JP2006100715A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2006100715A
JP2006100715A JP2004287519A JP2004287519A JP2006100715A JP 2006100715 A JP2006100715 A JP 2006100715A JP 2004287519 A JP2004287519 A JP 2004287519A JP 2004287519 A JP2004287519 A JP 2004287519A JP 2006100715 A JP2006100715 A JP 2006100715A
Authority
JP
Japan
Prior art keywords
film
gas
insulating film
plasma
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004287519A
Other languages
Japanese (ja)
Inventor
Shinji Hirano
伸治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2004287519A priority Critical patent/JP2006100715A/en
Publication of JP2006100715A publication Critical patent/JP2006100715A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for semiconductor devices whereby there is so improved the adhesiveness of the interface between a silicon nitride film of a passivation film formed by a plasma CVD method, and a foundational insulating film of a silicon oxide film formed by a plasma CVD method using especially a TEOS gas as its raw material as to be able to prevent the interface from peeling in post-processes. <P>SOLUTION: The manufacturing method for semiconductor devices has a process for depositing by a CVD method a foundational insulating film on the whole of the surface of a semiconductor substrate having thereon a formed wiring, a process for irradiating the plasma of a nitrogen gas or an ammonia gas on the surface of the foundational insulating film when depositing by a plasma CVD method a silicon nitride film on the foundational insulating film, and a process for depositing thereafter by the plasma CVD method the silicon nitride film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置の製造方法に関し、特に、最終保護膜(以下、「パッシベーション膜」とも言う。)の形成方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a final protective film (hereinafter also referred to as “passivation film”).

従来、半導体装置においては、モノシランガス(以下、「SiHガス」と言う。)、アンモニアガス(以下、「NHガス」と言う。)等を原料ガスとしたプラズマCVD(Chemical Vapor Deposition)法によって堆積されたシリコン窒化膜(以下、プラズマCVD法によって堆積されたシリコン窒化膜を「P−SiN膜」とも言う。)を、半導体装置の表面を保護する最終保護膜(パッシベーション膜)として使用することは一般的である。 Conventionally, in semiconductor devices, a plasma CVD (Chemical Vapor Deposition) method using a monosilane gas (hereinafter referred to as “SiH 4 gas”), ammonia gas (hereinafter referred to as “NH 3 gas”), or the like as a source gas is used. A deposited silicon nitride film (hereinafter, a silicon nitride film deposited by a plasma CVD method is also referred to as a “P-SiN film”) is used as a final protective film (passivation film) for protecting the surface of the semiconductor device. Is common.

このパッシベーション膜として使用されるP−SiN膜は、半導体装置の多層配線構造中で、最上層に形成された配線上にCVD法によって堆積されたシリコン酸化膜(以下、「SiO膜」と言う。)上に、重ねて堆積されるのが一般的である。
P−SiN膜は、膜組成が緻密で、かつ、下地絶縁膜となるSiO膜との密着性に優れ、パッシベーション膜として優れた特性を持つことが知られている。
The P-SiN film used as the passivation film is a silicon oxide film (hereinafter referred to as “SiO 2 film”) deposited by CVD on the wiring formed in the uppermost layer in the multilayer wiring structure of the semiconductor device. .) Is generally deposited on top of each other.
It is known that the P-SiN film has a dense film composition, excellent adhesion to the SiO 2 film serving as a base insulating film, and excellent characteristics as a passivation film.

ところで、CVD法で絶縁膜を堆積する場合には、下記特許文献1〜3のように、膜種や成膜方法、もしくは下地膜の表面状態によっては、良好な成膜特性を得るために適切な前処理を行うことが必要な場合もある。   By the way, when depositing an insulating film by a CVD method, as described in Patent Documents 1 to 3 below, depending on the film type, film forming method, or surface state of the base film, it is appropriate to obtain good film forming characteristics. It may be necessary to perform some pre-processing.

特許文献1には、TEOS(テトラエトキシシラン:(CO)Si)プラズマCVD法により半導体基板表面全体に形成された第1の絶縁膜上に、TEOS−O(オゾン)系常圧CVD法によって第2の絶縁膜を形成する際に、第2の絶縁膜の下地依存性を解消して表面モフォロジを良くするとともに、微細な隙間への埋め込み性を改善するために前処理として、周波数の異なる2周波のRF(Radio Frequency)電力を印加して窒素ガス(以下、「Nガス」と言う。)のプラズマ処理を行う方法が開示されている。 In Patent Document 1, a TEOS-O 3 (ozone) system is formed on a first insulating film formed over the entire surface of a semiconductor substrate by a TEOS (tetraethoxysilane: (C 2 H 5 O) 4 Si) plasma CVD method. When forming the second insulating film by the atmospheric pressure CVD method, pretreatment is performed in order to improve the surface morphology by eliminating the base dependency of the second insulating film and to improve the embedding in a minute gap. A method of performing plasma treatment with nitrogen gas (hereinafter referred to as “N 2 gas”) by applying RF (Radio Frequency) power of two frequencies having different frequencies is disclosed.

また、特許文献2には、第1のプラズマCVD膜上に形成したSOG(Spin On Glass)膜をエッチバックした後、露出した第1のプラズマCVD膜表面上に第2のプラズマCVD膜を堆積する際に、第1のプラズマCVD膜表面上に、反応性イオンエッチングによるエッチバックによって形成された炭素やフッ素系の堆積物を除去するために、前処理として、Nガス、NHガス等を用いたプラズマ照射を行う方法が開示されている。 In Patent Document 2, an SOG (Spin On Glass) film formed on the first plasma CVD film is etched back, and then a second plasma CVD film is deposited on the exposed first plasma CVD film surface. In order to remove carbon or fluorine-based deposits formed by reactive ion etching on the surface of the first plasma CVD film, N 2 gas, NH 3 gas, or the like is used as a pretreatment. There is disclosed a method of performing plasma irradiation using a laser.

また、特許文献3には、ダマシン法を用いて絶縁膜であるSiO膜の配線溝に銅配線を埋め込んだ半導体基板表面上に、銅配線上を覆うキャップ膜としてP−SiN膜を形成する際に、銅配線表面とキャップ膜との界面における銅シリサイドの形成、および、配線間のTDDB(Time Dependent Dielectric Breakdown)不良発生を防止するために、キャップ膜を形成する以前に、基板表面に露出したSiO膜および銅配線の表面をNH雰囲気で還元性プラズマ処理を行う方法が開示されている。 In Patent Document 3, a damascene method is used to form a P-SiN film as a cap film covering the copper wiring on the surface of the semiconductor substrate in which the copper wiring is embedded in the wiring groove of the SiO 2 film that is an insulating film. In order to prevent the formation of copper silicide at the interface between the copper wiring surface and the cap film and the occurrence of TDDB (Time Dependent Dielectric Breakdown) defects between the wirings, it is exposed to the substrate surface before forming the cap film. A method of performing a reducing plasma treatment on the surfaces of the SiO 2 film and the copper wiring in an NH 3 atmosphere is disclosed.

特開平08−203891号公報Japanese Patent Laid-Open No. 08-203891 特開平07−066179号公報Japanese Patent Application Laid-Open No. 07-066179 特開2001−053076号公報JP 2001-053076 A

上述の特許文献1〜3に開示される技術はいずれも、パッシベーション膜としてのP−SiN膜を堆積する場合とは、下地構造が異なる場合や、堆積する膜種が異なる場合について、前処理の必要性を提案したものである。従来、パッシベーション膜としてのP−SiN膜を堆積する場合、すなわち、配線が形成された半導体基板の全面にCVD法、特に、プラズマCVD法によって堆積されたSiO膜上に重ねて、P−SiN膜を堆積する場合については、このような前処理の必要性の指摘はなされていなかった。 In any of the techniques disclosed in Patent Documents 1 to 3 described above, when the P-SiN film as the passivation film is deposited, the pretreatment is performed when the underlying structure is different or when the deposited film type is different. Proposed need. Conventionally, when a P-SiN film as a passivation film is deposited, that is, over the entire surface of a semiconductor substrate on which wiring is formed, a P-SiN film is superimposed on a SiO 2 film deposited by a CVD method, particularly a plasma CVD method. In the case of depositing a film, the necessity of such pretreatment has not been pointed out.

ところが、本発明者の鋭意検討の結果、パッシベーション膜としてP−SiN膜を堆積する場合においても、下地絶縁膜に対する密着性の劣化が発生することが見出された。特に、下地絶縁膜となるSiO膜がTEOSガスを原料とするプラズマCVD法を用いて形成されるSiO膜(以下、TEOSガスを原料としてプラズマCVD法により形成されるSiO膜を、「P−TEOS膜」とも言う。)である場合には、後工程(洗浄工程)でP−SiN膜が剥離する等の不良が発生する場合があることが見出された。 However, as a result of intensive studies by the present inventors, it has been found that even when a P-SiN film is deposited as a passivation film, the adhesiveness to the base insulating film is deteriorated. In particular, SiO 2 film (hereinafter the SiO 2 film serving as a base insulating film is formed by a plasma CVD method using TEOS gas as a starting material, the SiO 2 film formed by a plasma CVD method using TEOS gas as a raw material, " In the case of “P-TEOS film”, it has been found that defects such as peeling of the P-SiN film may occur in a subsequent process (cleaning process).

本発明の目的は、前記従来技術に基づく問題点を解消し、P−SiN膜と下地絶縁膜との界面の密着性を向上させ、後工程で界面が剥離することを防止することのできる半導体装置の製造方法を提供することにある。   The object of the present invention is to eliminate the problems based on the above-mentioned prior art, improve the adhesion of the interface between the P-SiN film and the base insulating film, and prevent the interface from peeling in the subsequent process. It is to provide a method for manufacturing an apparatus.

上記目的を達成するために、本発明は、配線が形成された半導体基板の表面にCVD法によって下地絶縁膜を堆積し、該下地絶縁膜上にプラズマCVD法によってシリコン窒化膜を堆積するにあたって、前記下地絶縁膜の表面に窒素ガスまたはアンモニアガスのプラズマを照射してから、前記プラズマCVD法によるシリコン窒化膜の堆積を行うことを特徴とする半導体装置の製造方法を提供するものである。   In order to achieve the above object, the present invention deposits a base insulating film by a CVD method on the surface of a semiconductor substrate on which wiring is formed, and deposits a silicon nitride film on the base insulating film by a plasma CVD method. The present invention provides a method for manufacturing a semiconductor device, wherein a silicon nitride film is deposited by the plasma CVD method after irradiating the surface of the base insulating film with nitrogen gas or ammonia gas plasma.

本発明においては、前記下地絶縁膜が、TEOSと酸素とを原料とするプラズマCVD法によって堆積されたシリコン酸化膜であることが好ましい。   In the present invention, the base insulating film is preferably a silicon oxide film deposited by a plasma CVD method using TEOS and oxygen as raw materials.

また、本発明においては、前記プラズマ照射を、5Torr以下の圧力を有するアンモニアガスを含む雰囲気を励起したプラズマを照射することによって行うことが好ましい。   In the present invention, it is preferable that the plasma irradiation is performed by irradiating with plasma excited in an atmosphere containing ammonia gas having a pressure of 5 Torr or less.

さらに、本発明においては、前記プラズマ照射を、2.5W/cm以上の電力密度で励起したプラズマを照射することによって行うことが好ましい。 Furthermore, in the present invention, the plasma irradiation is preferably performed by irradiating with plasma excited at a power density of 2.5 W / cm 2 or more.

本発明の半導体装置の製造方法は、配線が形成された半導体基板の表面の全面にCVD法によって堆積される下地絶縁膜の表面にNガスまたはNHガスのプラズマを照射してから、P−SiN膜を堆積することにより、P−SiN膜と下地絶縁膜、特に、P−TEOS膜との密着性が改善され、膜剥がれ等を防止し、本発明の半導体装置の製造方法で形成される半導体装置の不良発生率を低減することができる。 The semiconductor device manufacturing method of the present invention irradiates the surface of the base insulating film deposited by the CVD method on the entire surface of the semiconductor substrate on which the wiring is formed, and then irradiates plasma of N 2 gas or NH 3 gas. By depositing the -SiN film, the adhesion between the P-SiN film and the base insulating film, in particular, the P-TEOS film is improved, the film is prevented from peeling, and the like is formed by the method for manufacturing a semiconductor device of the present invention. It is possible to reduce the defect occurrence rate of the semiconductor device.

以下に、添付の図面に示す好適実施形態に基づいて、本発明の半導体装置の製造方法を詳細に説明する。   Hereinafter, a method for manufacturing a semiconductor device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

図1(a)〜(c)は、本発明の半導体装置の製造方法の各工程を表わす一実施形態の断面図である。本発明の一実施形態に係る半導体装置の製造方法では、まず、同図(a)に示すように、配線14が形成された半導体基板10の表面の全面にCVD法によって下地絶縁膜16を堆積する。そして、図1(b)に示すように、下地絶縁膜16の表面にNガスとNHガスとの混合ガスのプラズマを照射してから、図1(c)に示すように、下地絶縁膜16上にプラズマCVD法によってシリコン窒化膜18の堆積を行う。 FIG. 1A to FIG. 1C are cross-sectional views of one embodiment showing respective steps of a semiconductor device manufacturing method of the present invention. In the method for manufacturing a semiconductor device according to an embodiment of the present invention, first, as shown in FIG. 2A, a base insulating film 16 is deposited by CVD on the entire surface of the semiconductor substrate 10 on which the wiring 14 is formed. To do. Then, as shown in FIG. 1B, the surface of the base insulating film 16 is irradiated with plasma of a mixed gas of N 2 gas and NH 3 gas, and then the base insulating is performed as shown in FIG. A silicon nitride film 18 is deposited on the film 16 by plasma CVD.

ここで、NガスとNHガスとの混合ガスのプラズマ照射を平行平板型プラズマ装置を用いて実施する場合の処理条件は、例えば、以下の通りである。
反応チャンバ内圧力:4.0Torr〜6.0Torr
基板温度:360℃〜420℃
上部電極と下部電極(基板載置電極)との間隔:400mils±40mils
ガス流量:1500sccm±100sccm
NHガス流量:50sccm〜100sccm
Here, the processing conditions in the case where the plasma irradiation of the mixed gas of N 2 gas and NH 3 gas is performed using a parallel plate type plasma apparatus are as follows, for example.
Reaction chamber internal pressure: 4.0 Torr to 6.0 Torr
Substrate temperature: 360-420 ° C
Distance between upper electrode and lower electrode (substrate mounting electrode): 400 mils ± 40 mils
N 2 gas flow rate: 1500 sccm ± 100 sccm
NH 3 gas flow rate: 50 sccm to 100 sccm

上記のようにして、下地絶縁膜16の表面にNガスとNHガスとの混合ガスのプラズマを照射してから、P−SiN膜18を堆積することにより、P−SiN膜18と下地絶縁膜16との密着性が改善され、後工程での膜剥がれ等を防止し、不良発生率を低減することができる。 As described above, the surface of the base insulating film 16 is irradiated with plasma of a mixed gas of N 2 gas and NH 3 gas, and then the P-SiN film 18 is deposited. Adhesion with the insulating film 16 is improved, peeling of the film in a subsequent process can be prevented, and the defect occurrence rate can be reduced.

なお、図1(a)に示す例では、半導体基板10上にCVD法により絶縁膜12を形成し、この絶縁膜12上にスパッタリング法により金属膜を堆積し、フォトリソグラフィ技術を用いて、金属膜をパターニングして、配線14を形成している。しかし、本発明の半導体装置の製造方法においては、配線14が形成された半導体基板10表面の全面に下地絶縁膜16を堆積することができれば、配線14の形成以前は、いかなる工程を有していても良い。   In the example shown in FIG. 1A, an insulating film 12 is formed on a semiconductor substrate 10 by a CVD method, and a metal film is deposited on the insulating film 12 by a sputtering method. The wiring 14 is formed by patterning the film. However, in the method of manufacturing a semiconductor device according to the present invention, if the base insulating film 16 can be deposited on the entire surface of the semiconductor substrate 10 on which the wiring 14 is formed, any process is required before the wiring 14 is formed. May be.

また、下地絶縁膜16には、特に限定はないが、本発明の半導体装置の製造方法は、P−SiN膜18との密着性不良が発生しやすい下地絶縁膜16、例えばSiHガスを原料とするプラズマCVD法によって堆積されたSiO膜、もしくは、TEOSと酸素とを原料とするプラズマCVD法によって堆積されたSiO膜等に適用する場合が特に有用である。下地絶縁膜16とP−SiN膜18との密着性不良の発生は、特に、下地絶縁膜16がP−TEOS膜の場合に顕著である。 The base insulating film 16 is not particularly limited, but the method for manufacturing a semiconductor device according to the present invention uses the base insulating film 16, for example, SiH 4 gas, which tends to cause poor adhesion with the P-SiN film 18 as a raw material. The present invention is particularly useful when applied to a SiO 2 film deposited by the plasma CVD method, or a SiO 2 film deposited by the plasma CVD method using TEOS and oxygen as raw materials. The occurrence of poor adhesion between the base insulating film 16 and the P-SiN film 18 is particularly noticeable when the base insulating film 16 is a P-TEOS film.

また、後述する実施例から分るように、プラズマ照射は、後工程での剥がれ等の不良の発生を抑えるために、5.0Torr以下の圧力を有するNHガスを含むガス雰囲気を励起したプラズマを照射することによって行うのが好ましい。また、プラズマ照射は、2.5W/cm以上の電力密度で励起したプラズマを照射することによって行うのが好ましい。さらに、プラズマ照射は、360℃以上の基板温度で行うことが好ましい。 Further, as can be seen from the examples described later, the plasma irradiation is performed by exciting a gas atmosphere containing NH 3 gas having a pressure of 5.0 Torr or less in order to suppress the occurrence of defects such as peeling in a later process. It is preferable to carry out by irradiating. Moreover, it is preferable to perform plasma irradiation by irradiating the plasma excited with the power density of 2.5 W / cm < 2 > or more. Further, the plasma irradiation is preferably performed at a substrate temperature of 360 ° C. or higher.

また、本発明の特徴であるプラズマ照射においては、NガスとNHガスとの混合ガスに限らず、Nガス、NHガスを各々単独で用いてもよい。ただし、プラズマ照射処理を短時間で効果的に実施するためには、NガスとNHガスとの混合ガスを用いるのが好ましい。 In plasma irradiation, which is a feature of the present invention, not only a mixed gas of N 2 gas and NH 3 gas but also N 2 gas and NH 3 gas may be used alone. However, in order to effectively perform the plasma irradiation process in a short time, it is preferable to use a mixed gas of N 2 gas and NH 3 gas.

また、本発明の特徴であるプラズマ照射は、パッシベーション膜としてのP−SiN膜を堆積する場合の前処理としてのみではなく、他の場合にも適用可能である。例えば、半導体装置の製造方法は、半導体装置の配線層間絶縁膜形成の際に、下層の配線上に堆積した第1のP−TEOS膜の表面をCMP(Chemical Mechanical Polishing)法によって平坦化した後に、キャップ膜として第2のP−TEOS膜をさらに堆積する場合の前処理としても適用可能である。   Further, the plasma irradiation which is a feature of the present invention can be applied not only as a pretreatment when depositing a P-SiN film as a passivation film but also in other cases. For example, in the method for manufacturing a semiconductor device, the surface of the first P-TEOS film deposited on the lower wiring is planarized by CMP (Chemical Mechanical Polishing) when forming the wiring interlayer insulating film of the semiconductor device. Also, it can be applied as a pretreatment when a second P-TEOS film is further deposited as a cap film.

従来、半導体基板の全面にプラズマCVD法によって堆積されたSiO膜上に重ねて、同じくプラズマCVD法によってSiO膜を堆積する場合については、前処理の必要性は指摘されていなかった。 Conventionally, the necessity of pretreatment has not been pointed out in the case where an SiO 2 film is deposited on the entire surface of a semiconductor substrate over the SiO 2 film deposited by the plasma CVD method and also deposited by the plasma CVD method.

なお、平坦化された絶縁膜表面上にプラズマCVD膜を堆積する点においては、特許文献2に類似しているとも考えられる。しかし、特許文献2において前処理を必要としているのは、先にも述べたように、反応性イオンエッチングによるエッチバックによって形成される、炭素やフッ素系の堆積物が表面に形成されているからである。そのような堆積物が形成されないCMP法による平坦化を行う場合には、前処理は不要と考えられていた。   Note that it can be considered similar to Patent Document 2 in that a plasma CVD film is deposited on the planarized insulating film surface. However, the reason why the pretreatment is required in Patent Document 2 is that, as described above, carbon or fluorine-based deposits formed by etch back by reactive ion etching are formed on the surface. It is. In the case of performing planarization by CMP method in which such a deposit is not formed, it has been considered that pretreatment is unnecessary.

しかし、本発明の発明者による検討によって、このような場合においても、適切な前処理を行わずに第1のPE−TEOS膜上に第2のPE−TEOS膜の堆積を行うと、第1のPE−TEOS膜からの水分放出によって半導体装置の信頼性劣化が発生したり、第1のPE−TEOS膜と第2のPE−TEOS膜との間での剥がれが発生したりする場合があることが判明した。   However, according to the study by the inventors of the present invention, even in such a case, if the second PE-TEOS film is deposited on the first PE-TEOS film without performing an appropriate pretreatment, The reliability of the semiconductor device may be deteriorated due to the release of moisture from the PE-TEOS film, and peeling may occur between the first PE-TEOS film and the second PE-TEOS film. It has been found.

これに従って、本発明の半導体装置の製造方法を適用して、例えば、第2のP−TEOS膜の前処理として、第1のP−TEOS膜の表面にNガスとNHガスとの混合ガスのプラズマ照射を行うことによって、第1のPE−TEOS膜からの水分放出による半導体装置の信頼性劣化の発生、および、第1のPE−TEOS膜と第2のPE−TEOS膜との界面での剥がれの発生を防止することができる。 Accordingly, by applying the method for manufacturing a semiconductor device of the present invention, for example, as a pretreatment of the second P-TEOS film, a mixture of N 2 gas and NH 3 gas is formed on the surface of the first P-TEOS film. By performing gas plasma irradiation, the deterioration of the reliability of the semiconductor device due to the release of moisture from the first PE-TEOS film, and the interface between the first PE-TEOS film and the second PE-TEOS film It is possible to prevent the occurrence of peeling.

なお、このときのプラズマ照射においても、NガスとNHガスとの混合を用いることに限定されず、Nガス、NHガスを単独で用いても良い。 Note that the plasma irradiation at this time is not limited to using a mixture of N 2 gas and NH 3 gas, and N 2 gas and NH 3 gas may be used alone.

[実施例1]
最初に、図1(a)に示す構造を有する半導体装置を形成した。
[Example 1]
First, a semiconductor device having the structure shown in FIG.

すなわち、シリコン基板10上にCVD法によっての絶縁膜12を所定の厚みになるように堆積し、この絶縁膜12上に、スパッタリング法によりAl−Cu,Al−Si等のアルミニウム合金膜を堆積し、フォトリソグラフィ技術を用いて、このアルミニウム合金膜をパターニングして、配線14を形成した。   That is, an insulating film 12 is deposited on the silicon substrate 10 by a CVD method so as to have a predetermined thickness, and an aluminum alloy film such as Al-Cu, Al-Si is deposited on the insulating film 12 by a sputtering method. Then, the aluminum alloy film was patterned by using a photolithography technique to form the wiring 14.

上述の配線14が形成された絶縁膜12の表面全面に、TEOSガスおよびOガスを用いて、2周波のRF電力を用いたプラズマCVD法による成膜を行って下地絶縁膜16としてP−TEOS膜を所定の膜厚になるように堆積し、図1(a)に示す構造を有する半導体装置を得た。 Over the entire surface of the insulating film 12 on which the above-described wiring 14 is formed, a film is formed by a plasma CVD method using RF power of two frequencies using TEOS gas and O 2 gas, and P— is formed as a base insulating film 16. A TEOS film was deposited to a predetermined thickness to obtain a semiconductor device having the structure shown in FIG.

次に、上述の下地絶縁膜16であるP−TEOS膜の表面に、図1(b)に示すように、本発明の特徴であるNガスとNHガスとの混合ガスのプラズマ照射を実施した。 Next, as shown in FIG. 1B, plasma irradiation of a mixed gas of N 2 gas and NH 3 gas, which is a feature of the present invention, is performed on the surface of the P-TEOS film that is the base insulating film 16 described above. Carried out.

プラズマ照射の処理条件は以下の通りである。
基板温度:360℃
圧力:5.5Torr
RF電力1:420W
ガス:1500sccm
NHガス:47sccm
上部電極と下部電極との間隔:400mils
放電時間(照射時間):7秒間
ただしここで、「基板温度」として示した値は、基板を載置した下部電極の温度である。実際の基板温度は、厳密には、上記の値と異なる可能性がある。
The processing conditions for plasma irradiation are as follows.
Substrate temperature: 360 ° C
Pressure: 5.5 Torr
RF power 1: 420W
N 2 gas: 1500 sccm
NH 3 gas: 47 sccm
Distance between upper electrode and lower electrode: 400 mils
Discharge time (irradiation time): 7 seconds However, the value shown as “substrate temperature” here is the temperature of the lower electrode on which the substrate is placed. Strictly speaking, the actual substrate temperature may be different from the above value.

そして、NガスとNHガスとの混合ガスのプラズマ照射実施後、同一反応チャンバ内において、図1(c)に示すように、プラズマCVD法により、下地絶縁膜16であるP−TEOS膜上にP−SiN膜18を所定の厚さになるように堆積した。 Then, after the plasma irradiation of the mixed gas of N 2 gas and NH 3 gas, in the same reaction chamber, as shown in FIG. 1C, the P-TEOS film as the base insulating film 16 is formed by the plasma CVD method. A P-SiN film 18 was deposited thereon to a predetermined thickness.

P−SiN膜18の具体的な堆積条件は以下の通りである。
基板温度:360℃
圧力:5.5Torr
RF電力1:420W
SiHガス:133sccm
ガス:1500sccm
NHガス:47sccm
Specific deposition conditions for the P-SiN film 18 are as follows.
Substrate temperature: 360 ° C
Pressure: 5.5 Torr
RF power 1: 420W
SiH 4 gas: 133 sccm
N 2 gas: 1500 sccm
NH 3 gas: 47 sccm

[実施例2]
本発明の半導体装置の製造方法を適用して、NガスとNHガスとの混合ガスのプラズマ照射を行って、図2に示す断面構造を有するTEG(Test Element Group)を6インチのウエハ上に作製した。
すなわち、配線14が形成された基板上に下地絶縁膜16であるP−TEOS膜を堆積し、NガスとNHガスとの混合ガスのプラズマ照射を行ってから、P−SiN膜18を堆積した。そして、図示しないレジストパターンをマスクとして、CFガス、Oガス、Nガスの混合ガスを用いたCDE(Chemical Dry Etching)で、配線14上のP−SiN膜(パッシベーション膜)18およびP−TEOS膜(下地絶縁膜)16をエッチングし、開口22を形成した。
この時、界面の密着性を制御するためのパラメータとして、プラズマ照射の際の圧力、基板温度、RF電力を変化させてTEGを作製し、下地絶縁膜16であるP−TEOS膜とP−SiN膜18との界面の密着性を評価した。
[Example 2]
A semiconductor device manufacturing method of the present invention is applied to perform plasma irradiation of a mixed gas of N 2 gas and NH 3 gas, and a TEG (Test Element Group) having a cross-sectional structure shown in FIG. Made above.
That is, a P-TEOS film that is a base insulating film 16 is deposited on a substrate on which the wiring 14 is formed, and plasma irradiation of a mixed gas of N 2 gas and NH 3 gas is performed, and then the P-SiN film 18 is formed. Deposited. Then, with a resist pattern (not shown) as a mask, CDE (Chemical Dry Etching) using a mixed gas of CF 4 gas, O 2 gas, and N 2 gas is used to form a P-SiN film (passivation film) 18 and P on the wiring 14. The opening 22 was formed by etching the TEOS film (base insulating film) 16.
At this time, as parameters for controlling the adhesion at the interface, TEGs are manufactured by changing the pressure, substrate temperature, and RF power during plasma irradiation, and the P-TEOS film and P-SiN as the base insulating film 16 are produced. The adhesion at the interface with the film 18 was evaluated.

密着性の評価は、以下の2つの方法で行った。
まず、図2のTEGの断面をSEM(Scanning Electron Microscope)で観察し、サイドスリット20の有無を観察した。この観察を、ウエハ内の複数箇所において行い、サイドスリット20発生の割合を不良率として算出した。
次に、図2のTEGに対してスクラブ洗浄を行い、目視で、P−SiN膜18の剥がれの有無および程度を観察した。
The evaluation of adhesion was performed by the following two methods.
First, the cross section of the TEG in FIG. 2 was observed with a scanning electron microscope (SEM), and the presence or absence of the side slit 20 was observed. This observation was performed at a plurality of locations in the wafer, and the rate of occurrence of the side slits 20 was calculated as a defect rate.
Next, scrub cleaning was performed on the TEG shown in FIG.

まず、NガスとNHガスとの混合ガスのプラズマ照射時の圧力を、4.9Torr、5.2Torr、5.8Torr、6.1Torrと変化させた際の、P−SiN膜18の目視による剥がれの程度、および断面SEM観察による不良率(サイドスリット20発生率)を、表1に示す。P−SiN膜の成膜膜厚は約500nmである。 First, visual observation of the P-SiN film 18 when the pressure during plasma irradiation of a mixed gas of N 2 gas and NH 3 gas is changed to 4.9 Torr, 5.2 Torr, 5.8 Torr, and 6.1 Torr. Table 1 shows the degree of peeling due to SEM and the defect rate (occurrence rate of side slit 20) by cross-sectional SEM observation. The film thickness of the P-SiN film is about 500 nm.

表1において、剥がれの評価が“○”である場合は、目視によって剥がれが観察されないことを示す。“△”および“××”は、いずれも剥がれが観察されたことを示し、“××”は“△”よりも剥がれが顕著であることを示す。   In Table 1, when the peeling evaluation is “◯”, it means that peeling is not observed by visual observation. “Δ” and “XX” both indicate that peeling was observed, and “XX” indicates that peeling is more prominent than “Δ”.

Figure 2006100715
Figure 2006100715

また、図3にはNガスとNHガスとの混合ガスのプラズマ照射時の圧力と界面密着性との関係を表わしたグラフを示す。グラフの横軸は、NガスとNHガスとの混合ガスのプラズマ照射時の圧力、縦軸は、下地絶縁膜16であるP−TEOS膜とP−SiN膜18との界面密着性の不良率(サイドスリット20発生率)を表わす。
表1および図3に示すグラフより、NガスとNHガスとの混合ガスのプラズマ照射時の圧力を低く設定するほど、不良率が低減することが分った。特に、本発明においては、プラズマ照射を5Torr(670Pa)以下の圧力で実施することが好適であることが分った。
FIG. 3 is a graph showing the relationship between the pressure during plasma irradiation of the mixed gas of N 2 gas and NH 3 gas and the interfacial adhesion. The horizontal axis of the graph represents the pressure during plasma irradiation of a mixed gas of N 2 gas and NH 3 gas, and the vertical axis represents the interfacial adhesion between the P-TEOS film as the base insulating film 16 and the P-SiN film 18. Defect rate (side slit 20 occurrence rate) is represented.
From the graphs shown in Table 1 and FIG. 3, it was found that the defect rate decreases as the pressure during plasma irradiation of the mixed gas of N 2 gas and NH 3 gas is set lower. In particular, in the present invention, it has been found that the plasma irradiation is preferably performed at a pressure of 5 Torr (670 Pa) or less.

次に、図4には、NガスとNHガスとの混合ガスのプラズマ照射時のRF電力と界面密着性の不良率との関係を表わしたグラフを示す。グラフの横軸は、NガスとNHガスとの混合ガスのプラズマ照射時のRF電力、縦軸は、下地絶縁膜16であるP−TEOS膜とP−SiN膜18との界面密着性の不良率(サイドスリット20発生率)を表わす。
図4に示すグラフより、NガスとNHガスとの混合ガスのプラズマ照射時のRF電力を高く設定するほど、不良率が低減し、特に、6インチウェハに対して450W以上、すなわち、2.5W/cm以上のRF電力を印加することが好ましいことが分った。
Next, FIG. 4 shows a graph showing the relationship between the RF power at the time of plasma irradiation of a mixed gas of N 2 gas and NH 3 gas and the defective rate of interface adhesion. The horizontal axis of the graph represents RF power during plasma irradiation of a mixed gas of N 2 gas and NH 3 gas, and the vertical axis represents interfacial adhesion between the P-TEOS film as the base insulating film 16 and the P-SiN film 18. The defect rate (occurrence rate of side slits 20).
From the graph shown in FIG. 4, the higher the RF power at the time of plasma irradiation of the mixed gas of N 2 gas and NH 3 gas, the lower the defect rate, in particular, 450 W or more for a 6-inch wafer, that is, It has been found that applying RF power of 2.5 W / cm 2 or more is preferable.

最後に、NガスとNHガスとの混合ガスのプラズマ照射時の基板温度と界面密着性との関係を表わしたグラフを図5に示す。グラフの横軸は、NガスとNHガスとの混合ガスのプラズマ照射時の設定温度、縦軸は、下地絶縁膜16であるP−TEOS膜とP−SiN膜18との界面密着性の不良率(サイドスリット20発生率)を表わす。
図5に示すグラフより、NガスとNHガスとの混合ガスのプラズマ照射時の設定温度を高く設定するほど、不良率が低減することが分った。特に、設定温度を360℃以上としたプラズマ照射条件が好ましいことが分った。
Finally, FIG. 5 shows a graph representing the relationship between the substrate temperature and the interfacial adhesion during plasma irradiation of a mixed gas of N 2 gas and NH 3 gas. The horizontal axis of the graph is the set temperature during plasma irradiation of a mixed gas of N 2 gas and NH 3 gas, and the vertical axis is the interfacial adhesion between the P-TEOS film as the base insulating film 16 and the P-SiN film 18. The defect rate (occurrence rate of side slits 20).
From the graph shown in FIG. 5, it was found that the defect rate decreases as the set temperature at the time of plasma irradiation of the mixed gas of N 2 gas and NH 3 gas is set higher. In particular, it has been found that plasma irradiation conditions with a preset temperature of 360 ° C. or higher are preferable.

本発明は、基本的に以上のようなものである。
以上、本発明の半導体装置の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
The present invention is basically as described above.
As mentioned above, although the manufacturing method of the semiconductor device of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, you may make various improvement and a change. Of course.

(a)〜(c)は、本発明の半導体装置の製造方法の各工程を表わす一実施形態の断面図を示す。(A)-(c) shows sectional drawing of one Embodiment showing each process of the manufacturing method of the semiconductor device of this invention. TEGの一部を示す断面図である。It is sectional drawing which shows a part of TEG. ガスとNHガスとの混合ガスのプラズマ照射時の圧力と下地絶縁膜であるP−TEOS膜とP−SiN膜との界面密着性の不良率との関係を表わしたグラフを示す。 3 is a graph showing the relationship between the pressure at the time of plasma irradiation of a mixed gas of N 2 gas and NH 3 gas and the defective rate of interfacial adhesion between a P-TEOS film and a P-SiN film as a base insulating film. ガスとNHガスとの混合ガスのプラズマ照射時のRF電力と下地絶縁膜であるP−TEOS膜とP−SiN膜との界面密着性の不良率との関係を表わしたグラフを示す。A graph showing the relationship between the N 2 gas and NH 3 gas as P-TEOS film and the interface adhesion failure rate of the P-SiN film mixing is the RF power and the base insulating film during plasma irradiation of the gas . ガスとNHガスとの混合ガスのプラズマ照射時の基板温度と下地絶縁膜であるP−TEOS膜とP−SiN膜との界面密着性の不良率との関係を表わしたグラフを示す。A graph showing the relationship between the N 2 gas and NH 3 gas as the interface adhesion failure rate of the P-TEOS film and the P-SiN film and a substrate temperature of the base insulating film during plasma irradiation of the mixed gas .

符号の説明Explanation of symbols

10 半導体基板(シリコン基板)
12 絶縁膜
14 配線
16 下地絶縁膜
18 シリコン窒化膜(P−SiN膜)
20 サイドスリット
22 開口
10 Semiconductor substrate (silicon substrate)
12 Insulating film 14 Wiring 16 Base insulating film 18 Silicon nitride film (P-SiN film)
20 Side slit 22 Opening

Claims (4)

配線が形成された半導体基板の表面の全面にCVD法によって下地絶縁膜を堆積し、該下地絶縁膜上にプラズマCVD法によってシリコン窒化膜を堆積するにあたって、
前記下地絶縁膜の表面に窒素ガスまたはアンモニアガスのプラズマを照射してから、前記プラズマCVD法によるシリコン窒化膜の堆積を行うことを特徴とする半導体装置の製造方法。
In depositing a base insulating film by the CVD method on the entire surface of the semiconductor substrate on which the wiring is formed, and depositing a silicon nitride film on the base insulating film by the plasma CVD method,
A method of manufacturing a semiconductor device, comprising depositing a silicon nitride film by the plasma CVD method after irradiating the surface of the base insulating film with nitrogen gas or ammonia gas plasma.
前記下地絶縁膜が、TEOSと酸素とを原料とするプラズマCVD法によって堆積されたシリコン酸化膜であることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the base insulating film is a silicon oxide film deposited by a plasma CVD method using TEOS and oxygen as raw materials. 前記プラズマ照射を、5Torr以下の圧力を有するアンモニアガスを含む雰囲気を励起したプラズマを照射することによって行うことを特徴とする請求項1または2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein the plasma irradiation is performed by irradiating plasma excited in an atmosphere containing ammonia gas having a pressure of 5 Torr or less. 前記プラズマ照射を、2.5W/cm以上の電力密度で励起したプラズマを照射することによって行うことを特徴とする請求項1ないし3のいずれかに記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein the plasma irradiation is performed by irradiating plasma excited at a power density of 2.5 W / cm < 2 > or more.
JP2004287519A 2004-09-30 2004-09-30 Manufacturing method for semiconductor device Withdrawn JP2006100715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287519A JP2006100715A (en) 2004-09-30 2004-09-30 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287519A JP2006100715A (en) 2004-09-30 2004-09-30 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2006100715A true JP2006100715A (en) 2006-04-13

Family

ID=36240203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287519A Withdrawn JP2006100715A (en) 2004-09-30 2004-09-30 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2006100715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245910B2 (en) 2013-12-24 2016-01-26 Japan Display Inc. Method for manufacturing board device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245910B2 (en) 2013-12-24 2016-01-26 Japan Display Inc. Method for manufacturing board device

Similar Documents

Publication Publication Date Title
JP5267130B2 (en) Semiconductor device and manufacturing method thereof
US7314828B2 (en) Repairing method for low-k dielectric materials
TWI450379B (en) Interlayer insulation film and wiring structure, and method of producing the same
TWI528454B (en) Semiconductor device and method of manufacturing semiconductor device
JP4160277B2 (en) Manufacturing method of semiconductor device
KR101126850B1 (en) Dual liner capping layer interconnect structure
JPWO2004061931A1 (en) Semiconductor device having multilayer wiring structure and method for manufacturing the same
JP2985789B2 (en) Method for manufacturing semiconductor device
JP5238615B2 (en) Manufacturing method of semiconductor device
JP2006351769A (en) Semiconductor device and its manufacturing method
JP3781175B2 (en) Contact hole formation method
JP3559026B2 (en) Method for manufacturing semiconductor device
US20050077628A1 (en) Dual damascene structure and method
US20030068895A1 (en) Method for cleaning the contact area of a metal line
US7338897B2 (en) Method of fabricating a semiconductor device having metal wiring
US20100244256A1 (en) Semiconductor device and manufacturing method thereof
JP2006100715A (en) Manufacturing method for semiconductor device
US7056825B2 (en) Method for manufacturing a semiconductor device that includes plasma treating an insulating film with a mixture of helium and argon gases
JP4948278B2 (en) Manufacturing method of semiconductor device
JP2005167120A (en) Semiconductor device and manufacturing method thereof
US20230187204A1 (en) Tungsten Fluoride Soak And Treatment For Tungsten Oxide Removal
US20210265205A1 (en) Dielectric etch stop layer for reactive ion etch (rie) lag reduction and chamfer corner protection
JP4597088B2 (en) Manufacturing method of semiconductor device
JP2009117673A (en) Semiconductor device and manufacturing method thereof
JP2006080128A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204