the housing or the pedestal, the functional group of the resin is involved in chemical bonding or electrical bonding in relation to the movement blocking film 40.

ここで、放熱部材30と移動阻止膜40との特性の違いについて言及する。放熱部材30もメチル基、水酸基などの官能基を備えるが、放熱特性など所望の特性を優先させることにより、例えば筐体1との結合においてはその官能基による結合が十分ではない。そこで本実施形態においては、放熱部材30と例えば筐体1との間の結合のためのバッファ(介在物)として機能する移動阻止膜40を配置している。この移動阻止膜40は、炭化水素長鎖などを基材とし、かつ、官能基の負の電荷δ−あるいは正の電荷δ+の偏りが放熱部材30のそれに比べて大きくなるようにし、電気的結合力を高め、ひいては化学反応性を高めて化学結合力を高めるようにしたものである。化学反応性は、反応のためのポテンシャルエネルギーを超えるためのエネルギーが与えられることにより促進されるものであり、その一要因として、電荷の偏りを高めることが挙げられる。従って、移動阻止膜40は、放熱部材30と筐体である金属或いは樹脂との電気的結合力あるいは化学反応性よりも、放熱部材30、及び、筐体である金属或いは樹脂に対しての電気的結合力が高いもの、あるいは化学反応性が高く化学的結合力が高いもの、といえる。なお、電気的な結合と化学的な結合は同時に発生するものと考えられるが、上記のように、放熱部材30よりも電気的な結合力あるいは化学的な結合力が高いことが移動阻止膜40に重要である。   Here, the difference in characteristics between the heat dissipation member 30 and the movement blocking film 40 will be mentioned. The heat dissipating member 30 also includes functional groups such as a methyl group and a hydroxyl group. However, by giving priority to desired characteristics such as heat dissipating characteristics, for example, the bonding with the housing 1 is not sufficient for bonding with the housing 1. Therefore, in the present embodiment, a movement prevention film 40 that functions as a buffer (inclusion) for coupling between the heat dissipation member 30 and the housing 1 is disposed. The movement blocking film 40 is made of a hydrocarbon long chain as a base material, and the bias of the negative charge δ− or the positive charge δ + of the functional group is larger than that of the heat radiating member 30 so as to be electrically coupled. It is designed to increase the chemical bond and increase the chemical reactivity. Chemical reactivity is promoted by applying energy for exceeding the potential energy for reaction, and one factor is to increase the bias of charge. Therefore, the movement prevention film 40 is more electrically connected to the heat radiating member 30 and the metal or resin that is the housing than the electric coupling force or chemical reactivity between the heat radiating member 30 and the metal or resin that is the housing. It can be said that the chemical bond strength is high or the chemical reactivity is high and the chemical bond strength is high. Although it is considered that the electrical bond and the chemical bond occur at the same time, as described above, the movement blocking film 40 has a higher electrical bond force or chemical bond force than the heat dissipation member 30. Is important to.

さらに他にも、図15に示すように、移動阻止膜40と放熱部材30との界面は硬化していてもよい。つまり、移動阻止膜40での表層部40aと放熱部材30の表層部30aとが硬化した部位となっている。この硬化のためには、移動阻止膜40と放熱部材30とを接触させた後に、しばらく放置する、あるいは、加熱することにより、硬化させる。   Furthermore, as shown in FIG. 15, the interface between the movement prevention film 40 and the heat dissipation member 30 may be cured. That is, the surface layer portion 40a of the movement blocking film 40 and the surface layer portion 30a of the heat dissipation member 30 are cured portions. For this curing, the movement blocking film 40 and the heat dissipation member 30 are brought into contact with each other and then left for a while or heated to be cured.

このとき、放熱部材30を厚さ方向において全て硬化させることは望ましくない。なぜなら、発熱素子12(または回路基板11)と放熱部材30の線膨張差により剥がれが発生するからである。ただし、上記の線膨張差に差異がない場合にはこの限りではない。   At this time, it is not desirable to completely cure the heat dissipation member 30 in the thickness direction. This is because peeling occurs due to a difference in linear expansion between the heating element 12 (or the circuit board 11) and the heat dissipation member 30. However, this is not the case when there is no difference in the linear expansion difference.

車載用電子制御装置であって、かつ、エンジンルームに当該電子制御装置を配置する場合においては、温度環境が厳しいものとなる。その場合には次のようにする。
電子制御装置の使用環境としては−40〜150℃となる。このような仕様においては、筐体材料には、例えば、アルミニウム合金や、鉄、鉄板樹脂コーティング品、ポリアミド樹脂材料、ポリブチレンテレフタレート樹脂材料を用いる。なお、温度がさほど厳しくない搭載箇所であればポリプロピレンなどの安価な材料を用いてもよい。また、放熱部材30における基材としてはシリコーン系樹脂、エポキシ系樹脂を用いる。
When the electronic control device is mounted on a vehicle and the electronic control device is disposed in the engine room, the temperature environment is severe. In that case, do as follows.
The usage environment of the electronic control device is −40 to 150 ° C. In such specifications, for example, an aluminum alloy, iron, an iron plate resin-coated product, a polyamide resin material, or a polybutylene terephthalate resin material is used as the casing material. Note that an inexpensive material such as polypropylene may be used as long as the mounting location is not so severe. Moreover, as a base material in the heat radiating member 30, a silicone resin and an epoxy resin are used.

さらに、これに適合する移動阻止膜40の材料としては、例えば、フェノール、アルコール、カルボン酸、カルボン酸塩、チオカルボン酸、スルホン酸、アミド、ヒドロペルオキシド、ポリメチルアミン、メチル基などを有する材料を用いるとよい。   Further, as the material of the migration prevention film 40 suitable for this, for example, a material having phenol, alcohol, carboxylic acid, carboxylate, thiocarboxylic acid, sulfonic acid, amide, hydroperoxide, polymethylamine, methyl group, etc. Use it.

ここで、車両での搭載温度(−40〜150℃)の厳しい環境に耐え得る移動阻止膜40の構造にするためには、図16に示すような構造の材料を選ぶ。図16において、放熱部材30側との結合用の官能基、および、筐体金属側との結合用の官能基として、メチル基、アミノ基、スルホ基、水酸基、カルボシキル基を有する。また、この両方の官能基の間において、ベンゼン環と炭化水素鎖を有している。ここで、低温方向には、炭化水素鎖を長くするなどして低温で硬化しないようにし、高温方向には、ベンゼン環を炭化水素鎖(分子長鎖)の間に挟み込むなどして高温でも分解しないようにするとよい。このように、移動阻止膜40として、ベンゼン環または炭化水素長鎖を有する材料を用いると、ベンゼン環により高温材料特性を向上することができるとともに、炭化水素長鎖により低温材料特性を向上することができる。これにより、車載用の電子制御装置において、搭載環境に適合した移動を阻止する膜とすることが可能となる。   Here, in order to make the structure of the movement blocking film 40 that can withstand the severe environment of the mounting temperature (−40 to 150 ° C.) in the vehicle, a material having a structure as shown in FIG. 16 is selected. In FIG. 16, the functional group for binding to the heat radiating member 30 side and the functional group for binding to the housing metal side include a methyl group, an amino group, a sulfo group, a hydroxyl group, and a carboxyl group. Moreover, it has a benzene ring and a hydrocarbon chain between these both functional groups. Here, in the low temperature direction, the hydrocarbon chain is lengthened so as not to be cured at low temperature, and in the high temperature direction, the benzene ring is sandwiched between hydrocarbon chains (molecular long chains) to decompose at high temperature. Do not do it. Thus, when a material having a benzene ring or a hydrocarbon long chain is used as the movement blocking film 40, the high temperature material characteristics can be improved by the benzene ring, and the low temperature material characteristics can be improved by the hydrocarbon long chain. Can do. Thereby, in the vehicle-mounted electronic control device, it is possible to form a film that prevents movement suitable for the mounting environment.

このベンゼン環または炭化水素長鎖を有する材料(移動阻止膜40の構造)として、例えば、ポリメチルポリベンゼンアルコール、ポリメチルポリベンゼンアミン、ポリメチルポリベンゼンエポキシ、ポリメチルポリベンゼンスルホン酸、ポリエチルポリベンゼンアルコールなどを挙げることができる。ここで列挙した材料は、要は、(i)複数のメチル基をもつアルコールやアミン等、あるいは、(ii)複数のベンゼン環をもつアルコールやアミン等、あるいは、(iii)複数の水酸基をもつアルコールやアミン等、あるいは、(iv)複数のメチル基、複数のベンゼン環、複数の水酸基を適宜組合わせたアルコールやアミン等のことを言う。   Examples of the material having the benzene ring or hydrocarbon long chain (structure of the movement blocking film 40) include, for example, polymethyl polybenzene alcohol, polymethyl polybenzene amine, polymethyl polybenzene epoxy, polymethyl polybenzene sulfonic acid, polyethyl. Examples thereof include polybenzene alcohol. The materials listed here are basically (i) alcohols or amines having a plurality of methyl groups, or (ii) alcohols or amines having a plurality of benzene rings, or (iii) having a plurality of hydroxyl groups. An alcohol, an amine, or the like, or (iv) an alcohol, an amine, or the like appropriately combined with a plurality of methyl groups, a plurality of benzene rings, and a plurality of hydroxyl groups.

より具体的に材料としては、モノマーをつくる材料としてはプロリン、フェニルアラニン、アンチパイン、キモスタチン、ベスタチン、キヌレニン、チロシン、メチルキノリール、ヌルファメチゾール、チラミンなどがある。   More specifically, as a material for forming a monomer, there are proline, phenylalanine, antipain, chymostatin, bestatin, kynurenine, tyrosine, methylquinolyl, nullfamethizol, tyramine and the like.

以上のごとく、本実施形態は下記の特徴を有する。
図3,7に示すように、放熱部材30として、流動性を有する高分子材料を用いるとともに、放熱部材30と筐体内面または台座表面との間に、放熱部材30および筐体1または台座50と化学的または電気的に結合して放熱部材30の移動を阻止する膜40を配した。よって、放熱部材30として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材30もしくは筐体1に衝撃、振動の負荷、温度サイクル、重力などの外力が加わった場合に、放熱部材30および筐体1または台座50と化学的または電気的に結合して放熱部材30の移動を阻止する膜40により、放熱部材30の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材30を介した放熱経路を確保して放熱性の低下を抑制することができる。従って、放熱部材30が流れて移動してしまうのを物理的に防止するダム的構成をわざわざ筐体に設ける必要が無く、放熱部材30を配置する箇所の筐体表面(筐体内面)に不必要に凹凸を設けない、実質的に平らな状態にすることができる。
As described above, the present embodiment has the following features.
As shown in FIGS. 3 and 7, a polymer material having fluidity is used as the heat radiating member 30, and the heat radiating member 30 and the housing 1 or the pedestal 50 are provided between the heat radiating member 30 and the housing inner surface or the pedestal surface. And a film 40 that is chemically or electrically coupled to block the movement of the heat dissipation member 30. Therefore, by using a fluid polymer material as the heat radiating member 30, no cracks are generated even when stress is applied. In this case, the heat radiating member 30 or the casing 1 is subjected to shock, vibration load, temperature, and the like. When an external force such as a cycle or gravity is applied, the movement of the heat radiating member 30 is caused by the film 40 that is chemically or electrically coupled to the heat radiating member 30 and the housing 1 or the pedestal 50 to prevent the movement of the heat radiating member 30. Be blocked. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path via the heat dissipation member 30 can be secured to suppress a decrease in heat dissipation. Therefore, there is no need to provide the housing with a dam-like configuration that physically prevents the heat dissipation member 30 from flowing and moving, and the housing surface (inner surface of the housing) where the heat dissipation member 30 is disposed is not required. It can be in a substantially flat state without needing unevenness.

また、図5に示すように、筐体内面(または台座表面)における、発熱素子12を配置し得る箇所に、放熱部材30の移動を阻止する膜40を配することにより、筐体1(または台座)の多様な箇所に移動阻止膜40が配置してあるため、多様な品種の回路基板(プリント基板)11について、発熱素子12の配置が異なる回路基板11に対して共通の筐体1を使用することができる。これにより、大幅なコストダウンを図りつつ、高効率な放熱性を有した構造をもつ筐体1とすることができる。   In addition, as shown in FIG. 5, the housing 1 (or the surface of the housing 1 (or the pedestal surface) can be provided by disposing a film 40 that prevents movement of the heat dissipation member 30 at a location where the heating element 12 can be disposed. Since the movement prevention film 40 is disposed at various locations on the pedestal), the common housing 1 is provided for the circuit boards 11 having different arrangements of the heating elements 12 for various types of circuit boards (printed boards) 11. Can be used. Thereby, it can be set as the housing | casing 1 which has a structure with the highly efficient heat dissipation, aiming at a significant cost reduction.

また、図6に示すように、筐体内面(または台座表面)における、放熱が不要な箇所には、放熱部材30の移動を阻止する膜40に配しないようにすることにより、コストを低減することができる。   Further, as shown in FIG. 6, the cost is reduced by avoiding disposing the film 40 that prevents the movement of the heat radiating member 30 at a location where heat radiation is not required on the inner surface (or pedestal surface) of the housing. be able to.

