JP2006098962A - Zoom lens and imaging apparatus having same - Google Patents

Zoom lens and imaging apparatus having same Download PDF

Info

Publication number
JP2006098962A
JP2006098962A JP2004287421A JP2004287421A JP2006098962A JP 2006098962 A JP2006098962 A JP 2006098962A JP 2004287421 A JP2004287421 A JP 2004287421A JP 2004287421 A JP2004287421 A JP 2004287421A JP 2006098962 A JP2006098962 A JP 2006098962A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
zoom lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287421A
Other languages
Japanese (ja)
Other versions
JP4617128B2 (en
JP2006098962A5 (en
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004287421A priority Critical patent/JP4617128B2/en
Priority to US11/241,657 priority patent/US7248418B2/en
Publication of JP2006098962A publication Critical patent/JP2006098962A/en
Publication of JP2006098962A5 publication Critical patent/JP2006098962A5/ja
Application granted granted Critical
Publication of JP4617128B2 publication Critical patent/JP4617128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a zoom lens in which the whole lens system is compact while maintaining high image quality by properly performing lens configuration and lens group arrangement and an imaging apparatus having the same. <P>SOLUTION: The zoom lens has the first lens group B1 of negative refracting power, the second lens group B2 of positive or negative refracting power, the third lens group B3 of positive refracting power and the fourth lens group B4 of negative refracting power in order from the object side to the image side. The third lens group B3 and the fourth lens group B4 move to the object side and the second lens group B2 moves so that an interval between the second lens group B2 and the third lens group B3 at a telescopic end becomes small and an interval between the third lens group B3 and the fourth lens group B4 becomes small compared to a wide-angle end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はズームレンズに関し、特に、コンパクトなデジタルスチルカメラ用の撮影レンズとして好適なズームレンズに関するものである。   The present invention relates to a zoom lens, and more particularly to a zoom lens suitable as a photographing lens for a compact digital still camera.

近年、デジタルカメラ用の撮影レンズやビデオカメラ用の撮影レンズにおいては、レンズ系全体がよりコンパクトで光学性能がより高いことが要求されている。特にデジタルカメラにおいては、撮影者の携帯性を重視した薄型の形態であることが望まれている。   In recent years, in an imaging lens for a digital camera and an imaging lens for a video camera, the entire lens system is required to be more compact and have higher optical performance. In particular, in a digital camera, it is desired to have a thin form that places importance on the portability of a photographer.

従来、レンズ鏡筒には、カメラのより薄型化の実現のため収納性に効率が良い沈胴構造を利用したものが多く、それに関する構成には、光学的及びメカ的な種々な工夫がなされている。   Conventionally, many lens barrels use a retractable structure that is efficient in storage to realize a thinner camera, and various optical and mechanical devices have been applied to the configuration related thereto. Yes.

沈胴構造のレンズ鏡筒は、沈胴時(収納時)から撮影可能な状態に至るまでに多くの時間がかかってしまうことと、効率良く収納を行うためにはメカ機構が複雑化してしまう傾向がある。   A retractable lens barrel tends to take a lot of time from retracted (stored) to ready to be photographed, and the mechanical mechanism tends to be complicated for efficient storage. is there.

一方、そのような欠点を補うべく光学系中に反射部材を配し、光軸を略90°偏向させることにより物体側方向の光学的厚みを抑え、沈胴せずとも薄型のカメラを達成した光学系が提案されている(特許文献1、2)。   On the other hand, an optical system that achieves a thin camera without collapsing by suppressing the optical thickness in the object side direction by arranging a reflecting member in the optical system to compensate for such a defect and deflecting the optical axis by approximately 90 °. A system has been proposed (Patent Documents 1 and 2).

撮像装置の像形成手段として固体撮像素子を用いる場合の問題として、固体撮像素子上の光電変換部が一定開口を持ったホール内に存在する構造が挙げられる。このため入射光線が垂直角度より大きく外れてくると、この開口にて光線がケラレてしまい光電変換感度の低下を招くこととなる。この為、従来の固定撮像素子を用いた撮影光学系は画面中心と画面周辺にて撮像素子へ入射する光線角度がなるべく垂直に近づくようにテレセントリックな光学系が望まれている。     A problem in the case of using a solid-state imaging device as an image forming unit of the imaging device is a structure in which a photoelectric conversion unit on the solid-state imaging device is present in a hole having a certain opening. For this reason, if the incident light beam deviates by more than the vertical angle, the light beam is vignetted at this opening, leading to a decrease in photoelectric conversion sensitivity. For this reason, a conventional photographing optical system using a fixed image sensor is desired to be a telecentric optical system so that the angle of light incident on the image sensor at the center and the periphery of the screen approaches as perpendicular as possible.

しかし、その欠点を補うべく撮像素子のホール構造に工夫をなし、光線の斜入射や入射角変動に対しても効率良く光線を光電変換面にまで取り込めるような撮像手段が提案されている(特許文献3、4)。   However, an image pickup means has been proposed in which the hole structure of the image sensor is devised to make up for the drawback, and the light beam can be efficiently taken into the photoelectric conversion surface even when the light beam is obliquely incident or the incident angle fluctuates (patent). References 3, 4).

そして、更には従来の固体撮像素子の前面に置かれる、ある程度の厚みがある赤外光吸収フィルターや水晶ローパスフィルター等のガラスフィルターに代わり、同様の効果を蒸着や薄い厚みの光学部材で得るようにした技術が提案されている(特許文献5)。   Furthermore, instead of a glass filter such as an infrared light absorption filter or a quartz low-pass filter having a certain thickness placed on the front surface of a conventional solid-state imaging device, the same effect can be obtained by vapor deposition or a thin optical member. The technique which was made is proposed (patent document 5).

また、撮像手段として、固体撮像素子を用いたときの好適なズームレンズ光学系が提案されている(特許文献6)。
特開2004−37967号公報 特開2004−69808号公報 特開平11−68074号公報 特開2003−224249号公報 特開2000−19457号公報 特開2004−133058号公報
Further, a zoom lens optical system suitable when a solid-state image sensor is used as an imaging unit has been proposed (Patent Document 6).
JP 2004-37967 A JP 2004-69808 A JP 11-68074 A JP 2003-224249 A JP 2000-19457 A JP 2004-133058 A

小型のデジタルカメラの撮影系に用いられるズームレンズの多くは、最も物体側に負成分(負屈折力)のレンズ群を配し、その像側に第1正成分(正屈折力)のレンズ群、更に最も撮像面に近いレンズ群を第2正成分のレンズ群とした負、正、正成分構成のズームレンズで構成している。   Many zoom lenses used in small digital camera photography systems have a negative component (negative refractive power) lens group closest to the object side, and a first positive component (positive refractive power) lens group on the image side. Further, the zoom lens is configured with a zoom lens having negative, positive, and positive component configurations in which the lens group closest to the imaging surface is the second positive component lens group.

そして第1正成分のレンズ群の移動により変倍作用を行い、負成分のレンズ群にて変倍に伴う像面変動の補正をし、そして第2正成分のレンズ群にて撮像面へ入射する光線をテレセントリックに近づけるような屈折作用を行い、全体としてレトロフォーカス型の光学系を構成している。   Then, the zooming operation is performed by moving the first positive component lens group, the image plane variation due to zooming is corrected by the negative component lens unit, and the image is incident on the imaging surface by the second positive component lens unit. The light beam is refracted so as to be close to telecentric, and a retrofocus optical system is formed as a whole.

このようなレトロフォーカス型の光学系では、最も撮像面側の第2正成分のレンズ群の外径(有効径)が増大すると共に、少ないレンズ移動にて一定の変倍作用を行わせるには第1正成分のレンズ群に強い正の屈折力を与えるのが効果的である。   In such a retrofocus type optical system, the outer diameter (effective diameter) of the second positive component lens group closest to the imaging surface increases, and a constant zooming effect can be achieved with a small amount of lens movement. It is effective to give a strong positive refractive power to the first positive component lens group.

しかしながら、テレセントリックな光学系を達成するために、第2正成分のレンズ群に正の屈折力を分担させて、第1正成分とは分離して配置させねばならない。このため、第1正成分のレンズ群の屈折力が小さくなり、結果的にズーミングの際の第1正成分のレンズ群の移動量を大きく確保しなければならず、レンズ系全体の全長が増大してしまう。   However, in order to achieve a telecentric optical system, it is necessary to distribute the positive refractive power to the lens group of the second positive component and dispose it separately from the first positive component. For this reason, the refractive power of the lens unit of the first positive component decreases, and as a result, a large amount of movement of the lens unit of the first positive component during zooming must be ensured, and the overall length of the entire lens system increases. Resulting in.

本発明は、レンズ構成及びレンズ群配置を適切に行うことにより、高画質を維持しつつレンズ系全体がコンパクトなズームレンズ及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens in which the entire lens system is compact while maintaining high image quality and an imaging apparatus having the same by appropriately performing lens configuration and lens group arrangement.

本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群を有し、広角端に対し望遠端で第2レンズ群と第3レンズ群の間隔が小さく、第3レンズ群と第4レンズ群の間隔が小さくなるように、第3、第4レンズ群は物体側へ移動し、第2レンズ群が移動することを特徴としている。   The zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power. The third and fourth lens groups are objects so that the distance between the second lens group and the third lens group is small at the telephoto end relative to the wide-angle end, and the distance between the third lens group and the fourth lens group is small. It moves to the side and the 2nd lens group moves.

本発明によれば、レンズ構成及びレンズ群配置を適切に行うことにより、高画質を維持しつつレンズ系全体がコンパクトなズームレンズ及びそれを有する撮像装置を得ることができる。   According to the present invention, by appropriately performing the lens configuration and the lens group arrangement, it is possible to obtain a zoom lens in which the entire lens system is compact while maintaining high image quality, and an imaging apparatus having the same.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1は本発明の実施例1のズームレンズのレンズ断面図、図2は本発明の実施例1のズームレンズの光路を折り曲げたときの光路図、図3、図4、図5はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。   1 is a cross-sectional view of a zoom lens according to Embodiment 1 of the present invention, FIG. 2 is an optical path diagram when the optical path of the zoom lens according to Embodiment 1 of the present invention is bent, and FIGS. 3, 4, and 5 are respectively implemented. FIG. 6 is aberration diagrams of the zoom lens of Example 1 at a wide angle end, an intermediate zoom position, and a telephoto end (long focal length end).

図6は本発明の実施例2のズームレンズのレンズ断面図、図7は本発明の実施例2のズームレンズの光路を折り曲げたときの光路図、図8、図9、図10はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。   FIG. 6 is a lens cross-sectional view of a zoom lens according to Embodiment 2 of the present invention, FIG. 7 is an optical path diagram when the optical path of the zoom lens according to Embodiment 2 of the present invention is bent, and FIGS. FIG. 6 is aberration diagrams of the zoom lens of Example 2 at a wide angle end, an intermediate zoom position, and a telephoto end (long focal length end).

図11は本発明の実施例3のズームレンズのレンズ断面図、図12は本発明の実施例3のズームレンズの光路を折り曲げたときの光路図、図13、図14、図15はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。   FIG. 11 is a lens cross-sectional view of a zoom lens according to Embodiment 3 of the present invention, FIG. 12 is an optical path diagram when the optical path of the zoom lens according to Embodiment 3 of the present invention is bent, and FIGS. FIG. 12 is an aberration diagram for the zoom lens of Example 3 at a wide angle end, an intermediate zoom position, and a telephoto end (long focal length end).

図16は本発明の実施例4のズームレンズのレンズ断面図、図17は本発明の実施例4のズームレンズの光路を折り曲げたときの光路図、図18、図19、図20はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。   16 is a lens cross-sectional view of a zoom lens according to Example 4 of the present invention, FIG. 17 is an optical path diagram when the optical path of the zoom lens according to Example 4 of the present invention is bent, and FIGS. 18, 19, and 20 are respectively performed. FIG. 10 is aberration diagrams of the zoom lens of Example 4 at a wide angle end, an intermediate zoom position, and a telephoto end (long focal length end).

図21は本発明の実施例5のズームレンズのレンズ断面図、図22は本発明の実施例5のズームレンズの光路を折り曲げたときの光路図、図23、図24、図25はそれぞれ実施例5のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。   21 is a lens cross-sectional view of a zoom lens according to Example 5 of the present invention, FIG. 22 is an optical path diagram when the optical path of the zoom lens according to Example 5 of the present invention is bent, and FIGS. 23, 24, and 25 are respectively performed. FIG. 10 is aberration diagrams of the zoom lens of Example 5 at a wide angle end, an intermediate zoom position, and a telephoto end (long focal length end).

尚、レンズ断面図において(A)は広角端、(B)は中間のズーム位置、(C)は望遠端での様子を表す。   In the lens cross-sectional view, (A) represents the wide-angle end, (B) represents the intermediate zoom position, and (C) represents the telephoto end.

図26は本発明のズームレンズを備えるデジタルカメラ(撮像装置)要部概略図である。   FIG. 26 is a schematic diagram of a main part of a digital camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が被写体側(前方)で、右方が像側(後方)である。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the subject side (front) and the right side is the image side (rear).

レンズ断面図において、B1は負の屈折力(光学的パワー=焦点距離の逆数)のレンズ成分を含む第1レンズ群、B2は正又は負の屈折力の第2レンズ群、B3は正の屈折力の第3レンズ群、B4は負の屈折力の第4レンズ群、SPは開口絞り(虹彩絞り)であり、第3レンズ群B3の物体側に位置している。   In the lens cross-sectional view, B1 is a first lens group including a lens component having a negative refractive power (optical power = reciprocal of focal length), B2 is a second lens group having a positive or negative refractive power, and B3 is a positive refraction. The third lens unit for power, B4 is a fourth lens unit for negative refractive power, and SP is an aperture stop (iris stop), which is located on the object side of the third lens unit B3.

Pは第1レンズ群B1中に含まれる光路折り曲げ用の反射面を含むプリズムである。OBは物体である。   P is a prism including a reflection surface for bending an optical path included in the first lens unit B1. OB is an object.

LPは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に銀塩フィルム用カメラの撮影光学系として使用する際にはフィルム面に相当する感光面が置かれる。   LP is an optical block corresponding to an optical filter, a face plate, a quartz low-pass filter, an infrared cut filter, and the like. IP is an image plane. When used as an imaging optical system for a video camera or a digital still camera, the imaging optics of a silver salt film camera is applied to the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. When used as a system, a photosensitive surface corresponding to the film surface is placed.

収差図において、d、gは各々d線及びg線S.Cは正弦条件である。ΔM、ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表わしている。   In the aberration diagrams, d and g are d. C is a sine condition. ΔM and ΔS are meridional image surfaces, sagittal image surfaces, and lateral chromatic aberration is represented by g-line.

尚、以下の各実施例において広角端と望遠端は変倍用レンズ群が機構上、光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In each of the following embodiments, the wide-angle end and the telephoto end are zoom positions when the zoom lens unit is positioned at both ends of the range in which the zoom lens unit can move on the optical axis.

各実施例では、物体側より像側へ順に、負の屈折力の第1レンズ群B1、正又は負の屈折力の第2レンズ群B2、正の屈折力の第3レンズ群B3、負の屈折力の第4レンズ群B4を有し、第2レンズ群B2と第3レンズ群B3の間隔が小さく、第3レンズ群B3と第4レンズ群B4の間隔が小さくなるように、第3、第4レンズ群B3、B4は物体側へ移動し、第2レンズ群B2が物体側又は像側に凸状の軌跡で移動している。   In each example, in order from the object side to the image side, the first lens unit B1 having a negative refractive power, the second lens unit B2 having a positive or negative refractive power, the third lens unit B3 having a positive refractive power, and a negative lens unit. The third lens unit B4 has a fourth lens unit B4 having a refractive power, the interval between the second lens unit B2 and the third lens unit B3 is small, and the interval between the third lens unit B3 and the fourth lens unit B4 is reduced. The fourth lens unit B3, B4 moves toward the object side, and the second lens unit B2 moves along a convex locus toward the object side or the image side.

各実施例のレンズ構成によれば、光学系全体のテレフォト系の光学作用によって光学全長の短縮を行えるためコンパクトなズームレンズが容易に得られる。   According to the lens configuration of each embodiment, the total optical length can be shortened by the optical action of the telephoto system of the entire optical system, so that a compact zoom lens can be easily obtained.

また第1レンズ群B1中に負の屈折力作用を有するレンズ成分(光学部材)G11を配置することによって入射瞳位置を適切な位置に設定することができる。これによって光学系の瞳位置前後のレンズ外径のバランスを取ると同時に、軸上・軸外の光路を適切に設定することができるので良好な画質を得るための収差補正を良好に行うことができる。   In addition, the entrance pupil position can be set to an appropriate position by disposing a lens component (optical member) G11 having a negative refractive power action in the first lens group B1. As a result, the lens outer diameter before and after the pupil position of the optical system can be balanced, and at the same time, the on-axis and off-axis optical paths can be set appropriately, so that aberration correction for obtaining good image quality can be performed satisfactorily. it can.

そして光学系のズーム作用は、主に第3レンズ群B3と第4レンズ群B4の相対的な位置関係を変化させることにより生じさせている。   The zoom action of the optical system is mainly caused by changing the relative positional relationship between the third lens group B3 and the fourth lens group B4.

具体的には、第1、第2、第3レンズ群B1〜B3の合成された光学系で得られる像を更に第4レンズ群B4により結像を行い、第3レンズ群B3に対する第4レンズ群B4の相対移動変化による横倍率変化にて変倍を行っている。そしてその際、第3、第4レンズ群B3、B4を同時に移動させることによって変倍に伴う結像位置の変化の補正(補償)している。   Specifically, an image obtained by the combined optical system of the first, second, and third lens groups B1 to B3 is further formed by the fourth lens group B4, and the fourth lens with respect to the third lens group B3. The magnification is changed by changing the lateral magnification due to the relative movement change of the group B4. At that time, the third and fourth lens groups B3 and B4 are simultaneously moved to correct (compensate) the change in the imaging position accompanying the zooming.

また、その際更に第2レンズ群B2を光軸移動させることにより、ズーミング中に生ずる像面湾曲収差を良好に補正し、高いズーム比を有していても良好な画質の像を得ることができるようにしている。   Further, by further moving the optical axis of the second lens unit B2 at that time, it is possible to satisfactorily correct the field curvature aberration generated during zooming, and to obtain an image with good image quality even with a high zoom ratio. I can do it.

そして、第1レンズ群B1中に光軸上の光束(光路)を略90°偏向させる作用を有する反射部材Pを配置することにより、被写体方向のレンズ厚を薄くしている。   Then, the lens thickness in the subject direction is reduced by disposing a reflecting member P having an action of deflecting the light beam (optical path) on the optical axis by approximately 90 ° in the first lens unit B1.

また、各実施例では小型でありながら高画質な像を得るために、以下の条件式の1以上を満足するようにしている。   In each embodiment, one or more of the following conditional expressions is satisfied in order to obtain a high-quality image with a small size.

第1レンズ群B1と第2レンズ群B2の広角端のズーム位置における合成焦点距離をF12W、第3レンズ群B3及び第4レンズ群B4の焦点距離をそれぞれF3、F4、広角端におけるレンズ全系の焦点距離をFw、第4レンズ群B4の広角端のズーム位置における結像倍率をβ4wとするとき、
2 < |F12W/Fw| < 6・・・・・・(1)
(但し、F12W < 0)
0.8 < F3/Fw < 1.6・・・・・・(2)
0.8 < |F4/Fw| < 1.5・・・・・・(3)
1<β4w<1.7・・・・・・(4)
0.7<| F3/F4|<1.5・・・・・・(5)
の条件式を満足している。
The combined focal length at the wide-angle end zoom position of the first lens group B1 and the second lens group B2 is F12W, the focal lengths of the third lens group B3 and the fourth lens group B4 are F3 and F4, respectively, and the entire lens system at the wide-angle end. Is set to Fw, and the imaging magnification at the zoom position at the wide-angle end of the fourth lens unit B4 is β4w.
2 <| F12W / Fw | <6 (1)
(However, F12W <0)
0.8 <F3 / Fw <1.6 (2)
0.8 <| F4 / Fw | <1.5 (3)
1 <β4w <1.7 (4)
0.7 <| F3 / F4 | <1.5 (5)
Is satisfied.

条件式(1)は、レンズ外径を小型にしつつ、バックフォーカスがあまり短くなりすぎないようにするとともに、良好な画質を得るための条件である。   Conditional expression (1) is a condition for reducing the lens outer diameter and preventing the back focus from becoming too short, and obtaining good image quality.

条件式(1)の上限値を超えると、第1,第2レンズ群B1、B2の負の合成屈折力が小さく(弱く)なってくるため、第1,2レンズ群B1、B2により形成される被写体の虚像位置が物体側に離れる傾向になる。そして後述する第3,4レンズ群B3、B4で結像される被写体像のバックフォーカスが短くなりすぎて一定の周辺光量を得るために、第4レンズ群B4のレンズ外径が増大してくる。   If the upper limit value of conditional expression (1) is exceeded, the negative combined refractive power of the first and second lens groups B1 and B2 becomes small (weak), so it is formed by the first and second lens groups B1 and B2. The virtual image position of the subject to be moved tends to move away from the object side. Then, in order to obtain a constant peripheral light amount because the back focus of the subject image formed by the third and fourth lens groups B3 and B4 described later becomes too short, the lens outer diameter of the fourth lens group B4 increases. .

他方、下限値を越えると、望遠端のズーム位置において第1、第2レンズ群B1、B2の負の合成屈折力が強くなりすぎてくるため、正の球面収差が大きく発生してきてそれを他のレンズ群にて補正するのが困難になってくる。   On the other hand, if the lower limit is exceeded, the negative combined refractive power of the first and second lens units B1 and B2 becomes too strong at the zoom position at the telephoto end, and a large amount of positive spherical aberration is generated. It becomes difficult to correct with the lens group.

条件式(2)の上限値を越えると第3レンズ群B3の正の屈折力が小さくなりすぎてしまい広角端のズーム位置において任意の像高において一定の画角を得るためには、同時に第4レンズ群B4の負の屈折力も小さくせねばならない。この結果一定の変倍効果を得るために、第2、第4レンズ群B2、B4の光軸上の移動量を大きくせねばならないため、結果としてレンズ系全体が大型化してくる。   When the upper limit of conditional expression (2) is exceeded, the positive refractive power of the third lens unit B3 becomes too small, and in order to obtain a constant angle of view at an arbitrary image height at the zoom position at the wide angle end, The negative refractive power of the four lens unit B4 must also be reduced. As a result, in order to obtain a constant zooming effect, the amount of movement of the second and fourth lens groups B2 and B4 on the optical axis must be increased. As a result, the entire lens system becomes larger.

他方、下限値を越えて第3レンズ群B3の正の屈折力が強くなりすぎると、バックフォーカスが小さくなりすぎてしまいフィルターや撮像素子のカバーガラスを配置する空間が少なくなるので良くない。   On the other hand, if the positive refractive power of the third lens unit B3 exceeds the lower limit and becomes too strong, the back focus becomes too small, and the space for arranging the filter and the cover glass of the image sensor is reduced, which is not good.

条件式(3)は広角端のズーム位置における第4レンズ群B4の負の屈折力に関するものである。   Conditional expression (3) relates to the negative refractive power of the fourth lens unit B4 at the zoom position at the wide-angle end.

上限値を越えて第4レンズ群B4の負の屈折力が弱くなってくると、ズーム(変倍)時に第4レンズ群B4による変倍作用が弱くなり、このため一定の変倍比を得るために各レンズ群の移動量を多くしなければならなく、結果としてレンズ全長が長くなってくる。   When the negative refractive power of the fourth lens unit B4 becomes weaker than the upper limit value, the zooming action by the fourth lens unit B4 is weakened during zooming (magnification), and thus a constant zooming ratio is obtained. Therefore, the movement amount of each lens group must be increased, and as a result, the total lens length becomes longer.

他方、下限値を越えるとレンズ全体としてテレフォト系の作用が強まってくるため、バックフォーカスが短く成りすぎると同時に、一定の周辺光量を確保するために第4レンズ群B4のレンズ外径が大型化をしてくる。又それと同時に像面湾曲や非点収差が多く発生してくるため良くない。   On the other hand, if the lower limit is exceeded, the effect of the telephoto system increases as a whole lens, so that the back focus becomes too short, and at the same time, the lens outer diameter of the fourth lens unit B4 is increased in order to secure a constant peripheral light amount. Come on. At the same time, a lot of curvature of field and astigmatism occur, which is not good.

条件式(4)の上限値を外れるとバックフォーカスが短くなりすぎ、又、下限値を超えるとレンズ全長が増大してくるので良くない。   If the upper limit value of conditional expression (4) is not satisfied, the back focus becomes too short, and if the lower limit value is exceeded, the total lens length increases.

条件式(5)の数値範囲を外れると、光学系を小型化にしつつ良好な画質を得るのが困難になってくる。   If the numerical value range of the conditional expression (5) is not satisfied, it becomes difficult to obtain a good image quality while reducing the size of the optical system.

又、条件式(5)の上限値を外れて、第4レンズ群B4の屈折力が第3レンズ群B3の屈折力に対し相対的に強まってくると、光学全長の短縮化に関してはテレフォト系の作用が強くなるため有利となるが、高次の軸外収差や倍率の色収差が第4レンズ群で大きく発生してしまいこれを補正することが困難になってくる。   Also, if the upper limit of conditional expression (5) is deviated and the refractive power of the fourth lens unit B4 is relatively increased with respect to the refractive power of the third lens unit B3, the telephoto system can be used to shorten the optical total length. However, it is difficult to correct high-order off-axis aberrations and lateral chromatic aberrations in the fourth lens unit.

また逆に下限値を越えると光学系の全長の増大を招くと共に第3レンズ群で球面収差が大きく発生してしまい良くない。   On the contrary, if the lower limit is exceeded, the total length of the optical system is increased and spherical aberration is greatly generated in the third lens group, which is not good.

尚、更に好ましくは、条件式(1)〜(5)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical ranges of the conditional expressions (1) to (5) are set as follows.

2.5<|F12w/Fw|<5・・・・・・(1a)
1.0<|F3/Fw|<1.4・・・・・・(2a)
0.9<|F4/Fw|<1.4・・・・・・(3a)
1.1<β4w<1.5・・・・・・(4a)
0.9<|F3/F4|<1.4・・・・・・(5a)
レンズ枚数を削減しつつ小型で高性能な光学系を達成するためには、第3レンズ群B3及び第4レンズ群B4に、それぞれ非球面形状の面を1以上配するのが効果的である。
2.5 <| F12w / Fw | <5 (1a)
1.0 <| F3 / Fw | <1.4 (2a)
0.9 <| F4 / Fw | <1.4 (3a)
1.1 <β4w <1.5 (4a)
0.9 <| F3 / F4 | <1.4 (5a)
In order to achieve a compact and high-performance optical system while reducing the number of lenses, it is effective to dispose at least one aspherical surface in each of the third lens group B3 and the fourth lens group B4. .

第3レンズ群B3に非球面形状の面を導入することによって主に球面収差の補正作用を与え、第4レンズ群B4中に非球面形状の面を配することによって軸外の諸収差をバランス良く補正している。   By introducing an aspherical surface to the third lens unit B3, a spherical aberration correction function is mainly provided, and by providing an aspherical surface in the fourth lens unit B4, various off-axis aberrations are balanced. Corrected well.

第1レンズ群B1の外径(有動径の寸法)を抑えつつズーム域全域で良好な画質を得るためには、第2レンズ群B2と第3レンズ群B3の間隔中に開口絞りSPを配置するのが望ましい。   In order to obtain good image quality over the entire zoom range while suppressing the outer diameter (moving diameter) of the first lens unit B1, an aperture stop SP is provided in the interval between the second lens unit B2 and the third lens unit B3. It is desirable to arrange.

更に高画質化やコストダウンのためには以下のような構成にするのが良い。   In order to further improve image quality and reduce costs, the following configuration is preferable.

各実施例において非球面形状の面を含むレンズ(非球面レンズ)は、生産性を考慮したときに使用できる硝種を拡大するために、複合型非球面(所謂レプリカ非球面)レンズを用いることが有効である。   In each embodiment, a lens including an aspherical surface (aspherical lens) may be a composite aspherical lens (so-called replica aspherical lens) in order to expand the types of glass that can be used when considering productivity. It is valid.

また、製作性の点から非球面レンズはプラスチック材料とすると良い。   In view of manufacturability, the aspherical lens is preferably made of a plastic material.

ズーミング中、開口絞りSPは各レンズ群とは独立した光軸移動を行わせることで理想的な入射瞳位置を得ることができる。またメカ機構簡略化のためにズーミング中光軸上固定にしても良い。   During zooming, the aperture stop SP can obtain an ideal entrance pupil position by moving the optical axis independent of each lens group. In order to simplify the mechanical mechanism, the optical axis may be fixed during zooming.

レンズ系に回折光学素子や屈折分布型光学材料を導入しても良く、これによれば光学性能を更に向上させることができる。   A diffractive optical element or a refractive distribution type optical material may be introduced into the lens system, and according to this, the optical performance can be further improved.

撮影時に画質劣化の原因となる手振れによる像ブレを補正するために、レンズ群やレンズ群の一部を偏心させるか、反射部材を回転又は移動させることにより、偏向角度や偏向方向を変化させて、撮影時の像ブレをキャンセルする像位置の変位を補正するのが良い。
無限遠物体から有限距離物体に対するフォーカスは第4レンズ群B4を光軸上に物体側に移動させることにより行うのが望ましいが、第3レンズ群B3の移動、または第3、第4レンズ群B3、B4を同時に光軸上に物体側に移動させることによって行っても良い。
To correct image blur due to camera shake that causes image quality degradation during shooting, the deflection angle or deflection direction can be changed by decentering the lens group or a part of the lens group, or by rotating or moving the reflecting member. It is preferable to correct the displacement of the image position for canceling the image blur at the time of shooting.
Focusing from an object at infinity to an object at a finite distance is preferably performed by moving the fourth lens unit B4 to the object side on the optical axis. However, the third lens unit B3 is moved or the third and fourth lens units B3 are moved. , B4 may be performed simultaneously by moving them to the object side on the optical axis.

各レンズ群のレンズ構成として、第1レンズ群B1は物体側より像側へ順に、物体側よりも像面側の曲率の絶対値が大きい負の屈折力の第1レンズG11、プリズムや反射鏡等の偏向部材Pで構成するのが良い。但し、前記負レンズG11は偏向部材にプリズムを用いる際にはプリズムPと接合して一体化しても良く、更にプリズム形状を最初から射出面に負の屈折力を有するように凹面になるように加工しても良い。またプリズムPの入射面に負の屈折力を与えるため凹面に加工もしくは凹レンズと接合しても良い。   As the lens configuration of each lens group, the first lens group B1 is, in order from the object side to the image side, a first lens G11 having a negative refractive power having a larger absolute value of curvature on the image plane side than the object side, a prism or a reflecting mirror. It is good to comprise by deflection members P, such as. However, the negative lens G11 may be integrated with the prism P when a prism is used as the deflecting member, and the prism shape is made concave so that the exit surface has negative refractive power from the beginning. It may be processed. Further, in order to give negative refractive power to the incident surface of the prism P, the concave surface may be processed or joined to a concave lens.

第2レンズ群B2は、ズーミング中における色収差の変動と、球面収差を良好に補正するために負レンズと正レンズを接合した、接合レンズとするのが好ましい。   The second lens unit B2 is preferably a cemented lens in which a negative lens and a positive lens are cemented to satisfactorily correct chromatic aberration variation during zooming and spherical aberration.

第3レンズ群B3は複数の正レンズと1枚以上の負レンズを有するように構成するのが良く、物体側より像側へ順に正レンズ成分G31、負レンズ成分G32、正レンズ成分G33となるようなレンズ構成をとるのが良好な収差補正を行うために望ましい。   The third lens unit B3 is preferably configured to have a plurality of positive lenses and one or more negative lenses, and in order from the object side to the image side, becomes a positive lens component G31, a negative lens component G32, and a positive lens component G33. Such a lens configuration is desirable in order to perform good aberration correction.

ここでレンズ成分とは、1又は2以上のレンズより成るグループをいう。   Here, the lens component refers to a group composed of one or two or more lenses.

また光学系の小型化を図るには、物体側から像側へ順に正レンズ成分、正、負レンズを接合した全体として正の屈折力を有したレンズ成分G32とその像側に正レンズ成分G33を配置するのが好ましい。   In order to reduce the size of the optical system, a positive lens component G32 having a positive refractive power as a whole and a positive lens component G33 on the image side are joined by sequentially joining a positive lens component, a positive lens, and a negative lens from the object side to the image side. Is preferably arranged.

実施例5では、第3レンズ群B3を正レンズ、正レンズ、負レンズの3つのレンズとを接合した接合レンズ、そして正レンズとしている。   In the fifth embodiment, the third lens unit B3 is a cemented lens in which three lenses of a positive lens, a positive lens, and a negative lens are cemented, and a positive lens.

ここで物体側の2つの正レンズが正レンズ成分G31を構成し、負レンズが負レンズ成分G32を構成している。像側の正レンズが成分G33を構成している。   Here, the two positive lenses on the object side constitute a positive lens component G31, and the negative lens constitutes a negative lens component G32. The positive lens on the image side constitutes the component G33.

第4レンズ群B4は、1又は2枚の負レンズより構成するのが良い。   The fourth lens unit B4 is preferably composed of one or two negative lenses.

第4レンズ群B4は負の単一レンズで構成する際は、物体側よりも像面側のレンズ面の曲率が大きくなるようなレンズ形状にすることが望ましい。   When the fourth lens unit B4 is composed of a negative single lens, it is desirable that the fourth lens unit B4 has a lens shape in which the curvature of the lens surface on the image side is larger than that on the object side.

また高画質を図るには、物体側の面を非球面形状とした弱い屈折力のレンズとその物体側に像側のレンズ面が凹形状である負レンズを配置するのが好ましい。   In order to achieve high image quality, it is preferable to dispose a lens having a weak refractive power having an aspheric surface on the object side and a negative lens having a concave lens surface on the image side on the object side.

次に本発明のズームレンズを撮影光学系として用いたレンズシャッター方式のデジタルスチルカメラの実施例を図26を用いて説明する。   Next, an embodiment of a lens shutter type digital still camera using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図26において、10はデジタルカメラ本体、11は本発明のズームレンズによって構成された撮影光学系、12はカメラ本体に内蔵されたストロボ、13は外部式ファインダー、14はシャッターボタンである。15は本発明の光学系のカメラボディ内での概略な光学系の配置関係を示す。   In FIG. 26, 10 is a digital camera body, 11 is a photographing optical system constituted by the zoom lens of the present invention, 12 is a strobe built in the camera body, 13 is an external viewfinder, and 14 is a shutter button. Reference numeral 15 denotes a schematic arrangement of the optical system in the camera body of the optical system of the present invention.

このように本発明のズームレンズをデジタルカメラ等の撮像装置に適用することにより、特にカメラボディ形態を薄型化がなされるような、小型で高い光学性能を有する撮像装置を実現している。   In this way, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital camera, a small-size image pickup apparatus having high optical performance is realized, in particular, the camera body can be thinned.

またこの例では光学系を横位置撮影時に反射部材で偏向された光軸が上下(垂直)方向になるよう配置を行っているが、前記偏向された光軸が左右(水平)方向になるように配置しても良い。   Further, in this example, the optical system is arranged so that the optical axis deflected by the reflecting member at the time of horizontal position photographing is in the vertical (vertical) direction, but the deflected optical axis is in the horizontal (horizontal) direction. You may arrange in.

以上説明したように、各実施例によれば、小型でかつ良好な光学性能を維持できるズームレンズが得られる。   As described above, according to each embodiment, it is possible to obtain a zoom lens that is small and can maintain good optical performance.

尚、第1レンズ群B1の物体側又は/及び第4レンズ群B4の像側に屈折力の小さなレンズ群を付加しても良い。   A lens group having a small refractive power may be added to the object side of the first lens group B1 and / or the image side of the fourth lens group B4.

次に、本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riは各面の曲率半径、Diは第i面と第(i+1)面との間の間隔、Ni、νiはそれぞれd線を基準とした屈折率、アッベ数を示す。   Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of each surface, Di is the distance between the i-th surface and the (i + 1) -th surface, and Ni and νi are d-lines, respectively. The refractive index and Abbe number are shown with reference to.

又、最も像側の2つの面は光学ブロックLPを構成する面である。また、非球面形状は光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、
x=(h/R)/[1+{1−(1+k)(h/R)}1/2
+Ah+Bh+Ch+Dh+Eh10
で表わされる。但し、kは円錐定数、A,B,C,D,Eは非球面係数、Rは近軸曲率半径である。
The two surfaces closest to the image are surfaces constituting the optical block LP. In addition, when the aspherical shape is x with the displacement in the optical axis direction at the position of the height h from the optical axis as the reference to the surface vertex,
x = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 ]
+ Ah 2 + Bh 4 + Ch 6 + Dh 8 + Eh 10
It is represented by However, k is a conic constant, A, B, C, D, and E are aspherical coefficients, and R is a paraxial curvature radius.

又、「e−0X」は、「×10−x」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。又前述の各条件式と各数値実施例との関係を表1に示す。
数値実施例1
f= 5.82〜 15.50 Fno= 2.34 〜 5.00 2ω=54.6 〜 21.9
R 1 = 17.420 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 9.165 D 2 = 2.50
R 3 = ∞ D 3 = 6.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = 可変
R 5 = -13.555 D 5 = 0.70 N 3 = 1.696797 ν 3 = 55.5
R 6 = 50.746 D 6 = 1.30 N 4 = 1.834000 ν 4 = 37.2
R 7 = -22.278 D 7 = 可変
R 8 = 絞り D 8 = 0.70
R 9 = 5.953 D 9 = 1.70 N 5 = 1.733997 ν 5 = 51.5
R10 = 20.439 D10 = 0.25
R11 = -13.273 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.864 D12 = 0.60 N 7 = 1.800999 ν 7 = 35.0
R13 = -38.096 D13 = 0.20
*R14 = 13.106 D14 = 1.70 N 8 = 1.487490 ν 8 = 70.2
*R15 = -4.634 D15 = 可変
*R16 = 159.392 D16 = 1.50 N 9 = 1.491710 ν 9 = 57.4
*R17 = 112.510 D17 = 0.60
R18 = -3.771 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -18.062 D19 = 可変
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\焦点距離 5.82 10.46 15.50
可変間隔\
D 4 2.51 0.73 1.19
D 7 7.30 5.16 0.80
D15 2.68 0.97 0.49
D19 1.00 6.62 11.01

非球面係数
14面 : k=-2.39711e+01 A=0 B=-2.63697e-03 C=-3.10017e-04 D=-2.70261e-06 E=-6.08507e-06
15面 : k=3.75824e-01 A=0 B=3.45097e-04 C=-1.78596e-04 D=1.09833e-05 E=-4.36814e-06
16面 : k=-4.70761e+06 A=0 B=6.47376e-03 C=-2.44585e-04 D=1.35856e-04 E=-1.02447e-05
17面 : k=-3.93361e+06 A=0 B=5.70058e-03 C=2.84537e-04 D=-2.77559e-05 E=2.99998e-05

数値実施例2
f= 5.81〜 17.40 Fno= 2.17 〜 5.00 2ω=54.6 〜 19.6
R 1 = 22.207 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 10.567 D 2 = 2.50
R 3 = ∞ D 3 = 6.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = 可変
R 5 = -17.860 D 5 = 0.70 N 3 = 1.696797 ν 3 = 55.5
R 6 = 22.922 D 6 = 1.40 N 4 = 1.834000 ν 4 = 37.2
R 7 = -37.907 D 7 = 可変
R 8 = 絞り D 8 = 0.70
R 9 = 5.861 D 9 = 1.70 N 5 = 1.733997 ν 5 = 51.5
R10 = 16.392 D10 = 0.40
R11 = -13.982 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.927 D12 = 0.60 N 7 = 1.800999 ν 7 = 35.0
R13 = -33.158 D13 = 0.20
*R14 = 14.057 D14 = 2.00 N 8 = 1.487490 ν 8 = 70.2
*R15 = -4.784 D15 = 可変
*R16 = 1044.095 D16 = 1.20 N 9 = 1.491710 ν 9 = 57.4
*R17 = -2467.527 D17 = 0.70
R18 = -3.634 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -13.932 D19 = 可変
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\焦点距離 5.81 11.23 17.40
可変間隔\
D 4 4.02 1.66 1.69
D 7 7.98 5.58 0.80
D15 2.96 1.01 0.55
D19 1.00 7.71 12.93

非球面係数
14面 : k=1.21465e+01 A=0 B=-3.99646e-03 C=-2.24782e-04 D=9.20299e-06 E=-3.28205e-06
15面 : k=3.31649e-01 A=0 B=4.71148e-04 C=-9.90586e-05 D=9.47969e-06 E=-1.90976e-06
16面 : k=-4.70761e+06 A=0 B=7.60243e-03 C=-1.59383e-04 D=1.36597e-04 E=-6.94020e-06
17面 : k=-3.93361e+06 A=0 B=5.98738e-03 C=5.26927e-04 D=-8.13470e-05 E=4.19792e-05

数値実施例3
f= 5.64〜 16.80 Fno= 2.13 〜 5.00 2ω=56.0 〜 20.2
R 1 = 26.248 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 11.139 D 2 = 2.50
R 3 = ∞ D 3 = 10.00 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = 可変
R 5 = -34.597 D 5 = 0.70 N 3 = 1.603112 ν 3 = 60.6
R 6 = 43.046 D 6 = 1.40 N 4 = 1.805181 ν 4 = 25.4
R 7 = -140.373 D 7 = 可変
R 8 = 絞り D 8 = 0.70
R 9 = 5.194 D 9 = 2.00 N 5 = 1.487490 ν 5 = 70.2
R10 = -164.837 D10 = 0.25
R11 = -14.903 D11 = 1.70 N 6 = 1.666718 ν 6 = 48.3
R12 = -4.462 D12 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R13 = -64.758 D13 = 0.20
*R14 = 13.569 D14 = 2.00 N 8 = 1.487490 ν 8 = 70.2
*R15 = -5.014 D15 = 可変
*R16 = 88.288 D16 = 1.20 N 9 = 1.491710 ν 9 = 57.4
*R17 = 67.332 D17 = 1.00
R18 = -3.408 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -12.646 D19 = 可変
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\焦点距離 5.64 11.15 16.80
可変間隔\
D 4 1.50 6.60 4.01
D 7 12.31 2.71 0.80
D15 3.17 1.40 0.88
D19 0.70 6.97 12.00

非球面係数
14面 : k=1.49021e+01 A=0 B=-3.74979e-03 C=-2.23417e-04 D=1.27559e-05 E=-3.03564e-06
15面 : k=2.94165e-01 A=0 B=4.67205e-04 C=-1.33565e-04 D=1.28139e-05 E=-1.54544e-06
16面 : k=-4.70761e+06 A=0 B=6.90793e-03 C=-3.09883e-04 D=9.86846e-05 E=-1.24701e-06
17面 : k=-3.93361e+06 A=0 B=5.49110e-03 C=-1.23267e-04 D=-1.25373e-06 E=2.46770e-05

数値実施例4
f= 5.63〜 16.80 Fno= 2.08 〜 5.00 2ω=56.1 〜 20.2
R 1 = 48.153 D 1 = 0.80 N 1 = 1.603112 ν 1 = 60.6
R 2 = 11.083 D 2 = 2.30
R 3 = ∞ D 3 = 10.00 N 2 = 1.772499 ν 2 = 49.6
R 4 = ∞ D 4 = 可変
R 5 = 199.961 D 5 = 0.70 N 3 = 1.772499 ν 3 = 49.6
R 6 = 22.845 D 6 = 1.40 N 4 = 1.805181 ν 4 = 25.4
R 7 = 242.865 D 7 = 可変
R 8 = 絞り D 8 = 0.70
R 9 = 5.245 D 9 = 2.00 N 5 = 1.487490 ν 5 = 70.2
R10 = -35.017 D10 = 0.25
R11 = -12.568 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.940 D12 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R13 = -109.961 D13 = 0.50
* R14 = 18.634 D14 = 2.00 N 8 = 1.583126 ν 8 = 59.4
* R15 = -5.135 D15 = 可変
* R16 = 151.895 D16 = 1.20 N 9 = 1.749497 ν 9 = 35.3
* R17 = 121.189 D17 = 1.00
R18 = -3.555 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -20.295 D19 = 可変
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\焦点距離 5.63 11.07 16.80
可変間隔\
D 4 0.95 2.52 1.84
D 7 10.69 4.61 0.80
D15 2.77 0.98 0.51
D19 0.70 6.99 11.96

非球面係数
14面 : k=1.66335e+01 A=0 B=-3.21818e-03 C=-1.86168e-04 D=5.40611e-06 E=-2.02531e-06
15面 : k=2.53718e-01 A=0 B=3.69525e-04 C=-1.49964e-04 D=1.18370e-05 E=-1.34525e-06
16面 : k=-5.25720e+06 A=0 B=5.24497e-03 C=-1.79913e-04 D=7.42054e-05 E=-3.94180e-06
17面 : k=-3.87782e+06 A=0 B=4.24203e-03 C=4.38752e-05 D=2.06324e-05 E=5.70011e-06

数値実施例5
f= 5.44〜 10.80 Fno= 2.33 〜 4.50 2ω=57.8 〜 31.1
R 1 = 28.789 D 1 = 0.80 N 1 = 1.603112 ν 1 = 60.6
R 2 = 8.451 D 2 = 1.80
R 3 = ∞ D 3 = 8.00 N 2 = 1.772499 ν 2 = 49.6
R 4 = ∞ D 4 = 可変
R 5 = -106.294 D 5 = 0.60 N 3 = 1.772499 ν 3 = 49.6
R 6 = 13.391 D 6 = 1.30 N 4 = 1.805181 ν 4 = 25.4
R 7 = 196.529 D 7 = 可変
R 8 = 絞り D 8 = 可変
R 9 = 5.241 D 9 = 2.10 N 5 = 1.487490 ν 5 = 70.2
R10 = -12.689 D10 = 2.00 N 6 = 1.719995 ν 6 = 50.2
R11 = -3.116 D11 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R12 = 76.863 D12 = 0.50
* R13 = 16.133 D13 = 2.20 N 8 = 1.583126 ν 8 = 59.4
* R14 = -4.841 D14 = 可変
* R15 = 724.667 D15 = 1.20 N 9 = 1.749497 ν 9 = 35.3
* R16 = 515.103 D16 = 1.20
R17 = -3.899 D17 = 0.70 N10 = 1.729157 ν10 = 54.7
R18 = -23.118 D18 = 可変
R19 = ∞ D19 = 0.60 N11 = 1.516330 ν11 = 64.1
R20 = ∞

\焦点距離 5.44 8.80 10.80
可変間隔\
D 4 0.79 2.60 2.49
D 7 2.61 0.80 0.91
D14 2.76 1.49 1.19
D18 0.70 4.57 6.43


非球面係数
13面 : k=7.45902e+00 A=0 B=-3.86276e-03C=-7.97946e-05 D=-5.25583e-06 E=-1.40582e-06
14面 : k=2.62115e-01 A=0 B=1.24566e-04 C=-1.22168e-04 D=1.28930e-05 E=-1.31993e-06
15面 : k=-5.25720e+06 A=0 B=5.58683e-03 C=-3.26978e-04 D=7.10164e-05 E=-2.09598e-06
16面 : k=-3.87782e+06 A=0 B=5.30136e-03 C=-1.60201e-04 D=1.71346e-5
E=1.02599e-05
“E-0X” means “× 10 −x ”. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.
Numerical example 1
f = 5.82 to 15.50 Fno = 2.34 to 5.00 2ω = 54.6 to 21.9
R 1 = 17.420 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 9.165 D 2 = 2.50
R 3 = ∞ D 3 = 6.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = Variable
R 5 = -13.555 D 5 = 0.70 N 3 = 1.696797 ν 3 = 55.5
R 6 = 50.746 D 6 = 1.30 N 4 = 1.834000 ν 4 = 37.2
R 7 = -22.278 D 7 = variable
R 8 = Aperture D 8 = 0.70
R 9 = 5.953 D 9 = 1.70 N 5 = 1.733997 ν 5 = 51.5
R10 = 20.439 D10 = 0.25
R11 = -13.273 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.864 D12 = 0.60 N 7 = 1.800999 ν 7 = 35.0
R13 = -38.096 D13 = 0.20
* R14 = 13.106 D14 = 1.70 N 8 = 1.487490 ν 8 = 70.2
* R15 = -4.634 D15 = variable
* R16 = 159.392 D16 = 1.50 N 9 = 1.491710 ν 9 = 57.4
* R17 = 112.510 D17 = 0.60
R18 = -3.771 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -18.062 D19 = variable
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\ Focal length 5.82 10.46 15.50
Variable interval \
D 4 2.51 0.73 1.19
D 7 7.30 5.16 0.80
D15 2.68 0.97 0.49
D19 1.00 6.62 11.01

Aspheric coefficient
14th: k = -2.39711e + 01 A = 0 B = -2.63697e-03 C = -3.10017e-04 D = -2.70261e-06 E = -6.08507e-06
15th: k = 3.75824e-01 A = 0 B = 3.45097e-04 C = -1.78596e-04 D = 1.09833e-05 E = -4.36814e-06
16 sides: k = -4.70761e + 06 A = 0 B = 6.47376e-03 C = -2.44585e-04 D = 1.35856e-04 E = -1.02447e-05
17th: k = -3.93361e + 06 A = 0 B = 5.70058e-03 C = 2.84537e-04 D = -2.77559e-05 E = 2.99998e-05

Numerical example 2
f = 5.81 to 17.40 Fno = 2.17 to 5.00 2ω = 54.6 to 19.6
R 1 = 22.207 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 10.567 D 2 = 2.50
R 3 = ∞ D 3 = 6.50 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = Variable
R 5 = -17.860 D 5 = 0.70 N 3 = 1.696797 ν 3 = 55.5
R 6 = 22.922 D 6 = 1.40 N 4 = 1.834000 ν 4 = 37.2
R 7 = -37.907 D 7 = Variable
R 8 = Aperture D 8 = 0.70
R 9 = 5.861 D 9 = 1.70 N 5 = 1.733997 ν 5 = 51.5
R10 = 16.392 D10 = 0.40
R11 = -13.982 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.927 D12 = 0.60 N 7 = 1.800999 ν 7 = 35.0
R13 = -33.158 D13 = 0.20
* R14 = 14.057 D14 = 2.00 N 8 = 1.487490 ν 8 = 70.2
* R15 = -4.784 D15 = variable
* R16 = 1044.095 D16 = 1.20 N 9 = 1.491710 ν 9 = 57.4
* R17 = -2467.527 D17 = 0.70
R18 = -3.634 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -13.932 D19 = variable
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\ Focal length 5.81 11.23 17.40
Variable interval \
D 4 4.02 1.66 1.69
D 7 7.98 5.58 0.80
D15 2.96 1.01 0.55
D19 1.00 7.71 12.93

Aspheric coefficient
14th: k = 1.21465e + 01 A = 0 B = -3.99646e-03 C = -2.24782e-04 D = 9.20299e-06 E = -3.28205e-06
15th: k = 3.31649e-01 A = 0 B = 4.71148e-04 C = -9.90586e-05 D = 9.47969e-06 E = -1.90976e-06
16 sides: k = -4.70761e + 06 A = 0 B = 7.60243e-03 C = -1.59383e-04 D = 1.36597e-04 E = -6.94020e-06
17th: k = -3.93361e + 06 A = 0 B = 5.98738e-03 C = 5.26927e-04 D = -8.13470e-05 E = 4.19792e-05

Numerical Example 3
f = 5.64 to 16.80 Fno = 2.13 to 5.00 2ω = 56.0 to 20.2
R 1 = 26.248 D 1 = 0.80 N 1 = 1.696797 ν 1 = 55.5
R 2 = 11.139 D 2 = 2.50
R 3 = ∞ D 3 = 10.00 N 2 = 1.696797 ν 2 = 55.5
R 4 = ∞ D 4 = Variable
R 5 = -34.597 D 5 = 0.70 N 3 = 1.603112 ν 3 = 60.6
R 6 = 43.046 D 6 = 1.40 N 4 = 1.805181 ν 4 = 25.4
R 7 = -140.373 D 7 = Variable
R 8 = Aperture D 8 = 0.70
R 9 = 5.194 D 9 = 2.00 N 5 = 1.487490 ν 5 = 70.2
R10 = -164.837 D10 = 0.25
R11 = -14.903 D11 = 1.70 N 6 = 1.666718 ν 6 = 48.3
R12 = -4.462 D12 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R13 = -64.758 D13 = 0.20
* R14 = 13.569 D14 = 2.00 N 8 = 1.487490 ν 8 = 70.2
* R15 = -5.014 D15 = variable
* R16 = 88.288 D16 = 1.20 N 9 = 1.491710 ν 9 = 57.4
* R17 = 67.332 D17 = 1.00
R18 = -3.408 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -12.646 D19 = variable
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\ Focal length 5.64 11.15 16.80
Variable interval \
D 4 1.50 6.60 4.01
D 7 12.31 2.71 0.80
D15 3.17 1.40 0.88
D19 0.70 6.97 12.00

Aspheric coefficient
14th: k = 1.49021e + 01 A = 0 B = -3.74979e-03 C = -2.23417e-04 D = 1.27559e-05 E = -3.03564e-06
15th: k = 2.94165e-01 A = 0 B = 4.67205e-04 C = -1.33565e-04 D = 1.28139e-05 E = -1.54544e-06
16 sides: k = -4.70761e + 06 A = 0 B = 6.90793e-03 C = -3.09883e-04 D = 9.86846e-05 E = -1.24701e-06
17th: k = -3.93361e + 06 A = 0 B = 5.49110e-03 C = -1.23267e-04 D = -1.25373e-06 E = 2.46770e-05

Numerical Example 4
f = 5.63 to 16.80 Fno = 2.08 to 5.00 2ω = 56.1 to 20.2
R 1 = 48.153 D 1 = 0.80 N 1 = 1.603112 ν 1 = 60.6
R 2 = 11.083 D 2 = 2.30
R 3 = ∞ D 3 = 10.00 N 2 = 1.772499 ν 2 = 49.6
R 4 = ∞ D 4 = Variable
R 5 = 199.961 D 5 = 0.70 N 3 = 1.772499 ν 3 = 49.6
R 6 = 22.845 D 6 = 1.40 N 4 = 1.805181 ν 4 = 25.4
R 7 = 242.865 D 7 = variable
R 8 = Aperture D 8 = 0.70
R 9 = 5.245 D 9 = 2.00 N 5 = 1.487490 ν 5 = 70.2
R10 = -35.017 D10 = 0.25
R11 = -12.568 D11 = 1.70 N 6 = 1.719995 ν 6 = 50.2
R12 = -3.940 D12 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R13 = -109.961 D13 = 0.50
* R14 = 18.634 D14 = 2.00 N 8 = 1.583126 ν 8 = 59.4
* R15 = -5.135 D15 = variable
* R16 = 151.895 D16 = 1.20 N 9 = 1.749497 ν 9 = 35.3
* R17 = 121.189 D17 = 1.00
R18 = -3.555 D18 = 0.70 N10 = 1.729157 ν10 = 54.7
R19 = -20.295 D19 = variable
R20 = ∞ D20 = 0.60 N11 = 1.516330 ν11 = 64.1
R21 = ∞

\ Focal length 5.63 11.07 16.80
Variable interval \
D 4 0.95 2.52 1.84
D 7 10.69 4.61 0.80
D15 2.77 0.98 0.51
D19 0.70 6.99 11.96

Aspheric coefficient
14th: k = 1.66335e + 01 A = 0 B = -3.21818e-03 C = -1.86168e-04 D = 5.40611e-06 E = -2.02531e-06
15th: k = 2.53718e-01 A = 0 B = 3.69525e-04 C = -1.49964e-04 D = 1.18370e-05 E = -1.34525e-06
16 sides: k = -5.25720e + 06 A = 0 B = 5.24497e-03 C = -1.79913e-04 D = 7.42054e-05 E = -3.94180e-06
17th: k = -3.87782e + 06 A = 0 B = 4.24203e-03 C = 4.38752e-05 D = 2.06324e-05 E = 5.70011e-06

Numerical Example 5
f = 5.44 to 10.80 Fno = 2.33 to 4.50 2ω = 57.8 to 31.1
R 1 = 28.789 D 1 = 0.80 N 1 = 1.603112 ν 1 = 60.6
R 2 = 8.451 D 2 = 1.80
R 3 = ∞ D 3 = 8.00 N 2 = 1.772499 ν 2 = 49.6
R 4 = ∞ D 4 = Variable
R 5 = -106.294 D 5 = 0.60 N 3 = 1.772499 ν 3 = 49.6
R 6 = 13.391 D 6 = 1.30 N 4 = 1.805181 ν 4 = 25.4
R 7 = 196.529 D 7 = Variable
R 8 = Aperture D 8 = Variable
R 9 = 5.241 D 9 = 2.10 N 5 = 1.487490 ν 5 = 70.2
R10 = -12.689 D10 = 2.00 N 6 = 1.719995 ν 6 = 50.2
R11 = -3.116 D11 = 0.60 N 7 = 1.834000 ν 7 = 37.2
R12 = 76.863 D12 = 0.50
* R13 = 16.133 D13 = 2.20 N 8 = 1.583126 ν 8 = 59.4
* R14 = -4.841 D14 = variable
* R15 = 724.667 D15 = 1.20 N 9 = 1.749497 ν 9 = 35.3
* R16 = 515.103 D16 = 1.20
R17 = -3.899 D17 = 0.70 N10 = 1.729157 ν10 = 54.7
R18 = -23.118 D18 = variable
R19 = ∞ D19 = 0.60 N11 = 1.516330 ν11 = 64.1
R20 = ∞

\ Focal length 5.44 8.80 10.80
Variable interval \
D 4 0.79 2.60 2.49
D 7 2.61 0.80 0.91
D14 2.76 1.49 1.19
D18 0.70 4.57 6.43


Aspheric coefficient
13th: k = 7.45902e + 00 A = 0 B = -3.86276e-03C = -7.97946e-05 D = -5.25583e-06 E = -1.40582e-06
14th: k = 2.62115e-01 A = 0 B = 1.24566e-04 C = -1.22168e-04 D = 1.28930e-05 E = -1.31993e-06
15th: k = -5.25720e + 06 A = 0 B = 5.58683e-03 C = -3.26978e-04 D = 7.10164e-05 E = -2.09598e-06
16th plane: k = -3.87782e + 06 A = 0 B = 5.30136e-03 C = -1.60201e-04 D = 1.71346e-5
E = 1.02599e-05

実施例1のズームレンズの光学断面図Optical cross-sectional view of the zoom lens of Example 1 実施例1のズームレンズの光路を90度折り曲げたときの光路図Optical path diagram when the optical path of the zoom lens of Example 1 is bent 90 degrees 実施例1のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間のズーム位置での収差図Aberration diagram at the middle zoom position of the zoom lens of Example 1 実施例1のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 2 実施例2のズームレンズの光路を90度折り曲げたときの光路図Optical path diagram when the optical path of the zoom lens of Example 2 is bent 90 degrees 実施例2のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 2 実施例2のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 3 実施例3のズームレンズの光路を90度折り曲げたときの光路図Optical path diagram when the optical path of the zoom lens of Example 3 is bent 90 degrees 実施例3のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 3 実施例3のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 3 実施例3のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 3 実施例4のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 4 実施例4のズームレンズの光路を90度折り曲げたときの光路図Optical path diagram when the optical path of the zoom lens of Example 4 is bent 90 degrees 実施例4のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens in Example 4 実施例4のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 4 実施例4のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 4 実施例5のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 5 実施例5のズームレンズの光路を90度折り曲げたときの光路図Optical path diagram when the optical path of the zoom lens of Example 5 is bent 90 degrees 実施例5のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens in Example 5 実施例5のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 5 実施例5のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 5 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

符号の説明Explanation of symbols

B1 第1レンズ群
B2 第2レンズ群
B3 第3レンズ群
B4 第4レンズ群
SP 絞り
IP 像面
G ガラスブロック
d d線
ΔS サジタル像面
ΔM メリディオナル像面
B1 1st lens group B2 2nd lens group B3 3rd lens group B4 4th lens group SP Aperture IP Image surface G Glass block d d line ΔS Sagittal image surface ΔM Meridional image surface

Claims (9)

物体側より像側へ順に、負の屈折力の第1レンズ群、第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群を有し、広角端に対し望遠端で第2レンズ群と第3レンズ群の間隔が小さく、第3レンズ群と第4レンズ群の間隔が小さくなるように、該第3、第4レンズ群は物体側へ移動し、該第2レンズ群が移動することを特徴とするズームレンズ。   In order from the object side to the image side, there are a first lens group having a negative refractive power, a second lens group, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power. The third and fourth lens groups move toward the object side so that the distance between the second lens group and the third lens group is small at the telephoto end, and the distance between the third lens group and the fourth lens group is small. A zoom lens, wherein the second lens group moves. 前記第1レンズ群中に光軸上の光束を90度偏向させる反射部材が設けられていることを特徴とする請求項1のズームレンズ。   2. The zoom lens according to claim 1, wherein a reflecting member for deflecting a light beam on the optical axis by 90 degrees is provided in the first lens group. 広角端における前記第1レンズ群と第2レンズ群の合成焦点距離をF12w、第iレンズ群の焦点距離をFi、広角端における全系の焦点距離をFwとするとき、
2 < |F12W/Fw| < 6
0.8 < F3/Fw < 1.6
0.8 < |F4/Fw| < 1.5
なる条件を満足することを特徴とする請求項1のズームレンズ。
When the combined focal length of the first lens group and the second lens group at the wide-angle end is F12w, the focal length of the i-th lens group is Fi, and the focal length of the entire system at the wide-angle end is Fw.
2 <| F12W / Fw | <6
0.8 <F3 / Fw <1.6
0.8 <| F4 / Fw | <1.5
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第4レンズ群の広角端における横倍率をβ4wとするとき、
1 < β4w < 1.7
なる条件を満足することを特徴とする請求項1、2又は3のズームレンズ。
When the lateral magnification at the wide angle end of the fourth lens group is β4w,
1 <β4w <1.7
The zoom lens according to claim 1, 2 or 3, wherein the following condition is satisfied.
前記第3レンズ群と第4レンズ群の焦点距離を各々F3,F4とするとき、
0.7 < |F3/F4| < 1.5
なる条件を満足することを特徴とする請求項1から4のいずれか1項のズームレンズ。
When the focal lengths of the third lens group and the fourth lens group are F3 and F4, respectively.
0.7 <| F3 / F4 | <1.5
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ及び第4レンズ群はそれぞれ非球面形状の面を1以上有していることを特徴とする請求項1から5のいずれか1項のズームレンズ。   6. The zoom lens according to claim 1, wherein each of the third lens and the fourth lens group has one or more aspherical surfaces. 前記第2レンズ群と第3レンズ群の間隔中に開口絞りを有していることを特徴とする請求項1から6のいずれか1項のズームレンズ。   The zoom lens according to any one of claims 1 to 6, further comprising an aperture stop in an interval between the second lens group and the third lens group. 固体撮像素子に像を形成するための光学系であることを特徴とする請求項1から7のいずれか1項のズームレンズ。   The zoom lens according to claim 1, wherein the zoom lens is an optical system for forming an image on a solid-state imaging device. 請求項1〜8のいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子とを有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image sensor that receives an image formed by the zoom lens.
JP2004287421A 2004-09-30 2004-09-30 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4617128B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004287421A JP4617128B2 (en) 2004-09-30 2004-09-30 Zoom lens and imaging apparatus having the same
US11/241,657 US7248418B2 (en) 2004-09-30 2005-09-29 Zoom lens system and image pickup apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287421A JP4617128B2 (en) 2004-09-30 2004-09-30 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006098962A true JP2006098962A (en) 2006-04-13
JP2006098962A5 JP2006098962A5 (en) 2007-11-15
JP4617128B2 JP4617128B2 (en) 2011-01-19

Family

ID=36238819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287421A Expired - Fee Related JP4617128B2 (en) 2004-09-30 2004-09-30 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4617128B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782477B1 (en) 2007-05-15 2007-12-05 주식회사 디오스텍 Compact zoom lens optical system
KR100800811B1 (en) 2006-06-23 2008-02-01 삼성전자주식회사 Zoom lens system
US7859765B2 (en) 2008-04-11 2010-12-28 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US8369022B2 (en) 2009-05-19 2013-02-05 Konica Minolta Opto, Inc. Variable magnification optical system, image pickup device and digital apparatus
JP2013088736A (en) * 2011-10-21 2013-05-13 Canon Inc Optical system and imaging device having the same
WO2014192626A1 (en) * 2013-05-30 2014-12-04 オリンパス株式会社 Zoom lens and imaging device equipped with same
US8934177B2 (en) 2010-08-24 2015-01-13 Panasonic Intellectual Property Managment Co., Ltd Zoom lens system, interchangeable lens apparatus and camera system
JP2015018203A (en) * 2012-12-28 2015-01-29 株式会社リコー Zoom lens for projection
JP2015018204A (en) * 2012-12-28 2015-01-29 株式会社リコー Image display device
US9638903B2 (en) 2012-12-28 2017-05-02 Ricoh Company, Ltd. Projection zoom lens
US9664883B2 (en) 2012-12-28 2017-05-30 Ricoh Company, Ltd. Image display device
WO2024095858A1 (en) * 2022-11-04 2024-05-10 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329930A (en) * 2002-05-16 2003-11-19 Olympus Optical Co Ltd Zoom lens and electronic image pickup device having the same
JP2004037924A (en) * 2002-07-04 2004-02-05 Minolta Co Ltd Imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329930A (en) * 2002-05-16 2003-11-19 Olympus Optical Co Ltd Zoom lens and electronic image pickup device having the same
JP2004037924A (en) * 2002-07-04 2004-02-05 Minolta Co Ltd Imaging apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800811B1 (en) 2006-06-23 2008-02-01 삼성전자주식회사 Zoom lens system
KR100782477B1 (en) 2007-05-15 2007-12-05 주식회사 디오스텍 Compact zoom lens optical system
US7859765B2 (en) 2008-04-11 2010-12-28 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US8369022B2 (en) 2009-05-19 2013-02-05 Konica Minolta Opto, Inc. Variable magnification optical system, image pickup device and digital apparatus
US8934177B2 (en) 2010-08-24 2015-01-13 Panasonic Intellectual Property Managment Co., Ltd Zoom lens system, interchangeable lens apparatus and camera system
JP2013088736A (en) * 2011-10-21 2013-05-13 Canon Inc Optical system and imaging device having the same
JP2015018204A (en) * 2012-12-28 2015-01-29 株式会社リコー Image display device
JP2015018203A (en) * 2012-12-28 2015-01-29 株式会社リコー Zoom lens for projection
US9638903B2 (en) 2012-12-28 2017-05-02 Ricoh Company, Ltd. Projection zoom lens
US9664883B2 (en) 2012-12-28 2017-05-30 Ricoh Company, Ltd. Image display device
US10234662B2 (en) 2012-12-28 2019-03-19 Ricoh Company, Ltd. Image display device
US10451857B2 (en) 2012-12-28 2019-10-22 Ricoh Company, Ltd. Projection zoom lens
WO2014192626A1 (en) * 2013-05-30 2014-12-04 オリンパス株式会社 Zoom lens and imaging device equipped with same
JP5932148B2 (en) * 2013-05-30 2016-06-08 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
US9823452B2 (en) 2013-05-30 2017-11-21 Olympus Corporation Zoom lens and image pickup apparatus using the same
WO2024095858A1 (en) * 2022-11-04 2024-05-10 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system

Also Published As

Publication number Publication date
JP4617128B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4681842B2 (en) Zoom lens and imaging apparatus having the same
JP4871712B2 (en) Imaging device
JP4817699B2 (en) Zoom lens and imaging apparatus having the same
JP5253051B2 (en) Zoom lens and imaging apparatus having the same
JP5465000B2 (en) Zoom lens and imaging apparatus having the same
JP2007286233A (en) Zoom lens and imaging apparatus having the same
JP2006039531A (en) Zoom lens and imaging apparatus equipped with the same
JP4845458B2 (en) Zoom lens and imaging apparatus having the same
JP2007219316A (en) Zoom lens and optical equipment equipped with the same
JP2016090840A (en) Zoom lens and imaging apparatus including the same
JP2006293012A (en) Zoom lens and imaging apparatus equipped with the same
JP2006119193A (en) Zoom lens and imaging apparatus equipped with the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP2008139755A (en) Imaging apparatus
JP5599022B2 (en) Zoom lens and imaging apparatus having the same
JP4617128B2 (en) Zoom lens and imaging apparatus having the same
JP2001296476A (en) Zoom lens and optical equipment using the same
JP5084437B2 (en) Zoom lens and imaging apparatus having the same
JP6628240B2 (en) Zoom lens and imaging device having the same
JP5611124B2 (en) Zoom lens and imaging apparatus having the same
JP2008139754A (en) Imaging apparatus
JP5414771B2 (en) Zoom lens and imaging apparatus having the same
JP6643049B2 (en) Optical system and imaging apparatus having the same
JP2016014819A (en) Zoom lens and imaging device having the same
JP2004061681A (en) Zoom lens and optical equipment with same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Ref document number: 4617128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees