JP2006098283A - Method and apparatus for detecting defect in steel structure - Google Patents

Method and apparatus for detecting defect in steel structure Download PDF

Info

Publication number
JP2006098283A
JP2006098283A JP2004286303A JP2004286303A JP2006098283A JP 2006098283 A JP2006098283 A JP 2006098283A JP 2004286303 A JP2004286303 A JP 2004286303A JP 2004286303 A JP2004286303 A JP 2004286303A JP 2006098283 A JP2006098283 A JP 2006098283A
Authority
JP
Japan
Prior art keywords
defect
steel structure
temperature distribution
fluctuation
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004286303A
Other languages
Japanese (ja)
Other versions
JP4367932B2 (en
Inventor
Takahide Sakagami
▲隆▼英 阪上
Shiro Kubo
司郎 久保
Kazunari Ishino
和成 石野
Kazuhisa Kabeya
和久 壁矢
Yasuyuki Kurihara
康行 栗原
Koji Kawashima
浩治 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka University NUC
Original Assignee
JFE Steel Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Osaka University NUC filed Critical JFE Steel Corp
Priority to JP2004286303A priority Critical patent/JP4367932B2/en
Publication of JP2006098283A publication Critical patent/JP2006098283A/en
Application granted granted Critical
Publication of JP4367932B2 publication Critical patent/JP4367932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To detect defects, such as surface cracks, generated in a large steel structure, such as a bridge and each kind of cargo handling equipment, remotely, easily, and reliably by a simple apparatus configuration without assembling a scaffold for defect detection work, without requiring any heating means of the steel structure, and without requiring any means for applying a load to the steel structure, such as a shaking apparatus. <P>SOLUTION: In a defect detection method for remotely detecting defects S that are present in a girder 4 of a ceiling crane as a large steel structure, the girder 4 for causing repetitive stress variations by the drive of a crane carriage 7 is photographed by an infrared camera 9, and temperature distribution variations on the surface of the girder 4 are measured as images, thus detecting defects present in the ceiling crane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、鋼構造物の欠陥検出方法および装置、特に、橋梁や各種荷役機械などの大型鋼構造物に生じた表面亀裂などの欠陥を、欠陥検出作業用の足場を組むことなく、鋼構造物の加熱手段を必要とせず、しかも、加振装置などの鋼構造物への荷重負荷の付与手段を必要とせずに、簡単な装置構成によって、離れた場所から容易かつ確実に検出することができる、鋼構造物の欠陥検出方法および装置に関するものである。   The present invention relates to a method and an apparatus for detecting a defect in a steel structure, in particular, a steel structure without forming a scaffold for detecting a defect such as a surface crack generated in a large steel structure such as a bridge or various cargo handling machines. It is possible to detect easily and reliably from a remote location with a simple device configuration without the need for heating means and without the need for applying load to the steel structure such as a vibration device. The present invention relates to a steel structure defect detection method and apparatus.

橋梁や各種荷役機械などの大型鋼構造物の老朽化が社会問題となっており、この対策に対しては強いニーズがある。効率的な老朽化対策を実施するためには、老朽化の度合いを知ることが先決である。このため、対象としている鋼構造物の欠陥を検出する必要があり、その手段として、例えば、カラーチェック、磁粉探傷あるいは超音波探傷などを利用した欠陥検出方法が従来から実施されている。   Aging of large steel structures such as bridges and various cargo handling machines has become a social problem, and there is a strong need for this countermeasure. In order to implement effective countermeasures against aging, it is necessary to know the degree of aging. For this reason, it is necessary to detect a defect in the target steel structure, and for example, a defect detection method using color check, magnetic particle flaw detection, ultrasonic flaw detection, or the like has been conventionally performed.

このような状況下において、近年、赤外線カメラを用いた欠陥検出方法が行われている。例えば、トンネル内部のコンクリート壁の亀裂や剥離などの欠陥を検出する手段として、従来の打音テストによる診断方法に替わって、何らかの熱源によりトンネル壁面を加熱し、正常部位と欠陥部位との温度分布差から欠陥部位を検出する方法が用いられている。これら赤外線カメラを用いたアクティブな欠陥検出方法の従来技術として、例えば、特開2003−185608号公報(特許文献1)には、コンクリート構造物に赤外線を均一に照射する手段を用いて、温度分布を測定することによりコンクリート構造物の内部欠陥を検出する方法が開示されている。   Under such circumstances, in recent years, a defect detection method using an infrared camera has been performed. For example, as a means of detecting defects such as cracks and delamination in the concrete wall inside the tunnel, the tunnel wall surface is heated by some heat source instead of the conventional diagnostic method by the hammering test, and the temperature distribution between the normal part and the defective part A method of detecting a defective part from the difference is used. As a prior art of an active defect detection method using these infrared cameras, for example, Japanese Patent Application Laid-Open No. 2003-185608 (Patent Document 1) uses a means for uniformly irradiating infrared rays to a concrete structure, and uses a temperature distribution. A method for detecting an internal defect of a concrete structure by measuring the above is disclosed.

また、特開2004−37201号公報(特許文献2)には、鋼構造物を対象として、加熱前後における温度分布画像の差画像および健全・非健全のサンプル熱画像の差を用いた欠陥の識別方法が開示されている。   In addition, JP 2004-37201 A (Patent Document 2) discloses defect identification using a difference between a temperature distribution image before and after heating and a difference between healthy and unhealthy sample thermal images for a steel structure. A method is disclosed.

また、別の観点からは、例えば、金属材料の加工時に試験片に生じる亀裂を検出する方法として、材料の熱弾性特性を利用して赤外線画像を用いた方法が特開平10−82726号公報(特許文献3)に開示されている。   From another viewpoint, for example, as a method for detecting a crack generated in a test piece during processing of a metal material, a method using an infrared image using a thermoelastic property of the material is disclosed in Japanese Patent Laid-Open No. 10-82726 ( It is disclosed in Patent Document 3).

特開2003−185608号公報JP 2003-185608 A 特開2004−37201号公報Japanese Patent Application Laid-Open No. 2004-37201 特開平10−82726号公報JP-A-10-82726

しかしながら、上述した従来の欠陥検出方法には、以下のような問題があった。   However, the conventional defect detection method described above has the following problems.

(1)カラーチェック、磁粉探傷あるいは超音波探傷などの欠陥検出方法は、それぞれ必要な処置を施すために測定対象構造物の近傍まで人が近づかなければ計測できない。例えば、磁粉探傷においては、検知領域の錆などを落とし、計測可能な表面性状にした上で、磁界をかける必要がある。このため、大型構造物の場合には、検査を行うために足場を組んで高所作業の準備を整え、検査領域に作業員の手が届く状態にしなければ作業が行えない。その結果、欠陥検出費用よりも、足場を組む作業の方に多くの人手と費用を費やさねばならない。これらの課題を解決すべく、遠隔計測を実現するため、さらには一度に広範囲の領域を検査できる利便性から、近年、赤外線サーモグラフによる欠陥検出方法が提案されている。   (1) Defect detection methods such as color check, magnetic particle flaw detection, and ultrasonic flaw detection cannot be measured unless a person approaches the vicinity of the structure to be measured in order to perform necessary measures. For example, in magnetic particle flaw detection, it is necessary to apply a magnetic field after removing rust and the like in the detection area to obtain a measurable surface property. For this reason, in the case of a large structure, it is impossible to perform work unless a scaffold is assembled for inspection and preparations are made for work at a high place so that workers can reach the inspection area. As a result, more manpower and costs must be spent on the work of building the scaffold than the defect detection costs. In order to solve these problems, a defect detection method using an infrared thermograph has been proposed in recent years in order to realize remote measurement, and for the convenience of inspecting a wide area at once.

(2)しかし、上記特許文献1あるいは2に開示された、赤外線サーモグラフによる欠陥検出方法は、加熱のために赤外線照射が前提となっており、この方法では、コンクリートなど比較的熱拡散速度の遅い対象物には適用可能であるが、熱拡散速度の早い鋼構造物に対しては、近接距離から赤外線を照射しなければ赤外線カメラで検出できるほどの温度分布を作り出すことが困難である。このため、加熱を行うために測定対象まで近接する手段が必要となり、上記(1)の方法と同様、足場などを組む必要が生じる。   (2) However, the defect detection method by infrared thermograph disclosed in the above-mentioned Patent Document 1 or 2 is premised on infrared irradiation for heating. Although it can be applied to a slow object, it is difficult to create a temperature distribution that can be detected by an infrared camera unless the infrared ray is irradiated from a close distance to a steel structure having a high thermal diffusion rate. For this reason, in order to heat, the means to approach to a measuring object is needed, and it becomes necessary to assemble a scaffold etc. like the method of said (1).

(3)上記特許文献3に開示された、赤外線サーモグラフによる欠陥検出方法は、金属材料のプレスやパンチなどの加工時に発生する亀裂を検出するために赤外線カメラで熱画像を撮像し、それを利用するものである。しかし、この方法を大型鋼構造物の欠陥検出に適用する場合には、大型鋼構造物に積極的に荷重負荷変動を与える必要があるので、この発明の目的である、離れた場所から簡単な装置により容易かつ確実に欠陥を検出することが達成できない。何故なら、大型鋼構造物に荷重負荷変動を与えるための加振装置を別途用意する必要があるばかりか、当然のことながら構造物に与える荷重負荷は、構造物にダメージを与えない程度の大きさの荷重にせざるを得ず、この程度の小さな荷重による温度変化は微小であり、その微小な温度変化を熱画像として捕らえるためには、複数の熱画像データを使って判断する必要があり、検出装置が煩雑となるためである。   (3) The defect detection method by infrared thermograph disclosed in the above-mentioned Patent Document 3 is to take a thermal image with an infrared camera in order to detect cracks generated during processing such as pressing or punching a metal material, It is what you use. However, when this method is applied to the detection of defects in large steel structures, it is necessary to positively apply load load fluctuations to the large steel structures. The device cannot easily and reliably detect defects. This is because it is not only necessary to prepare a separate vibration device for giving load changes to large steel structures, but the load applied to the structure is naturally large enough not to damage the structure. The temperature change due to such a small load is minute, and in order to capture the minute temperature change as a thermal image, it is necessary to judge using multiple thermal image data, This is because the detection device becomes complicated.

従って、この発明の目的は、上述した問題点を解決することにあり、橋梁や各種荷役機械などの大型鋼構造物に生じた表面亀裂などの欠陥を、欠陥検出作業用の足場を組むことなく、鋼構造物の加熱手段を必要とせず、しかも、加振装置などの鋼構造物への荷重負荷の付与手段を必要とせずに、簡単な装置構成によって、離れた場所から容易かつ確実に検出することができる、鋼構造物の欠陥検出方法および装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems, and defects such as surface cracks generated in large steel structures such as bridges and various cargo handling machines can be obtained without forming a scaffold for defect detection work. Detects easily and reliably from a remote location with a simple device configuration without the need for heating means for steel structures and without the need for applying load to steel structures such as vibration devices. An object of the present invention is to provide a method and apparatus for detecting defects in a steel structure that can be performed.

本願発明者らは、上述した目的を達成すべく鋭意検討を重ねた結果、以下のような知見を得た。   The inventors of the present invention have obtained the following knowledge as a result of intensive studies to achieve the above-described object.

(1)構造物の熱弾性効果に着目し、従来、応力状態を可視化できる手段として用いられていた熱弾性効果を鋼構造物の欠陥検出に適用すれば、上述した問題点を全て解決することができる。   (1) Focusing on the thermoelastic effect of the structure, if the thermoelastic effect that has been used as a means for visualizing the stress state is applied to the detection of defects in the steel structure, all the above-mentioned problems will be solved. Can do.

(2)熱弾性効果を鋼構造物の欠陥検出に適用する場合、特に、大型鋼構造物では荷重負荷変動を与えたとしても、それによる温度変化が微小であるため、熱画像として捕らえ難かった。しかし、近年の赤外線カメラの性能向上により、熱拡散性の良い金属に対しても適用可能になったため、欠陥を捕らえることが可能になった。   (2) When the thermoelastic effect is applied to the detection of defects in steel structures, especially in large steel structures, even if load load fluctuations are given, the temperature change caused by them is very small, so it was difficult to capture as a thermal image. . However, recent improvements in the performance of infrared cameras have made it possible to capture even defects in metals that have good thermal diffusivity.

(3)橋梁または天井クレーンなどの荷役機械は、車両の走行による振動により荷重負荷変動が自然に生じるので、加振装置などにより強制的に荷重負荷を与えなくても熱弾性効果による熱画像を得ることができる。   (3) Load handling fluctuations such as bridges or overhead cranes naturally occur due to vibrations caused by running of the vehicle. Obtainable.

この発明は、上述した(1)から(3)の知見に基づきなされたものであって、下記を特徴とするものである。   The present invention has been made on the basis of the findings (1) to (3) described above, and is characterized by the following.

請求項1記載の発明は、鋼構造物の欠陥を離れた場所から検出する欠陥検出方法において、繰り返し応力変動が生じている前記鋼構造物を赤外線カメラにより撮影して、前記鋼構造物の表面の温度分布変動を画像として計測し、これにより前記鋼構造物に存在する欠陥を検出することに特徴を有するものである。   The invention according to claim 1 is a defect detection method for detecting a defect in a steel structure from a remote location, and images the steel structure in which repeated stress fluctuations are generated with an infrared camera, and the surface of the steel structure is detected. This is characterized in that the temperature distribution fluctuation of the steel is measured as an image, thereby detecting defects present in the steel structure.

請求項2記載の発明は、請求項1記載の発明において、温度分布変動の画像データの自己相関を求めて、欠陥の場所および大きさを検出することに特徴を有するものである。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the location and size of the defect are detected by obtaining the autocorrelation of the image data of the temperature distribution fluctuation.

請求項3記載の発明は、請求項1記載の発明において、温度分布変動の画像データの一部の温度変動データを用いて参照信号とし、前記参照信号に同期して変動する温度分布データを取り出し、温度分布データを変動サイクルごとに積算することによって、欠陥の場所および大きさを検出することに特徴を有するものである。   According to a third aspect of the present invention, in the first aspect of the present invention, a temperature distribution data that varies in synchronization with the reference signal is extracted using a part of the temperature variation data of the temperature distribution variation image data as a reference signal. The feature is to detect the location and size of the defect by integrating the temperature distribution data for each fluctuation cycle.

請求項4記載の発明は、請求項1記載の発明において、鋼構造物の応力変動と相関のある情報をセンシングし、これを参照信号とし、前記情報に同期して、変動する温度分布データを取り出し、温度分布データを変動サイクルごとに積算することによって、欠陥の場所および大きさを検出することに特徴を有するものである。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the information correlated with the stress fluctuation of the steel structure is sensed, this is used as a reference signal, and the fluctuating temperature distribution data is synchronized with the information. It is characterized by detecting the location and size of the defect by taking out and integrating the temperature distribution data for each fluctuation cycle.

請求項5記載の発明は、請求項3または4記載の発明において、参照信号以外の画像データとの相関を取ることによって、欠陥の場所および大きさを検出することに特徴を有するものである。   The invention described in claim 5 is characterized in that, in the invention described in claim 3 or 4, the location and size of the defect are detected by taking a correlation with image data other than the reference signal.

請求項6記載の発明は、請求項1から5の何れか1つに記載の発明において、鋼構造物は、橋梁または荷役機械であることに特徴を有するものである。   The invention according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, the steel structure is a bridge or a cargo handling machine.

請求項7記載の発明は、繰り返し応力変動が生じている鋼構造物を撮影して、前記鋼構造物の表面の温度分布変動を画像として計測する赤外線カメラと、前記赤外線カメラによる前記温度分布変動の画像データを処理して、前記鋼構造物に存在する欠陥を検出する欠陥検出手段とを備えたことに特徴を有するものである。   The invention according to claim 7 is an infrared camera that takes an image of a steel structure in which stress fluctuations repeatedly occur and measures the temperature distribution fluctuation of the surface of the steel structure as an image, and the temperature distribution fluctuation by the infrared camera. And a defect detection means for detecting defects existing in the steel structure.

請求項8記載の発明は、請求項7記載の発明において、欠陥検出手段は、温度分布変動の画像データの自己相関を求めて、欠陥の場所および大きさを検出することに特徴を有するものである。   The invention described in claim 8 is characterized in that, in the invention described in claim 7, the defect detecting means detects the autocorrelation of the image data of the temperature distribution fluctuation and detects the location and size of the defect. is there.

請求項9記載の発明は、請求項7記載の発明において、欠陥検出手段は、温度分布変動の画像データの一部の温度変動データを用いて参照信号とし、前記参照信号に同期して変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、欠陥の場所および大きさを検出することに特徴を有するものである。   According to a ninth aspect of the present invention, in the seventh aspect of the invention, the defect detecting means uses the temperature variation data of a part of the image data of the temperature distribution variation as a reference signal and varies in synchronization with the reference signal. It is characterized by detecting the location and size of the defect by taking out the temperature distribution data and integrating the temperature distribution data for each fluctuation cycle.

請求項10記載の発明は、請求項7記載の発明において、欠陥検出手段は、鋼構造物の応力変動と相関のある情報をセンシングし、これを参照信号とし、前記情報に同期して、変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、欠陥の場所および大きさを検出することに特徴を有するものである。   According to a tenth aspect of the present invention, in the seventh aspect of the invention, the defect detection means senses information correlated with the stress fluctuation of the steel structure, uses this as a reference signal, and changes in synchronization with the information. The temperature distribution data is extracted, and the temperature distribution data is integrated for each fluctuation cycle, thereby detecting the location and size of the defect.

請求項11記載の発明は、請求項9または10記載の発明において、欠陥検出手段は、参照信号以外の画像データとの相関を取ることによって、欠陥の場所および大きさを検出することに特徴を有するものである。   The invention described in claim 11 is characterized in that, in the invention described in claim 9 or 10, the defect detection means detects the location and size of the defect by taking a correlation with image data other than the reference signal. It is what you have.

この発明によれば、橋梁や各種荷役機械などの大型鋼構造物に生じた表面亀裂などの欠陥を、欠陥検出作業用の足場を組むことなく、鋼構造物の加熱手段を必要とせず、しかも、加振装置などの鋼構造物への荷重負荷の付与手段を必要とせずに、簡単な装置構成によって、離れた場所から容易かつ確実に検出することができる。   According to the present invention, defects such as surface cracks generated in large steel structures such as bridges and various cargo handling machines do not require a means for heating the steel structure without forming a scaffold for defect detection work, and Further, it is possible to easily and surely detect from a remote place with a simple device configuration without requiring a means for applying a load to the steel structure such as a vibration device.

次に、この発明の、鋼構造物の欠陥検出装置の一実施形態を、図面を参照しながら説明する。   Next, an embodiment of a steel structure defect detection device of the present invention will be described with reference to the drawings.

図1は、テストピースを示す斜視図、図2は、テストピースに変動荷重を与えたときの温度分布変動の熱画像データを用いて、自己相関を計算した結果の画像データを示す図面代用写真である。   FIG. 1 is a perspective view showing a test piece, and FIG. 2 is a drawing-substituting photograph showing image data as a result of calculating autocorrelation using thermal image data of temperature distribution fluctuation when a variable load is applied to the test piece. It is.

テストピース1は、鋼板2に小片3を溶接したものからなっている。このテストピース1を疲労試験機にかけて、溶接部に人工亀裂を発生させる。このようにして、テストピース1に変動荷重を与えながら、亀裂発生時において赤外線サーモグラフを用いてテストピース1の表面温度分布を計測する。亀裂部分の応力集中の状態によっては、繰り返し変動荷重に伴う温度分布変動の熱画像から亀裂を認識することが可能である。亀裂の有無をより鮮明にさせるために、計測した熱画像データを用いて自己相関を計算すると、図2のような画像データが得られる。図2において、輝度の大きい部分が亀裂発生個所であり、この発明の方法によって欠陥の識別が可能であることが分かる。   The test piece 1 is formed by welding a small piece 3 to a steel plate 2. This test piece 1 is subjected to a fatigue tester to generate an artificial crack in the weld. In this way, the surface temperature distribution of the test piece 1 is measured using the infrared thermograph when a crack is generated while applying a variable load to the test piece 1. Depending on the state of stress concentration in the cracked part, it is possible to recognize the crack from the thermal image of the temperature distribution fluctuation accompanying the repeatedly fluctuating load. When autocorrelation is calculated using the measured thermal image data in order to make the presence or absence of cracks clearer, image data as shown in FIG. 2 is obtained. In FIG. 2, it can be seen that a portion with a high luminance is a crack occurrence portion, and it is possible to identify a defect by the method of the present invention.

この方法によって、実際の天井クレーンの欠陥を検出する場合について、図面を参照しながら説明する。   A case where an actual overhead crane defect is detected by this method will be described with reference to the drawings.

図3は、この方法によって天井クレーンの欠陥検出を行う場合において、自己相関計算を行う場合の模式図である。   FIG. 3 is a schematic diagram when autocorrelation calculation is performed in the case of detecting an overhead crane defect by this method.

図3において、4は、天井クレーンのガーダ、5は、建屋6に敷設されたガーダ用走行レール、7は、ガーダ4上を走行するクレーン台車、8は、クレーン台車7から吊られた荷物、9は、赤外線カメラ、10は、欠陥検出手段としての計測装置である。   In FIG. 3, 4 is the girder of the overhead crane, 5 is the girder traveling rail laid on the building 6, 7 is the crane carriage that runs on the girder 4, 8 is the luggage suspended from the crane carriage 7, Reference numeral 9 is an infrared camera, and 10 is a measuring device as defect detection means.

ガーダ4における欠陥(S)の有無を検出する場合には、赤外線カメラ9を地上にセットし(ガーダ4までの距離は約10から20m)、クレーン稼働時と同じように荷物8を昇降させ、例えば、必要に応じて荷物8の昇降を急停止、あるいは急作動させる。このようにすると、ガーダ4には、応力変動(通常は、ガーダ4の固有振動数による残留振動と同じ周波数)、すなわち、わずかであるが温度分布変動が生じる。赤外線カメラ9により、このときの微小な温度分布変動画像をパーソナルコンピュータに取り込む。亀裂が大きいか、もしくは応力集中が十分であれば、リアルタイムの熱画像から、亀裂が検出可能である。欠陥検出箇所が遠方の場合には、望遠レンズを使用する。   When detecting the presence or absence of a defect (S) in the girder 4, the infrared camera 9 is set on the ground (the distance to the girder 4 is about 10 to 20 m), and the load 8 is raised and lowered in the same manner as when the crane is operated. For example, the lifting and lowering of the luggage 8 is suddenly stopped or actuated as necessary. In this way, the girder 4 undergoes stress fluctuation (usually the same frequency as the residual vibration due to the natural frequency of the girder 4), that is, a slight temperature distribution fluctuation. The minute temperature distribution fluctuation image at this time is taken into the personal computer by the infrared camera 9. If the crack is large or the stress concentration is sufficient, the crack can be detected from the real-time thermal image. When the defect detection location is far away, a telephoto lens is used.

しかし、初期亀裂の場合や昇降荷重が比較的軽い場合には、明確に温度分布変化が認識されにくいので、以下の方法により、温度変動個所(すなわち亀裂発生個所)と正常部位との差を浮き彫りにさせることが可能になる。   However, in the case of an initial crack or when the lifting load is relatively light, it is difficult to clearly recognize the change in temperature distribution, so the following method highlights the difference between the temperature fluctuation location (ie, the crack occurrence location) and the normal location. It becomes possible to make it.

第一の方法は、計測装置10により、所定時間内のデータをパーソナルコンピュータに取り込み自己相関を計算する(図3参照)。   In the first method, data within a predetermined time is taken into a personal computer by the measuring device 10 and the autocorrelation is calculated (see FIG. 3).

第二の方法は、計測装置10により、温度分布変動の画像データの一部を用いて、これを参照信号とし、これに同期して変動する温度分布データを取り出し、これを変動サイクルごとに積算する(図4参照)。   In the second method, a part of image data of temperature distribution fluctuation is used as a reference signal by the measuring device 10, temperature distribution data that fluctuates in synchronization with this is taken out, and this is integrated every fluctuation cycle. (See FIG. 4).

第三の方法は、計測装置10により、温度変動と相関のある情報をセンサ、例えば、レーザドップラ振動計11などからの測定対象の振動データを取り込み、その振動データに同期して、変動する温度分布データを取り出し、これを変動サイクルごとに積算する(図5参照)。   In the third method, the measurement device 10 takes in the vibration data of the measurement object from the sensor, for example, the laser Doppler vibrometer 11 as the information correlated with the temperature fluctuation, and the fluctuation temperature is synchronized with the vibration data. Distribution data is taken out and integrated for each fluctuation cycle (see FIG. 5).

さらに別の方法として、第二あるいは第三の方法において、参照信号以外の画像データとの相関を取ることによって、欠陥の場所および大きさを検出する。   As another method, in the second or third method, the location and size of the defect are detected by taking a correlation with image data other than the reference signal.

これらの方法により、特に、大型構造物の欠陥検出が、例えば、周辺に足場を組む、検査ロボットを使う、昇降装置付き作業用自動車を使うなどの手段を講じることなく実施することができる。すなわち、測定対象の近くまでアクセスすることなく遠方から容易かつ確実に実施することができる。このため、検査の準備に要する費用が大幅に低減されるだけでなく、検査時間の短縮ならびに検査のために荷役機械の稼働停止時間も短縮できる。   By these methods, defect detection of large structures can be performed without taking measures such as, for example, building a scaffold around the periphery, using an inspection robot, or using a work vehicle with a lifting device. That is, it is possible to carry out easily and reliably from a distance without accessing the vicinity of the measurement object. For this reason, not only the cost required for the preparation for the inspection can be greatly reduced, but also the inspection time and the operation stop time of the cargo handling machine for inspection can be shortened.

以上は、この発明を天井クレーンの欠陥検出に適用した場合であるが、車両の走行により常に荷重変動が生じている橋梁などの大型鋼構造物の欠陥検出にも適用可能である。   The above is a case where the present invention is applied to detection of defects in an overhead crane, but is also applicable to detection of defects in large steel structures such as bridges in which load fluctuations always occur due to vehicle travel.

テストピースを示す斜視図である。It is a perspective view which shows a test piece. テストピースに変動荷重を与えたときの自己相関計算後の熱画像を示す図面代用写真である。It is a drawing substitute photograph which shows the thermal image after autocorrelation calculation when a variable load is given to the test piece. この方法によって天井クレーンの欠陥検出を行う場合において、自己相関計算を行う場合の模式図である。It is a schematic diagram in the case of performing autocorrelation calculation when performing defect detection of an overhead crane by this method. この方法によって天井クレーンの欠陥検出を行う場合において、温度分布変動の画像データの一部を用いて、これを参照信号とし、これに同期して変動する温度分布データを取り出し、これを変動サイクルごとに積算する場合の模式図である。When detecting overhead crane defects using this method, a part of the image data of temperature distribution fluctuation is used as a reference signal, temperature distribution data that fluctuates in synchronization with this is taken out, and this is taken for each fluctuation cycle. It is a schematic diagram in the case of integrating. この方法によって天井クレーンの欠陥検出を行う場合において、レーザドップラ振動計により測定対象の振動データを取り込み、その振動データに同期して、変動する温度分布データを取り出し、これを変動サイクルごとに積算する場合の模式図である。When detecting overhead crane defects using this method, the laser Doppler vibrometer captures the vibration data to be measured, extracts the fluctuating temperature distribution data in synchronization with the vibration data, and integrates it for each fluctuation cycle. It is a schematic diagram in the case.

符号の説明Explanation of symbols

1:テストピース
2:鋼板
3:小片
4:ガーダ
5:レール
6:建屋
7:クレーン台車
8:荷物
9:赤外線カメラ
10:計測装置
11:レーザドップラ振動計
1: Test piece 2: Steel plate 3: Small piece 4: Girder 5: Rail 6: Building 7: Crane truck 8: Luggage 9: Infrared camera 10: Measuring device 11: Laser Doppler vibrometer

Claims (11)

鋼構造物の欠陥を離れた場所から検出する欠陥検出方法において、繰り返し応力変動が生じている前記鋼構造物を赤外線カメラにより撮影して、前記鋼構造物の表面の温度分布変動を画像として計測し、これにより前記鋼構造物に存在する欠陥を検出することを特徴とする、鋼構造物の欠陥検出方法。   In a defect detection method for detecting defects in a steel structure from a remote location, the steel structure that has repeatedly undergone stress fluctuations is photographed with an infrared camera, and the temperature distribution fluctuation on the surface of the steel structure is measured as an image. And the defect detection method of the steel structure characterized by detecting the defect which exists in the said steel structure by this. 前記温度分布変動の画像データの自己相関を求めて、前記欠陥の場所および大きさを検出することを特徴とする、請求項1記載の、鋼構造物の欠陥検出方法。   2. The method for detecting a defect in a steel structure according to claim 1, wherein an autocorrelation of the image data of the temperature distribution fluctuation is obtained to detect a location and a size of the defect. 前記温度分布変動の画像データの一部の温度変動データを用いて参照信号とし、前記参照信号に同期して変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項1記載の、鋼構造物の欠陥検出方法。   By using the temperature fluctuation data of a part of the image data of the temperature distribution fluctuation as a reference signal, taking out the temperature distribution data that fluctuates in synchronization with the reference signal, and integrating the temperature distribution data for each fluctuation cycle, The method for detecting a defect in a steel structure according to claim 1, wherein the location and size of the defect are detected. 前記鋼構造物の応力変動と相関のある情報をセンシングし、これを参照信号とし、前記情報に同期して、変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項1記載の、鋼構造物の欠陥検出方法。   By sensing information correlated with the stress fluctuation of the steel structure, using this as a reference signal, taking out the fluctuating temperature distribution data in synchronization with the information, and integrating the temperature distribution data for each fluctuation cycle The method for detecting a defect in a steel structure according to claim 1, wherein the location and size of the defect are detected. 前記参照信号以外の画像データとの相関を取ることによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項3または4記載の、鋼構造物の欠陥検出方法。   The method for detecting a defect in a steel structure according to claim 3 or 4, wherein the location and size of the defect are detected by taking a correlation with image data other than the reference signal. 前記鋼構造物は、橋梁または荷役機械であることを特徴とする、請求項1から5の何れか1つに記載の、鋼構造物の欠陥検出方法。   The method for detecting defects in a steel structure according to any one of claims 1 to 5, wherein the steel structure is a bridge or a cargo handling machine. 繰り返し応力変動が生じている鋼構造物を撮影して、前記鋼構造物の表面の温度分布変動を画像として計測する赤外線カメラと、前記赤外線カメラによる前記温度分布変動の画像データを処理して、前記鋼構造物に存在する欠陥を検出する欠陥検出手段とを備えたことを特徴とする、鋼構造物の欠陥検出装置。   Taking an image of a steel structure in which stress fluctuations repeatedly occur, measuring the temperature distribution fluctuation of the surface of the steel structure as an image, and processing the image data of the temperature distribution fluctuation by the infrared camera, A defect detection device for a steel structure, comprising defect detection means for detecting a defect present in the steel structure. 前記欠陥検出手段は、前記温度分布変動の画像データの自己相関を求めて、前記欠陥の場所および大きさを検出することを特徴とする、請求項7記載の、鋼構造物の欠陥検出装置。   The said defect detection means calculates | requires the autocorrelation of the image data of the said temperature distribution fluctuation | variation, and detects the location and magnitude | size of the said defect, The defect detection apparatus of the steel structure of Claim 7 characterized by the above-mentioned. 前記欠陥検出手段は、前記温度分布変動の画像データの一部の温度変動データを用いて参照信号とし、前記参照信号に同期して変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項7記載の、鋼構造物の欠陥検出装置。   The defect detection means uses temperature variation data that is part of the image data of the temperature distribution variation as a reference signal, extracts temperature distribution data that varies in synchronization with the reference signal, and extracts the temperature distribution data for each variation cycle The defect detection device for a steel structure according to claim 7, wherein the defect location and size are detected by adding to the defect. 前記欠陥検出手段は、前記鋼構造物の応力変動と相関のある情報をセンシングし、これを参照信号とし、前記情報に同期して、変動する温度分布データを取り出し、前記温度分布データを変動サイクルごとに積算することによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項7記載の、鋼構造物の欠陥検出装置。   The defect detection means senses information correlated with stress fluctuation of the steel structure, uses this as a reference signal, takes out the fluctuating temperature distribution data in synchronization with the information, and converts the temperature distribution data into a fluctuating cycle. The defect detection device for a steel structure according to claim 7, wherein the defect location and size are detected by integrating each defect. 前記欠陥検出手段は、前記参照信号以外の画像データとの相関を取ることによって、前記欠陥の場所および大きさを検出することを特徴とする、請求項9または10記載の、鋼構造物の欠陥検出装置。   The defect of the steel structure according to claim 9 or 10, wherein the defect detection means detects the location and size of the defect by taking a correlation with image data other than the reference signal. Detection device.
JP2004286303A 2004-09-30 2004-09-30 Method and apparatus for detecting defects in steel structures Active JP4367932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286303A JP4367932B2 (en) 2004-09-30 2004-09-30 Method and apparatus for detecting defects in steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286303A JP4367932B2 (en) 2004-09-30 2004-09-30 Method and apparatus for detecting defects in steel structures

Publications (2)

Publication Number Publication Date
JP2006098283A true JP2006098283A (en) 2006-04-13
JP4367932B2 JP4367932B2 (en) 2009-11-18

Family

ID=36238238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286303A Active JP4367932B2 (en) 2004-09-30 2004-09-30 Method and apparatus for detecting defects in steel structures

Country Status (1)

Country Link
JP (1) JP4367932B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
JP2008232708A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Deterioration degree diagnosis method, deterioration degree diagnostic device, and deterioration diagnosis program
JP2015072245A (en) * 2013-10-04 2015-04-16 株式会社ジェイテクト Temperature measurement method and stress measurement method
JP2015230277A (en) * 2014-06-06 2015-12-21 株式会社ジェイテクト Stress measurement system and stress measurement method
JP2018081076A (en) * 2016-08-23 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company System and method for nondestructive evaluation of test object
JP2019078550A (en) * 2017-10-20 2019-05-23 神鋼検査サービス株式会社 Crack detection method
JP2019082464A (en) * 2017-10-27 2019-05-30 日本製鉄株式会社 Load addition device for stress distribution measurement and stress distribution measurement device using the same
CN116380311A (en) * 2023-05-11 2023-07-04 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587194B2 (en) 2016-02-15 2019-10-09 パナソニックIpマネジメント株式会社 Stress distribution measuring method and stress distribution measuring system
JP6574989B2 (en) 2017-04-26 2019-09-18 パナソニックIpマネジメント株式会社 Stress measuring apparatus, stress measuring system and stress measuring method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
JP2008232708A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Deterioration degree diagnosis method, deterioration degree diagnostic device, and deterioration diagnosis program
JP2015072245A (en) * 2013-10-04 2015-04-16 株式会社ジェイテクト Temperature measurement method and stress measurement method
JP2015230277A (en) * 2014-06-06 2015-12-21 株式会社ジェイテクト Stress measurement system and stress measurement method
JP2018081076A (en) * 2016-08-23 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company System and method for nondestructive evaluation of test object
JP2019078550A (en) * 2017-10-20 2019-05-23 神鋼検査サービス株式会社 Crack detection method
JP7098301B2 (en) 2017-10-20 2022-07-11 神鋼検査サービス株式会社 Crack detection method
JP2019082464A (en) * 2017-10-27 2019-05-30 日本製鉄株式会社 Load addition device for stress distribution measurement and stress distribution measurement device using the same
JP7081410B2 (en) 2017-10-27 2022-06-07 日本製鉄株式会社 Load application device for stress distribution measurement and stress distribution measurement device using this
CN116380311A (en) * 2023-05-11 2023-07-04 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method
CN116380311B (en) * 2023-05-11 2023-09-29 南京宁政工程咨询有限公司 Building steel structure stress detection device and detection method

Also Published As

Publication number Publication date
JP4367932B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4803652B2 (en) Structure defect detection method and apparatus
JP4898320B2 (en) Structure defect detection method and apparatus, and cargo handling machine having defect detection function
JP6474134B2 (en) Crack detection system and crack detection method
JP5491692B2 (en) System and method for locating fault events in a loaded sample
US9964503B2 (en) Methods and systems for detecting flaws in an object
JP4367932B2 (en) Method and apparatus for detecting defects in steel structures
JP2008064755A (en) Method for distinguishing damage of component, and component-inspection system
CN110967344B (en) Tunnel lining shallow layer peeling determination method and device based on infrared detection
JP5392179B2 (en) Steel plate defect detection method and defect detection system
KR101281582B1 (en) Noncontact imaging method for nondestructive testing
Ramzan et al. Pixel frequency based railroad surface flaw detection using active infrared thermography for structural health monitoring
Roemer et al. Laser spot thermography of welded joints
JP2006170684A (en) Method and device for inspecting press failure
Kurita et al. Active infrared thermographic inspection technique for elevated concrete structures using remote heating system
KR100967084B1 (en) Crack Monitoring System, Crack Monitoring Method and Computer Readable Medium on which Crack Monitoring Program is Recorded
CN110849884A (en) Method and system for detecting bonding defects inside composite insulator
KR101315391B1 (en) A nondestructive welding quality total inspection system and a inspection method thereof using an electromagnetic induction sensor
JP2018179854A (en) Method and apparatus for evaluating crack closure processing
Basheer et al. Hot-rod thermography for defect detection
Vanniamparambil et al. In-situ acousto-ultrasonic monitoring of crack propagation in Al2024 alloy
Holland Vibrothermography
Besharatian et al. Benchmarking dynamic properties of structures using non-contact sensing
DiMambro Quantitative evaluation of emerging infrared thermography technologies for aerospace applications
Zhu et al. Experimental investigation into probability of detection for fatigue cracks in sonic IR imaging
JP5664199B2 (en) Underwater weld inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

R150 Certificate of patent or registration of utility model

Ref document number: 4367932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250