なお、本実施形態の電子制御装置の形成手順(組立順序)について簡単に説明するならば次のとおりである。
まず、図1〜図3において、筐体1の内面(下ケース2の上面)に移動阻止膜40を塗布する。移動阻止膜40は、膜厚管理ができる方法を用いるのが好ましい。その方法として、刷毛塗り方式、ディップ方式、スプレー塗布方式、スピン塗布方式などを使い、下側筐体側に成膜する。この膜厚管理は発熱素子から生じた熱の必要放熱特性により決めればよく、必要放熱特性(量)が高いほど、前述の列挙した順序で成膜方法を変更して薄く成膜すればよい。その上に、放熱部材30を塗布する。この塗布は、回路基板11の下ケース2への組み付け公差による空隙の公差により放熱部材の膜厚が決まるため、移動阻止膜40のように膜厚管理を必要としない通常の塗布の方法で行なうことができる。さらに、コネクタ20と一体化された回路基板11を、発熱素子12が放熱部材30上にくるように搭載、固定し、上ケース3を被せ、固定して電子制御装置(筐体1)を形成する。
(第2の実施の形態)
次に、第2の実施の形態を、第1の実施の形態との相違点を中心に説明する。
The procedure (assembly order) for forming the electronic control device of this embodiment will be briefly described as follows.
First, in FIGS. 1 to 3, the movement preventing film 40 is applied to the inner surface of the housing 1 (the upper surface of the lower case 2). For the movement blocking film 40, it is preferable to use a method capable of controlling the film thickness. As the method, a brush coating method, a dip method, a spray coating method, a spin coating method, or the like is used to form a film on the lower housing side. This film thickness management may be determined by the required heat dissipation characteristic of the heat generated from the heating element, and the higher the required heat dissipation characteristic (amount), the thinner the film formation method may be changed in the above-mentioned order. A heat radiating member 30 is applied thereon. This coating is performed by a normal coating method that does not require film thickness management, such as the movement blocking film 40, because the film thickness of the heat dissipation member is determined by the gap tolerance due to the mounting tolerance on the lower case 2 of the circuit board 11. be able to. Further, the circuit board 11 integrated with the connector 20 is mounted and fixed so that the heat generating element 12 is placed on the heat radiating member 30, and the upper case 3 is put on and fixed to form the electronic control device (housing 1). To do.
(Second Embodiment)
Next, the second embodiment will be described focusing on the differences from the first embodiment.

図17には図3に代わる本実施形態における放熱構造を示す。
第1の実施の形態においては、図3,7に示すように、放熱部材30と筐体内面または台座表面との間に、放熱部材30および筐体1または台座50と化学的または電気的に結合して放熱部材30の移動を阻止する膜40を配した。これに対し、図17に示す本実施形態においては、放熱部材30と発熱素子12との間に、放熱部材30および発熱素子12と化学的または電気的に結合して放熱部材30の移動を阻止する膜60を配している。この膜60は第1の実施形態で説明した移動阻止膜40と同じものである。図17では発熱素子12におけるモールド樹脂12bおよび放熱プレート12d(金属)と、移動阻止膜60とが接触している。
FIG. 17 shows a heat dissipation structure in the present embodiment that replaces FIG.
In the first embodiment, as shown in FIGS. 3 and 7, the heat radiating member 30 and the housing 1 or the pedestal 50 are chemically or electrically connected between the heat radiating member 30 and the housing inner surface or the pedestal surface. A film 40 that is bonded to prevent the heat dissipation member 30 from moving is disposed. On the other hand, in the present embodiment shown in FIG. 17, the heat dissipation member 30 is prevented from moving by being chemically or electrically coupled to the heat dissipation member 30 and the heat generation element 12 between the heat dissipation member 30 and the heat generation element 12. A film 60 is arranged. This film 60 is the same as the movement blocking film 40 described in the first embodiment. In FIG. 17, the mold resin 12 b and the heat radiating plate 12 d (metal) in the heating element 12 are in contact with the movement blocking film 60.

本実施形態においては、放熱部材30として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材30もしくは筐体1に衝撃や振動等の外力が加わった場合に、放熱部材30および発熱素子21と化学的または電気的に結合して放熱部材30の移動を阻止する膜60により、放熱部材30の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材30を介した放熱経路を確保して放熱性の低下を抑制することができる。   In the present embodiment, by using a polymer material having fluidity as the heat radiating member 30, cracks do not occur even when stress is applied. Further, in this case, the heat radiating member 30 or the housing 1 is subjected to shock or vibration. When an external force such as the above is applied, the movement of the heat dissipation member 30 is prevented by the film 60 that is chemically or electrically coupled to the heat dissipation member 30 and the heat generating element 21 to prevent the heat dissipation member 30 from moving. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path via the heat dissipation member 30 can be secured to suppress a decrease in heat dissipation.

図17では放熱部材30と発熱素子12との間に移動阻止膜60を配置したが、図18に示すように、放熱部材30と回路基板11との間に移動阻止膜60を配置してもよい。つまり、図4に代わる図18に示すように、放熱部材30と回路基板11との間に、放熱部材30および回路基板11と化学的または電気的に結合して放熱部材30の移動を阻止する膜60を配する。この場合の作用効果は図17の場合と同じである。なお、図18では回路基板11における導体パターン11b(金属)と移動阻止膜60が接触しているが、導体パターン11bを設けずに回路基板11の絶縁層(樹脂)と移動阻止膜60とを接触させてもよい。   In FIG. 17, the movement prevention film 60 is disposed between the heat dissipation member 30 and the heat generating element 12. However, as illustrated in FIG. 18, the movement prevention film 60 may be disposed between the heat dissipation member 30 and the circuit board 11. Good. That is, as shown in FIG. 18 instead of FIG. 4, the movement of the heat radiating member 30 is prevented by chemically or electrically coupling the heat radiating member 30 and the circuit board 11 between the heat radiating member 30 and the circuit board 11. A film 60 is disposed. The effect in this case is the same as that of FIG. In FIG. 18, the conductor pattern 11b (metal) on the circuit board 11 and the movement prevention film 60 are in contact with each other. However, the insulating layer (resin) of the circuit board 11 and the movement prevention film 60 are not provided with the conductor pattern 11b. You may make it contact.

この場合(図17,18)においても、放熱部材30よりも、移動阻止膜60のほうが発熱素子12(または回路基板11)との電気的あるいは化学的結合力が高く、かつ放熱部材30との結合力も高いので第1の実施形態と同様に放熱部材30の移動が阻止される。
(第3の実施の形態)
次に、第3の実施の形態を、第1,2の実施の形態との相違点を中心に説明する。
Also in this case (FIGS. 17 and 18), the movement blocking film 60 has a higher electrical or chemical bonding force with the heat generating element 12 (or the circuit board 11) than the heat radiating member 30, and Since the coupling force is also high, the movement of the heat radiating member 30 is prevented as in the first embodiment.
(Third embodiment)
Next, the third embodiment will be described focusing on the differences from the first and second embodiments.

図19に本実施形態における放熱構造を示す。
本実施形態においては、図17の構成(移動阻止膜60を配置した構成)と図3の構成(移動阻止膜40を配置した構成)を組み合わせている。つまり、図19において、放熱部材30と筐体内面(または台座表面)との間に移動阻止膜40を配するとともに、放熱部材30と発熱素子12との間に移動阻止膜60を配している。このようにすることにより、移動阻止膜40を配置したことによる作用効果(第1の実施の形態で説明した作用効果)と、移動阻止膜60を配置したことによる作用効果(第2の実施の形態で説明した作用効果)が得られ、その結果、放熱部材30の移動をより確実に阻止することができる。
FIG. 19 shows a heat dissipation structure in the present embodiment.
In the present embodiment, the configuration in FIG. 17 (configuration in which the movement blocking film 60 is disposed) and the configuration in FIG. 3 (configuration in which the movement blocking film 40 is disposed) are combined. That is, in FIG. 19, the movement prevention film 40 is disposed between the heat dissipation member 30 and the inner surface (or pedestal surface) of the housing, and the movement prevention film 60 is disposed between the heat dissipation member 30 and the heating element 12. Yes. By doing in this way, the operation effect by having arrange | positioned the movement prevention film | membrane 40 (operation effect demonstrated in 1st Embodiment), and the operation effect by having arrange | positioned the movement prevention film 60 (2nd implementation) As a result, the movement of the heat dissipation member 30 can be more reliably prevented.

詳しくは、放熱部材30として流動性を有する高分子材料を用いることにより、応力が加わってもクラックが生じることがなく、さらに、この場合において放熱部材30もしくは筐体1に衝撃や振動等の外力が加わった場合に、移動阻止膜40により放熱部材30の移動が阻止されるとともに移動阻止膜60により放熱部材30の移動が阻止される。これにより、衝撃や振動等の外力が加わった場合においても放熱部材30を介した放熱経路を確保して放熱性の低下を抑制することができる。   Specifically, by using a fluid polymer material as the heat radiating member 30, cracks do not occur even when stress is applied. In this case, an external force such as an impact or vibration is applied to the heat radiating member 30 or the housing 1. Is added, the movement blocking film 40 blocks the movement of the heat dissipation member 30 and the movement blocking film 60 blocks the movement of the heat dissipation member 30. As a result, even when an external force such as an impact or vibration is applied, a heat dissipation path via the heat dissipation member 30 can be secured to suppress a decrease in heat dissipation.

また、図18の構成(移動阻止膜60を配置した構成)と図4の構成(移動阻止膜40を配置した構成)を組み合わせて、図20に示すようにしてもよい。図20において、放熱部材30と筐体内面(または台座表面)との間に移動阻止膜40を配するとともに、放熱部材30と回路基板11との間に移動阻止膜60を配している。このようにすることによっても、移動阻止膜40を配置したことによる作用効果(第1の実施の形態で説明した作用効果)と、移動阻止膜60を配置したことによる作用効果(第2の実施の形態で説明した作用効果)が得られ、その結果、放熱部材30の移動をより確実に阻止することができる。   18 may be combined with the configuration of FIG. 18 (configuration in which the movement blocking film 60 is disposed) and the configuration in FIG. 4 (configuration in which the movement blocking film 40 is disposed). In FIG. 20, a movement blocking film 40 is disposed between the heat radiation member 30 and the inner surface (or pedestal surface) of the housing, and a movement blocking film 60 is disposed between the heat radiation member 30 and the circuit board 11. Also by doing in this way, the operational effect (the operational effect described in the first embodiment) by arranging the movement blocking film 40 and the operational effect (the second implementation) by arranging the movement blocking film 60 are provided. As a result, the movement of the heat radiating member 30 can be more reliably prevented.

第1の実施形態における電子制御装置の分解図。The exploded view of the electronic control unit in a 1st embodiment. 電子制御装置の斜視図。The perspective view of an electronic controller. 回路基板に搭載した発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element mounted in the circuit board. 回路基板に搭載した発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element mounted in the circuit board. 下ケースの平面図。The top view of a lower case. 下ケースの平面図。The top view of a lower case. 回路基板に搭載した発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element mounted in the circuit board. 回路基板に搭載した発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element mounted in the circuit board. (a)〜(d)は放熱部材・移動阻止膜間の化学的結合を説明するための説明図。(A)-(d) is explanatory drawing for demonstrating the chemical bond between a thermal radiation member and a movement prevention film. (a)〜(d)は放熱部材・移動阻止膜間の化学的結合を説明するための説明図。(A)-(d) is explanatory drawing for demonstrating the chemical bond between a thermal radiation member and a movement prevention film. (a)〜(d)は放熱部材・移動阻止膜間の電気的結合を説明するための説明図。(A)-(d) is explanatory drawing for demonstrating the electrical coupling between a heat radiating member and a movement prevention film. (a)〜(d)は放熱部材・移動阻止膜間の電気的結合を説明するための説明図。(A)-(d) is explanatory drawing for demonstrating the electrical coupling between a heat radiating member and a movement prevention film. (a)〜(c)は移動阻止膜・筐体間の化学的結合を説明するための説明図。(A)-(c) is explanatory drawing for demonstrating the chemical bond between a movement prevention film | membrane and a housing | casing. (a),(b)は移動阻止膜・筐体間の電気的結合を説明するための説明図。(A), (b) is explanatory drawing for demonstrating the electrical coupling between a movement prevention film | membrane and a housing | casing. 回路基板に搭載した発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element mounted in the circuit board. 移動阻止膜の構造説明のための図。The figure for structure explanation of a movement prevention film. 第2の実施の形態における発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element in 2nd Embodiment. 発熱素子の放熱構造図。The heat dissipation structure figure of a heat generating element. 第3の実施の形態における発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element in 3rd Embodiment. 発熱素子の放熱構造図。The heat dissipation structure figure of a heat generating element. 背景技術における電子制御装置の分解図。The exploded view of the electronic controller in background art. 背景技術における発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element in background art. 背景技術における発熱素子の放熱構造図。The heat dissipation structure figure of the heat generating element in background art.

符号の説明Explanation of symbols

1…筐体、10…電子部品、11…回路基板、12…発熱素子、30…放熱部材、40…移動阻止膜、50…台座、60…移動阻止膜。   DESCRIPTION OF SYMBOLS 1 ... Housing | casing 10 ... Electronic component, 11 ... Circuit board, 12 ... Heat generating element, 30 ... Heat-radiating member, 40 ... Movement prevention film, 50 ... Base, 60 ... Movement prevention film.

Claims (12)

筐体(1)内において、発熱素子(12)を含めた電子部品(10)を搭載した回路基板(11)が収容されるとともに、発熱素子(12)または回路基板(11)と、筐体(1)の内面または筐体(1)に熱的に結合した台座(50)の表面との間に、熱伝導性を有する放熱部材(30)を介在させて、発熱素子(12)と筐体(1)とを熱的に結合した電子制御装置において、
前記放熱部材(30)として、流動性を有する高分子材料を用いるとともに、前記放熱部材(30)と筐体内面または台座表面との間に、前記放熱部材(30)および前記筐体(1)または台座(50)と化学的または電気的に結合して前記放熱部材(30)の移動を阻止する膜(40)を配したことを特徴とする電子制御装置。
In the housing (1), the circuit board (11) on which the electronic component (10) including the heating element (12) is mounted is accommodated, and the heating element (12) or the circuit board (11) and the housing A heat-radiating member (30) having thermal conductivity is interposed between the inner surface of (1) or the surface of the base (50) thermally coupled to the housing (1), and the heating element (12) and the housing. In an electronic control device thermally coupled to the body (1),
As the heat radiating member (30), a polymer material having fluidity is used, and the heat radiating member (30) and the housing (1) are disposed between the heat radiating member (30) and the housing inner surface or the pedestal surface. Alternatively, an electronic control device comprising a film (40) that is chemically or electrically coupled to the pedestal (50) and prevents movement of the heat radiating member (30).
筐体(1)内において、発熱素子(12)を含めた電子部品(10)を搭載した回路基板(11)が収容されるとともに、発熱素子(12)または回路基板(11)と、筐体(1)の内面または筐体(1)に熱的に結合した台座(50)の表面との間に、熱伝導性を有する放熱部材(30)を介在させて、発熱素子(12)と筐体(1)とを熱的に結合した電子制御装置において、
前記放熱部材(30)として、流動性を有する高分子材料を用いるとともに、前記放熱部材(30)と前記発熱素子(12)または前記回路基板(11)との間に、前記放熱部材(30)および前記発熱素子(12)または前記回路基板(11)と化学的または電気的に結合して前記放熱部材(30)の移動を阻止する膜(60)を配したことを特徴とする電子制御装置。
In the housing (1), the circuit board (11) on which the electronic component (10) including the heating element (12) is mounted is accommodated, and the heating element (12) or the circuit board (11) and the housing A heat-radiating member (30) having thermal conductivity is interposed between the inner surface of (1) or the surface of the base (50) thermally coupled to the housing (1), and the heating element (12) and the housing. In an electronic control device thermally coupled to the body (1),
As the heat radiating member (30), a fluid polymer material is used, and the heat radiating member (30) is interposed between the heat radiating member (30) and the heating element (12) or the circuit board (11). And an electronic control device comprising a film (60) that is chemically or electrically coupled to the heating element (12) or the circuit board (11) to prevent the heat radiating member (30) from moving. .
筐体(1)内において、発熱素子(12)を含めた電子部品(10)を搭載した回路基板(11)が収容されるとともに、発熱素子(12)または回路基板(11)と、筐体(1)の内面または筐体(1)に熱的に結合した台座(50)の表面との間に、熱伝導性を有する放熱部材(30)を介在させて、発熱素子(12)と筐体(1)とを熱的に結合した電子制御装置において、
前記放熱部材(30)として、流動性を有する高分子材料を用いるとともに、
前記放熱部材(30)と筐体内面または台座表面との間に、前記放熱部材(30)および前記筐体(1)または台座(50)と化学的または電気的に結合して前記放熱部材(30)の移動を阻止する膜(40)を配し、さらに、
前記放熱部材(30)と前記発熱素子(12)または前記回路基板(11)との間に、前記放熱部材(30)および前記発熱素子(12)または前記回路基板(11)と化学的または電気的に結合して前記放熱部材(30)の移動を阻止する膜(60)を配したことを特徴とする電子制御装置。
In the housing (1), the circuit board (11) on which the electronic component (10) including the heating element (12) is mounted is accommodated, and the heating element (12) or the circuit board (11) and the housing A heat-radiating member (30) having thermal conductivity is interposed between the inner surface of (1) or the surface of the base (50) thermally coupled to the housing (1), and the heating element (12) and the housing. In an electronic control device thermally coupled to the body (1),
As the heat dissipation member (30), a polymer material having fluidity is used,
The heat radiating member (30) and the housing inner surface or pedestal surface are chemically or electrically coupled to the heat radiating member (30) and the housing (1) or the pedestal (50) to form the heat radiating member ( 30) disposing a membrane (40) that inhibits movement;
Between the heat radiating member (30) and the heat generating element (12) or the circuit board (11), the heat radiating member (30) and the heat generating element (12) or the circuit board (11) are chemically or electrically connected. An electronic control device characterized in that a film (60) is provided which is connected to prevent heat radiating member (30) from moving.
筐体内面または台座表面における、発熱素子(12)を配置し得る箇所全体に、前記放熱部材(30)の移動を阻止する膜(40)を配したことを特徴とする請求項1または3に記載の電子制御装置。 The film (40) for preventing the movement of the heat radiating member (30) is disposed on the entire surface of the housing inner surface or pedestal surface where the heat generating element (12) can be disposed. The electronic control device described. 筐体内面または台座表面における、放熱が不要な箇所には、放熱部材(30)の移動を阻止する膜(40)に配しないことを特徴とする請求項1または3に記載の電子制御装置。 4. The electronic control device according to claim 1, wherein a portion of the inner surface of the housing or the surface of the base that does not require heat dissipation is not disposed on the film that prevents movement of the heat dissipation member. 前記放熱部材(30)として、シリコーン系樹脂材料を用いたことを特徴とする請求項1〜5のいずれか1項に記載の電子制御装置。 The electronic control device according to claim 1, wherein a silicone resin material is used as the heat radiating member. 前記放熱部材(30)として、エポキシ系樹脂材料を用いたことを特徴とする請求項1〜5のいずれか1項に記載の電子制御装置。 The electronic control apparatus according to any one of claims 1 to 5, wherein an epoxy resin material is used as the heat dissipation member (30). 前記筐体(1)または台座(50)の材料として、金属材料を用いたことを特徴とする請求項1,3〜7のいずれか1項に記載の電子制御装置。 The electronic control device according to claim 1, wherein a metal material is used as a material of the casing (1) or the base (50). 前記金属材料として、アルミを用いたことを特徴とする請求項8に記載の電子制御装置。 The electronic control device according to claim 8, wherein aluminum is used as the metal material. 前記筐体(1)または台座(50)の少なくともその表面での材料として、樹脂を用いたことを特徴とする請求項1,3〜7のいずれか1項に記載の電子制御装置。 The electronic control device according to claim 1, wherein a resin is used as a material on at least a surface of the casing (1) or the pedestal (50). 前記放熱部材(30)の移動を阻止する膜(40,60)として、ベンゼン環または炭化水素長鎖を有する材料を用いたことを特徴とする請求項1〜10のいずれか1項に記載の電子制御装置。 11. The material according to claim 1, wherein a material having a benzene ring or a long hydrocarbon chain is used as the film (40, 60) for preventing movement of the heat radiating member (30). Electronic control device. 前記ベンゼン環または炭化水素長鎖を有する材料として、ポリメチルポリベンゼンアルコール、ポリメチルポリベンゼンアミン、ポリメチルポリベンゼンエポキシ、ポリメチルポリベンゼンスルホン酸、ポリエチルポリベンゼンアルコールのいずれかを用いたことを特徴とする請求項11に記載の電子制御装置。 As the material having the benzene ring or hydrocarbon long chain, any of polymethyl polybenzene alcohol, polymethyl polybenzene amine, polymethyl polybenzene epoxy, polymethyl polybenzene sulfonic acid, and polyethyl polybenzene alcohol is used. The electronic control device according to claim 11.
JP2005243211A 2004-08-30 2005-08-24 Electronic control unit Expired - Fee Related JP4353158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243211A JP4353158B2 (en) 2004-08-30 2005-08-24 Electronic control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004250912 2004-08-30
JP2005243211A JP4353158B2 (en) 2004-08-30 2005-08-24 Electronic control unit

Publications (2)

Publication Number Publication Date
JP2006100803A true JP2006100803A (en) 2006-04-13
JP4353158B2 JP4353158B2 (en) 2009-10-28

Family

ID=36240265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243211A Expired - Fee Related JP4353158B2 (en) 2004-08-30 2005-08-24 Electronic control unit

Country Status (1)

Country Link
JP (1) JP4353158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121999A1 (en) * 2012-02-14 2013-08-22 東芝キヤリア株式会社 Electrical component cooling device and heat source machine of refrigeration cycle device provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121999A1 (en) * 2012-02-14 2013-08-22 東芝キヤリア株式会社 Electrical component cooling device and heat source machine of refrigeration cycle device provided with same

Also Published As

Publication number Publication date
JP4353158B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4473141B2 (en) Electronic control unit
JP4408444B2 (en) Electronic control device using LC module structure
US7586189B2 (en) Heat dissipation structure accommodated in electronic control device
US7440282B2 (en) Heat sink electronic package having compliant pedestal
US20090103267A1 (en) Electronic assembly and method for making the electronic assembly
US9111954B2 (en) Power conversion module
JP2007533518A (en) Electronic device unit and method for manufacturing the electronic device unit
JP2007184428A (en) Electronic device
US8995142B2 (en) Power module and method for manufacturing the same
KR20160045336A (en) Emi shielding structure and thermal pad, and electronic circuit board assembly including the same
JP2008118067A (en) Power module and motor-integrated controlling device
JP2012524987A (en) Encapsulated circuit device for a substrate with an absorption layer and method for manufacturing the circuit device
JP5829110B2 (en) Electronic module
US10109557B2 (en) Electronic device having sealed heat-generation element
JP2010129877A (en) Electronic component module
US6841857B2 (en) Electronic component having a semiconductor chip, system carrier, and methods for producing the electronic component and the semiconductor chip
JP5939895B2 (en) In-vehicle electronic control unit
JP5257229B2 (en) Semiconductor device and heat sink
JP4353158B2 (en) Electronic control unit
CN107851620B (en) Power semiconductor module
JP2006190725A (en) Resin-sealing engine controller and its manufacturing method
JP2010003718A (en) Heat-dissipating substrate and its manufacturing method, and module using heat-dissipating substrate
JP4333505B2 (en) Semiconductor device
JP2016025183A (en) Circuit module and motor
JP2004096034A (en) Method of manufacturing module structure, circuit board and method of fixing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees