JP2006096710A - Purification method of terephthalic acid - Google Patents

Purification method of terephthalic acid Download PDF

Info

Publication number
JP2006096710A
JP2006096710A JP2004285648A JP2004285648A JP2006096710A JP 2006096710 A JP2006096710 A JP 2006096710A JP 2004285648 A JP2004285648 A JP 2004285648A JP 2004285648 A JP2004285648 A JP 2004285648A JP 2006096710 A JP2006096710 A JP 2006096710A
Authority
JP
Japan
Prior art keywords
terephthalic acid
stage
crystallization
crystallization tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004285648A
Other languages
Japanese (ja)
Other versions
JP2006096710A5 (en
JP4747544B2 (en
Inventor
Haruo Suzuki
春生 鈴木
Hiroyuki Ito
博之 伊藤
Hatsutaro Yamazaki
初太郎 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004285648A priority Critical patent/JP4747544B2/en
Publication of JP2006096710A publication Critical patent/JP2006096710A/en
Publication of JP2006096710A5 publication Critical patent/JP2006096710A5/ja
Application granted granted Critical
Publication of JP4747544B2 publication Critical patent/JP4747544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallization method from a purified terephthalic acid aqueous solution which permits the manufacture of terephthalic acid for direct polymerization having good crystalline properties and a low impurity content. <P>SOLUTION: In the recovering method of purified terephthalic acid where crude terephthalic acid obtained by liquid phase oxidation of p-xylene is dissolved in water and is subjected to hydrogenation purification in the presence of a catalyst and the resultant purified aqueous solution is subjected to cooling/crystallization by stages in a serially linked five-staged flash evaporation-cooling crystallization tanks, the operation temperature at each crystallization tank is controlled to a temperature approximated by the correlation equation below between the operation temperature and the concentration of the crude terephthalic acid slurry fed for the hydrogenation purification reaction. Tn=(0.9958*N<SP>3</SP>-8.4268*N<SP>2</SP>-6.8726*N+239.89+S*C)±2.5(wherein Tn is the operation temperature (°C) of each crystallization tank; C is the concentration (wt%) of crude terephthalic acid; N is the stage number of the crystallization tanks (1, 2, 3, 4 and 5 starting from the highest temperature crystallization tank); and S is the coefficient at each crystallization tank (1.48 for the first stage, and 1.19 for the second, the third, the fourth and the fifth stages)). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はテレフタル酸の精製方法に係り、特にP−キシレンの酸化反応から得られた粗テレフタル酸(CTA)の水溶液を第VIII族金属の存在下、水素化精製して高純度テレフタル酸を製造するのに好適なテレフタル酸の精製方法に関するものである。   The present invention relates to a method for purifying terephthalic acid, and in particular, high-purity terephthalic acid is produced by hydrorefining an aqueous solution of crude terephthalic acid (CTA) obtained from the oxidation reaction of P-xylene in the presence of a Group VIII metal. In particular, the present invention relates to a method for purifying terephthalic acid.

一般に、P−キシレンの液相酸化によって得られる粗テレフタル酸には、通常、反応中間体である4−カルボニル安息香酸(4−CBA),p−トルイル酸(p−tA)などが不純物として含有され、これらを精製して高純度テレフタル酸を製造し、製造された高純度テレフタル酸はポリエステル原料として用いられている。   In general, crude terephthalic acid obtained by liquid phase oxidation of P-xylene usually contains 4-carbonylbenzoic acid (4-CBA), p-toluic acid (p-tA) or the like as impurities as impurities. These are refined to produce high-purity terephthalic acid, and the produced high-purity terephthalic acid is used as a polyester raw material.

その際の粗テレフタル酸の精製法としては、粗テレフタル酸と水を混合し、高温,高圧下のもとで水溶液にし、その後、Pd,Ptなどの第VIII族金属触媒の存在下で水素添加を行い還元処理して精製をし、その処理水溶液から精製テレフタル酸(PTA)を晶析,回収する方法が行われている(特許文献1/特公昭41−16860号公報)。   In this case, the crude terephthalic acid is purified by mixing crude terephthalic acid and water to form an aqueous solution under high temperature and high pressure, and then hydrogenating in the presence of a Group VIII metal catalyst such as Pd and Pt. There is a method in which purification is performed by reduction treatment, and purified terephthalic acid (PTA) is crystallized and recovered from the treated aqueous solution (Patent Document 1 / Japanese Patent Publication No. 41-16860).

その精製処理されたテレフタル酸水溶液から精製テレフタル酸を結晶として回収する方法として、通常、該水溶液を直列に接続された晶析槽に導入し、段階的に圧力を低下させるフラッシュ蒸発による冷却法が工業的に実施されている(特許文献2/特公昭53−
24057号公報)。
As a method of recovering purified terephthalic acid as crystals from the purified terephthalic acid aqueous solution, there is usually a cooling method by flash evaporation in which the aqueous solution is introduced into a crystallization tank connected in series and the pressure is lowered stepwise. Industrially implemented (Patent Document 2 / Japanese Patent Publication No. 53-
No. 24057).

そして、晶析最終槽の精製テレフタル酸の結晶化されたスラリーからテレフタル酸を回収する方法には、通常、最終晶析槽と同じ温度,圧力において濾過または遠心分離して、洗浄する方法が行われているが、洗浄にあたって、該固液分離後、水による再スラリー化を行い、再び固液分離を行い回収する方法も行われる。次いで、回収されたテレフタル酸を乾燥工程へ送り、精製テレフタル酸として製造する方法が実施されている(特許文献3/特公昭47−49049号公報)。   The method for recovering terephthalic acid from the crystallized slurry of purified terephthalic acid in the final crystallization tank usually involves washing by filtration or centrifugation at the same temperature and pressure as the final crystallization tank. However, in the washing process, after the solid-liquid separation, the slurry is re-slurried with water, and the solid-liquid separation is performed again for the recovery. Subsequently, a method of sending the recovered terephthalic acid to a drying step and producing it as purified terephthalic acid has been implemented (Patent Document 3 / Japanese Examined Patent Publication No. 47-49049).

このようにして得られた精製テレフタル酸はグリコール類と直接反応させるいわゆる直接重合法によるポリエステルの製造が行われており、該精製テレフタルの色相,純度への要求は勿論であるが、テレフタル酸結晶の粒子の大きさ、ならびに分布などの結晶性状に対する要求も大きい。すなわち、直接重合法におけるテレフタル酸は、グリコール類と混合してスラリー状態で反応系へ送られ重縮合反応に供されるが、精製テレフタル酸とグリコール類との適量の混合による良好なスラリー性能は、輸送,撹拌などを良好にし、重縮合反応の均一性を高めるなどの効果をもたらす。しかしながら、多量のグリコール類はポリエステル重合物の品質へ影響を及ぼすこととなる。したがって、流動性,均一性の観点から結晶性状への要求が高まっている。   The purified terephthalic acid thus obtained has been produced by a so-called direct polymerization method in which the purified terephthalic acid is directly reacted with glycols. Needless to say, the hue and purity of the purified terephthalic acid, There is also a great demand for crystal properties such as particle size and distribution. In other words, terephthalic acid in the direct polymerization method is mixed with glycols and sent to the reaction system in a slurry state to be subjected to the polycondensation reaction, but good slurry performance by mixing an appropriate amount of purified terephthalic acid and glycols is It brings about effects such as improving transportation, stirring, etc., and improving the uniformity of the polycondensation reaction. However, a large amount of glycols affects the quality of the polyester polymer. Accordingly, there is an increasing demand for crystalline properties from the viewpoint of fluidity and uniformity.

このため、粗テレフタル酸の精製を目的とした水素化精製法においても、得られた精製テレフタル酸には、色相,不純物の低減とともに、結晶の粒子性状がポリエステル原料として重要な要件となっている。このような要求に対応するものとして特許文献4(特開平8−208561号公報)に記載のテレフタル酸製造方法が知られている。   For this reason, even in the hydrorefining method for the purification of crude terephthalic acid, the obtained purified terephthalic acid has important requirements as a polyester raw material along with the reduction of hue and impurities as well as the crystal grain properties. . A method for producing terephthalic acid described in Patent Document 4 (Japanese Patent Application Laid-Open No. 8-208561) is known as one that meets such a requirement.

このテレフタル酸の製造方法は、粗テレフタル酸を水性媒体に溶解させ、260〜320℃の温度条件下、白金族金属触媒接触させて精製し、該テレフタル酸の水性溶液からテレフタル酸を直列に接続した複数の晶析槽で段階的に冷却して晶析するに際し、第1晶析帯域における晶析温度を240〜260℃とし、攪拌翼にて攪拌動力0.4〜10kw/m3の範囲で攪拌を行い、次いで、第2晶析帯域における晶析温度を180〜230℃とし、かつ、該晶析温度を第1晶析帯域の晶析温度より20〜60℃低くすることにより晶析を行った後、固液分離し、分離したテレフタル酸結晶粒子を乾燥し、粒径が210μmを越える割合が10重量%以下のテレフタル酸粒子を得る方法である。 In this terephthalic acid production method, crude terephthalic acid is dissolved in an aqueous medium and purified by contacting with a platinum group metal catalyst at a temperature of 260 to 320 ° C., and terephthalic acid is connected in series from the aqueous solution of terephthalic acid. When crystallization is carried out stepwise in the plurality of crystallization tanks, the crystallization temperature in the first crystallization zone is 240 to 260 ° C., and the stirring power is 0.4 to 10 kw / m 3 with a stirring blade. Then, the crystallization temperature in the second crystallization zone is set to 180 to 230 ° C., and the crystallization temperature is set to 20 to 60 ° C. lower than the crystallization temperature in the first crystallization zone. Is performed, followed by solid-liquid separation, and the separated terephthalic acid crystal particles are dried to obtain terephthalic acid particles having a particle size exceeding 210 μm of 10% by weight or less.

