JP2006095488A - Centrifugal crusher - Google Patents

Centrifugal crusher Download PDF

Info

Publication number
JP2006095488A
JP2006095488A JP2004287717A JP2004287717A JP2006095488A JP 2006095488 A JP2006095488 A JP 2006095488A JP 2004287717 A JP2004287717 A JP 2004287717A JP 2004287717 A JP2004287717 A JP 2004287717A JP 2006095488 A JP2006095488 A JP 2006095488A
Authority
JP
Japan
Prior art keywords
rotor
crushing
airflow
lower housing
annular gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287717A
Other languages
Japanese (ja)
Other versions
JP4418340B2 (en
Inventor
Toshiyuki Kobayashi
利行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004287717A priority Critical patent/JP4418340B2/en
Publication of JP2006095488A publication Critical patent/JP2006095488A/en
Application granted granted Critical
Publication of JP4418340B2 publication Critical patent/JP4418340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a centrifugal crusher having a crushed particle size regulation function and a crushed particle group classification function capable of classifying crushed particles more accurately as compared with a conventional process when a fine particle group of the crushed particle groups obtained in a crushing room is classified. <P>SOLUTION: The centrifugal crusher has an upper housing 1, the crushing room 2 formed in the upper housing 1, a horizontally rotating rotor 5 arranged in the crushing room 2 for discharging a crushing raw material from a discharging opening of a peripheral part of the rotor by centrifugal force to make it collide with a crushed-chip accumulating layer 3 to crush and classify, a lower housing 8 communicating with the crushing room 2 for introducing the crushed particle group obtained in the crushing room 2 from a circular space 7, a gas feeding duct 12 arranged with together a rotary driving mechanical part 6 for the rotor in the lower housing 8 for feeding the gas radially directing to the circular space 7, a product discharging opening 9 arranged in the lower housing 8 for discharging the particles group of product size, and a fine-particle discharging opening 10 for discharging the fine particle group. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、破砕原料の破砕整粒機能とその破砕粒子群の分級機能とを有する遠心式破砕機に関するものである。   The present invention relates to a centrifugal crusher having a crushing and sizing function of a crushing raw material and a classification function of the crushing particle group.

遠心式破砕機(衝撃式破砕機)は、岩石、鉱石などの破砕原料を主に製砂のために破砕するのに用いられている。遠心式破砕機は、破砕原料の破砕形式からアンビル方式と、デッドストック方式に大別される。アンビル方式のものは、主に原料のサイズを小さくすることを目的として使用される。一方、デッドストック方式のものは、主に、すでに所望サイズ程度に破砕された原料を自然石のように丸みを帯びたように粒形に整える整粒(角取り)ために使用される。このデッドストック方式の遠心式破砕機は、高速回転するロータ内に投入された破砕原料を遠心力によってロータ外周の放出口よりロータ外部に放出し、破砕室内に堆積される破砕片より形成される破砕片堆積層(デッドストック)に衝突させて破砕し、破砕片堆積層の傾斜面上を転動、滑動などさせて整粒するようにしている。   Centrifugal crushers (impact crushers) are used to crush crushing raw materials such as rocks and ores mainly for sand production. Centrifugal crushers are roughly divided into an anvil method and a dead stock method depending on the crushing raw material crushing format. The anvil type is mainly used for the purpose of reducing the size of the raw material. On the other hand, the dead stock type is mainly used for sizing (cutting) a raw material that has already been crushed to a desired size into a round shape like a natural stone. This dead stock type centrifugal crusher is formed from crushed pieces deposited in a crushing chamber by discharging crushing raw material charged into a rotor rotating at high speed to the outside of the rotor from the discharge port on the outer periphery of the rotor by centrifugal force. The crushed piece deposit layer (dead stock) is collided to be crushed, and the particle size is adjusted by rolling or sliding on the inclined surface of the crushed piece deposit layer.

そして、従来、デッドストック方式の遠心式破砕機として、原料の破砕整粒機能と、破砕室で得られた破砕粒子群から微粒子群(微粉)を吸引して破砕機外部に除去するようにした分級機能とを有するものが提案されている(特開2000−189822号公報)。この従来の遠心式破砕機によると、破砕室で得られた破砕粒子群に含まれる微粒子群の量が例えば砕砂のJIS規格上限を超える場合、前記得られた破砕粒子群から微粒子群を除去するエアセパレータ等の専用の分級装置を設けなくてすむことになる。図6は従来の遠心式破砕機の構成を示す断面図である。   Conventionally, as a dead stock type centrifugal crusher, the crushing and sizing function of the raw material and the fine particle group (fine powder) are sucked and removed from the crusher outside the crushing particle group obtained in the crushing chamber. One having a classification function has been proposed (Japanese Patent Laid-Open No. 2000-189822). According to this conventional centrifugal crusher, when the amount of fine particles contained in the crushed particle group obtained in the crushing chamber exceeds the JIS standard upper limit of crushed sand, for example, the fine particle group is removed from the obtained crushed particle group. It is not necessary to provide a dedicated classification device such as an air separator. FIG. 6 is a cross-sectional view showing a configuration of a conventional centrifugal crusher.

図6に示すように、ハウジング50内の上部に破砕室51が形成され、その中央にロータ60が水平方向に高速回転可能に配置されている。ロータ60の周面には放出口61が開設されている。また、破砕室51の周縁部には、破砕原料の衝突部として、破砕原料が堆積して形成されるデッドべッド(破砕片堆積層:デッドストック)52が設けられている。また、ロータ60の下方であってハウジング50内の下部には、下向きの吸引フード70と、この吸引フード70内に負圧を発生させる吸引管71と、下向きの吸引フード70の下方に設けられ、送気管82を介して供給されるエアを複数のエア吹出口81から吸引フード70に向けて上向きに噴射する環状のエア吹出管80とが設けられている。   As shown in FIG. 6, the crushing chamber 51 is formed in the upper part in the housing 50, and the rotor 60 is arrange | positioned in the center so that high-speed rotation is possible in the horizontal direction. A discharge port 61 is formed on the peripheral surface of the rotor 60. In addition, a dead bed (crushed piece deposition layer: dead stock) 52 formed by depositing crushed raw materials is provided at the peripheral portion of the crushing chamber 51 as a collision portion of the crushed raw materials. A downward suction hood 70, a suction pipe 71 that generates negative pressure in the suction hood 70, and a downward suction hood 70 are provided below the rotor 60 and in the lower portion of the housing 50. An annular air blowing pipe 80 for injecting the air supplied through the air feeding pipe 82 upward from the plurality of air blowing ports 81 toward the suction hood 70 is provided.

そして、ロータ60内の上部中央から供給された破砕原料は、高速回転するロータ60の遠心力によって放出口61から放出され、デッドベッド52に衝突し、破砕される。この破砕室51で得られた破砕粒子群は、ロータ60とデッドベッド52との間の隙間からハウジング50内の下部に導入される。このハウジング50内の下部に導入された破砕粒子群のうち微粒子群は、エア吹出管80から上向きに噴射されるエアにより下向きの吸引フード70に寄せ集められ、吸引管71を経て破砕機外部の処理施設に送り込まれる。一方、微粒子群と分級された後の製品サイズの破砕粒子群は、ハウジング50下端の排出口54から排出される。   And the crushing raw material supplied from the upper center in the rotor 60 is discharged | emitted from the discharge port 61 with the centrifugal force of the rotor 60 rotating at high speed, collides with the dead bed 52, and is crushed. The group of crushed particles obtained in the crushing chamber 51 is introduced into the lower part of the housing 50 through the gap between the rotor 60 and the dead bed 52. Of the crushed particle group introduced into the lower part of the housing 50, the fine particle group is gathered together by the downward suction hood 70 by the air jetted upward from the air blowing pipe 80, and passes through the suction pipe 71 and is outside the crusher. It is sent to the processing facility. On the other hand, the crushed particle group having the product size after being classified as the fine particle group is discharged from the discharge port 54 at the lower end of the housing 50.

しかし前述した従来の遠心式破砕機では、ハウジング50内の下部に設けられた下向きの吸引フード70による気流の上方への吸い込みと、エア吹出管80による気流の上方への噴射を行うようにしたものであるから、回転するロータ60によって生じる前記隙間から下方へ向かう気流の旋回流と、吸引フード70及びエア吹出管80による上方へ向かう気流とが生じることでハウジング50内の下部における気流が乱れてスムーズでなく複雑となる。このため、破砕室51で得られた破砕粒子群から微粒子群を精度良く分級することにおいて改善すべき余地があった。
特開2000−189822号公報(第2−3頁、図1) 特開昭57−7264号公報(第1−2頁、第1図、第2図)
However, in the conventional centrifugal crusher described above, the air flow is sucked upward by the downward suction hood 70 provided in the lower part of the housing 50 and the air flow is jetted upward by the air blowing pipe 80. Therefore, the swirling flow of the air flow downward from the gap generated by the rotating rotor 60 and the upward air flow by the suction hood 70 and the air blowing pipe 80 are generated, and the air flow in the lower part in the housing 50 is disturbed. It is not smooth and complicated. For this reason, there is room for improvement in classifying the fine particle group from the crushed particle group obtained in the crushing chamber 51 with high accuracy.
JP 2000-189822 A (page 2-3, FIG. 1) JP-A-57-7264 (page 1-2, FIG. 1 and FIG. 2)

そこで、本発明の課題は、破砕整粒機能とその破砕粒子群の分級機能とを有する遠心式破砕機において、破砕室で得られた破砕粒子群から微粒子群を分級するに際し、従来に比べて精度良く分級することができる遠心式破砕機を提供することにある。   Therefore, the problem of the present invention is that, in the centrifugal crusher having a crushing and sizing function and a classification function of the crushing particle group, when classifying the fine particle group from the crushing particle group obtained in the crushing chamber, compared to the conventional case An object of the present invention is to provide a centrifugal crusher capable of classifying with high accuracy.

前記の課題を解決するために、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、この下部ハウジング内に前記ロータ用回転駆動機構部と並設され、前記円環状隙間に放射状をなして向かう気流を供給するための気流供給ダクトと、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機である。   According to the first aspect of the present invention, an upper housing, a crushing chamber formed in the upper housing, and a crushing material provided in the crushing chamber, which is supplied from above, are discharged from the discharge port on the outer periphery of the rotor by centrifugal force. A rotor that is supported by a rotor rotary drive mechanism for horizontally crushing and sizing by colliding with a collision part provided around the rotor, and communicates with the lower part of the upper housing in communication with the crushing chamber. A lower housing into which the crushed particles obtained in the crushing chamber are introduced from an annular gap between the rotor and the collision portion, and the rotary drive mechanism portion for the rotor are provided in parallel in the lower housing, An air flow supply duct for supplying an air flow that radiates to the annular gap and the lower housing are each provided to discharge crushed particle groups having different particle size ranges to the outside of the crusher. It is a centrifugal crusher, characterized in that it comprises a plurality of discharge ports, the for.

請求項2の発明は、上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、下端に入口開口を持ち、前記ロータ用回転駆動機構部と並設されて上下方向に延びる軸方向気流入口通路、及び該軸方向気流入口通路に連通して放射状に延び、先端に前記円環状隙間に近接し該円環状隙間内周縁に沿って位置する出口開口を持つ放射状気流出口通路を有して、前記下部ハウジング内に設けられた気流供給ダクトと、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機である。   According to the second aspect of the present invention, the upper housing, the crushing chamber formed in the upper housing, and the crushing material provided from above are discharged from the discharge port of the outer peripheral portion of the rotor by centrifugal force. A rotor that is supported by a rotor rotary drive mechanism for horizontally crushing and sizing by colliding with a collision part provided around the rotor, and communicates with the lower part of the upper housing in communication with the crushing chamber. A lower housing in which the crushed particles obtained in the crushing chamber are introduced from an annular gap between the rotor and the collision portion, an inlet opening at the lower end, and arranged in parallel with the rotary drive mechanism portion for the rotor An axial airflow inlet passage that extends in the vertical direction, and an outlet opening that extends radially and communicates with the axial airflow inlet passage and that is located near the annular gap and along the inner circumferential edge of the annular gap. Holding A radial airflow outlet passage, an airflow supply duct provided in the lower housing, and a plurality of exhausts provided in the lower housing for discharging crushed particle groups having different particle size ranges to the outside of the crusher. And a centrifugal crusher characterized by comprising an outlet.

請求項3の発明は、上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、前記ロータ用回転駆動機構部と並設されて上下方向に延びる軸方向気流入口通路、及び該軸方向気流入口通路に連通して放射状に延び、先端に前記円環状隙間に近接し該円環状隙間内周縁に沿って位置する出口開口を持つ放射状気流出口通路を有して、前記下部ハウジング内に設けられた気流供給ダクトと、前記軸方向気流入口通路の下端部に接続され、破砕機外部の空気送風源より前記気流供給ダクトに空気を供給するための送風管と、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機である。   According to a third aspect of the present invention, an upper housing, a crushing chamber formed in the upper housing, and a crushing material provided in the crushing chamber, which is supplied from above, are discharged from a discharge port on the outer periphery of the rotor by centrifugal force. A rotor that is supported by a rotor rotary drive mechanism for horizontally crushing and sizing by colliding with a collision part provided around the rotor, and communicates with the lower part of the upper housing in communication with the crushing chamber. A lower housing in which the crushed particle group obtained in the crushing chamber is introduced from an annular gap between the rotor and the collision portion, and a shaft extending in parallel with the rotary drive mechanism portion for the rotor A directional airflow inlet passage, and a radial airflow outlet passage that extends radially and communicates with the axial airflow inlet passage, and has an outlet opening located near the annular gap and along the inner circumferential edge of the annular gap. An air flow supply duct provided in the lower housing and a blower pipe connected to the lower end portion of the axial airflow inlet passage for supplying air to the airflow supply duct from an air blow source outside the crusher And a plurality of outlets that are provided in the lower housing and discharge the crushed particle groups having different particle diameter ranges to the outside of the crusher, respectively.

請求項4の発明は、請求項2又は3記載の遠心式破砕機において、前記気流供給ダクトは、さらに、前記放射状気流出口通路の下方に位置して前記下部ハウジング内に放射状をなして向かう気流を導く下部用放射状気流出口通路を有していることを特徴とするものである。   According to a fourth aspect of the present invention, in the centrifugal crusher according to the second or third aspect, the air flow supply duct is further located below the radial air flow outlet passage and radially flows into the lower housing. It has the radial airflow exit channel | path for lower parts which guides.

請求項1の発明による遠心式破砕機は、破砕室で得られた破砕粒子群がロータと衝突部との間の円環状隙間から導入される下部ハウジング内に、前記円環状隙間に放射状をなして向かう気流を供給するための気流供給ダクトがロータ用回転駆動機構部と並設されている。したがって、円環状隙間から流入した固気二相旋回流と気流供給ダクトからの気流とが合わさって、遠心力と流体抵抗力に基づく気流分級を行うための流れの場として、下部ハウジング内の分級空間に下方へ進行するスムーズな分級用旋回流を得ることができる。よって、破砕室で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて精度良く分級することができる。   The centrifugal crusher according to the invention of claim 1 is configured such that the crushed particles obtained in the crushing chamber are radially formed in the annular gap in the lower housing into which the crushed particles are introduced from the annular gap between the rotor and the collision portion. An airflow supply duct for supplying an airflow going in parallel is provided in parallel with the rotary drive mechanism for the rotor. Therefore, the solid-gas two-phase swirl flow that flows in from the annular gap and the air flow from the air flow supply duct are combined, and the classification in the lower housing is performed as a flow field for air flow classification based on centrifugal force and fluid resistance force. A smooth classification swirling flow that travels downward into the space can be obtained. Therefore, when classifying the crushed particle group obtained in the crushing chamber into a fine particle group and a pulverized particle group having a product size, classification can be performed with higher accuracy than in the past.

請求項2の発明による遠心式破砕機は、破砕室で得られた破砕粒子群がロータと衝突部との間の円環状隙間から導入される下部ハウジング内に、前記円環状隙間に放射状をなして向かう気流を供給するための気流供給ダクトが設けられている。気流供給ダクトは、下端に入口開口を持ち、ロータ用回転駆動機構部と並設されて上下方向に延びる軸方向気流入口通路とこの入口通路に連通して放射状に延び、先端に円環状隙間に近接しその円環状隙間内周縁に沿って位置する出口開口を持つ放射状気流出口通路とを有している。これにより、ロータの回転による破砕粒子群を含む固気二相旋回流が円環状隙間に流入することによって、この固気二相旋回流の向きが外向きであることから、気流供給ダクトの前記出口開口付近では相対的に負圧となり、気流供給ダクトでは前記入口開口より流入し前記出口開口から引き出されて円環状隙間に放射状をなして向かう気流が発生する。したがって、円環状隙間から流入した固気二相旋回流とこれに随伴する気流供給ダクトからの気流とが合わさって、遠心力と流体抵抗力に基づく気流分級を行うための流れの場として、下部ハウジング内の分級空間に下方へ進行するスムーズな分級用旋回流を得ることができる。よって、破砕室で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて精度良く分級することができる。   The centrifugal crusher according to the invention of claim 2 is configured such that the crushing particle group obtained in the crushing chamber has a radial shape in the annular gap in the lower housing into which the crushing particle group is introduced from the annular gap between the rotor and the collision portion. An air flow supply duct is provided for supplying an upward air flow. The air flow supply duct has an inlet opening at the lower end, is arranged in parallel with the rotary drive mechanism for the rotor and extends in the up-down direction, communicates with the inlet passage, extends radially, and has an annular gap at the tip. And a radial air flow outlet passage having an outlet opening located adjacent to the inner peripheral edge of the annular gap. As a result, since the solid-gas two-phase swirl flow containing the crushed particles due to the rotation of the rotor flows into the annular gap, the direction of the solid-gas two-phase swirl flow is outward, so the air supply duct A relatively negative pressure is generated in the vicinity of the outlet opening, and in the airflow supply duct, an airflow is generated that flows in from the inlet opening and is drawn out from the outlet opening and traveling radially in the annular gap. Therefore, the solid-gas two-phase swirling flow that flows in from the annular gap and the air flow from the air flow supply duct that accompanies this are combined, and the flow field for performing air flow classification based on centrifugal force and fluid resistance force is A smooth classification swirling flow that travels downward into the classification space in the housing can be obtained. Therefore, when classifying the crushed particle group obtained in the crushing chamber into a fine particle group and a pulverized particle group having a product size, classification can be performed with higher accuracy than in the past.

請求項3の発明による遠心式破砕機は、破砕室で得られた破砕粒子群が円環状隙間から導入される下部ハウジング内に、軸方向気流入口通路及び放射状気流出口通路を有してロータ用回転駆動機構部と並設された気流供給ダクトと、この気流供給ダクトの軸方向気流入口通路の下端部に接続され、破砕機外部の空気送風源よりこの気流供給ダクトに空気を供給するための送風管とが設けられている。したがって、円環状隙間から流入した固気二相旋回流と、破砕機外部の空気送風源より供給される気流供給ダクトからの気流とが合わさって、遠心力と流体抵抗力に基づく気流分級を行うための流れの場として、下部ハウジング内の分級空間に下方へ進行するスムーズで、また、十分な風量の分級用旋回流を得ることができる。よって、破砕室で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて精度良く分級することができ、また、高い処理能力にて分級を行うことができる。   The centrifugal crusher according to the invention of claim 3 has an axial airflow inlet passage and a radial airflow outlet passage in a lower housing into which the crushed particles obtained in the crushing chamber are introduced from an annular gap, and is used for a rotor. An air flow supply duct arranged in parallel with the rotation drive mechanism and a lower end portion of the air flow inlet passage in the axial direction of the air flow supply duct, for supplying air to the air flow supply duct from an air blowing source outside the crusher A blower tube is provided. Therefore, the solid-gas two-phase swirl flow that flows in from the annular gap and the airflow from the airflow supply duct supplied from the air blowing source outside the crusher are combined to perform airflow classification based on centrifugal force and fluid resistance force. As a flow field, a smooth swirling flow having a sufficient air volume can be obtained which travels downward into the classification space in the lower housing. Therefore, when classifying the crushed particle group obtained in the crushing chamber into a fine particle group and a product-sized crushed particle group, classification can be performed with higher accuracy than before, and classification can be performed with high processing capacity. Can do.

請求項4の発明による遠心式破砕機は、気流供給ダクトが、さらに、放射状気流出口通路の下方に位置して下部ハウジング内の分級空間に放射状をなして向かう気流を導く下部用放射状気流出口通路を有した構成とされている。したがって、分級空間下部に行くに従って水平方向の速度成分が分級精度を悪化させる減速を生じることのない分級用旋回流を実現することができる。よって、破砕室で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて確実に精度良く分級することができ、また、高い処理能力にて分級を行うことができる。   The centrifugal crusher according to a fourth aspect of the present invention is the lower radial airflow outlet passage in which the airflow supply duct is further positioned below the radial airflow outlet passage and guides the airflow radially toward the classification space in the lower housing. It is set as the structure which has. Accordingly, it is possible to realize a classifying swirl flow that does not cause a deceleration in which the velocity component in the horizontal direction deteriorates the classification accuracy as it goes to the lower part of the classification space. Therefore, when classifying the crushed particle group obtained in the crushing chamber into a fine particle group and a pulverized particle group of the product size, classification can be performed with higher accuracy than in the past, and classification can be performed with high processing capacity. It can be carried out.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の第1実施形態による遠心式破砕機の構成を示す破断斜視図、図2は図1に示す遠心式破砕機の断面図、図3は図1における気流供給ダクトを説明するための断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a broken perspective view showing a configuration of a centrifugal crusher according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of the centrifugal crusher shown in FIG. 1, and FIG. 3 illustrates an air flow supply duct in FIG. FIG.

図1,図2に示すように、内部に破砕室2を有する上部ハウジング1を備え、円柱状空間をなす破砕室2内の中央部にロータ5が配置されている。破砕室2の内周には、破砕片(破砕粒子)による衝突部として、破砕整粒に供される破砕片堆積層(デッドストック)3が形成されるようになっている。ロータ5は、下部ハウジング8の下部ハウジング本体8a内に配置されたロータ回転駆動機構部6の上下方向に延びる垂直回転軸の上端部に取り付けられて、水平回転されるようになっている。ロータ回転駆動機構部6は、下部ハウジング本体8aに取り付け部材を介して固定し取り付けられている。破砕室2、ロータ5、ロータ回転駆動機構部6及び下部ハウジング8は、それらの中心線(軸心線)が一致するように設けられている。   As shown in FIGS. 1 and 2, an upper housing 1 having a crushing chamber 2 is provided, and a rotor 5 is disposed in the center of the crushing chamber 2 forming a columnar space. On the inner periphery of the crushing chamber 2, a crushing piece accumulation layer (dead stock) 3 used for crushing and sizing is formed as a collision part by crushing pieces (crushing particles). The rotor 5 is attached to the upper end of a vertical rotation shaft extending in the vertical direction of the rotor rotation drive mechanism 6 disposed in the lower housing main body 8a of the lower housing 8, and is rotated horizontally. The rotor rotation drive mechanism 6 is fixed and attached to the lower housing body 8a via an attachment member. The crushing chamber 2, the rotor 5, the rotor rotation drive mechanism 6, and the lower housing 8 are provided so that their center lines (axial centers) coincide.

前記ロータ5は、全体として、外周面に複数の放出口5aを有する中空円柱状をなしている。ロータ5は、円板状をなし、かつその中心部に貫通孔を有し、この貫通孔に嵌め込まれた前記垂直回転軸の上端部に固定されたロータ底板5bと、このロータ底板5bの上面中心部に設けられた分配板5dと、円板状をなし、かつその中心部に原料が供給されるフィード管4が配される貫通孔を有し、ロータ底板5bの上方にこれと平行に配置されたロータ天板5cと、ロータ底板5bとロータ天板5cとの間に、ロータ底板5bの外周に沿って、かつ前記放出口5aを形成するための間隔をあけて設けられた図示しない複数のデッドストック形成壁と、これらのデッドストック形成壁に取り付けられた図示しない複数の投射用チップとにより構成されている。なお、前記投射用チップに近接して打撃子が取り付けられているものもある。   The rotor 5 as a whole has a hollow cylindrical shape having a plurality of discharge ports 5a on the outer peripheral surface. The rotor 5 has a disc shape and has a through hole at the center thereof. The rotor bottom plate 5b is fixed to the upper end of the vertical rotation shaft fitted in the through hole, and the upper surface of the rotor bottom plate 5b. A distribution plate 5d provided at the center and a through-hole in which a feed pipe 4 to which a raw material is supplied is arranged at the center and in parallel with this is provided above the rotor bottom plate 5b. Provided between the rotor top plate 5c, the rotor bottom plate 5b, and the rotor top plate 5c arranged along the outer periphery of the rotor bottom plate 5b with a space for forming the discharge port 5a (not shown) It comprises a plurality of dead stock forming walls and a plurality of projection chips (not shown) attached to these dead stock forming walls. In some cases, a striker is attached in the vicinity of the projection tip.

前記下部ハウジング8は、円筒形をなす下部ハウジング本体8aと、この下部ハウジング本体8aによってその上部部分が隙間距離D2を有して囲繞される状態で設けられた円筒形をなす下部ハウジング下部体8bとを有している。この下部ハウジング8は、ロータ5と破砕片堆積層3との間の円環状隙間7によって破砕室2に連通した状態で、その下部ハウジング本体8aが上部ハウジング1の下側に接続されている。下部ハウジング下部体8bの下端には、製品排出口9が設けられている。また、下部ハウジング本体8aと下部ハウジング下部体8bとの間には、全周にわたって開口した微粒子排出口10が設けられている。   The lower housing 8 includes a cylindrical lower housing body 8a, and a cylindrical lower housing lower body 8b provided with the lower housing body 8a surrounded by an upper portion thereof with a gap distance D2. And have. The lower housing 8 is connected to the crushing chamber 2 through an annular gap 7 between the rotor 5 and the crushing piece accumulation layer 3, and the lower housing body 8 a is connected to the lower side of the upper housing 1. A product discharge port 9 is provided at the lower end of the lower housing lower body 8b. In addition, a particulate discharge port 10 that is open over the entire circumference is provided between the lower housing body 8a and the lower housing lower body 8b.

また、下部ハウジング8内には、気流供給ダクト12が配設されている。この気流供給ダクト12は、ロータ回転駆動機構部6に近接してこれと並設されるとともに該駆動機構部6と軸平行をなして上下方向に延びる円筒体13と、円筒体13の上端周縁に接続され、内周面がロータ回転駆動機構部6の外周面に固定され、外周面が全周にわたって開口された中空円環体14とから構成されている。中空円環体14は、例えば、上側円環板と下側円環板との間に120°ピッチでスペーサ板を挟み込み、このスペーサ板に前記上下の円環板をそれぞれ固着してなるものである。これにより、気流供給ダクト12は、図1,図2に示すように、下端に入口開口13aを持ち、ロータ回転駆動機構部6に近接してこれと並設されるとともに軸平行をなして上下方向に延びる軸方向気流入口通路13aと、この入口通路13aに連通して半径方向に放射状に延び、先端に円環状隙間7に近接し該隙間7の内周縁に沿って位置する出口開口14aを持つ放射状気流出口通路14aを有している。下部ハウジング本体8a内に、前記気流供給ダクト12が配設されており、微粒子排出口10よりも上流側に位置する分級空間11が形成されている。なお、図3において、L1は放射状気流出口通路14aの半径方向(水平方向)長さを示し、H1は出口開口14aの上下方向開口長さを示している。 An airflow supply duct 12 is disposed in the lower housing 8. The air flow supply duct 12 is provided close to and in parallel with the rotor rotation drive mechanism 6 and extends in the vertical direction so as to be parallel to the drive mechanism 6 and the upper peripheral edge of the cylinder 13. , The inner peripheral surface is fixed to the outer peripheral surface of the rotor rotation drive mechanism unit 6, and the outer peripheral surface is formed of a hollow annular body 14 opened over the entire periphery. The hollow annular body 14 is formed, for example, by sandwiching a spacer plate at a 120 ° pitch between an upper annular plate and a lower annular plate, and fixing the upper and lower annular plates to the spacer plate, respectively. is there. Thereby, as shown in FIGS. 1 and 2, the air flow supply duct 12 has an inlet opening 13a 1 at the lower end, is arranged in parallel with the rotor rotation drive mechanism unit 6 and is in parallel with the axis. An axial airflow inlet passage 13a extending in the vertical direction, and an outlet opening 14a communicating with the inlet passage 13a and extending radially in the radial direction, close to the annular gap 7 at the tip and positioned along the inner peripheral edge of the gap 7 1 has a radial airflow outlet passage 14a. The air flow supply duct 12 is disposed in the lower housing main body 8 a, and a classification space 11 is formed that is located upstream of the particulate discharge port 10. Incidentally, in FIG. 3, L1 indicates a radial direction (horizontal direction) length of the radial airflow outlet passage 14a, H1 denotes a vertical opening length of the outlet opening 14a 1.

このように構成される遠心式破砕機において、フィード管4から高速回転されるロータ5内に投入された破砕原料は、遠心力によってロータ外周の放出口5aよりロータ外部に放出されて、破砕片堆積層3に衝突し、また破砕片堆積層3の傾斜面上を転動、滑動などすることで、破砕と整粒がなされる。   In the centrifugal crusher configured as described above, the crushing raw material charged into the rotor 5 rotated at high speed from the feed pipe 4 is discharged to the outside of the rotor from the discharge port 5a on the outer periphery of the rotor by centrifugal force, and the crushing pieces By colliding with the deposited layer 3 and rolling and sliding on the inclined surface of the fragmented piece deposited layer 3, crushing and sizing are performed.

そして、ロータ5の水平回転による水平旋回成分が支配的であって破砕室2で得られた破砕粒子群を含む固気二相旋回流が円環状隙間7に流入する。この固気二相旋回流が円環状隙間7に流入することにより、固気二相旋回流の向きが外向きであることから、気流供給ダクト12の出口開口14a付近では相対的に負圧となり、気流供給ダクト12では入口開口13aより流入し出口開口14aから引き出されて円環状隙間7へ放射状をなして向かう気流が発生する。 Then, the horizontal swirl component due to the horizontal rotation of the rotor 5 is dominant, and the solid-gas two-phase swirl flow including the crushed particles obtained in the crushing chamber 2 flows into the annular gap 7. Since this solid-gas two-phase swirling flow flows into the annular gap 7, the direction of the solid-gas two-phase swirling flow is outward, so that a relatively negative pressure is generated in the vicinity of the outlet opening 14 a 1 of the air flow supply duct 12. In the air flow supply duct 12, an air flow is generated that flows in from the inlet opening 13 a 1 and is drawn out from the outlet opening 14 a 1 and radiates toward the annular gap 7.

したがって、円環状隙間7から流入した固気二相旋回流とこれに随伴する気流供給ダクト12からの気流とが合わさって、気流分級を行うための流れの場として、下部ハウジング8内の分級空間11に下方へ進行するスムーズな分級用旋回流を得ることができる。これにより、分級空間11に導入され破砕粒子群は、各破砕粒子が粒径に応じた下方への飛行軌跡(落下行程)を持つことで、微粒子群と製品サイズの破砕粒子群とに精度良く分級されて、微粒子群が微粒子排出口10より排出され、製品サイズの破砕粒子群が製品排出口9より排出される。   Accordingly, the classification space in the lower housing 8 serves as a flow field for classifying the air flow by combining the solid-gas two-phase swirl flow that flows in from the annular gap 7 and the air flow from the air flow supply duct 12 that accompanies this. 11, a smooth swirling flow for classification that travels downward can be obtained. As a result, the crushed particle group introduced into the classification space 11 is accurately divided into a fine particle group and a crushed particle group of a product size because each crushed particle has a downward flight trajectory (falling process) according to the particle size. After the classification, the fine particle group is discharged from the fine particle discharge port 10, and the crushed particle group of the product size is discharged from the product discharge port 9.

このように、円環状隙間7から流入する固気二相旋回流単独の場合には、例えば回転数1000rpm程度で回転する直径1mのロータ5のとき、ロータ周速度は約50m/sとなり、円環状隙間7での気流速さは10〜30m/sとなるものの、精度良く気流分級を行うには風量不足となる。これに対して、気流供給ダクト12を設けることにより、円環状隙間7からの固気二相旋回流とこれに随伴する気流供給ダクト12からの気流とが合わさって、気流分級を行うための流れの場として、下部ハウジング8内の分級空間11に下方へ進行するスムーズな分級用旋回流を得ることができ、精度良く分級することができる。   Thus, in the case of a solid-gas two-phase swirl flow alone flowing from the annular gap 7, for example, when the rotor 5 has a diameter of 1 m and rotates at a rotation speed of about 1000 rpm, the rotor peripheral speed is about 50 m / s. Although the air flow velocity in the annular gap 7 is 10 to 30 m / s, the air volume is insufficient to perform airflow classification with high accuracy. On the other hand, by providing the air flow supply duct 12, the solid-gas two-phase swirl flow from the annular gap 7 and the air flow from the air flow supply duct 12 that accompanies it are combined to perform air flow classification. As a place, a smooth swirl flow for classification that progresses downward into the classification space 11 in the lower housing 8 can be obtained, and classification can be performed with high accuracy.

ここで、気流供給ダクト12については、その出口開口14aを円環状隙間7に近接し該隙間7の内周縁に沿って位置させる構成とすることがよい。また、気流供給ダクト12は、その入口開口13aが分級空間11よりも下方に位置するようにすることがよい。また、気流供給ダクト12の円筒体13の内径寸法D3は、分級空間11での気流分級に支障のない程度に大きくとって通風抵抗をできるだけ小さくすることが望ましい。 Here, the air flow supply duct 12 may have a configuration in which the outlet opening 14 a 1 is positioned close to the annular gap 7 and along the inner peripheral edge of the gap 7. Further, the air flow supply duct 12 is preferably configured such that the inlet opening 13 a 1 is positioned below the classification space 11. Moreover, it is desirable that the inner diameter dimension D3 of the cylindrical body 13 of the airflow supply duct 12 be as large as possible so as not to interfere with the airflow classification in the classification space 11 and to reduce the ventilation resistance as much as possible.

図4は本発明の第2実施形態による遠心式破砕機の構成を示す破断斜視図である。ここで、この第2実施形態において、前記図1に示す遠心式破砕機と同一構成部分には図1と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 4 is a broken perspective view showing a configuration of a centrifugal crusher according to a second embodiment of the present invention. Here, in this 2nd Embodiment, the same code | symbol as FIG. 1 is attached | subjected to the same component as the centrifugal crusher shown in the said FIG. 1, description is abbreviate | omitted, and a different point is demonstrated.

図4に示すように、下部ハウジング8内には気流供給ダクト32が配設されている。この気流供給ダクト32は、ロータ回転駆動機構部6に近接してこれと並設されるとともに該駆動機構部6と軸平行をなして上下方向に延びる円筒体33と、この円筒体33の上端周縁に接続され、内周面がロータ回転駆動機構部6の外周面に固定され、外周面が全周にわたって開口された中空円環体34とから構成されている。これにより、気流供給ダクト32は、図4に示すように、ロータ回転駆動機構部6に近接してこれと並設されるとともに軸平行をなして上下方向に延びる軸方向気流入口通路33aと、この入口通路33aに連通して半径方向に放射状に延び、先端に円環状隙間7に近接し該隙間7の内周縁に沿って位置する出口開口34aを持つ放射状気流出口通路34aを有している。 As shown in FIG. 4, an airflow supply duct 32 is disposed in the lower housing 8. The air flow supply duct 32 is provided adjacent to and in parallel with the rotor rotation drive mechanism unit 6 and extends in the vertical direction in parallel with the drive mechanism unit 6, and the upper end of the cylinder body 33. A hollow annular body 34 is connected to the periphery, the inner peripheral surface is fixed to the outer peripheral surface of the rotor rotation drive mechanism unit 6, and the outer peripheral surface is opened over the entire periphery. Thereby, as shown in FIG. 4, the airflow supply duct 32 is provided in the vicinity of the rotor rotation drive mechanism unit 6 in parallel with the airflow supply duct 32 and is axially parallel to the axial airflow inlet passage 33 a extending in the vertical direction. extending radially in the radial direction communicating with the inlet passage 33a, a radial air flow outlet passage 34a having an outlet opening 34a 1 located along the inner periphery of the clearance 7 close to the annular gap 7 to the tip Yes.

また、気流供給ダクト32の軸方向気流入口通路33a(円筒体33)の下端部に、破砕機外部の図示しない空気送風源(例えば送風ブロワー)からの空気を気流供給ダクト32に供給するための半径方向に延びる送風管31が接続されている。このように気流供給ダクト32と送風管31が配設されており、下部ハウジング本体8a内に、微粒子排出口10よりも上流側に位置する分級空間11が形成されている。送風管31は、分級空間11よりも下方に位置させることがよい。また、送風管31は、微粒子群や製品サイズの破砕粒子群の排出の邪魔にならないようにしたり、送風管31のエロージョンを回避したりするため、その管径ができるだけ小さいことが望ましい。   Further, air from an air blow source (not shown) outside the crusher (for example, a blower) is supplied to the air flow supply duct 32 at the lower end of the axial air flow inlet passage 33a (cylindrical body 33) of the air flow supply duct 32. A blower pipe 31 extending in the radial direction is connected. Thus, the air flow supply duct 32 and the blower pipe 31 are disposed, and the classification space 11 located upstream of the particulate discharge port 10 is formed in the lower housing body 8a. The blower pipe 31 is preferably positioned below the classification space 11. Further, it is desirable that the diameter of the air duct 31 is as small as possible so as not to obstruct the discharge of the fine particle group and the crushed particle group of the product size or to avoid the erosion of the air duct 31.

このように、この第2実施形態による遠心式破砕機は、破砕粒子群が円環状隙間7から導入される下部ハウジング8内に、軸方向気流入口通路33a及び放射状気流出口通路34aを有してロータ用回転駆動機構部6と並設された気流供給ダクト32と、破砕機外部の空気送風源よりこの気流供給ダクト32に空気を供給するための送風管31とが設けられている。したがって、円環状隙間7から流入した固気二相旋回流と、破砕機外部の空気送風源より供給され、気流供給ダクト32の放射状気流出口通路34aから送出される気流とが合わさって、遠心力と流体抵抗力に基づく気流分級を行うための流れの場として、下部ハウジング8内の分級空間11に下方へ進行するスムーズで、また、十分な風量の分級用旋回流を得ることができる。よって、破砕室2で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて精度良く分級することができ、また、高い処理能力にて分級を行うことができる。   As described above, the centrifugal crusher according to the second embodiment includes the axial airflow inlet passage 33a and the radial airflow outlet passage 34a in the lower housing 8 into which the crushed particles are introduced from the annular gap 7. An air flow supply duct 32 provided in parallel with the rotor rotation drive mechanism 6 and a blow pipe 31 for supplying air to the air flow supply duct 32 from an air blow source outside the crusher are provided. Therefore, the solid-gas two-phase swirling flow that has flowed in from the annular gap 7 and the airflow supplied from the air blowing source outside the crusher and sent out from the radial airflow outlet passage 34a of the airflow supply duct 32 are combined to generate centrifugal force. As a flow field for airflow classification based on the fluid resistance force, a smooth and sufficient swirling flow with sufficient airflow can be obtained that travels downward into the classification space 11 in the lower housing 8. Therefore, when the crushed particle group obtained in the crushing chamber 2 is classified into the fine particle group and the pulverized particle group of the product size, it can be classified with higher accuracy than before, and classification is performed with high processing capacity. be able to.

図5は本発明の第3実施形態による遠心式破砕機の構成を示す破断斜視図である。ここで、この第3実施形態において、前記図1に示す遠心式破砕機と同一構成部分には図1と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 5 is a broken perspective view showing a configuration of a centrifugal crusher according to a third embodiment of the present invention. Here, in this 3rd Embodiment, the same code | symbol as FIG. 1 is attached | subjected to the same component as the centrifugal crusher shown in the said FIG. 1, description is abbreviate | omitted, and a different point is demonstrated.

図5に示すように、下部ハウジング8内には、気流供給ダクト42が配設されている。この気流供給ダクト42は、ロータ回転駆動機構部6に近接してこれと並設されるとともに該駆動機構部6と軸平行をなして上下方向に延びる円筒体43と、この円筒体43の上端周縁に接続され、内周面がロータ回転駆動機構部6の外周面に固定され、外周面が全周にわたって開口された中空円環体44と、この中空円環体44の下方に位置して円筒体43に接続され、内周面がロータ回転駆動機構部6の外周面に固定され、外周面が全周にわたって開口された下部用中空円環体45とにより構成されている。   As shown in FIG. 5, an airflow supply duct 42 is disposed in the lower housing 8. The air flow supply duct 42 is provided adjacent to and in parallel with the rotor rotation drive mechanism unit 6, and extends in the vertical direction in parallel with the drive mechanism unit 6, and the upper end of the cylinder body 43. A hollow annular body 44 that is connected to the periphery, has an inner peripheral surface fixed to the outer peripheral surface of the rotor rotation drive mechanism 6, and has an outer peripheral surface opened over the entire circumference, and is positioned below the hollow annular body 44. It is connected to a cylindrical body 43, and is configured by a lower hollow annular body 45 whose inner peripheral surface is fixed to the outer peripheral surface of the rotor rotation driving mechanism 6 and whose outer peripheral surface is opened over the entire periphery.

これにより、気流供給ダクト42は、図5に示すように、ロータ回転駆動機構部6に近接しこれと並設されるとともに軸平行をなして上下方向に延びる軸方向気流入口通路43aと、この入口通路43aに連通して半径方向に放射状に延び、先端に円環状隙間7に近接し該隙間7の内周縁に沿って位置する出口開口44aを持つ放射状気流出口通路44aと、さらに、この出口通路44aの距離G下方に位置し、上下方向に延びる入口通路43aに連通して半径方向に放射状に延び、先端に出口開口45a(上下方向開口長さH2)を持つ下部用放射状気流出口通路45aとを有している。この下部用放射状気流出口通路45aの半径方向長さL2は、上方にある前記出口通路44aの半径方向長さL1以下に設定されている。 Thereby, as shown in FIG. 5, the air flow supply duct 42 is adjacent to the rotor rotation drive mechanism portion 6 and is arranged in parallel with the axial air flow inlet passage 43 a extending in the vertical direction in parallel with the axis. extending radially in the radial direction communicating with the inlet passage 43a, and the radial airflow outlet passage 44a having an outlet opening 44a 1 located along the inner periphery of the annular gap close to the 7 the clearance 7 on the tip, further, the A radial airflow outlet for a lower portion located below the distance G of the outlet passage 44a, communicated with an inlet passage 43a extending in the vertical direction, extending radially in the radial direction, and having an outlet opening 45a 1 (vertical opening length H2) at the tip. And a passage 45a. The radial length L2 of the lower radial airflow outlet passage 45a is set to be equal to or shorter than the radial length L1 of the outlet passage 44a located above.

また、気流供給ダクト42の軸方向気流入口通路43a(円筒体43)の下端部に、破砕機外部の図示しない空気送風源(例えば送風ブロワー)からの空気を気流供給ダクト42に供給するための半径方向に延びる送風管31が接続されている。   Further, air from an air blow source (not shown) outside the crusher (for example, a blower) is supplied to the air flow supply duct 42 at the lower end portion of the axial air flow inlet passage 43a (cylindrical body 43) of the air flow supply duct 42. A blower pipe 31 extending in the radial direction is connected.

このように、この第3実施形態による遠心式破砕機は、破砕粒子群が円環状隙間7から導入される下部ハウジング8内に、ロータ回転駆動機構部6と並設される軸方向気流入口通路43a、放射状気流出口通路44a及び下部用放射状気流出口通路45aを有する気流供給ダクト42と、破砕機外部の空気送風源よりこの気流供給ダクト42に空気を供給するための送風管31とが設けられている。したがって、円環状隙間7から流入した固気二相旋回流と、破砕機外部の空気送風源より供給され、気流供給ダクト42の放射状気流出口通路44aから送出される気流とが合わさって、気流分級を行うための流れの場として、下部ハウジング8内の分級空間11に下方へ進行するスムーズで、また、十分な風量の分級用旋回流を得ることができる。さらに、放射状気流出口通路44aの下方に下部用放射状気流出口通路45aを備えているので、分級空間11下部に行くに従って水平方向の速度成分が分級精度を悪化させる減速を生じることのない分級用旋回流を、分級空間11に実現することができる。よって、破砕室2で得られた破砕粒子群を微粒子群と製品サイズの破砕粒子群とに分級するに際し、従来に比べて確実に精度良く分級することができ、また、高い処理能力にて分級を行うことができる。   As described above, the centrifugal crusher according to the third embodiment includes an axial airflow inlet passage that is arranged in parallel with the rotor rotation drive mechanism 6 in the lower housing 8 into which the crushed particles are introduced from the annular gap 7. 43a, an airflow supply duct 42 having a radial airflow outlet passage 44a and a lower radial airflow outlet passage 45a, and a blower pipe 31 for supplying air to the airflow supply duct 42 from an air blowing source outside the crusher. ing. Therefore, the solid-gas two-phase swirling flow that has flowed in from the annular gap 7 and the airflow supplied from the air blowing source outside the crusher and sent out from the radial airflow outlet passage 44a of the airflow supply duct 42 are combined together to classify the airflow. As a flow field for carrying out the above, a smooth and sufficient swirling flow with sufficient air volume can be obtained which travels downward into the classification space 11 in the lower housing 8. In addition, since the lower radial airflow outlet passage 45a is provided below the radial airflow outlet passage 44a, the speed turning in the horizontal direction does not cause a deceleration that deteriorates the classification accuracy as it goes to the lower portion of the classification space 11, and the turning for classification. A flow can be realized in the classification space 11. Therefore, when classifying the pulverized particle group obtained in the pulverization chamber 2 into the fine particle group and the pulverized particle group of the product size, classification can be performed with higher accuracy than before, and classification can be performed with high processing capacity. It can be performed.

本発明は、前記説明した1〜3の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、ロータ周囲に設けられた衝突部としては、実施形態では破砕片堆積層によって構成するものを示したが、これに特に限定されず、破砕室内壁面、あるいは破砕室構造体などによって構成するようにしたものであってもよい。   The present invention is not limited to the embodiments 1 to 3 described above, and various modifications can be made without departing from the spirit of the present invention. In the embodiment, the collision portion provided around the rotor is constituted by a fragmented deposit layer. However, the collision portion is not particularly limited to this, and is constituted by a crushing chamber wall surface or a crushing chamber structure. It may be the one.

本発明の第1実施形態による遠心式破砕機の構成を示す破断斜視図である。It is a fracture perspective view showing composition of a centrifugal crusher by a 1st embodiment of the present invention. 図1に示す遠心式破砕機の断面図である。It is sectional drawing of the centrifugal crusher shown in FIG. 図1における気流供給ダクトを説明するための断面図である。It is sectional drawing for demonstrating the airflow supply duct in FIG. 本発明の第2実施形態による遠心式破砕機の構成を示す破断斜視図である。It is a fracture | rupture perspective view which shows the structure of the centrifugal crusher by 2nd Embodiment of this invention. 本発明の第3実施形態による遠心式破砕機の構成を示す破断斜視図である。It is a fracture | rupture perspective view which shows the structure of the centrifugal crusher by 3rd Embodiment of this invention. 従来の遠心式破砕機の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional centrifugal crusher.

符号の説明Explanation of symbols

1…上部ハウジング
2…破砕室
3…破砕片堆積層
5…ロータ
5a…放出口
6…ロータ用回転駆動機構部
7…円環状隙間
8…下部ハウジング
9…製品排出口
10…微粒子排出口
11…分級空間
12…気流供給ダクト
13…円筒体
13a…軸方向気流入口通路
14…中空円環体
14a…放射状気流出口通路
14a…出口開口
31…送風管
32,42…気流供給ダクト
33,43…円筒体
33a,43a…軸方向気流入口通路
34,44…中空円環体
34a,44a…放射状気流出口通路
34a,44a…出口開口
45…下部用中空円環体
45a…下部用放射状気流出口通路
45a…出口開口
DESCRIPTION OF SYMBOLS 1 ... Upper housing 2 ... Crushing chamber 3 ... Fragment piece deposition layer 5 ... Rotor 5a ... Release port 6 ... Rotary drive mechanism part for rotors 7 ... Circular gap 8 ... Lower housing 9 ... Product discharge port 10 ... Fine particle discharge port 11 ... Classification space 12 ... Airflow supply duct 13 ... Cylindrical body 13a ... Axial airflow inlet passage 14 ... Hollow torus 14a ... Radial airflow outlet passage 14a 1 ... Outlet opening 31 ... Air blow pipe 32, 42 ... Airflow supply duct 33, 43 ... cylinder 33a, 43a ... axial airflow inlet passages 34, 44 ... hollow torus 34a, 44a ... radial airflow outlet passage 34a 1, 44a 1 ... hollow torus 45a ... radial airflow outlet for the lower outlet opening 45 ... lower Passage 45a 1 ... exit opening

Claims (4)

上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、この下部ハウジング内に前記ロータ用回転駆動機構部と並設され、前記円環状隙間に放射状をなして向かう気流を供給するための気流供給ダクトと、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機。   An upper housing, a crushing chamber formed in the upper housing, and a crushing material supplied from above are discharged from the discharge port on the outer periphery of the rotor by centrifugal force, and are provided around the rotor. A rotor that is supported by a rotary drive mechanism for a rotor to perform crushing and sizing by colliding with a colliding part, and a horizontally rotating rotor, communicated with the crushing chamber, and connected to the lower part of the upper housing. A lower housing in which the obtained crushed particle group is introduced from an annular gap between the rotor and the collision portion, and the rotary drive mechanism portion for the rotor are arranged in parallel in the lower housing, and the radial gap is radially formed in the annular gap. An air flow supply duct for supplying an air flow to be directed, and a plurality of discharges provided in the lower housing, each for discharging crushed particle groups having different particle size ranges to the outside of the crusher Centrifugal crusher, characterized in that it comprises a and. 上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、下端に入口開口を持ち、前記ロータ用回転駆動機構部と並設されて上下方向に延びる軸方向気流入口通路、及び該軸方向気流入口通路に連通して放射状に延び、先端に前記円環状隙間に近接し該円環状隙間内周縁に沿って位置する出口開口を持つ放射状気流出口通路を有して、前記下部ハウジング内に設けられた気流供給ダクトと、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機。   An upper housing, a crushing chamber formed in the upper housing, and a crushing material supplied from above are discharged from the discharge port on the outer periphery of the rotor by centrifugal force, and are provided around the rotor. A rotor that is supported by a rotary drive mechanism for a rotor to perform crushing and sizing by colliding with a colliding part, and a horizontally rotating rotor, communicated with the crushing chamber, and connected to the lower part of the upper housing. The obtained crushing particle group has a lower housing that is introduced from an annular gap between the rotor and the collision part, an entrance opening at the lower end, and a shaft that is arranged in parallel with the rotary drive mechanism part for the rotor and extends vertically. A radial airflow outlet passage that communicates with the directional airflow inlet passage and radially extends in communication with the axial airflow inlet passage, and has an outlet opening located near the annular gap and along the inner circumferential edge of the annular gap. An air flow supply duct provided in the lower housing, and a plurality of outlets provided in the lower housing for discharging crushed particle groups having different particle size ranges to the outside of the crusher, respectively. A centrifugal crusher characterized by comprising. 上部ハウジングと、この上部ハウジング内に形成された破砕室と、この破砕室内に設けられ、上方より供給される破砕原料を遠心力によってロータ外周部の放出口より放出し、ロータ周囲に設けられた衝突部に衝突させて、破砕と整粒を行うべくロータ用回転駆動機構部に支持され水平回転するロータと、前記破砕室に連通して前記上部ハウジングの下部に連設され、前記破砕室で得られた破砕粒子群が前記ロータと前記衝突部との円環状隙間から導入される下部ハウジングと、前記ロータ用回転駆動機構部と並設されて上下方向に延びる軸方向気流入口通路、及び該軸方向気流入口通路に連通して放射状に延び、先端に前記円環状隙間に近接し該円環状隙間内周縁に沿って位置する出口開口を持つ放射状気流出口通路を有して、前記下部ハウジング内に設けられた気流供給ダクトと、前記軸方向気流入口通路の下端部に接続され、破砕機外部の空気送風源より前記気流供給ダクトに空気を供給するための送風管と、前記下部ハウジングに設けられ、異なる粒径範囲の破砕粒子群をそれぞれ破砕機外部に排出するための複数の排出口と、を備えたことを特徴とする遠心式破砕機。   An upper housing, a crushing chamber formed in the upper housing, and a crushing material supplied from above are discharged from the discharge port on the outer periphery of the rotor by centrifugal force, and are provided around the rotor. A rotor that is supported by a rotary drive mechanism for a rotor to perform crushing and sizing by colliding with a colliding part, and a horizontally rotating rotor, communicated with the crushing chamber, and connected to the lower part of the upper housing. A lower housing in which the obtained crushed particle group is introduced from an annular gap between the rotor and the collision portion, an axial airflow inlet passage that is arranged in parallel with the rotary drive mechanism portion for the rotor and extends in the vertical direction; and A radial airflow outlet passage communicating radially with the axial airflow inlet passage and extending radially, having an outlet opening located near the annular gap and along the inner peripheral edge of the annular gap; An airflow supply duct provided in the wing, a blower pipe connected to a lower end portion of the axial airflow inlet passage, for supplying air to the airflow supply duct from an air blower source outside the crusher, and the lower housing And a plurality of outlets for discharging crushed particle groups having different particle size ranges to the outside of the crusher. 前記気流供給ダクトは、さらに、前記放射状気流出口通路の下方に位置して前記下部ハウジング内に放射状をなして向かう気流を導く下部用放射状気流出口通路を有していることを特徴とする請求項2又は3記載の遠心式破砕機。   The airflow supply duct further includes a lower radial airflow outlet passage that is positioned below the radial airflow outlet passage and guides an airflow that flows radially into the lower housing. The centrifugal crusher according to 2 or 3.
JP2004287717A 2004-09-30 2004-09-30 Centrifugal crusher Expired - Fee Related JP4418340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287717A JP4418340B2 (en) 2004-09-30 2004-09-30 Centrifugal crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287717A JP4418340B2 (en) 2004-09-30 2004-09-30 Centrifugal crusher

Publications (2)

Publication Number Publication Date
JP2006095488A true JP2006095488A (en) 2006-04-13
JP4418340B2 JP4418340B2 (en) 2010-02-17

Family

ID=36235805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287717A Expired - Fee Related JP4418340B2 (en) 2004-09-30 2004-09-30 Centrifugal crusher

Country Status (1)

Country Link
JP (1) JP4418340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108787037A (en) * 2018-07-20 2018-11-13 福建美斯拓机械设备有限公司 A kind of vertical shaft impact crusher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108787037A (en) * 2018-07-20 2018-11-13 福建美斯拓机械设备有限公司 A kind of vertical shaft impact crusher

Also Published As

Publication number Publication date
JP4418340B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
US10300490B2 (en) Rotary mill
KR20130100986A (en) Jet mill
JP4427285B2 (en) Double odd bell-shaped opening nozzle device for fluidized bed jet mill
CN108883437A (en) Sorting machine
JP2009189909A (en) Roller mill structure
JP2016528038A (en) Vertical roller mill
JP4418340B2 (en) Centrifugal crusher
JPS62168556A (en) Centrifugal air separator
KR20060131947A (en) Crushing and classifying device
JP6262907B1 (en) Powder classification device and classification system
JP2011045819A (en) Powder classifying apparatus
JP6352162B2 (en) Vertical roller mill
JP2005288272A (en) Centrifugal crusher
JP2008086875A (en) Pneumatic fine powder manufacturing apparatus
AU2016213757B2 (en) Rotary mill
RU2626721C1 (en) Rotor-vortex mill and its working body
JP2000140674A (en) Pneumatic pulverizer
JP7131556B2 (en) Vertical grinder
JP2008149257A (en) Crushing and classifying apparatus
JP4889345B2 (en) Operation method of airflow crusher
JP2017159215A (en) Pulverization device with classification function
CN105728141A (en) Scattering and classifying machine
CN115672511A (en) Superfine grinding system of rhizome class traditional chinese medicine
RU107969U1 (en) DEVICE FOR TWO-PRODUCT GRINDING MATERIALS
JP2014176835A (en) Classifier and pulverization classifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees