JP2006100163A - Electrode material and secondary power supply using it - Google Patents

Electrode material and secondary power supply using it Download PDF

Info

Publication number
JP2006100163A
JP2006100163A JP2004286284A JP2004286284A JP2006100163A JP 2006100163 A JP2006100163 A JP 2006100163A JP 2004286284 A JP2004286284 A JP 2004286284A JP 2004286284 A JP2004286284 A JP 2004286284A JP 2006100163 A JP2006100163 A JP 2006100163A
Authority
JP
Japan
Prior art keywords
electrode
active material
capacitor
binder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004286284A
Other languages
Japanese (ja)
Inventor
Tsuguro Mori
嗣朗 森
Hisashi Satake
久史 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2004286284A priority Critical patent/JP2006100163A/en
Publication of JP2006100163A publication Critical patent/JP2006100163A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode having an excellent self-discharge characteristic even when an active material containing plenty of fine powder produced by crushing; and to provide a capacitor or a nonaqueous secondary battery having an excellent self-discharge characteristic even when a separator having a small thickness and small air permeability is used. <P>SOLUTION: This electrode for a capacitor or a nonaqueous secondary battery is formed by using active material powder and a binder. In the battery, the grain size distribution D50% of the active material is over 2 μm and the grain size distribution D10% of the active material is less than 1.5 μm. The electrode contains a polyamidoimide resin as the binder. The electrode is used for a positive electrode and/or a negative electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活物質粉末とバインダーとを用いて成形する電極材料、および該電極材料を正極及び/又は負極に用いるキャパシタまたは非水系二次電池等の二次電源に関する。   The present invention relates to an electrode material formed using an active material powder and a binder, and a secondary power source such as a capacitor or a non-aqueous secondary battery using the electrode material for a positive electrode and / or a negative electrode.

近年、携帯電話、ノートパソコン、電気自動車などのエネルギー源が注目を集めており、エネルギー源としてキャパシタや非水系二次電池など様々な蓄電デバイスが知られている。キャパシタの例として、非特許文献1に示されるように活性炭を活物質とする電極を用いた電気二重層キャパシタ、レドックスキャパシタなどがあり、これらは高出力を特徴とする蓄電デバイスである。また非水系二次電池としては、正極にコバルト酸リチウムなどを活物質とする電極と、負極に黒鉛材料などを活物質とする電極を用いたリチウムイオン二次電池が例示され、高エネルギー蓄電デバイスとして実用に供されている。   In recent years, energy sources such as mobile phones, notebook computers, and electric vehicles have attracted attention, and various energy storage devices such as capacitors and non-aqueous secondary batteries are known as energy sources. Examples of the capacitor include an electric double layer capacitor using an electrode having activated carbon as an active material and a redox capacitor as shown in Non-Patent Document 1, and these are power storage devices characterized by high output. Examples of the non-aqueous secondary battery include a lithium ion secondary battery using an electrode having lithium cobalt oxide or the like as an active material for a positive electrode and an electrode having a graphite material or the like as an active material for a negative electrode. As a practical use.

キャパシタ用の電極あるいは非水系二次電池用の電極は、活物質粉末とバインダーとから構成される合材層、および金属箔等の集電体からなるのが一般的である。バインダーは、合材層内において粉末粒子間を結着する働きがある。キャパシタにおいては、合材層と集電体間の界面にて接着層あるいは導電層としてバインダーを用いる場合も知られている。   The electrode for a capacitor or the electrode for a non-aqueous secondary battery is generally composed of a composite material layer composed of an active material powder and a binder, and a current collector such as a metal foil. The binder has a function of binding powder particles in the composite layer. In capacitors, it is also known that a binder is used as an adhesive layer or a conductive layer at the interface between the composite material layer and the current collector.

合材層におけるバインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミドイミドなどが用いられている。これらは非水系電解液への耐薬品性に優れ、また耐電圧性にも優れるものである。中でも、ポリアミドイミドは耐熱性に優れる高分子に属し、耐熱性および高弾性率に特徴がある。特許文献1ではキャパシタの電極合材層のバインダーに用いて、サイクル使用時における電極の膨張・収縮の抑制によるサイクル特性向上効果があることが示されている(特許文献1参照)。   As the binder in the composite material layer, polyvinylidene fluoride, polytetrafluoroethylene, polyamideimide and the like are used. These are excellent in chemical resistance to non-aqueous electrolytes and also excellent in voltage resistance. Among them, polyamideimide belongs to a polymer having excellent heat resistance and is characterized by heat resistance and high elastic modulus. Patent Document 1 shows that, when used as a binder for a capacitor electrode mixture layer of a capacitor, there is an effect of improving cycle characteristics by suppressing expansion / contraction of the electrode during cycle use (see Patent Document 1).

活物質材料は、電極材料に供するために一般的に粉末状であるため、活物質材料は粉砕工程により得ている場合が多い。このように得られた活物質の粉末はある程度の粒度幅をもつ。活物質の粉末の粒度幅が電池あるいはキャパシタの特性に影響を及ぼすことが知られており、例えば、特許文献2では、リチウム二次電池において、活物質の粒度分布D10%が3〜10μm,D50%が10〜25μm,D90%が25〜50μmであることが自己放電特性に好ましい(特許文献2参照)。
田村英雄監修「大容量電気二重層キャパシタの最前線」エヌ・ティー・エス出版 2002年 特開平11‐102845号公報 特開平8‐162096号公報
Since the active material is generally in a powder form for use as an electrode material, the active material is often obtained by a pulverization process. The active material powder thus obtained has a certain particle size width. It is known that the particle size width of the active material powder affects the characteristics of the battery or capacitor. For example, in Patent Document 2, in a lithium secondary battery, the particle size distribution D10% of the active material is 3 to 10 μm, D50 % Is preferably 10 to 25 μm and D90% is preferably 25 to 50 μm for self-discharge characteristics (see Patent Document 2).
Supervised by Hideo Tamura, “The Forefront of Large-Capacity Electric Double Layer Capacitors” NTS Publishing 2002 Japanese Patent Laid-Open No. 11-102845 JP-A-8-162096

従来、キャパシタまたは非水系二次電池の活物質を得るために、粉砕などを用いて粒度調整をする場合が多い。しかし上記のように充分な電池特性を得るために、粉砕工程にて微粉除去等の粒度調整あるいは過粉砕防止等の手法・工程を必要としている。これは材料の収率低下、時間ロス、コスト高を招いており、活物質の粉末を、微粒子を含んだままで電極材料へ供する技術が望まれている。   Conventionally, in order to obtain an active material of a capacitor or a non-aqueous secondary battery, the particle size is often adjusted using pulverization or the like. However, in order to obtain sufficient battery characteristics as described above, a method / process such as particle size adjustment such as fine powder removal or over-pulverization prevention is required in the pulverization process. This leads to a decrease in material yield, time loss, and high cost, and a technique for supplying an active material powder to an electrode material while containing fine particles is desired.

一方、キャパシタあるいは非水系二次電池においては、自己放電特性が重要視され、ガーレ式の透気度が10 sec/100cc以上のセパレータを用いることが多く、キャパシタにおいては厚み40〜50μm程度のセパレータを用いることが多い。しかしながら内部抵抗を低減するために、より薄いセパレータを用いる技術が望まれている。   On the other hand, in capacitors or non-aqueous secondary batteries, self-discharge characteristics are regarded as important, and separators with a Gurley type air permeability of 10 sec / 100 cc or more are often used. Capacitors are separators with a thickness of about 40-50 μm. Is often used. However, in order to reduce internal resistance, a technique using a thinner separator is desired.

本発明は以上のような事情に鑑みてなされたものであり、その目的は、粉砕によって生じる微粉を多く含む活物質を用いた場合でも、自己放電特性に優れる電極材料を提供することにある。また本発明の他の目的は、透気度が小さく、また厚みの薄いセパレータを用いても、自己放電特性に優れるキャパシタまたは非水系二次電池等の二次電源を提供することにある。   This invention is made | formed in view of the above situations, The objective is to provide the electrode material which is excellent in a self-discharge characteristic, even when the active material which contains many fine powders which arise by grinding | pulverization is used. Another object of the present invention is to provide a secondary power source such as a capacitor or a non-aqueous secondary battery that has excellent self-discharge characteristics even when a separator having a small air permeability and a small thickness is used.

本願発明者等は、上記目的を達成するために鋭意検討した。その結果、特定の粒度分布の活物質および特定のバインダーを含む電極を具備したキャパシタまたは非水系二次電池が自己放電特性に優れ、上記目的を達成できることを見出し、本発明を完成するに至った。
すなわち本発明は、以下の構成からなることを特徴とし、上記課題を解決するものである。
The inventors of the present application have made extensive studies in order to achieve the above object. As a result, it has been found that a capacitor or a non-aqueous secondary battery including an electrode containing an active material having a specific particle size distribution and a specific binder is excellent in self-discharge characteristics and can achieve the above-described object, and has completed the present invention. .
That is, the present invention is characterized by having the following configuration and solves the above problems.

(1)活物質とバインダーとを用いて成形した二次電源用の電極において、活物質の粒度分布D50%が2μmを超え、かつ活物質の粒度分布D10%が1.5μm未満であり、かつバインダーがポリアミドイミド樹脂を含むことを特徴とする電極材料。
(2)活物質が炭素質粉末であることを特徴とする上記(1)の電極材料。
(3)上記(1)又は(2)のいずれかに記載の電極を正極及び/又は負極に用いることを特徴とする二次電源。
(4)上記(1)又は(2)のいずれかに記載の電極を正極及び/又は負極に用い、かつガーレ式の透気度が10 sec/100cc以下のセパレータを用いることを特徴とする二次電源。
(5)セパレータの厚みが40μm以下であることを特徴とする上記(4)に記載の二次電源。
(1) In an electrode for a secondary power source formed using an active material and a binder, the particle size distribution D50% of the active material exceeds 2 μm, the particle size distribution D10% of the active material is less than 1.5 μm, and the binder Includes a polyamide-imide resin.
(2) The electrode material according to (1) above, wherein the active material is a carbonaceous powder.
(3) A secondary power source characterized by using the electrode according to (1) or (2) above as a positive electrode and / or a negative electrode.
(4) The electrode according to (1) or (2) above is used for a positive electrode and / or a negative electrode, and a Gurley type air permeability is 10 sec / 100cc or less. Next power supply.
(5) The secondary power source according to (4) above, wherein the separator has a thickness of 40 μm or less.

本発明によれば、バインダーにポリアミドイミド樹脂を用いた電極を正極及び/又は負極に用いたキャパシタまたは非水系二次電池は、従来のキャパシタまたは非水系二次電池に比べ自己放電特性に優れる。またキャパシタにおいてはセパレータの自己放電防止用の特性を緩和することができ、飛躍的に単位体積あたりのセパレータ占有率を下げることができ、出力密度を向上させることが可能である。   According to the present invention, a capacitor or a nonaqueous secondary battery using an electrode using a polyamideimide resin as a binder for a positive electrode and / or a negative electrode is superior in self-discharge characteristics as compared with a conventional capacitor or nonaqueous secondary battery. In the capacitor, the characteristics for preventing self-discharge of the separator can be relaxed, the separator occupancy per unit volume can be drastically reduced, and the output density can be improved.

本発明は、活物質粉末とバインダーなどを用いて成形したキャパシタ又は非水系二次電池等の二次電源用の電極材料において、活物質の粒度分布D50%が2μmを超え、かつ活物質の粒度分布D10%が1.5μm未満であり、かつバインダーとしてポリアミドイミド樹脂を含むことを特徴とする電極材料である。本発明の一実施形態について説明すれば以下のとおりである。   The present invention is an electrode material for a secondary power source such as a capacitor or a non-aqueous secondary battery formed using an active material powder and a binder, etc., and the particle size distribution D50% of the active material exceeds 2 μm, and the particle size of the active material The electrode material is characterized by having a distribution D10% of less than 1.5 μm and containing a polyamideimide resin as a binder. An embodiment of the present invention will be described as follows.

本発明の二次電源としては、キャパシタ、非水系二次電源等が挙げられる。
本発明における二次電源として用いられるキャパシタ用の正極及び/又は負極の活物質は、特に限定されるものではなく、キャパシタ用として公知の材料を用いることができ、例えば、やしがら、フェノール樹脂、石炭、コークス、ピッチなどを原料として賦活処理した活性炭などが挙げられる。これら活性炭のBET法による比表面積は、例えば500m2/g以上2500m2/g以下である。
Examples of the secondary power source of the present invention include a capacitor and a non-aqueous secondary power source.
The active material of the positive electrode and / or negative electrode for the capacitor used as the secondary power source in the present invention is not particularly limited, and a known material for the capacitor can be used. For example, palm, phenol resin , Activated carbon obtained by activation treatment using coal, coke, pitch and the like as raw materials. The specific surface area of these activated carbons by the BET method is, for example, 500 m 2 / g or more and 2500 m 2 / g or less.

本発明における二次電源として用いられる非水系二次電池用の正極の活物質は、特に限定されるものではなく、非水系二次電池の正極用として公知の材料を用いることができ、例えば二酸化マンガン、五酸化バナジウム、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物などが挙げられる。   The active material of the positive electrode for the non-aqueous secondary battery used as the secondary power source in the present invention is not particularly limited, and a known material for the positive electrode of the non-aqueous secondary battery can be used. Manganese, vanadium pentoxide, lithium-cobalt composite oxide, lithium-cobalt-nickel composite oxide, and the like can be given.

本発明における非水系二次電池用の負極の活物質粉末は、特に限定されるものではなく、非水系二次電池の負極用として公知の材料を用いることができ、例えばリチウムイオンを吸蔵、離脱しうる炭素材からなる炭素粉末などがあり、具体的には、天然黒鉛、人造黒鉛、ピッチ系炭素材料、難黒鉛性炭素材料などが挙げられる。   The active material powder of the negative electrode for the non-aqueous secondary battery in the present invention is not particularly limited, and a known material can be used for the negative electrode of the non-aqueous secondary battery, for example, occlusion and release of lithium ions. Carbon powder made of a carbon material that can be used. Specific examples include natural graphite, artificial graphite, pitch-based carbon material, and non-graphitizable carbon material.

本発明の活物質が、活性炭、天然黒鉛、人造黒鉛、ピッチ系炭素材料、難黒鉛性炭素材料などの炭素質材料からなる炭素粉末である場合、本発明のバインダーの効果が大きく、中でも活性炭を活物質とする場合、特に効果が大きい。   When the active material of the present invention is a carbon powder made of a carbonaceous material such as activated carbon, natural graphite, artificial graphite, pitch-based carbon material, and non-graphitizable carbon material, the effect of the binder of the present invention is great. When used as an active material, the effect is particularly great.

本発明の活物質の粒度分布は、D50%が2μmを超える活物質であって、かつ、D10%が1.5μm未満であり、好ましくはD10%が1.0μm未満であり、更に好ましくはD10%が0.9μm未満である。D10%の下限値は、電極の成形などを考慮すると実用的に0.5μm以上であることが好ましい。本明細書における粒度分布D10%、D50%とは、累積分布がそれぞれ体積比率10%、50%の粒径を意味し、D50%は体積比率における平均粒径を意味する。D10%が1.5μm以上の活物質を用いる場合、十分な自己放電特性を得られない。又、D50%が2μm以下の場合、粉砕が困難となり、十分な自己放電特性を得られない。   The particle size distribution of the active material according to the present invention is such that D50% is an active material having a value exceeding 2 μm, and D10% is less than 1.5 μm, preferably D10% is less than 1.0 μm, and more preferably D10%. It is less than 0.9μm. The lower limit value of D10% is practically preferably 0.5 μm or more in consideration of electrode forming and the like. In the present specification, the particle size distributions D10% and D50% mean particle diameters whose cumulative ratios are 10% and 50%, respectively, and D50% means the average particle diameter in volume ratios. When an active material with D10% of 1.5 μm or more is used, sufficient self-discharge characteristics cannot be obtained. If D50% is 2 μm or less, pulverization becomes difficult and sufficient self-discharge characteristics cannot be obtained.

本発明のバインダーは、ポリアミドイミド樹脂を含むものであり、すなわちポリアミドイミド樹脂単体かポリアミドイミド樹脂と他のバインダーとの混合物である。ポリアミドイミド樹脂には、例えば東洋紡社のバイロマックス「HR16NN」,「HR11NN」,「HR12N2」,「HR13NX」,「HR14ET」,「HR15ET」等がある。
本発明のポリアミドイミド樹脂の分子量としては、5000〜100000が好ましく、5000〜50000がさらに好ましい。
The binder of the present invention contains a polyamideimide resin, that is, a polyamideimide resin alone or a mixture of a polyamideimide resin and another binder. Examples of the polyamideimide resin include Toyobo's Viromax “HR16NN”, “HR11NN”, “HR12N2”, “HR13NX”, “HR14ET”, “HR15ET”, and the like.
The molecular weight of the polyamideimide resin of the present invention is preferably 5,000 to 100,000, and more preferably 5,000 to 50,000.

ポリアミドイミド樹脂と他のバインダーとを混合する場合、他のバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレンなどのフッ素系樹脂;フッ素ゴムなどのゴム系材料;ポリエチレン、ポリプロピレンなどのポリオレフィン;アクリル樹脂;ポリイミド樹脂などが例示される。本発明のバインダーは、より好ましくはポリアミドイミド樹脂とポリフッ化ビニリデン(PVDF) との混合物である。バインダーにおけるポリアミドイミド樹脂とそれ以外の樹脂等との混合比は、電極強度あるいは活物質の粒度に応じて適宜選択できるものであり、実用的にはポリアミドイミド樹脂が、好ましくは20質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは60質量%以上である。
また、電極材料全体におけるバインダーの占める割合は、固形分の重量比として、1〜30質量%が好ましく、5〜20質量%が更に好ましい。
When mixing polyamideimide resin and other binders, other binders include: fluorine-based resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene; rubber-based materials such as fluororubber; polyethylene, polypropylene, etc. Examples include polyolefins; acrylic resins; polyimide resins. The binder of the present invention is more preferably a mixture of a polyamideimide resin and polyvinylidene fluoride (PVDF). The mixing ratio of the polyamide-imide resin and other resins in the binder can be appropriately selected according to the electrode strength or the particle size of the active material. Practically, the polyamide-imide resin is preferably 20% by mass or more. Yes, more preferably 40% by mass or more, still more preferably 60% by mass or more.
The proportion of the binder in the entire electrode material is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass, as the weight ratio of the solid content.

本発明の電極材料は、例えば、上記活物質粉末と上記バインダー、また導電材を必要に応じ加えた混合物を、集電体上の片面、あるいは両面に形成した電極に用いられる。電極の作製方法としては、具体的には、活物質粉末とバインダーと、必要に応じて導電材とを溶媒中に含む混合物(スラリー)を、集電体に塗布後、乾燥し、ロールプレスして成形する方法などを例示することができる。導電材を用いる場合、導電材は特に限定されず、具体的には、アセチレンブラック、ケッチェンブラック、天然黒鉛、人造黒鉛などを例示することができる。集電体は特に限定されず、公知の材料を用いることができるが、例えば、正極用集電体としてアルミ箔、ステンレス鋼箔が挙げられ、負極用集電体として銅箔、ステンレス鋼箔などが挙げられ、キャパシタの場合には負極用集電体としてアルミ箔もその一例として挙げられる。上記箔状の集電体だけでなく、孔を有する形状の金属網等の集電体も挙げられる。   The electrode material of the present invention is used, for example, for an electrode in which a mixture containing the active material powder and the binder or a conductive material added as necessary is formed on one side or both sides of a current collector. Specifically, the electrode is produced by applying a mixture (slurry) containing an active material powder, a binder, and, if necessary, a conductive material in a solvent (slurry) to a current collector, followed by drying and roll pressing. Examples of the molding method can be given. When the conductive material is used, the conductive material is not particularly limited, and specific examples include acetylene black, ketjen black, natural graphite, and artificial graphite. The current collector is not particularly limited, and a known material can be used. Examples of the current collector for positive electrode include aluminum foil and stainless steel foil. Examples of the current collector for negative electrode include copper foil and stainless steel foil. In the case of a capacitor, an aluminum foil is also exemplified as a negative electrode current collector. In addition to the foil-shaped current collector, a current collector such as a metal net having a hole is also included.

本発明の二次電源として用いられるキャパシタ又は非水系二次電池は、上記電極を用いて構成することができる。特に、上記電極とガーレ式の透気度が10 sec/100cc以下のセパレータを組み合わせて構成したキャパシタまたは非水系二次電池において効果が大きい。キャパシタの場合にはさらに好ましくは、上記電極と、ガーレ式の透気度が10 sec/100cc以下および厚みが40μm以下のセパレータを組み合わせて構成したキャパシタにおいて効果が大きい。   The capacitor or non-aqueous secondary battery used as the secondary power source of the present invention can be configured using the above electrode. In particular, the effect is great in a capacitor or a non-aqueous secondary battery configured by combining the electrode and a Gurley type air permeability separator of 10 sec / 100 cc or less. In the case of a capacitor, it is more preferable that the effect is great in a capacitor constituted by combining the electrode and a separator having a Gurley type air permeability of 10 sec / 100 cc or less and a thickness of 40 μm or less.

本発明のセパレータは、ガーレ式の透気度が10 sec/100cc以下であり、好ましくは8 sec/100cc以下のセパレータであり、下限値については実用的に3sec/100cc以上のセパレータをキャパシタあるいは非水系二次電池に使用することができる。上記ガーレ式の透気度とは、JIS-P8117に定められ、透過面の径28.6mmすなわち透過面積6.45cm2のセパレータを100ccの空気が透過するのに要する時間(sec)である。透過面積の異なる測定方法の場合でも面積換算した透気度が上記範囲に入るセパレータも使用できる。またキャパシタの場合には、本発明のセパレータの厚みが40μm以下、好ましくは30μm以下のセパレータをキャパシタに使用することができる。 The separator of the present invention is a separator having a Gurley type air permeability of 10 sec / 100 cc or less, preferably 8 sec / 100 cc or less. For the lower limit, a separator of 3 sec / 100 cc or more is practically used as a capacitor or non-use. It can be used for an aqueous secondary battery. The Gurley type air permeability is defined in JIS-P8117 and is the time (sec) required for 100 cc of air to pass through a separator having a permeable surface diameter of 28.6 mm, that is, a permeable area of 6.45 cm 2 . Even in the case of measurement methods with different permeation areas, separators whose area-converted air permeability falls within the above range can also be used. In the case of a capacitor, a separator having a thickness of 40 μm or less, preferably 30 μm or less, can be used for the capacitor.

上記セパレータは、その材質は特に限定されないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料などが挙げられる。またセパレータの形態も特に限定されないが、例えば不織布、微多孔膜がある。   The material of the separator is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials. Further, the form of the separator is not particularly limited, and examples thereof include a nonwoven fabric and a microporous film.

本発明のキャパシタあるいは非水系二次電池用の電解液は、特に限定されず、公知の電解液を用いることができ、例えば、4級アンモニウム塩あるいはLiPF6、LiBF4などのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ-ブチロラクトンなどの1種または2種以上からなる有機溶媒に溶解させた溶液が例示される。電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2.0mol/l程度である。キャパシタあるいは非水系二次電池の外装材、形状は一般的なものであり、形状は目的に応じ、円筒型、角型、アルミ-樹脂ラミネート外装型、フィルム型等のキャパシタとすることができる。 The electrolytic solution for the capacitor or non-aqueous secondary battery of the present invention is not particularly limited, and a known electrolytic solution can be used. For example, a quaternary ammonium salt or a lithium salt such as LiPF 6 or LiBF 4 can be used as propylene carbonate. Examples thereof include solutions dissolved in one or more organic solvents such as ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, and γ-butyrolactone. The concentration of the electrolytic solution is not particularly limited, but is generally about 0.5 to 2.0 mol / l. The exterior material and shape of a capacitor or a non-aqueous secondary battery are general, and the shape can be a capacitor of a cylindrical shape, a square shape, an aluminum-resin laminate exterior type, a film type, etc. depending on the purpose.

以下に、本発明に係る電気化学セルの実施例(例1,2)および比較例(例1〜3)を示し(表1,2)、本発明の特徴とするところを更に明確にするが、本発明はこれらに限定されない。   Examples (Examples 1 and 2) and comparative examples (Examples 1 to 3) of the electrochemical cell according to the present invention will be shown below (Tables 1 and 2), and the features of the present invention will be further clarified. However, the present invention is not limited to these.

〔実施例1〕
(1)市販のピッチ系活性炭(比表面積2000m2/g)を粉砕し、島津製作所製レーザ回折式粒度分布測定装置SALD-2000Jにて測定して、平均粒径(D50%)2.9μm、粒度分布D10%が0.83μmである活性炭粉末を得た。この活性炭93重量部、ケッチェンブラック7重量部およびポリアミドイミド10重量部とN−メチルピロリドン350重量部とを混合して、合材スラリーを得た。このスラリーを集電体となる厚み20μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、電極厚み90μm(集電体厚みを除く)の電極を得た。
(2)(1)で作成した電極を正極、負極とし、厚み54μmおよびガーレ式の透気度14sec/100ccであるセルロース系のセパレータ、電解液に1.5mol/lの濃度にトリエチルメチルアンモニウム・BF4をプロピレカーボネートに溶解した溶液を用いキャパシタを作成した。正極、負極サイズは14mm×20mmとした。このキャパシタを0.8mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を24時間とする完全充電を行った。続いて、電極端子を開放状態とし、保持電圧の経時変化を測定し、キャパシタの自己放電特性を評価したところ、50時間経過で、保持電圧は1.99Vであった。
[Example 1]
(1) A commercially available pitch activated carbon (specific surface area 2000 m 2 / g) is pulverized and measured with a laser diffraction particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation. The average particle size (D50%) 2.9 μm, particle size An activated carbon powder having a distribution D10% of 0.83 μm was obtained. 93 parts by weight of this activated carbon, 7 parts by weight of ketjen black, 10 parts by weight of polyamideimide and 350 parts by weight of N-methylpyrrolidone were mixed to obtain a mixture slurry. This slurry was applied to one side of a 20 μm thick aluminum foil serving as a current collector, dried and pressed to obtain an electrode having an electrode thickness of 90 μm (excluding the current collector thickness).
(2) The electrode prepared in (1) is a positive electrode and a negative electrode, a cellulose separator having a thickness of 54 μm and a Gurley-type air permeability of 14 sec / 100 cc, triethylmethylammonium · A capacitor was prepared using a solution of BF4 dissolved in propylene carbonate. The size of the positive electrode and the negative electrode was 14 mm × 20 mm. This capacitor was charged to 2.5 V with a current of 0.8 mA, and then fully charged with a constant current and constant voltage charge of applying a constant voltage of 2.5 V for 24 hours. Subsequently, the electrode terminal was opened, the change in holding voltage with time was measured, and the self-discharge characteristics of the capacitor were evaluated. As a result, the holding voltage was 1.99 V after 50 hours.

〔実施例2〕
上記実施例1の(1)で作成した電極を正極、負極とし、厚み30μmおよびガーレ式の透気度5.1sec/100ccであるセルロース系のセパレータ、電解液に1.5mol/lの濃度にトリエチルメチルアンモニウム・BF4をプロピレンカーボネートに溶解した溶液を用いキャパシタを作成した。正極、負極サイズは14mm×20mmとした。このキャパシタを0.8mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を24時間とする完全充電を行った。続いて、電極端子を開放状態とし、保持電圧の経時変化を測定し、キャパシタの自己放電特性を評価したところ、50時間経過で、保持電圧は1.96Vであった。
[Example 2]
The electrode prepared in (1) of Example 1 above is a positive electrode and a negative electrode, a cellulose separator having a thickness of 30 μm and a Gurley air permeability of 5.1 sec / 100 cc, and a concentration of 1.5 mol / l in the electrolyte. A capacitor was prepared using a solution of triethylmethylammonium · BF4 dissolved in propylene carbonate. The size of the positive electrode and the negative electrode was 14 mm × 20 mm. This capacitor was charged to 2.5 V with a current of 0.8 mA, and then fully charged with a constant current and constant voltage charge of applying a constant voltage of 2.5 V for 24 hours. Subsequently, the electrode terminal was opened, the change in holding voltage with time was measured, and the self-discharge characteristics of the capacitor were evaluated. As a result, the holding voltage was 1.96 V after 50 hours.

〔比較例1〕
(1)市販のピッチ系活性炭(比表面積2000m2/g)を粉砕し、島津製作所製レーザ回折式粒度分布測定装置SALD-2000Jにて測定して、平均粒径(D50%)2.9μm、粒度分布D10%が0.83μmである活性炭粉末を得た。この活性炭93重量部、ケッチェンブラック7重量部およびポリフッ化ビニリデン(PVDF)10重量部とN−メチルピロリドン350重量部とを混合して、合材スラリーを得た。このスラリーを集電体となる厚み20μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、電極厚み90μm(集電体厚みを除く)の電極を得た。
(2)(1)で作成した電極を正極、負極とし、厚み54μmおよびガーレ式の透気度14sec/100ccであるセルロース系のセパレータ、電解液に1.5mol/lの濃度にトリエチルメチルアンモニウム・BFをプロピレカーボネートに溶解した溶液を用いキャパシタを作成した。正極、負極サイズは14mm×20mmとした。このキャパシタを0.8mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を24時間とする完全充電を行った。続いて、電極端子を開放状態とし、保持電圧の経時変化を測定し、キャパシタの自己放電特性を評価したところ、50時間経過で、保持電圧は1.90Vであった。
[Comparative Example 1]
(1) Commercially available pitch-based activated carbon (specific surface area 2000 m 2 / g) is pulverized and measured with a laser diffraction particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation. Average particle size (D50%) 2.9 μm, particle size An activated carbon powder having a distribution D10% of 0.83 μm was obtained. 93 parts by weight of this activated carbon, 7 parts by weight of ketjen black, 10 parts by weight of polyvinylidene fluoride (PVDF) and 350 parts by weight of N-methylpyrrolidone were mixed to obtain a mixture slurry. This slurry was applied to one side of a 20 μm thick aluminum foil serving as a current collector, dried and pressed to obtain an electrode having an electrode thickness of 90 μm (excluding the current collector thickness).
(2) The electrode prepared in (1) is a positive electrode and a negative electrode, a cellulose separator having a thickness of 54 μm and a Gurley-type air permeability of 14 sec / 100 cc, triethylmethylammonium · A capacitor was prepared using a solution of BF 4 dissolved in propylene carbonate. The size of the positive electrode and the negative electrode was 14 mm × 20 mm. This capacitor was charged to 2.5 V with a current of 0.8 mA, and then fully charged with a constant current and constant voltage charge of applying a constant voltage of 2.5 V for 24 hours. Subsequently, the electrode terminal was opened, the change in holding voltage with time was measured, and the self-discharge characteristics of the capacitor were evaluated. As a result, the holding voltage was 1.90 V after 50 hours.

〔比較例2〕
(1)市販のピッチ系活性炭(比表面積2000m2/g)を粉砕し、島津製作所製レーザ回折式粒度分布測定装置SALD-2000Jにて測定して、その後工程で微粉末を分級除去し、平均粒径(D50%)4.5μm、粒度分布D10%が1.53μmである活性炭粉末を得た。この活性炭93重量部、ケッチェンブラック7重量部およびポリフッ化ビニリデン(PVDF)10重量部とN−メチルピロリドン350重量部とを混合して、合材スラリーを得た。このスラリーを集電体となる厚み20μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、電極厚み90μm(集電体厚みを除く)の電極を得た。
(2)(1)で作成した電極を正極、負極とし、厚み54μmおよびガーレ式の透気度14sec/100ccであるセルロース系のセパレータ、電解液に1.5mol/lの濃度にトリエチルメチルアンモニウム・BF4をプロピレカーボネートに溶解した溶液を用いキャパシタを作成した。正極、負極サイズは14mm×20mmとした。このキャパシタを0.8mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を24時間とする完全充電を行った。続いて、電極端子を開放状態とし、保持電圧の経時変化を測定し、キャパシタの自己放電特性を評価したところ、50時間経過で、保持電圧は2.00Vであった。
[Comparative Example 2]
(1) Commercially available pitch-based activated carbon (specific surface area 2000 m 2 / g) is pulverized and measured with a laser diffraction particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation. An activated carbon powder having a particle size (D50%) of 4.5 μm and a particle size distribution D10% of 1.53 μm was obtained. 93 parts by weight of this activated carbon, 7 parts by weight of ketjen black, 10 parts by weight of polyvinylidene fluoride (PVDF) and 350 parts by weight of N-methylpyrrolidone were mixed to obtain a mixture slurry. This slurry was applied to one side of a 20 μm thick aluminum foil serving as a current collector, dried and pressed to obtain an electrode having an electrode thickness of 90 μm (excluding the current collector thickness).
(2) The electrode prepared in (1) is a positive electrode and a negative electrode, a cellulose separator having a thickness of 54 μm and a Gurley-type air permeability of 14 sec / 100 cc, triethylmethylammonium · A capacitor was prepared using a solution of BF4 dissolved in propylene carbonate. The size of the positive electrode and the negative electrode was 14 mm × 20 mm. This capacitor was charged to 2.5 V with a current of 0.8 mA, and then fully charged with a constant current and constant voltage charge of applying a constant voltage of 2.5 V for 24 hours. Subsequently, the electrode terminal was opened, the change in holding voltage with time was measured, and the self-discharge characteristics of the capacitor were evaluated. As a result, the holding voltage was 2.00 V after 50 hours.

〔比較例3〕
上記比較例1の(1)で作成した電極を正極、負極とし、厚み30μmおよびガーレ式の透気度5.1sec/100ccであるセルロース系のセパレータ、電解液に1.5mol/lの濃度にトリエチルメチルアンモニウム・BF4をプロピレカーボネートに溶解した溶液を用いキャパシタを作成した。正極、負極サイズは14mm×20mmとした。このキャパシタを0.8mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を24時間とする完全充電を行った。続いて、電極端子を開放状態とし、保持電圧の経時変化を測定し、キャパシタの自己放電特性を評価したところ、50時間経過で、保持電圧は1.78Vであった。
結果を表1〜2に示す。
[Comparative Example 3]
The electrode prepared in (1) of Comparative Example 1 is a positive electrode and a negative electrode, a cellulose separator having a thickness of 30 μm and a Gurley air permeability of 5.1 sec / 100 cc, and a concentration of 1.5 mol / l in the electrolyte. A capacitor was prepared using a solution of triethylmethylammonium · BF4 dissolved in propylene carbonate. The size of the positive electrode and the negative electrode was 14 mm × 20 mm. This capacitor was charged to 2.5 V with a current of 0.8 mA, and then fully charged with a constant current and constant voltage charge of applying a constant voltage of 2.5 V for 24 hours. Subsequently, the electrode terminal was opened, the change in holding voltage with time was measured, and the self-discharge characteristics of the capacitor were evaluated. As a result, the holding voltage was 1.78 V after 50 hours.
The results are shown in Tables 1-2.

表1に示されるように、粒度分布D10%が0.83μmであるように微粉末を多く含む活性炭粉末を用いる場合、電極のバインダーが本発明のポリアミドイミドは、比較用のポリフッ化ビニリデンと比較して、キャパシタの自己放電特性に優れていることがわかる。   As shown in Table 1, when using activated carbon powder containing a large amount of fine powder so that the particle size distribution D10% is 0.83 μm, the polyamide imide of the present invention is compared with polyvinylidene fluoride for comparison. It can be seen that the capacitor has excellent self-discharge characteristics.

また、表2に示されるように、粒度分布D10%が0.83μmであるように微粉末を多く含む活性炭粉末を用いる場合、電極のバインダーが本発明のポリアミドイミドは、比較用のポリフッ化ビニリデンと比較して、ガーレ式の透気度が5.1 sec/100ccであり、かつ厚みが30μmであるセパレータを用いても自己放電特性に優れていることがわかる。
Further, as shown in Table 2, when using activated carbon powder containing a large amount of fine powder so that the particle size distribution D10% is 0.83 μm, the polyamide imide of the present invention is used for comparison with polyvinylidene fluoride for comparison. In comparison, it can be seen that the self-discharge characteristics are excellent even when a separator having a Gurley type air permeability of 5.1 sec / 100 cc and a thickness of 30 μm is used.

Claims (5)

活物質とバインダーとを用いて成形した二次電源用の電極材料において、活物質の粒度分布D50%が2μmを超え、かつ活物質の粒度分布D10%が1.5μm未満であり、かつバインダーがポリアミドイミド樹脂を含むことを特徴とする電極材料。 In an electrode material for a secondary power source molded using an active material and a binder, the active material particle size distribution D50% exceeds 2 μm, the active material particle size distribution D10% is less than 1.5 μm, and the binder is polyamide. An electrode material comprising an imide resin. 活物質が炭素質粉末であることを特徴とする請求項1の電極材料。 2. The electrode material according to claim 1, wherein the active material is a carbonaceous powder. 請求項1又は2のいずれかに記載の電極材料を正極及び/又は負極に用いることを特徴とする二次電源。 A secondary power source, wherein the electrode material according to claim 1 is used for a positive electrode and / or a negative electrode. ガーレ式の透気度が10 sec/100cc以下のセパレータを用いることを特徴とする請求項3記載の二次電源。 The secondary power supply according to claim 3, wherein a separator having a Gurley type air permeability of 10 sec / 100cc or less is used. セパレータの厚みが40μm以下であることを特徴とする請求項4に記載の二次電源。
The secondary power supply according to claim 4, wherein the separator has a thickness of 40 μm or less.
JP2004286284A 2004-09-30 2004-09-30 Electrode material and secondary power supply using it Pending JP2006100163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286284A JP2006100163A (en) 2004-09-30 2004-09-30 Electrode material and secondary power supply using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286284A JP2006100163A (en) 2004-09-30 2004-09-30 Electrode material and secondary power supply using it

Publications (1)

Publication Number Publication Date
JP2006100163A true JP2006100163A (en) 2006-04-13

Family

ID=36239748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286284A Pending JP2006100163A (en) 2004-09-30 2004-09-30 Electrode material and secondary power supply using it

Country Status (1)

Country Link
JP (1) JP2006100163A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105036A1 (en) * 2007-02-23 2008-09-04 Toray Industries, Inc. Binder resin for electrode of lithium ion secondary battery, composition and paste containing the resin, and electrode of lithium ion secondary battery using the resin
JP2010225541A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
JP2011175751A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Binder for lithium ion secondary battery electrode
WO2014208596A1 (en) * 2013-06-25 2014-12-31 日立化成株式会社 Separator for electrochemical elements and lithium ion secondary battery
JP2015065136A (en) * 2012-09-28 2015-04-09 株式会社Gsユアサ Power storage element and on-vehicle power storage system
JPWO2013168755A1 (en) * 2012-05-09 2016-01-07 日立化成株式会社 Separator for electrochemical device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536413A (en) * 1991-07-31 1993-02-12 Sony Corp Nonaqueous electrolyte secondary battery
JPH05151998A (en) * 1991-11-30 1993-06-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH11102845A (en) * 1997-09-29 1999-04-13 Asahi Glass Co Ltd Electrical double layer capacitor and manufacture thereof
JP2000182904A (en) * 1998-12-15 2000-06-30 Osaka Gas Co Ltd Electric double-layered capacitor
JP2001006747A (en) * 1999-06-22 2001-01-12 Sony Corp Nonaqueous electrolyte secondary battery
JP2001068115A (en) * 1999-08-27 2001-03-16 Hitachi Chem Co Ltd Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536413A (en) * 1991-07-31 1993-02-12 Sony Corp Nonaqueous electrolyte secondary battery
JPH05151998A (en) * 1991-11-30 1993-06-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH11102845A (en) * 1997-09-29 1999-04-13 Asahi Glass Co Ltd Electrical double layer capacitor and manufacture thereof
JP2000182904A (en) * 1998-12-15 2000-06-30 Osaka Gas Co Ltd Electric double-layered capacitor
JP2001006747A (en) * 1999-06-22 2001-01-12 Sony Corp Nonaqueous electrolyte secondary battery
JP2001068115A (en) * 1999-08-27 2001-03-16 Hitachi Chem Co Ltd Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105036A1 (en) * 2007-02-23 2008-09-04 Toray Industries, Inc. Binder resin for electrode of lithium ion secondary battery, composition and paste containing the resin, and electrode of lithium ion secondary battery using the resin
JP5333206B2 (en) * 2007-02-23 2013-11-06 東レ株式会社 Lithium ion secondary battery electrode binder resin, composition and paste containing the same, and lithium ion secondary battery electrode using the same
JP2010225541A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
JP2011175751A (en) * 2010-02-23 2011-09-08 Toray Ind Inc Binder for lithium ion secondary battery electrode
JPWO2013168755A1 (en) * 2012-05-09 2016-01-07 日立化成株式会社 Separator for electrochemical device and manufacturing method thereof
JP2015065136A (en) * 2012-09-28 2015-04-09 株式会社Gsユアサ Power storage element and on-vehicle power storage system
WO2014208596A1 (en) * 2013-06-25 2014-12-31 日立化成株式会社 Separator for electrochemical elements and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5462445B2 (en) Lithium ion secondary battery
US7838150B2 (en) Nonaqueous lithium secondary battery with carbon electrodes
AU2008279196B2 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP5228531B2 (en) Electricity storage device
WO2015111710A1 (en) Non-aqueous secondary battery
JP5748108B2 (en) Lithium secondary battery
JP6223466B2 (en) Lithium ion capacitor
KR101479881B1 (en) Lithium ion secondary battery
JP2006294316A (en) Lithium ion secondary battery and manufacturing method thereof
JP2020155223A (en) Positive electrode material for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
EP2280437A1 (en) Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
KR101613285B1 (en) Composite electrode comprising different electrode active material and electrode assembly
JP2016091652A (en) Nonaqueous electrolyte power storage device
JP2006100163A (en) Electrode material and secondary power supply using it
JP2008117905A (en) Electrochemical capacitor
JP2007242348A (en) Lithium-ion secondary battery
KR20130140395A (en) Anode for lithium secondary battery, method for preparing the same, and lithium secondary battery using the same
JP6834187B2 (en) Hybrid capacitors and their manufacturing methods
JP2010027547A (en) Separator for electrochemical element and lithium-ion battery using the same
JP6736833B2 (en) Non-aqueous electrolyte storage element
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012235041A (en) Positive electrode and lithium-ion capacitor
WO2020241242A1 (en) Power storage device
JP5131949B2 (en) Capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823