また、テレフタル酸の結晶に含有するp−トルイル酸の共晶などを防ぎ、品質的に満足する高純度テレフタル酸を製造するものとして、特許文献5(特開平11−228492号公報)に記載のテレフタル酸の回収方法が知られている。   Further, as described in Patent Document 5 (Japanese Patent Application Laid-Open No. 11-228492), a high-purity terephthalic acid satisfying quality is prevented by preventing the eutectic of p-toluic acid contained in terephthalic acid crystals. Methods for recovering terephthalic acid are known.

このテレフタル酸の回収方法は、濃度が22〜30wt%の粗テレフタル酸の水スラリーを270〜300℃に昇温し、完全に溶解したのち水添反応し、反応後テレフタル酸水溶液を3乃至5段の晶析槽に順次供給し、各段の晶析槽の操作温度を次の近似式で表される値に選び、y=266exp(−0.61x)±5;[x:1を総段数で分割した値に各段の段数値を乗じた値,y:温度(℃)]、第1晶析槽の温度を240℃に満たない温度として、各晶析槽の平均滞留時間を10〜60分とし、各槽へは該滞留液相部へのテレフタル酸水溶液またはスラリーを供給し、最終段の晶析槽から得られたスラリーを固液分離して、高純度のテレフタル酸を得る方法である。   In this method of recovering terephthalic acid, an aqueous slurry of crude terephthalic acid having a concentration of 22 to 30 wt% is heated to 270 to 300 ° C. and completely dissolved and then subjected to a hydrogenation reaction. Sequentially supply to the stage crystallization tanks, and select the operation temperature of each stage crystallization tank to a value represented by the following approximate expression: y = 266exp (−0.61x) ± 5; [x: 1 total The value obtained by multiplying the value divided by the number of stages by the stage value of each stage, y: temperature (° C.)], the temperature of the first crystallization tank is less than 240 ° C., and the average residence time of each crystallization tank is 10 -60 minutes, supplying each tank with a terephthalic acid aqueous solution or slurry to the staying liquid phase, and solid-liquid separation of the slurry obtained from the final stage crystallization tank to obtain high-purity terephthalic acid Is the method.

特公昭41−16860号公報Japanese Patent Publication No.41-16860 特公昭53−24057号公報Japanese Patent Publication No.53-24057 特公昭47−49049号公報Japanese Examined Patent Publication No. 47-49049 特開平8−208561号公報JP-A-8-208561 特開平11−228492号公報Japanese Patent Laid-Open No. 11-228492

上述のような直接重合用のテレフタル酸の製造において、粗テレフタル酸水溶液の水素化精製反応により、該テレフタル酸中の4−CBAの大部分は水素化され消失するが、p−tAがほぼ相当量生成される。このため、精製処理したテレフタル酸の水溶液の段階的なフラッシュ蒸発による冷却,晶析工程において、p−tAがテレフタル酸の結晶中に共唱しないようにする必要がある。また、テレフタル酸の結晶が生成される段階的な晶析工程は、粒子径および粒子分布の粒子性状の唯一の制御工程であると同時に、該工程中に生成されたp−tAに代表される不純物がテレフタル酸結晶に共晶あるいは吸着などして結晶に取り込まれた場合、取り込まれたp−tAはその後の分離,洗浄によっても低減することが困難になる。したがって、該冷却,晶析工程は、精製テレフタル酸中のp−tAなどの不純物の低減、ならびに結晶粒子の形成に重要な工程となり、また晶析工程が水素化精製反応を補完する重要な精製法の制御工程となる。   In the production of terephthalic acid for direct polymerization as described above, most of 4-CBA in the terephthalic acid is hydrogenated and disappears by hydrorefining reaction of the crude aqueous terephthalic acid solution, but p-tA is substantially equivalent. Quantity generated. For this reason, it is necessary to prevent p-tA from co-singling in the crystals of terephthalic acid in the cooling and crystallization steps of the purified aqueous solution of terephthalic acid by flash evaporation. In addition, the stepwise crystallization process in which crystals of terephthalic acid are produced is the only control process for the particle properties of the particle size and particle distribution, and at the same time, it is represented by p-tA produced during the process. When impurities are incorporated into the terephthalic acid crystal by eutectic or adsorption, it is difficult to reduce the incorporated p-tA by subsequent separation and washing. Therefore, the cooling and crystallization process is an important process for reducing impurities such as p-tA in purified terephthalic acid and forming crystal grains, and the crystallization process is an important purification that complements the hydrorefining reaction. It becomes the control process of the law.

このように、晶析温度が結晶性状ならびにp−tA含量に大きく影響を与えることは理解し得るところである。しかしながら、結晶性状およびp−tA含量はそれぞれに調整されるものではない。すなわち、フラッシュ蒸発の各段における結晶の晶析割合は、精製反応に導入されたスラリーの粗テレフタル酸濃度に対して、フラッシュされた水蒸気量ならびにその晶析温度により決まる。そして、その結晶性状とp−tA含量は全く異なった挙動をしているのではなく、各晶析段階での導入粗テレフタル酸に対する晶析割合が生成される結晶の粒子性状と共晶ならびに吸着などによるp−tA含量との間に不可分の挙動を有する。   Thus, it can be understood that the crystallization temperature greatly affects the crystal properties and the p-tA content. However, the crystal properties and the p-tA content are not adjusted to each. That is, the crystal crystallization ratio in each stage of flash evaporation is determined by the amount of water vapor flashed and the crystallization temperature with respect to the crude terephthalic acid concentration of the slurry introduced into the purification reaction. The crystal properties and the p-tA content do not behave completely differently, but the crystal properties, eutectic and adsorption of the crystals produced in the crystallization ratio for the introduced crude terephthalic acid at each crystallization stage. It has an inseparable behavior between the p-tA content and the like.

特許文献5(特開平8−208561号公報)記載の従来技術では、結晶性状に対する課題の解決手段として、第1段,第2段の晶析温度ならびに撹拌条件を主体的な操作条件としている。また、特許文献2(特公昭53−24057号公報)では、p−tA含有量を低減するために、華氏360〜320度(182〜160℃)までまたはそれ以下の温度にわたって、最初に溶解されたテレフタル酸を減少比率で晶出せしめるようにしている。さらに、特許文献5(特開平11−228492号公報)では、p−tAの量と析出するテレフタル酸結晶の量とのバランスを適切にし所望の純度で所望の量の高純度テレフタル酸を得るために、各晶析槽の温度をy=266exp(−0.61x)±5に設定するようにしている。   In the prior art described in Patent Document 5 (Japanese Patent Application Laid-Open No. 8-208561), the first and second crystallization temperatures and the stirring conditions are the main operating conditions as means for solving the problem of crystal properties. Also, in Patent Document 2 (Japanese Patent Publication No. 53-24057), in order to reduce the p-tA content, it is first dissolved over a temperature of 360 to 320 degrees Fahrenheit (182 to 160 ° C.) or lower. Terephthalic acid is crystallized at a decreasing rate. Further, in Patent Document 5 (Japanese Patent Laid-Open No. 11-228492), in order to obtain a desired amount of high-purity terephthalic acid with a desired purity by appropriately balancing the amount of p-tA and the amount of precipitated terephthalic acid crystals. In addition, the temperature of each crystallization tank is set to y = 266exp (−0.61x) ± 5.

上記従来技術は、結晶粒子の形成またはp−tAの共晶防止についてそれぞれに考慮された発明となっているが、これら両方の課題を解決し安定した精製テレフタル酸を製造するには、まだ充分な方法ではなかった。   The above prior art is an invention that takes into consideration the formation of crystal grains or the prevention of eutectic crystal of p-tA, respectively, but it is still sufficient to solve both of these problems and produce stable purified terephthalic acid. It wasn't easy.

本発明の目的は、水素化精製されたテレフタル酸水溶液の晶析過程において、p−tA含有量が低く、かつ、好ましい結晶性状を同時に達成し安定的な精製テレフタル酸を得ることのできるテレフタル酸の精製方法を提供することにある。   An object of the present invention is to provide a terephthalic acid which has a low p-tA content in the crystallization process of a hydrorefined terephthalic acid aqueous solution, and which can simultaneously achieve a preferable crystalline property and obtain a stable purified terephthalic acid. It is to provide a purification method.

上記本発明の目的は、水素化精製反応に導入される水溶液中の粗テレフタル酸濃度が
25〜33重量%の精製水溶液を晶析する過程で、直列に連結した5段のフラッシュ蒸発冷却式の晶析法による各晶析槽の操作温度を、精製反応に導入された粗テレフタル酸濃度との下記相関式で近似される温度に制御することにより、達成される。また、粗テレフタル酸濃度25〜33重量%の水スラリーは溶解温度280〜295℃の温度範囲で溶解する。
The object of the present invention is a process of crystallization of a purified aqueous solution having a crude terephthalic acid concentration of 25 to 33% by weight in the aqueous solution to be introduced into the hydrorefining reaction. This is achieved by controlling the operation temperature of each crystallization tank by the crystallization method to a temperature approximated by the following correlation equation with the crude terephthalic acid concentration introduced into the purification reaction. A water slurry having a crude terephthalic acid concentration of 25 to 33% by weight is dissolved in a temperature range of 280 to 295 ° C.

また、上記本発明の目的は、粗テレフタル酸濃度29〜33wt%の水スラリーを溶解し、第VIII族金属触媒の存在下で水素化精製した後、該精製テレフタル酸水溶液を直列に連結した5段のフラッシュ蒸発冷却式の晶析槽にて段階的に冷却・晶析させ、晶析した精製テレフタル酸を回収する方法において、前記晶析槽の各段の操作温度を導入されるスラリーの粗テレフタル酸濃度との下記相関式で近似される温度に制御するとともに、前記5段目の晶析槽で生成される水蒸気を凝縮して該晶析槽に還流することにより、達成される。また、粗テレフタル酸濃度29〜33重量%の水スラリーは溶解温度290〜295℃の温度範囲で溶解する。   Another object of the present invention is to dissolve a water slurry having a crude terephthalic acid concentration of 29 to 33 wt%, hydrotreat in the presence of a Group VIII metal catalyst, and then connect the purified aqueous terephthalic acid solution in series. In the method of recovering purified terephthalic acid which has been cooled and crystallized stepwise in a flash evaporation cooling type crystallization tank and recovering the crystallized purified terephthalic acid, the operating temperature of each stage of the crystallization tank is introduced into the coarse slurry. This is achieved by controlling the temperature to be approximated by the following correlation equation with the terephthalic acid concentration, and condensing the water vapor generated in the fifth crystallization tank and refluxing it to the crystallization tank. Further, a water slurry having a crude terephthalic acid concentration of 29 to 33% by weight is dissolved in a temperature range of 290 to 295 ° C.

Tn=(0.9958*N^3−8.4268*N^2−6.8726*N
+239.89+S*C)±2.5
Tn:各晶析槽の操作温度(℃)
C :粗テレフタル酸の濃度(重量%)
N :晶析槽の段数値(高温側晶析槽から1,2,3,4,5)
S :各晶析槽における係数(第1段 1.48,第2段,第3段,第4段,第5段 1.19)
Tn = (0.9958 * N ^ 3-8.4268 * N ^ 2-6.8726 * N
+ 239.89 + S * C) ± 2.5
Tn: Operating temperature of each crystallization tank (° C)
C: Concentration (% by weight) of crude terephthalic acid
N: Stage value of the crystallization tank (1, 2, 3, 4, 5 from the high temperature side crystallization tank)
S: Coefficient in each crystallization tank (first stage 1.48, second stage, third stage, fourth stage, fifth stage 1.19)

本発明は、水素化精製されたテレフタル酸水溶液の晶析過程において、p−tA含有量が低く、かつ、好ましい結晶性状を同時に達成し安定的な精製テレフタル酸を得ることができるという効果がある。   INDUSTRIAL APPLICABILITY The present invention has an effect that, in the crystallization process of a hydrorefined terephthalic acid aqueous solution, the p-tA content is low, and preferable crystalline properties can be achieved at the same time to obtain a stable purified terephthalic acid. .

また、本発明により得られる精製テレフタル酸は、直接重合法によるポリエステルの製造において、反応の均一性と生成重合物の色相ならびに重合度を高めて高品質なポリエステルを生成することに結び付くことは言うまでもない。   It goes without saying that the purified terephthalic acid obtained by the present invention leads to the production of a high-quality polyester by increasing the uniformity of the reaction, the hue of the polymer product and the degree of polymerization in the production of the polyester by the direct polymerization method. Yes.

また、温度制御によって晶析槽で最良の精製効果を発揮させることができる、すなわち、粗テレフタル酸を再スラリー化して水溶液にし晶析段階でp−tA含有量が低く、かつ、好ましい結晶性状の精製テレフタル酸を得ることができるので、粗テレフタル酸の品質に変動にあっても晶析段階で対応することができる。したがって、粗テレフタル酸中の反応中間体の変動をも許容し、粗テレフタル酸のコスト低減に効果をもたらす。   Moreover, the best purification effect can be exhibited in the crystallization tank by controlling the temperature, that is, the crude terephthalic acid is re-slurried into an aqueous solution, and the p-tA content is low at the crystallization stage, and the preferred crystalline properties are obtained. Since purified terephthalic acid can be obtained, even if the quality of the crude terephthalic acid varies, it can be handled at the crystallization stage. Therefore, the reaction intermediate in the crude terephthalic acid is allowed to vary, and the cost of the crude terephthalic acid is reduced.

さらに、p−tA含有量が低く、かつ、好ましい結晶性状の精製テレフタル酸を安定して得ることができるので、精製テレフタル酸の歩留まりが良く精製テレフタル酸の製造コストを低減させることができる。   Furthermore, since purified terephthalic acid having a low p-tA content and preferable crystalline properties can be stably obtained, the yield of purified terephthalic acid is good, and the production cost of purified terephthalic acid can be reduced.

本発明は、粗テレフタル酸(CTA)を再スラリー化して精製テレフタル酸を精製する晶析段階の条件が、精製テレフタル酸の結晶性状及びp−tA含有量に影響することに着目しなされたものである。すなわち、各段での段階的なフラッシュ蒸発と冷却による部分的晶析の割合が、精製テレフタル酸の結晶粒子を形成する際の結晶性状に影響を与え、p−tAの含有量にも影響を与える。   The present invention has been made by paying attention to the fact that the conditions of the crystallization stage in which crude terephthalic acid (CTA) is reslurried to purify purified terephthalic acid affect the crystalline properties and p-tA content of purified terephthalic acid. It is. That is, the rate of partial crystallization by stepwise flash evaporation and cooling at each stage affects the crystal properties when forming purified terephthalic acid crystal particles, and also affects the p-tA content. give.

本発明者は、精製テレフタル酸の結晶性状として好ましいとされる平均粒子径が130〜160μ、ならびにp−tA含有量150ppm 以下を目標に、直列に連結した5段の晶析槽を用いて、フラッシュ蒸発による冷却によって精製テレフタル酸を晶析・回収する際に、結晶性状とp−tA含量との両方の目標値を満足することのできる精製反応に導入される粗テレフタル酸濃度と各段の晶析温度条件を得た。   The present inventor uses a five-stage crystallization tank connected in series with the aim of an average particle size of 130 to 160 μm and a p-tA content of 150 ppm or less, which are preferable as the crystalline properties of purified terephthalic acid, When crystallizing and recovering purified terephthalic acid by cooling by flash evaporation, the concentration of crude terephthalic acid introduced into the purification reaction that can satisfy the target values of both the crystalline properties and the p-tA content and each stage Crystallization temperature conditions were obtained.

本発明を実施するにあたり、従来、商業的に生産されている粗テレフタル酸には、p−キシレンの酸化反応により4−CBAを2500〜3500ppm 、好ましくは2700〜3300ppm 含有する粗テレフタル酸が用いられている。その粗テレフタル酸を水と混合してスラリー化し、スラリーを加熱,溶解後、水素化精製反応槽に導入する。その際、粗テレフタル酸濃度は、25〜33重量%、好ましくは26〜33重量%の範囲で導入される。さらに好ましくは27〜31重量%で導入することにより、その後の晶析工程で安定した運転と結晶性状が得られる。スラリーの加熱,溶解温度は280〜295℃の範囲で、該温度で水素化反応槽に導入し水素化する。該温度は粗テレフタル酸濃度が溶解される飽和温度より数度(すなわち、3〜12℃)高い温度で行われる。なお、テレフタル酸の水への溶解は特許文献3(特公昭47−49049号公報)の第1表を参照すれば、25重量%では276℃、29重量%では約285℃、33重量%では約290℃と推定される。   In carrying out the present invention, crude terephthalic acid conventionally produced commercially includes crude terephthalic acid containing 2500 to 3500 ppm, preferably 2700 to 3300 ppm of 4-CBA by oxidation reaction of p-xylene. ing. The crude terephthalic acid is mixed with water to form a slurry. The slurry is heated and dissolved, and then introduced into a hydrotreating reactor. In this case, the crude terephthalic acid concentration is introduced in the range of 25 to 33% by weight, preferably 26 to 33% by weight. More preferably, introduction at 27 to 31% by weight provides stable operation and crystallinity in the subsequent crystallization step. The slurry is heated and melted at a temperature in the range of 280 to 295 ° C. and introduced into the hydrogenation reactor at that temperature for hydrogenation. The temperature is performed at a temperature several degrees higher (ie, 3-12 ° C.) than the saturation temperature at which the crude terephthalic acid concentration is dissolved. For the dissolution of terephthalic acid in water, refer to Table 1 of Patent Document 3 (Japanese Patent Publication No. 47-49049), 276 ° C. at 25% by weight, about 285 ° C. at 29% by weight, and about 285 ° C. at 33% by weight. It is estimated at about 290 ° C.

なお、必要以上の溶解水は加熱に必要な熱量の負荷につながるので好ましくない。また、テレフタル酸の濃度が高濃度のスラリーでは加熱,溶解および精製後の最終晶析槽でのスラリーの輸送,取り扱いに不具合を生じる。これらの理由によりスラリー中のテレフタル酸の濃度は制限される。そのためテレフタル酸の濃度が高濃度、例えば、29〜33重量%での精製処理の場合、特に精製後のスラリー輸送性能を改善するために、最終段晶析槽へ若干の水を供給してスラリーを希釈(供給テレフタル酸の0.5 重量倍以下)をしたり、最終段晶析槽からフラッシュされた蒸気の凝縮液を該晶析槽に戻す。これにより、精製テレフタル酸の結晶性状に大きく影響を与えることなくスラリー輸送の性能を改善できる。ただし、水の量が増えるのでその後の固液分離工程での若干の固液分離の負荷が伴なわれる。   Note that unnecessarily dissolved water is not preferable because it leads to a heat load necessary for heating. In addition, a slurry with a high concentration of terephthalic acid causes problems in transportation and handling of the slurry in the final crystallization tank after heating, dissolution and purification. For these reasons, the concentration of terephthalic acid in the slurry is limited. Therefore, in the case of purification treatment with a high concentration of terephthalic acid, for example, 29 to 33% by weight, in order to improve the slurry transport performance especially after purification, a small amount of water is supplied to the final stage crystallization tank to form a slurry. Is diluted (0.5 weight times or less of the supplied terephthalic acid), or the vapor condensate flushed from the final stage crystallization tank is returned to the crystallization tank. Thereby, the performance of slurry transport can be improved without greatly affecting the crystal properties of the purified terephthalic acid. However, since the amount of water increases, there is a slight solid-liquid separation load in the subsequent solid-liquid separation step.

本発明は、粗テレフタル酸の精製水溶液からの段階的なフラッシュ蒸発と冷却によって、溶解テレフタル酸を段階的に部分的晶析及び熟成過程を繰り返させ、最終段においてほぼ溶解した全部のテレフタル酸を析出させるものである。   In the present invention, dissolved terephthalic acid is gradually stepped through partial crystallization and aging by stepwise flash evaporation and cooling from a purified aqueous solution of crude terephthalic acid, and all the terephthalic acid almost dissolved in the final stage is recovered. To be deposited.

各段のフラッシュ蒸発による急激な結晶の析出では、段数を少なくすると結晶粒子径が減少するとともにそれに伴ないp−tAの含有量の低減を阻害することとなる。すなわち、段数を少なくすると一段当たりの温度降下が大きくなり短時間の内に多くの結晶を析出することになるので結晶粒径も小さく数が多くなってしまう。そのため、共晶したp−
tAが結晶化したテレフタル酸の内部に閉じ込められ、洗浄によって除去できないp−
tAの数が増えて、最終的なp−tAの含有量の低減を阻害するものと思われる。このため、水素化還元による精製後のテレフタル酸水溶液を段階的にフラッシュ蒸発させる晶析槽の段数は、目標とされるテレフタル酸を得るために、本発明では5段の直列連結による晶析槽とした。
In abrupt crystal precipitation by flash evaporation at each stage, if the number of stages is reduced, the crystal particle diameter is reduced and the accompanying reduction in the p-tA content is inhibited. That is, if the number of stages is reduced, the temperature drop per stage is increased and many crystals are precipitated within a short time, so that the crystal grain size is small and the number is large. Therefore, eutectic p-
p- is trapped inside the crystallized terephthalic acid and cannot be removed by washing
It seems that the number of tA increases and inhibits the final reduction of p-tA content. For this reason, in order to obtain the target terephthalic acid, the number of stages of the crystallization tank in which the aqueous solution of terephthalic acid after purification by hydroreduction is flash-evaporated is 5 in the present invention. It was.

晶析段階では、生成される結晶粒子径ならびにp−tAの包含への主導的要因となる各段での結晶の晶析割合を最適化するために、飽和溶解度に基づき各晶析槽での温度,テレフタル酸濃度を変え、後述の表1に示す晶析後のp−tA含量と平均粒径のデータを得た。また、これを図式化し好ましい温度線図として図2(詳細は後述)に示す。   In the crystallization stage, in order to optimize the crystal grain size at each stage, which is a leading factor for inclusion of p-tA, the crystal grain size produced in each crystallization tank based on the saturation solubility. The temperature and the terephthalic acid concentration were changed, and data on the ptA content after crystallization and the average particle diameter shown in Table 1 described later were obtained. Moreover, this is diagrammatically shown as a preferred temperature diagram in FIG. 2 (details will be described later).

その結果、好ましい精製テレフタル酸を得る方法として、水素化精製反応後に導入するスラリー中の粗テレフタル酸濃度との関係において、図2に示す温度線図を近似化した関係式(1)を得た。   As a result, as a preferable method for obtaining purified terephthalic acid, a relational expression (1) obtained by approximating the temperature diagram shown in FIG. 2 was obtained in relation to the crude terephthalic acid concentration in the slurry introduced after the hydrorefining reaction. .

Tn=(0.9958*N^3(Nの3乗)−8.4268*N^2(Nの2乗)
−6.8726*N+239.89+S*C)±2.5 …(1)
Tn:各晶析槽の操作温度(℃)
C :粗テレフタル酸の濃度(重量%)
N :晶析槽の段数値(高温側晶析槽から1,2,3,4,5)
S :各晶析槽における係数(第1段:1.48,第2〜5段:1.19)
例えば、テレフタル酸濃度25重量%の場合の各段の晶析槽の基準操作温度(許容範囲は省略)は、第1段262.6℃,第2段230.2℃,第3段200.1℃,第4段171.1℃、第5段149.1℃ となる。テレフタル酸濃度33重量%の場合の各段の晶析槽の基準操作温度(許容範囲は省略)は、第1段274.4℃,第2段239.7℃,第3段
209.6℃,第4段180.6℃,第5段158.6℃となる。
Tn = (0.9958 * N ^ 3 (N cubed) −8.4268 * N ^ 2 (N squared)
−6.8726 * N + 239.89 + S * C) ± 2.5 (1)
Tn: Operating temperature of each crystallization tank (° C)
C: Concentration (% by weight) of crude terephthalic acid
N: Stage value of the crystallization tank (1, 2, 3, 4, 5 from the high temperature side crystallization tank)
S: Coefficient in each crystallization tank (first stage: 1.48, second to fifth stages: 1.19)
For example, in the case of a terephthalic acid concentration of 25% by weight, the standard operating temperatures of the crystallization tanks in each stage (the allowable range is omitted) are as follows. 1 ° C, 4th stage 171.1 ° C, 5th stage 149.1 ° C. The standard operating temperatures of the crystallization tanks in each stage when the terephthalic acid concentration is 33% by weight (the allowable range is omitted) are the first stage 274.4 ° C, the second stage 239.7 ° C, and the third stage 209.6 ° C. , 4th stage 188.6 ° C., 5th stage 158.6 ° C.

これにより、関係式(1)によって定めた各段の晶析槽の操作温度を用いて晶析槽の格段を操作,制御することにより、目標とした平均粒子径130〜160μ、及びp−tA含有量150ppm 以下の精製テレフタル酸を精製することができる。   Thus, the average particle diameter of 130 to 160 μm and p-tA targeted by operating and controlling the crystallization tank by using the operation temperature of each stage of the crystallization tank determined by the relational expression (1). Purified terephthalic acid having a content of 150 ppm or less can be purified.

上記関係式(1)における各段での算出晶析割合は、導入粗テレフタル酸量に対して、第1段では34〜46重量%、第2段では82〜86重量%、第3段では95.2〜96.3重量%、第4段では98.7〜99.1重量%、第5段では99.56〜99.65重量%と微妙な晶析割合で制御されていることが推定された。また、得られた各晶析段の温度の関係は、各段における晶析割合が次の晶析段へ影響を与え、結晶粒子径ならびにp−tA含量に影響を与えていることが推察される。本発明では、特許文献4や特許文献5に示された従来の晶析方法における初段の操作温度より高く設定されているので、初段の晶析槽での晶析割合が従来の方法に比べ抑制されており、この設定温度がその後の各段の晶析温度設定と上手く適合し、目標とする性状のテレフタル酸が得られたものと考えられる。   The calculated crystallization ratio at each stage in the relational expression (1) is 34 to 46% by weight in the first stage, 82 to 86% by weight in the second stage, and 82 to 86% by weight in the second stage with respect to the introduced crude terephthalic acid amount. 95.2 to 96.3% by weight, the fourth stage is 98.7 to 99.1% by weight, the fifth stage is 99.56 to 99.65% by weight, and it is estimated that the crystallization ratio is controlled. It was. Further, regarding the relationship between the temperatures of the obtained crystallization stages, it is presumed that the crystallization ratio in each stage affects the next crystallization stage and affects the crystal particle diameter and the ptA content. The In the present invention, since the operating temperature of the first stage in the conventional crystallization method shown in Patent Document 4 or Patent Document 5 is set higher, the crystallization ratio in the first stage crystallization tank is suppressed compared to the conventional method. Therefore, it is considered that this set temperature matched well with the crystallization temperature setting of each subsequent stage, and terephthalic acid having the target property was obtained.

なお、各晶析槽での操作条件は、(1)晶析がフラッシュ蒸発による冷却法のため、各晶析槽へのスラリーの導入を各槽のスラリー相中に行う、(2)各槽での平均滞留時間を10〜60分で行う。これはフラッシュによる部分的な急激な結晶の析出を少しでも緩和させるために、既に結晶が存在するスラリー相内で行わせるとともに、既に存在する結晶の上に晶析させるためである。結晶を熟成させるためには少なくとも約10分、好ましくは少なくとも20分の滞留時間を取るように制御する必要がある。また、滞留時間をあまり長くしても析出量は時間と共に多くならないのでその効果はない。   The operating conditions in each crystallization tank are as follows: (1) Since the crystallization is a cooling method by flash evaporation, the slurry is introduced into each crystallization tank in the slurry phase of each tank. (2) Each tank The average residence time is from 10 to 60 minutes. This is because, in order to alleviate the partial rapid crystal precipitation due to the flash, it is performed in the slurry phase in which the crystal is already present, and is crystallized on the crystal already present. In order to age the crystals, it is necessary to control the residence time to be at least about 10 minutes, preferably at least 20 minutes. Further, even if the residence time is too long, the amount of precipitation does not increase with time, so there is no effect.

そして、得られた最終段(第5段)晶析槽のスラリーをその温度,圧力状態で固液分離し、洗浄した後、乾燥して直重合用テレフタル酸として回収される。   The obtained slurry in the final stage (fifth stage) crystallization tank is subjected to solid-liquid separation in the temperature and pressure state, washed, dried and recovered as terephthalic acid for direct polymerization.

なお、該スラリーの固液分離は濾過あるいは沈降式の分離機いずれでも良く、固液分離後、新しい媒体によって再スラリー化することによって洗浄を行いさらにp−tA酸の低減を図ることができる。また、再スラリー化による洗浄に代えて洗浄可能な固液分離機を用いることもできる。   The solid-liquid separation of the slurry may be either a filtration or a sedimentation type separator. After the solid-liquid separation, the slurry can be washed again by re-slurrying with a new medium to further reduce the p-tA acid. Further, a washable solid-liquid separator can be used instead of washing by reslurry.

以下、本発明の一実施例を以下に示すが、本発明の請求範囲を超えない範囲で以下の実施例に限定されるものでない。   Hereinafter, although one Example of this invention is shown below, it is not limited to a following example in the range which does not exceed the claim of this invention.

図1は本発明の一実施態様を示すもので、テレフタル酸の精製を行うプラントの系統図である。   FIG. 1 shows an embodiment of the present invention and is a system diagram of a plant for purifying terephthalic acid.

図1に示すように粗テレフタル酸の再スラリー化後の精製テレフタル酸を製造する装置は、スラリー調整槽1,ポンプ2,加熱器3,溶解槽4,水素化反応槽5,第1晶析槽6,第2晶析槽7,第3晶析槽8,第4晶析槽9,第5晶析槽10,ポンプ12,固液分離器13,再スラリー化槽14,ポンプ15,固液分離器16(例えば、遠心分離機),乾燥器17から成り、これらを順次接続した5段の晶析槽方式でなる。還流凝縮器11は、第5晶析槽10から排出される水蒸気の一部を凝縮し還流させ、第5晶析槽10内のスラリー濃度を調整する。   As shown in FIG. 1, an apparatus for producing purified terephthalic acid after re-slurry of crude terephthalic acid is as follows: slurry adjustment tank 1, pump 2, heater 3, dissolution tank 4, hydrogenation reaction tank 5, first crystallization Tank 6, second crystallization tank 7, third crystallization tank 8, fourth crystallization tank 9, fifth crystallization tank 10, pump 12, solid-liquid separator 13, reslurry tank 14, pump 15, solid It consists of a liquid separator 16 (for example, a centrifugal separator) and a dryer 17, and is a five-stage crystallization tank system in which these are sequentially connected. The reflux condenser 11 condenses and refluxs part of the water vapor discharged from the fifth crystallization tank 10 to adjust the slurry concentration in the fifth crystallization tank 10.

このように構成された装置を用いて、4−CBA含有量0.30〜0.33重量%(3000〜3300ppm )の粗テレフタル酸と純水とをスラリー調整槽1に供給し、該スラリー調整槽1内で所定の濃度に調整されたスラリーをポンプ2によって加圧・送給し加熱器3によって所定の温度に加熱すると共に溶解槽4に送って粗テレフタル酸を完全に水溶液中に溶解させる。次に粗テレフタル酸の水溶液を水素化反応槽5に送り、該水溶液を第VIII族金属触媒の存在下で、所定の温度,圧力で水素化精製反応(水添反応)を行わせ、粗テレフタル酸中の4−CBAをp−tAに転化させると共にその他の不純物を水素化分解精製する。   Using the apparatus configured in this manner, a crude terephthalic acid having a 4-CBA content of 0.30 to 0.33 wt% (3000 to 3300 ppm) and pure water are supplied to the slurry adjusting tank 1 to adjust the slurry. The slurry adjusted to a predetermined concentration in the tank 1 is pressurized and fed by the pump 2 and heated to a predetermined temperature by the heater 3 and sent to the dissolution tank 4 to completely dissolve the crude terephthalic acid in the aqueous solution. . Next, an aqueous solution of crude terephthalic acid is sent to the hydrogenation reaction tank 5, and the aqueous solution is subjected to a hydrorefining reaction (hydrogenation reaction) at a predetermined temperature and pressure in the presence of a Group VIII metal catalyst. 4-CBA in acid is converted to p-tA and other impurities are hydrocracked and purified.

その後、直列に連結された5段の晶析槽6〜10に水溶液を順次送給し、前述の関係式(1)で求められた温度となるようにその温度になる圧力でフラッシュ蒸発させる。また、各段の晶析槽6〜10での滞留時間を約25分としテレフタル酸を部分晶析させ、第5晶析槽10においてほぼ全量のテレフタル酸を析出させる。ここで、各晶析槽6〜10には温度センサ21及び圧力センサ22がそれぞれ設けられ、各晶析槽の圧力・温度状態を制御装置30によって監視し、各晶析槽の入口部に設けた減圧弁20を制御して各晶析槽内の圧力を調整し、各晶析槽の操作温度を所定の温度に制御している。   Thereafter, the aqueous solution is sequentially fed to the five-stage crystallization tanks 6 to 10 connected in series, and flash-evaporated at a pressure that reaches the temperature obtained by the relational expression (1) described above. Further, the residence time in the crystallization tanks 6 to 10 in each stage is set to about 25 minutes to partially crystallize terephthalic acid, and almost the entire amount of terephthalic acid is precipitated in the fifth crystallization tank 10. Here, each crystallization tank 6 to 10 is provided with a temperature sensor 21 and a pressure sensor 22, and the pressure / temperature state of each crystallization tank is monitored by the control device 30 and provided at the inlet of each crystallization tank. The pressure reducing valve 20 is controlled to adjust the pressure in each crystallization tank, and the operation temperature of each crystallization tank is controlled to a predetermined temperature.

また、制御装置30は、スラリー調整槽1への純水の供給量を調整し、スラリー調整槽1から出るスラリーのテレフタル酸濃度を所定の濃度に制御する。制御装置30は、ポンプ2による加圧及びスラリーの供給量を調整し、加熱器3による加熱温度を調整する。   Moreover, the control apparatus 30 adjusts the supply amount of the pure water to the slurry adjustment tank 1, and controls the terephthalic acid density | concentration of the slurry output from the slurry adjustment tank 1 to a predetermined density | concentration. The control device 30 adjusts the pressurization by the pump 2 and the supply amount of the slurry, and adjusts the heating temperature by the heater 3.

第5晶析槽10に設けられた還流凝縮器11は、第5晶析槽10から排出される水蒸気の一部(例えば0〜100%)を凝縮して第5晶析槽10に戻す。還流凝縮器11による還流量の制御は、第5晶析槽10のスラリー排出ラインのテレフタル酸濃度を測定し、該濃度に応じて制御装置30によって第5晶析槽10の水蒸気排出ラインに設けた流量制御弁23を調整し、水蒸気の排出量を調整して還流凝縮器11へ送給する水蒸気量を制御することにより行われる。テレフタル酸濃度の測定は第5晶析槽10のスラリー排出ラインを流れるスラリーの一部を抜き出して測定しても良いし、スラリー排出ラインに直接に濃度計を設けて測定するようにしても良い。これにより、第5晶析槽内のテレフタル酸濃度が高くなりスラリーの流れが悪くなるのを抑制することができ、精製プラントの良好な運転が図れる。   The reflux condenser 11 provided in the fifth crystallization tank 10 condenses a part of the water vapor (for example, 0 to 100%) discharged from the fifth crystallization tank 10 and returns it to the fifth crystallization tank 10. Control of the amount of reflux by the reflux condenser 11 is performed by measuring the terephthalic acid concentration in the slurry discharge line of the fifth crystallization tank 10 and providing it in the water vapor discharge line of the fifth crystallization tank 10 by the controller 30 according to the concentration. The flow rate control valve 23 is adjusted, the amount of water vapor discharged is adjusted, and the amount of water vapor supplied to the reflux condenser 11 is controlled. The terephthalic acid concentration may be measured by extracting a part of the slurry flowing through the slurry discharge line of the fifth crystallization tank 10 or by directly providing a concentration meter on the slurry discharge line. . Thereby, it can suppress that the terephthalic acid density | concentration in a 5th crystallization tank becomes high, and the flow of a slurry worsens, and can perform the favorable driving | operation of a refinery plant.

例えば、粗テレフタル酸29重量%スラリーに調製し、温度290℃で水素化精製反応を行った後、順次晶析させた場合、第5晶析槽内のテレフタル酸濃度は約40%となり、同様に粗テレフタル酸33重量%スラリーに調製し、温度290℃で水素化精製反応を行った後、順次晶析させた場合、第5晶析槽内のテレフタル酸濃度は約45%となる。このように粗テレフタル酸29重量%以上のスラリーに調製されたものでは、第5晶析槽内のスラリー濃度が40%を越えるので、スラリーの流れを良好にするために第5晶析槽で発生する水蒸気を凝縮して第5晶析槽に還流することが望ましい。   For example, when a crude terephthalic acid slurry is prepared in a 29% by weight slurry and subjected to a hydrorefining reaction at a temperature of 290 ° C. and then sequentially crystallized, the terephthalic acid concentration in the fifth crystallization tank is about 40%, In the case of preparing a 33% by weight slurry of crude terephthalic acid and conducting a hydrorefining reaction at a temperature of 290 ° C., followed by sequential crystallization, the terephthalic acid concentration in the fifth crystallization tank is about 45%. In this way, in the slurry prepared with 29% by weight or more of crude terephthalic acid, since the slurry concentration in the fifth crystallization tank exceeds 40%, in the fifth crystallization tank, the slurry flow is improved. It is desirable to condense the generated water vapor and return it to the fifth crystallization tank.

次に、晶析の終わったスラリーを第5晶析槽10(最終段晶析槽)の温度,圧力の状態のままポンプ12によって固液分離器13に送って第1段の固液分離を行い、スラリーから精製テレフタル酸を分離する。さらに、分離された精製テレフタル酸を再スラリー化槽14に入れて精製テレフタル酸に対して1.5〜2.0重量倍の純水で再スラリー化し、精製テレフタル酸に付着したp−tAを純水に溶解させて精製テレフタル酸からp−tAを除去し、精製テレフタル酸を洗浄する。精製テレフタル酸洗浄後のスラリーをポンプ15によって固液分離器16に送って固液分離し、分離された精製テレフタル酸を乾燥器17に送って乾燥させる。   Next, the slurry after crystallization is sent to the solid-liquid separator 13 by the pump 12 while maintaining the temperature and pressure of the fifth crystallization tank 10 (final stage crystallization tank) for the first stage solid-liquid separation. And separate the purified terephthalic acid from the slurry. Furthermore, the separated purified terephthalic acid is put into the reslurry tank 14 and reslurried with 1.5 to 2.0 times the pure water of the purified terephthalic acid, and p-tA adhering to the purified terephthalic acid is removed. It is dissolved in pure water to remove p-tA from the purified terephthalic acid, and the purified terephthalic acid is washed. The purified terephthalic acid washed slurry is sent to a solid-liquid separator 16 by a pump 15 for solid-liquid separation, and the purified terephthalic acid thus separated is sent to a dryer 17 for drying.

このように構成された装置においては、前述の関係式(1)によって求められた温度で各晶析槽の温度を設定することにより、目標とする性状の粒径及びp−tA含量のテレフタル酸を精製することができる。   In the apparatus configured as described above, by setting the temperature of each crystallization tank at the temperature obtained by the relational expression (1) described above, terephthalic acid having a target particle size and ptA content is obtained. Can be purified.

なお、本実施例においては、晶析後の精製テレフタル酸を固液分離器13において固液分離し、スラリーから精製テレフタル酸を分離し、さらに分離した精製テレフタル酸を再スラリー化して洗浄し、p−tAを溶解除去させ、固液分離器16によって精製テレフタル酸をスラリーから分離し、乾燥器17で乾燥させて精製テレフタル酸を製造していたが、再スラリー化方式とせずに晶析後の精製テレフタル酸を洗浄式の濾過器、例えば、加圧式回転濾過機やフィルターセル型回転濾過機等に直接に供給し、精製テレフタル酸を洗浄・濾過し、濾過した精製テレフタル酸を乾燥器17で乾燥させて精製テレフタル酸を製造するようにしても良い。なお、固液分離器13として種々の濾過器が使用できることは言うまでもない。   In this example, the purified terephthalic acid after crystallization is solid-liquid separated in the solid-liquid separator 13, the purified terephthalic acid is separated from the slurry, and the separated purified terephthalic acid is reslurried and washed, The p-tA was dissolved and removed, and the purified terephthalic acid was separated from the slurry by the solid-liquid separator 16 and dried by the dryer 17 to produce purified terephthalic acid, but after crystallization without using the reslurry method The purified terephthalic acid is directly supplied to a washing type filter, such as a pressure type rotary filter or a filter cell type rotary filter, the purified terephthalic acid is washed and filtered, and the filtered purified terephthalic acid is dried in a dryer 17. The terephthalic acid may be produced by drying with Needless to say, various filters can be used as the solid-liquid separator 13.

上述のようにして精製されるテレフタル酸において、精製テレフタル酸の性状は第1段固液分離後のケーキをサンプル採取し、乾燥して測定を行った。採集した精製テレフタル酸性状の評価は、好ましい結晶性状として湿式篩法による粒径分布を測定し、平均粒子径で評価し、不純物含有量としては液クロマトグラム法によるp−tA含有量で評価した。   In the terephthalic acid purified as described above, the properties of the purified terephthalic acid were measured by taking a sample of the cake after the first-stage solid-liquid separation and drying it. The collected purified terephthalic acid state was evaluated by measuring the particle size distribution by the wet sieving method as a preferable crystal property, and evaluating the average particle size, and the impurity content was evaluated by the p-tA content by the liquid chromatogram method. .

晶析段階において、生成される結晶粒子径ならびにp−tAの包含への主導的要因となる各段での結晶の晶析割合を最適化するために、飽和溶解度に基づき各晶析槽での温度,テレフタル酸濃度を変え、表1に示す晶析後のp−tA含量と平均粒径のデータを得た。なお、表1において比較例1ないし24に示されたものは、いずれかの晶析槽が関係式
(1)の範囲外の温度で操作されたものであり、好ましくない性状の精製テレフタル酸となっている。
In order to optimize the crystal grain size at each stage, which is a leading factor for inclusion of ptA in the crystallization stage, in the crystallization stage, The temperature and the terephthalic acid concentration were changed, and the data of the p-tA content and average particle diameter after crystallization shown in Table 1 were obtained. In Table 1, those shown in Comparative Examples 1 to 24 are those in which any crystallization tank was operated at a temperature outside the range of the relational expression (1), and purified terephthalic acid having undesirable properties and It has become.

Figure 2006096710
Figure 2006096710

〔例1〜3,比較例1〜3〕
酢酸溶媒中、コバルト,マンガンおよび臭素の存在下、P−キシレンを分子状酸素によって酸化して得た粗テレフタル酸(CTA)を水と混合し、粗テレフタル酸の28重量%スラリーを調製した後、供給ポンプで加圧・供給し、288℃まで加熱しながら、テレフタル酸を水に溶解する。該テレフタル酸水溶液を、圧力7.3MpG ,温度288℃の
Pd−Charcoal触媒を充填した精製反応塔に精製用水素とともに、供給し、水素化精製反応を行った。該反応処理を行ったテレフタル酸水溶液を段階的に圧力を低下させる直列に連結した5段の晶析槽に供給し、表1に示される温度でテレフタル酸の結晶を析出させた。得られた精製テレフタル酸中の4−カルボニル安息香酸(4−CBA),p−トルイル酸(p−tA)およびテレフタル酸結晶粒子の平均粒子径は表1に示す通りとなった。
[Examples 1-3, Comparative Examples 1-3]
Crude terephthalic acid (CTA) obtained by oxidizing P-xylene with molecular oxygen in the presence of cobalt, manganese and bromine in an acetic acid solvent was mixed with water to prepare a 28 wt% slurry of crude terephthalic acid. Then, pressurize and supply with a supply pump, and dissolve terephthalic acid in water while heating to 288 ° C. The terephthalic acid aqueous solution was supplied together with hydrogen for purification to a purification reaction column packed with a Pd-Charcoal catalyst having a pressure of 7.3 MpG and a temperature of 288 ° C. to carry out a hydrorefining reaction. The terephthalic acid aqueous solution subjected to the reaction treatment was supplied to a five-stage crystallization tank connected in series to gradually reduce the pressure, and crystals of terephthalic acid were precipitated at the temperatures shown in Table 1. Table 1 shows the average particle diameters of 4-carbonylbenzoic acid (4-CBA), p-toluic acid (p-tA) and terephthalic acid crystal particles in the purified terephthalic acid obtained.

〔例4〜6,比較例4〜7〕
前述の例1〜3と同様の前提条件で、但し、粗テレフタル酸25重量%スラリーを調製し、水素化精製反応を行った後、表1に示される温度で順次晶析させた。得られた精製テレフタル酸の性状は表1に示す通りとなった。
[Examples 4 to 6, Comparative Examples 4 to 7]
Under the same preconditions as in Examples 1 to 3, except that a 25 wt% crude terephthalic acid slurry was prepared, subjected to a hydrorefining reaction, and then sequentially crystallized at the temperatures shown in Table 1. The properties of the obtained purified terephthalic acid were as shown in Table 1.

〔例7〜9,比較例8〜12〕
前述の例1〜3と同様の前提条件で、但し、粗テレフタル酸31重量%スラリーを調製し、水素化精製反応を行った後、表1に示される温度で順次晶析させた。但し、これらの晶析にあたって最終段(第5段)晶析槽に、水素化精製反応へ供給の粗テレフタル酸に対して0.2重量部相当量の温水(70℃)を供給して行った。
[Examples 7 to 9, Comparative Examples 8 to 12]
Under the same preconditions as in Examples 1 to 3, except that a 31% by weight crude terephthalic acid slurry was prepared, subjected to a hydrorefining reaction, and then sequentially crystallized at the temperatures shown in Table 1. However, in these crystallizations, the final stage (fifth stage) crystallization tank was supplied with 0.2 parts by weight of warm water (70 ° C.) equivalent to the crude terephthalic acid supplied to the hydrorefining reaction. It was.

得られた精製テレフタル酸の性状は表1に示す通りである。   Properties of the obtained purified terephthalic acid are as shown in Table 1.

〔例10〜12,比較例13〜15〕
前述の例1〜3と同様の前提条件で、但し、粗テレフタル酸27重量%スラリーを調製し、290℃まで加熱し、圧力7.5MpG ,温度290℃で水素化精製反応を行った後、表1に示される温度で順次晶析させた。得られた精製テレフタル酸の性状は表1に示す通りとなった。
[Examples 10 to 12, Comparative Examples 13 to 15]
Under the same preconditions as in Examples 1 to 3, except that a crude 27% by weight slurry of terephthalic acid was prepared and heated to 290 ° C. and subjected to a hydrorefining reaction at a pressure of 7.5 MpG and a temperature of 290 ° C. Crystallization was performed sequentially at the temperatures shown in Table 1. The properties of the obtained purified terephthalic acid were as shown in Table 1.

〔例13,14,比較例16〜19〕
前述の例10〜12と同様の前提条件で、但し、粗テレフタル酸30重量%スラリーを調製し、水素化精製反応を行った後、表1に示される温度で順次晶析させた。但し、これらの晶析にあたって最終段(第5段)晶析槽に、水素化精製反応へ供給の粗テレフタル酸に対して0.2重量部相当量の温水(70℃)を供給して行った。
[Examples 13 and 14, Comparative Examples 16 to 19]
Under the same preconditions as in Examples 10 to 12 described above, however, a crude 30% by weight slurry of terephthalic acid was prepared, subjected to a hydrorefining reaction, and then sequentially crystallized at the temperatures shown in Table 1. However, in these crystallizations, the final stage (fifth stage) crystallization tank was supplied with 0.2 parts by weight of warm water (70 ° C.) equivalent to the crude terephthalic acid supplied to the hydrorefining reaction. It was.

得られた精製テレフタル酸の性状は表1に示す通りである。   Properties of the obtained purified terephthalic acid are as shown in Table 1.

〔例15〜17,比較例20〜22〕
前述の例10〜12と同様の前提条件で、但し、粗テレフタル酸33重量%スラリーを調製し、水素化精製反応を行った後、表1に示される温度で順次晶析させた。但し、これらの晶析にあたって最終段(第5段)晶析槽に、水素化精製反応へ供給の粗テレフタル酸に対して0.4重量部相当量の温水(70℃)を供給して行った。
[Examples 15 to 17, Comparative Examples 20 to 22]
Under the same preconditions as in Examples 10 to 12 above, a 33% by weight crude terephthalic acid slurry was prepared, subjected to a hydrorefining reaction, and then sequentially crystallized at the temperatures shown in Table 1. However, in these crystallizations, the final stage (fifth stage) crystallization tank was supplied with hot water (70 ° C.) equivalent to 0.4 parts by weight with respect to the crude terephthalic acid supplied to the hydrorefining reaction. It was.

得られた精製テレフタル酸の性状は表1に示す通りである。   Properties of the obtained purified terephthalic acid are as shown in Table 1.

〔比較例23,24〕
前述の例1〜3と同様の前提条件で、但し、粗テレフタル酸23重量%スラリーを調製し、285℃まで加熱し、圧力7.1MpG ,温度285℃で水素化精製反応を行った後、表1に示される温度で順次晶析させた。得られた精製テレフタル酸の性状は表1に示す通りとなった。
[Comparative Examples 23 and 24]
The same preconditions as in Examples 1 to 3 above, except that a crude 23% by weight slurry of terephthalic acid was prepared and heated to 285 ° C. and subjected to a hydrorefining reaction at a pressure of 7.1 MpG and a temperature of 285 ° C. Crystallization was performed sequentially at the temperatures shown in Table 1. The properties of the obtained purified terephthalic acid were as shown in Table 1.

図2は水素化精製反応に導入する粗テレフタル酸濃度と各晶析槽温度を示す図であり、前記表1に示された各例及び比較例の温度を点綴したものである。なお、図2には表1の比較例の温度を×印で点綴してあり、好ましくない性状の精製テレフタル酸が生成された条件のケースとして示してある。各比較例においては、何れかの晶析槽で本発明の精製方法の範囲外の温度で操作されている。図2はこれらのデータから各段の晶析槽において好ましい温度線図を求めたものであり、前述の関係式(1)はこの温度線図を近似化したものである。   FIG. 2 is a diagram showing the concentration of crude terephthalic acid introduced into the hydrorefining reaction and the temperature of each crystallization tank, and shows the temperature of each example and comparative example shown in Table 1 above. In FIG. 2, the temperature of the comparative example in Table 1 is dotted with a cross, and it is shown as a case where purified terephthalic acid having undesirable properties is generated. In each comparative example, the crystallization tank is operated at a temperature outside the range of the purification method of the present invention. FIG. 2 shows a preferable temperature diagram in each stage of the crystallization tank obtained from these data, and the above-mentioned relational expression (1) is an approximation of this temperature diagram.

ポリエステルの製造原料として好ましい性状を有するテレフタル酸を製造するのに適する。   It is suitable for producing terephthalic acid having preferable properties as a raw material for producing polyester.

本発明のテレフタル酸の精製方法を実施するためのプラント一実施例を示す系統図である。It is a systematic diagram which shows one Example of the plant for enforcing the purification method of the terephthalic acid of this invention. 水素化精製反応に導入する粗テレフタル酸濃度と各晶析槽温度との関係を示す図である。It is a figure which shows the relationship between the crude terephthalic acid concentration introduce | transduced into a hydrorefining reaction, and each crystallization tank temperature.

符号の説明Explanation of symbols

1…スラリー調整槽、2,12,15…ポンプ、3…加熱器、4…溶解槽、5…水素化反応槽、6…第1晶析槽、7…第2晶析槽、8…第3晶析槽、9…第4晶析槽、10…第5晶析槽、11…還流凝縮器、13,16…固液分離器、14…再スラリー化槽、17…乾燥器、20…減圧弁、21…温度センサ、22…圧力センサ、23…流量制御弁、30…制御装置。
DESCRIPTION OF SYMBOLS 1 ... Slurry adjustment tank, 2, 12, 15 ... Pump, 3 ... Heater, 4 ... Dissolution tank, 5 ... Hydrogenation reaction tank, 6 ... 1st crystallization tank, 7 ... 2nd crystallization tank, 8 ... 1st 3 crystallization tanks, 9 ... 4th crystallization tank, 10 ... 5th crystallization tank, 11 ... Reflux condenser, 13, 16 ... Solid-liquid separator, 14 ... Reslurry tank, 17 ... Dryer, 20 ... Pressure reducing valve, 21 ... temperature sensor, 22 ... pressure sensor, 23 ... flow rate control valve, 30 ... control device.

Claims (5)

粗テレフタル酸濃度25〜33wt%の水スラリーを溶解し、第VIII族金属触媒の存在下で水素化精製した後、該精製テレフタル酸水溶液を直列に連結した5段のフラッシュ蒸発冷却式の晶析槽にて段階的に冷却・晶析させ、晶析した精製テレフタル酸を回収する方法において、前記晶析槽の各段の操作温度を導入されるスラリーの粗テレフタル酸濃度との下記相関式で近似される温度に制御することを特徴とするテレフタル酸の精製方法。
Tn=(0.9958*N^3−8.4268*N^2−6.8726*N
+239.89+S*C)±2.5
Tn:各晶析槽の操作温度(℃)
C :粗テレフタル酸の濃度(wt%)
N :晶析槽の段数値(高温側晶析槽から1,2,3,4,5)
S :各晶析槽における係数(第1段 1.48,第2段,第3段,第4段,第5段 1.19)
A five-stage flash evaporative cooling type crystallization method in which an aqueous slurry having a crude terephthalic acid concentration of 25 to 33 wt% is dissolved and hydrorefined in the presence of a Group VIII metal catalyst, and then the purified terephthalic acid aqueous solution is connected in series. In the method of recovering purified terephthalic acid which has been cooled and crystallized stepwise in the tank and crystallized purified terephthalic acid, the following correlation formula with the crude terephthalic acid concentration of the slurry to which the operating temperature of each stage of the crystallization tank is introduced: A method for purifying terephthalic acid, characterized in that the temperature is controlled to an approximate temperature.
Tn = (0.9958 * N ^ 3-8.4268 * N ^ 2-6.8726 * N
+ 239.89 + S * C) ± 2.5
Tn: Operating temperature of each crystallization tank (° C)
C: Concentration of crude terephthalic acid (wt%)
N: Stage value of the crystallization tank (1, 2, 3, 4, 5 from the high temperature side crystallization tank)
S: Coefficient in each crystallization tank (first stage 1.48, second stage, third stage, fourth stage, fifth stage 1.19)
請求項1に記載のテレフタル酸の精製方法において、前記粗テレフタル酸濃度25〜
33wt%の水スラリーを280〜295℃の温度範囲で溶解し、第VIII族金属触媒の存在下で水素化精製するテレフタル酸の精製方法。
The method for purifying terephthalic acid according to claim 1, wherein the crude terephthalic acid concentration is 25 to 25.
A method for purifying terephthalic acid, in which a 33 wt% water slurry is dissolved in a temperature range of 280 to 295 ° C. and hydropurified in the presence of a Group VIII metal catalyst.
請求項1に記載のテレフタル酸の精製方法において、前記晶析槽の5段目の温度で精製テレフタル酸を分離・回収することを特徴とするテレフタル酸の精製方法。   The method for purifying terephthalic acid according to claim 1, wherein the purified terephthalic acid is separated and recovered at the temperature of the fifth stage of the crystallization tank. 粗テレフタル酸濃度29〜33wt%の水スラリーを溶解し、第VIII族金属触媒の存在下で水素化精製した後、該精製テレフタル酸水溶液を直列に連結した5段のフラッシュ蒸発冷却式の晶析槽にて段階的に冷却・晶析させ、晶析した精製テレフタル酸を回収する方法において、前記晶析槽の各段の操作温度を導入されるスラリーの粗テレフタル酸濃度との下記相関式で近似される温度に制御するとともに、前記5段目の晶析槽で生成される水蒸気を凝縮して該晶析槽に還流することを特徴とするテレフタル酸の精製方法。
Tn=(0.9958*N^3−8.4268*N^2−6.8726*N
+239.89+S*C)±2.5
Tn:各晶析槽の操作温度(℃)
C :粗テレフタル酸の濃度(wt%)
N :晶析槽の段数値(高温側晶析槽から1,2,3,4,5)
S :各晶析槽における係数(第1段 1.48,第2段,第3段,第4段,第5段 1.19)
A five-stage flash evaporative cooling type crystallization in which an aqueous slurry having a crude terephthalic acid concentration of 29 to 33 wt% is dissolved and hydrorefined in the presence of a Group VIII metal catalyst, and then the purified terephthalic acid aqueous solution is connected in series. In the method of recovering purified terephthalic acid which has been cooled and crystallized stepwise in the tank and crystallized purified terephthalic acid, the following correlation formula with the crude terephthalic acid concentration of the slurry to which the operating temperature of each stage of the crystallization tank is introduced: A method for purifying terephthalic acid, which comprises controlling the temperature to be approximated, condensing water vapor generated in the fifth stage of the crystallization tank, and refluxing the condensed water to the crystallization tank.
Tn = (0.9958 * N ^ 3-8.4268 * N ^ 2-6.8726 * N
+ 239.89 + S * C) ± 2.5
Tn: Operating temperature of each crystallization tank (° C)
C: Concentration of crude terephthalic acid (wt%)
N: Stage value of the crystallization tank (1, 2, 3, 4, 5 from the high temperature side crystallization tank)
S: Coefficient in each crystallization tank (first stage 1.48, second stage, third stage, fourth stage, fifth stage 1.19)
請求項4に記載のテレフタル酸の精製方法において、前記粗テレフタル酸濃度29〜
33wt%の水スラリーを290〜295℃の温度範囲で溶解し、第VIII族金属触媒の存在下で水素化精製するテレフタル酸の精製方法。
5. The method for purifying terephthalic acid according to claim 4, wherein the crude terephthalic acid concentration is 29 to 29.
A method for purifying terephthalic acid, in which a 33 wt% water slurry is dissolved in a temperature range of 290 to 295 ° C. and hydropurified in the presence of a Group VIII metal catalyst.
JP2004285648A 2004-09-30 2004-09-30 Method for purifying terephthalic acid Expired - Fee Related JP4747544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285648A JP4747544B2 (en) 2004-09-30 2004-09-30 Method for purifying terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285648A JP4747544B2 (en) 2004-09-30 2004-09-30 Method for purifying terephthalic acid

Publications (3)

Publication Number Publication Date
JP2006096710A true JP2006096710A (en) 2006-04-13
JP2006096710A5 JP2006096710A5 (en) 2007-09-06
JP4747544B2 JP4747544B2 (en) 2011-08-17

Family

ID=36236859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285648A Expired - Fee Related JP4747544B2 (en) 2004-09-30 2004-09-30 Method for purifying terephthalic acid

Country Status (1)

Country Link
JP (1) JP4747544B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129669A1 (en) * 2006-05-08 2007-11-15 Mitsubishi Gas Chemical Company, Inc. Method of crystallization
CN103304397A (en) * 2012-03-09 2013-09-18 株式会社日立工业设备技术 Refining method for roughhew aromatic dicarboxylic acid
KR20160105486A (en) * 2013-12-30 2016-09-06 비피 코포레이션 노쓰 아메리카 인코포레이티드 Purification of aromatic carboxylic acids
WO2018051775A1 (en) * 2016-09-14 2018-03-22 三菱瓦斯化学株式会社 Method for producing high-purity terephthalic acid
JP2019534854A (en) * 2017-03-22 2019-12-05 天華化工機械及自動化研究設計院有限公司Tianhua Institute Of Chemical Machinery And Automation Co.,Ltd. Recovery and use of PTA purification unit mother liquor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049248A (en) * 1973-08-20 1975-05-01
JPH07215914A (en) * 1994-02-03 1995-08-15 Mitsubishi Chem Corp Production of terephthalic acid having excellent slurry characteristic
JPH08208561A (en) * 1994-11-16 1996-08-13 Mitsubishi Chem Corp Production of terephthalic acid
JPH1087555A (en) * 1996-09-17 1998-04-07 Hitachi Ltd Recovery of terephthalic acid
JPH11228492A (en) * 1998-02-13 1999-08-24 Hitachi Ltd Recovery of terephthalic acid
WO2002098835A1 (en) * 2001-06-04 2002-12-12 Eastman Chemical Company Crystallization method for production of purified aromatic dicarboxylic acids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049248A (en) * 1973-08-20 1975-05-01
JPH07215914A (en) * 1994-02-03 1995-08-15 Mitsubishi Chem Corp Production of terephthalic acid having excellent slurry characteristic
JPH08208561A (en) * 1994-11-16 1996-08-13 Mitsubishi Chem Corp Production of terephthalic acid
JPH1087555A (en) * 1996-09-17 1998-04-07 Hitachi Ltd Recovery of terephthalic acid
JPH11228492A (en) * 1998-02-13 1999-08-24 Hitachi Ltd Recovery of terephthalic acid
WO2002098835A1 (en) * 2001-06-04 2002-12-12 Eastman Chemical Company Crystallization method for production of purified aromatic dicarboxylic acids

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129669A1 (en) * 2006-05-08 2007-11-15 Mitsubishi Gas Chemical Company, Inc. Method of crystallization
US8178716B2 (en) 2006-05-08 2012-05-15 Mitsubishi Gas Chemical Company, Inc. Method of crystallization
JP5296534B2 (en) * 2006-05-08 2013-09-25 三菱瓦斯化学株式会社 Crystallization method
CN103304397A (en) * 2012-03-09 2013-09-18 株式会社日立工业设备技术 Refining method for roughhew aromatic dicarboxylic acid
KR20160105486A (en) * 2013-12-30 2016-09-06 비피 코포레이션 노쓰 아메리카 인코포레이티드 Purification of aromatic carboxylic acids
JP2017507112A (en) * 2013-12-30 2017-03-16 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Pressurized crude aromatic carboxylic acid feed mixture
KR102185028B1 (en) 2013-12-30 2020-12-01 비피 코포레이션 노쓰 아메리카 인코포레이티드 Purification of aromatic carboxylic acids
WO2018051775A1 (en) * 2016-09-14 2018-03-22 三菱瓦斯化学株式会社 Method for producing high-purity terephthalic acid
US10683253B2 (en) 2016-09-14 2020-06-16 Mitsubishi Gas Chemical Company, Inc. Method for producing high-purity terephthalic acid
JP2019534854A (en) * 2017-03-22 2019-12-05 天華化工機械及自動化研究設計院有限公司Tianhua Institute Of Chemical Machinery And Automation Co.,Ltd. Recovery and use of PTA purification unit mother liquor

Also Published As

Publication number Publication date
JP4747544B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JPH0532381B2 (en)
JPH0558948A (en) Preparation of terephthalic acid
JP2004531572A (en) Crystallization process for the production of purified aromatic dicarboxylic acids
JP2001288139A (en) Method for producing high-purity terephthalic acid
JP4055913B2 (en) Method for producing high purity terephthalic acid
US10683253B2 (en) Method for producing high-purity terephthalic acid
JP3939367B2 (en) Method for producing high purity terephthalic acid
JP4747544B2 (en) Method for purifying terephthalic acid
JP4976311B2 (en) Method for producing N-vinyl-2-pyrrolidone
JP4837232B2 (en) Crystallization method
JP3648372B2 (en) Recovery method of terephthalic acid
JPH0257528B2 (en)
JP3269508B2 (en) Method for producing high-purity isophthalic acid
CA2295650C (en) Improved process for separating pure terephthalic acid
JPH07215914A (en) Production of terephthalic acid having excellent slurry characteristic
JP5581316B2 (en) Method for producing (meth) acrylic acid
JPH072731A (en) Production of isophthalic acid of high purity
JP2004231644A (en) Method for producing high purity terephthalic acid
WO2012114434A1 (en) Method for treating purified terephthalic acid mother liquor
CN106565457B (en) Method for preparing two products of polymer-grade terephthalic acid and isophthalic acid by taking mixed aromatic hydrocarbon as raw material
JPH10195016A (en) Production of high-purity terephthalic acid
JPWO2020075762A1 (en) (Meta) Acrylic acid purification method
JPH0717900A (en) Production of high-purity isophthalic acid
WO2005115957A1 (en) Method for producing high purity terephthalic acid
JP2007015964A (en) Method for refining terephthalic acid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees