JP2006094827A - Method for identifying factor for adjusting platelet differentiation - Google Patents

Method for identifying factor for adjusting platelet differentiation Download PDF

Info

Publication number
JP2006094827A
JP2006094827A JP2004287226A JP2004287226A JP2006094827A JP 2006094827 A JP2006094827 A JP 2006094827A JP 2004287226 A JP2004287226 A JP 2004287226A JP 2004287226 A JP2004287226 A JP 2004287226A JP 2006094827 A JP2006094827 A JP 2006094827A
Authority
JP
Japan
Prior art keywords
cells
megakaryocyte
megakaryocytes
platelets
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287226A
Other languages
Japanese (ja)
Other versions
JP2006094827A5 (en
Inventor
Norio Komatsu
則夫 小松
Kyoji Yamaguchi
京二 山口
Ryo Hatano
陵 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Pharmaceutical Co Ltd
Original Assignee
Daiichi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co Ltd filed Critical Daiichi Pharmaceutical Co Ltd
Priority to JP2004287226A priority Critical patent/JP2006094827A/en
Publication of JP2006094827A publication Critical patent/JP2006094827A/en
Publication of JP2006094827A5 publication Critical patent/JP2006094827A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for identifying a factor for deriving and/or promoting differentiation from megakaryocytes into proplatelets and/or platelets, by which many specimen treatments reflecting biological phenomena are simply possible, to provide a method for identifying a factor for inhibiting and/or suppressing differentiation from megakaryocytes into proplatelets and/or platelets, by which many specimen treatments reflecting biological phenomena are simply possible, and to provide factors identified by the methods and inducing, promoting, inhibiting and/or suppressing differentiations from the megakaryocytes into the platelets. <P>SOLUTION: The methods for identifying factors for deriving, promoting, inhibiting and/or suppressing differentiations from megakaryocytes into proplatelets and/or platelets use a cultured cell strain UT-7/TPO cell having properties as the megakaryocytes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、巨核球(megakaryocyte)から巨核球胞体突起(proplatelet)および/または血小板(platelet)への分化を誘導および/または促進する因子の同定方法に関する。また、本発明は、巨核球から巨核球胞体突起(proplatelet)および/または血小板への分化を阻害および/または抑制する因子の同定方法に関する。また、本発明は、上記の方法を用いて同定された、巨核球から巨核球胞体突起(proplatelet)および/または血小板への分化に関連する因子に関する。   The present invention relates to a method for identifying a factor that induces and / or promotes the differentiation of megakaryocytes into megakaryocytes and / or platelets. The present invention also relates to a method for identifying a factor that inhibits and / or suppresses the differentiation of megakaryocytes into megakaryocyte precursors and / or platelets. The present invention also relates to factors associated with the differentiation of megakaryocytes into megakaryocyte prosthetics and / or platelets identified using the methods described above.

血小板は、造血幹細胞から巨核球前駆細胞、巨核球(本明細書中、巨核球前駆細胞および巨核球を総称して巨核球系細胞という)、さらに巨核球胞体突起(proplatelet)に至る種々の分化段階を経る。巨核球の分化および/または成熟の機構は、近年の細胞生物学および分子生物学の進展によって、徐々に解明されつつある。例えば、1994年に同定されたトロンボポエチン(TPO)は、この機構の解明に大きく貢献した。TPOは、巨核球前駆細胞から巨核球に至る分化段階の細胞に作用する、巨核球の産生に必須の可溶性蛋白質である(非特許文献1および2を参照のこと)。しかし、TPOは、巨核球前駆細胞から巨核球になる初期の分化には作用するが、巨核球から血小板が形成される段階には作用しないことが明らかとなり、巨核球から血小板が形成される機構には未だ不明な部分が多く残されている。   Platelets can be differentiated from hematopoietic stem cells to megakaryocyte progenitor cells, megakaryocytes (herein, megakaryocyte progenitor cells and megakaryocytes are collectively referred to as megakaryocyte cells), and further to megakaryocyte prosthetic processes. Go through the stages. The mechanism of megakaryocyte differentiation and / or maturation is gradually being elucidated by recent progress in cell biology and molecular biology. For example, thrombopoietin (TPO), identified in 1994, contributed greatly to elucidating this mechanism. TPO is a soluble protein essential for the production of megakaryocytes that acts on cells in the differentiation stage from megakaryocyte precursor cells to megakaryocytes (see Non-Patent Documents 1 and 2). However, TPO acts on the initial differentiation from megakaryocyte progenitor cells to megakaryocytes, but does not act on the stage of platelet formation from megakaryocytes, and the mechanism by which platelets are formed from megakaryocytes There are still many unknown parts.

血小板は、傷口の周囲に血栓を形成し止血することが主要な役割である。何らかの理由で血小板数が減少すると止血機構が破綻し出血傾向となる。血小板数の減少と関連する疾患としては、血小板減少症が挙げられる。血小板減少症の原因としては、骨髄における血小板産性の抑制および末梢での血小板の消費が挙げられる。例えば、癌化学療法または放射線療法によって生じる、骨髄での血小板産生の抑制によって引き起こされる血小板減少症の治療方法としては、血小板輸血が挙げられる。しかし、健常人から供給される血液から調製される輸血用血小板は、保存可能期間が短く、調製後の細菌による感染、提供者由来のウィルス感染、および輸血後拒絶反応などの問題点がある。血小板減少症の他の治療方法としては、TPOを用いた方法が挙げられる。TPOは、前臨床試験および臨床試験において、血小板増加作用や癌化学療法剤投与時の血小板減少の改善作用が確認されており、血小板減少症の治療薬の候補と考えられている。しかし、TPOは血小板産生の後期の段階(巨核球から巨核球胞体突起および/または血小板への分化段階)に顕著な活性を示さないので、TPOによる血小板増加は巨核球数の増加に付随して生じるものであり、TPOを用いても血小板のみを増加することはできない。   The main role of platelets is to form a thrombus around the wound and stop bleeding. If the platelet count decreases for some reason, the hemostatic mechanism breaks down and tends to bleed. Thrombocytopenia is an example of a disease associated with a decrease in the number of platelets. Causes of thrombocytopenia include suppression of platelet production in the bone marrow and peripheral platelet consumption. For example, a method for treating thrombocytopenia caused by suppression of platelet production in the bone marrow caused by cancer chemotherapy or radiation therapy includes platelet transfusion. However, platelets for blood transfusions prepared from blood supplied from healthy individuals have a short shelf life, and have problems such as infection by bacteria after preparation, virus infection from donors, and rejection after transfusion. Another method for treating thrombocytopenia is a method using TPO. TPO has been confirmed in preclinical studies and clinical studies to have an effect of increasing platelets and an effect of improving thrombocytopenia upon administration of a cancer chemotherapeutic agent, and is considered a candidate for a therapeutic agent for thrombocytopenia. However, since TPO does not show significant activity in the later stages of platelet production (differentiation stage from megakaryocytes to megakaryocyte processes and / or platelets), platelet increase by TPO is accompanied by an increase in the number of megakaryocytes. It does occur, and it is not possible to increase only platelets using TPO.

一方、血小板数が増加し過ぎると血栓が出来やすい状態となる。血小板の増加と関連する疾患としては、血小板増加症が挙げられる。血小板増加症の治療方法としては、血栓の形成を抑制する治療が挙げられる。血小板増加症は血中の血小板が異常増加している状態であり、原因として、原発性と二次性のものがある。前者では骨髄増殖性疾患(例えば、本態性血小板血症、慢性骨髄性白血病、または特発性骨髄線維症)が原因疾患となる。後者では感染症、悪性腫瘍、薬剤などが原因となる。従って、通常の治療は原疾患の治療が重要であり、対症療法として抗血栓治療が行なわれる。   On the other hand, if the number of platelets increases too much, a blood clot is easily formed. Thrombocytosis is an example of a disease associated with an increase in platelets. Examples of a method for treating thrombocytosis include treatment for suppressing thrombus formation. Thrombocytosis is a condition in which platelets in the blood are abnormally increased, and there are primary and secondary causes. In the former, myeloproliferative diseases (for example, essential thrombocythemia, chronic myelogenous leukemia, or idiopathic myelofibrosis) are the cause. The latter is caused by infections, malignant tumors and drugs. Therefore, the treatment of the primary disease is important for normal treatment, and antithrombotic treatment is performed as symptomatic treatment.

上記のような血小板と関連する疾患(例えば、血小板減少症または血小板増加症)の治療剤および/または治療方法の開発には、巨核球系細胞から血小板への分化機構の解明、特に、巨核球から巨核球胞体突起および/または血小板への分化機構の解明が重要である。現在、巨核球から血小板への分化機構、および巨核球から血小板への分化に関与する因子についての報告はほとんどなく、高密度リポ蛋白質(high density lipoprotein)(HDL)とアンチトロンビンIIIあるいはC1インヒビターの複合体がマウス骨髄由来初代培養細胞からの巨核球胞体突起の形成を促進するという報告(非特許文献3)、およびヒトフィブロネクチンがプロテインキナーゼC(protein kinase C)の活性化剤との併用でヒト巨核球株CHRK−288細胞に対して巨核球胞体突起構造の誘導を促進するとの報告(非特許文献4)があるのみである。   For the development of therapeutic agents and / or therapeutic methods for diseases associated with platelets as described above (for example, thrombocytopenia or thrombocytosis), elucidation of the differentiation mechanism from megakaryocyte cells to platelets, in particular, megakaryocytes It is important to elucidate the mechanism of differentiation from nuclei to megakaryocytes and / or platelets. Currently, there are few reports on the mechanism of megakaryocyte-to-platelet differentiation and factors involved in megakaryocyte-to-platelet differentiation, and high density lipoprotein (HDL) and antithrombin III or C1 inhibitor Report that the complex promotes the formation of megakaryocyte processes from primary cultured cells derived from mouse bone marrow (Non-patent Document 3), and human fibronectin in combination with an activator of protein kinase C (human) There is only a report (Non-patent Document 4) that the induction of megakaryocyte structure is promoted for megakaryocyte strain CHRK-288 cells.

巨核球から血小板への分化を誘導、促進、阻害および/または抑制する生体内因子あるいはそのような機能を持つ低分子化合物がほとんど見つかっていない原因として、確立された同定方法が極めて少ないことが挙げられる。現在、同定方法の1つとしてマウス骨髄由来の初代培養細胞が用いられている。この同定方法は、動物取り扱いの技術の習得、質の良い骨髄細胞の調製、培養の至適条件の検討、評価に用いるための巨核球への分化条件の検討などに相当の期間を要する。また、同定方法に使用するためには純度の高い巨核球を大量に必要とするが、初代培養細胞は培養細胞株と比較して得られる細胞数が非常に少なく、スクリーニングに必要な細胞数を確保するためには多数の動物が必要になる。このように、上記のマウス骨髄由来の初代培養細胞を用いる方法は、大規模なスクリーニングの実施には不向きである。近年、ヒト臍帯血由来の血球系細胞を用いて巨核球の分化、血小板産生の研究が行なわれるようになってきた。しかしながら、一般の研究者がヒト臍帯血を日常的および/または継続的に入手することは困難であり、長期間に及ぶスクリーニングに使用することは不可能である。   There are very few established identification methods as the cause of few in vivo factors or low molecular weight compounds having such functions that induce, promote, inhibit and / or suppress the differentiation of megakaryocytes into platelets. It is done. Currently, primary culture cells derived from mouse bone marrow are used as one of identification methods. This identification method requires a considerable period of time to acquire animal handling techniques, to prepare high-quality bone marrow cells, to examine the optimal conditions for culture, and to examine differentiation conditions for megakaryocytes for use in evaluation. In addition, a large amount of high-purity megakaryocytes are required for use in the identification method, but the number of cells obtained from primary cultured cells is much smaller than that of cultured cell lines. To secure it, a large number of animals are required. Thus, the above method using primary cultured cells derived from mouse bone marrow is unsuitable for conducting large-scale screening. In recent years, studies on megakaryocyte differentiation and platelet production have been conducted using blood cells derived from human umbilical cord blood. However, it is difficult for a general researcher to obtain human umbilical cord blood on a daily basis and / or continuously, and it is impossible to use it for a long-term screening.

大規模なスクリーニングには、培養細胞株を用いる方法が好都合である。培養細胞株を用いる方法は、入手も取り扱いも上記の初代培養細胞を用いる方法と比較して簡便である。その一方で、培養細胞株を用いる方法は、その細胞株が本来の巨核球および/または血小板の性質を維持しているかを精査する必要がある。巨核球から血小板、特に、巨核球から巨核球胞体突起への移行を示す培養細胞株は、現在ほとんど知られていない。最近、Jiangらは、ヒトフィブロネクチンおよびPMA(Phorbol 12−myristate 13−acetate)の同時添加によって巨核球胞体突起の構造を形成する、CHRF−288という細胞株を報告している(非特許文献4を参照のこと)。しかしながら、この細胞株の巨核球胞体突起への構造変化は、マウス骨髄由来の初代培養細胞を用いる方法と比較研究していないので、生体内での血小板産生過程をどれだけ反映しているのかは不明である。また、CHRF−288細胞株は巨核球前駆細胞様であり、巨核球へと成熟させるための操作が必要であり、至適条件の設定の必要性や煩雑さが問題である。また、マウスのES細胞(embryonic stem cell)を用いて、本来の機能を備えた血小板の産生を誘導できることも報告されている(非特許文献5を参照のこと)。しかし、この方法は、分化支持能を持つストローマ細胞株との共培養が必要で手間がかかること、すべてのES細胞が巨核球および/または血小板に分化するわけではなく様々な細胞の集合体となることなどから、スクリーニングへの使用には適していない。   For large-scale screening, a method using a cultured cell line is convenient. The method using a cultured cell line is easier to obtain and handle than the method using the primary cultured cells. On the other hand, in the method using a cultured cell line, it is necessary to examine whether or not the cell line maintains the original properties of megakaryocytes and / or platelets. There are currently few known cell lines that show the transition from megakaryocytes to platelets, especially megakaryocytes to megakaryocytes. Recently, Jiang et al. Reported a cell line called CHRF-288, which forms a megakaryocyte structure by the simultaneous addition of human fibronectin and PMA (Phorbol 12-myristate 13-acetate) (Non-Patent Document 4). See However, the structural change of this cell line to megakaryocytic process has not been compared with the method using primary cultured cells derived from mouse bone marrow, so how much does it reflect the in vivo platelet production process? It is unknown. Further, the CHRF-288 cell line is like a megakaryocyte progenitor cell, requires an operation for maturation into a megakaryocyte, and the necessity and complexity of setting optimum conditions is a problem. In addition, it has been reported that the production of platelets having an original function can be induced using mouse ES cells (embryonic stem cells) (see Non-Patent Document 5). However, this method requires co-cultivation with a stromal cell line capable of supporting differentiation and is troublesome. Not all ES cells differentiate into megakaryocytes and / or platelets. Therefore, it is not suitable for use in screening.

上記のように、現在色々な方向から血小板産生についての研究がなされているが、未だ、生体内の事象を反映した簡便かつ多検体処理が可能な血小板分化関連因子の同定方法は存在しない。   As described above, platelet production is currently being studied from various directions, but there is still no method for identifying a platelet differentiation-related factor capable of simple and multi-sample processing reflecting in vivo events.

de Sauvage et al.,Nature,vol.369,533−565(1994)de Sauvage et al. , Nature, vol. 369, 533-565 (1994) Bartley T.D.,et al.,Cell,vol.77,1117−1124(1994)Bartley T. D. , Et al. , Cell, vol. 77, 11171-1124 (1994) Ishida Y.et al.,Thromb.Haemost.,vol.85,349−55.(2001)Ishida Y. et al. , Thromb. Haemost. , Vol. 85, 349-55. (2001) Jiang F.et al.,Blood,vol.99,3579−3584.(2002)Jiang F. et al. , Blood, vol. 99, 3579-3584. (2002) Fujimoto T.T.,Blood,vol.102,4044−4051,(2003)Fujimoto T. T.A. , Blood, vol. 102, 4044-4051, (2003)

従って、本発明の課題は、生体事象を反映した多検体処理が可能であり簡便な、巨核球から巨核球胞体突起および/または血小板への分化に関与する因子の同定方法を提供すること、ならびに、そのような同定方法によって同定された巨核球から巨核球胞体突起および/または血小板への分化に関与する因子を提供することである。   Therefore, an object of the present invention is to provide a method for identifying factors involved in differentiation from megakaryocytes to megakaryocyte processes and / or platelets, which is capable of multi-sample processing reflecting biological events and is simple, and To provide a factor involved in the differentiation of megakaryocytes identified by such an identification method into megakaryocyte processes and / or platelets.

本発明者らは上記課題を解決すべく鋭意研究した結果、巨核球としての性質を持つ培養細胞株UT−7/TPO細胞が巨核球から巨核球胞体突起に分化すること、およびその分化機構は生体内事象を反映したものであることを見出した。本発明者らは、この知見に基づき、巨核球から巨核球胞体突起および/または血小板への分化に関与する因子の同定方法を構築し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have determined that the cultured cell line UT-7 / TPO cells having properties as megakaryocytes differentiate from megakaryocytes to megakaryocyte processes, and the differentiation mechanism is as follows. It was found that it reflects in vivo events. Based on this finding, the present inventors constructed a method for identifying factors involved in the differentiation of megakaryocytes into megakaryocyte processes and / or platelets, and completed the present invention.

すなわち、本発明は、以下からなる。
[1]巨核球から血小板への分化を誘導および/または促進する因子の同定方法であって、以下:
(1)候補因子をUT−7/TPO細胞に添加する工程、および
(2)UT−7/TPO細胞が血小板に分化したか否かを判定する工程
を含む方法、
[2][1]に記載の方法によって同定された、巨核球から血小板への分化を誘導および/または促進する因子、
[3]巨核球から巨核球胞体突起(proplatelet)への分化を誘導および/または促進する因子の同定方法であって、以下:
(1)候補因子をUT−7/TPO細胞に添加する工程、および
(2)UT−7/TPO細胞が巨核球胞体突起(proplatelet)に分化したか否かを判定する工程
を含む方法、
[4][3]に記載の方法によって同定された、巨核球から巨核球胞体突起(proplatelet)への分化を誘導および/または促進する因子、
[5]巨核球から血小板への分化を阻害および/または抑制する因子の同定方法であって、以下:
(1)フィブロネクチンおよび候補因子をUT−7/TPO細胞の培養液中に添加する工程、
(2)UT−7/TPO細胞から血小板への分化が阻害および/または抑制されたか否かを判定する工程
を包含する方法、
[6][5]に記載の方法によって同定された、巨核球から血小板への分化を阻害および/または抑制する因子、
[7]巨核球から巨核球胞体突起(proplatelet)への分化を阻害および/または抑制する因子の同定方法であって、以下:
(1)フィブロネクチンおよび候補因子をUT−7/TPO細胞の培養液中に添加する工程、
(2)UT−7/TPO細胞から巨核球胞体突起(proplatelet)への分化が阻害および/または抑制されたか否かを判定する工程
を包含する方法、
[8][7]に記載の方法によって同定された、巨核球から巨核球胞体突起(proplatelet)への分化を阻害および/または抑制する因子。
That is, this invention consists of the following.
[1] A method for identifying a factor that induces and / or promotes differentiation of megakaryocytes into platelets, comprising:
(1) adding a candidate factor to UT-7 / TPO cells, and (2) determining whether the UT-7 / TPO cells have differentiated into platelets,
[2] A factor that is identified by the method according to [1] and that induces and / or promotes differentiation of megakaryocytes into platelets,
[3] A method for identifying a factor that induces and / or promotes differentiation from a megakaryocyte to a megakaryocyte proplet, comprising:
(1) adding a candidate factor to a UT-7 / TPO cell; and (2) determining whether the UT-7 / TPO cell has differentiated into a megakaryocyte projection.
[4] A factor that induces and / or promotes differentiation from a megakaryocyte to a megakaryocyte proplatelet identified by the method according to [3],
[5] A method for identifying a factor that inhibits and / or suppresses differentiation of megakaryocytes into platelets, comprising:
(1) A step of adding fibronectin and a candidate factor into a culture solution of UT-7 / TPO cells,
(2) A method comprising the step of determining whether differentiation from UT-7 / TPO cells into platelets is inhibited and / or suppressed,
[6] A factor identified by the method according to [5], which inhibits and / or suppresses differentiation of megakaryocytes into platelets,
[7] A method for identifying a factor that inhibits and / or suppresses differentiation from a megakaryocyte to a megakaryocyte propellate, comprising:
(1) A step of adding fibronectin and a candidate factor into a culture solution of UT-7 / TPO cells,
(2) A method comprising the step of determining whether differentiation from UT-7 / TPO cells to megakaryocyte prosthetics has been inhibited and / or suppressed,
[8] A factor that is identified by the method according to [7], and that inhibits and / or suppresses differentiation from a megakaryocyte to a megakaryocyte precursor.

本発明によって、生体事象を反映した多検体処理が可能であり簡便な、巨核球から巨核球胞体突起および/または血小板への分化に関与する因子の同定方法が提供される。また、本発明の同定方法によって、巨核球から血小板への分化に関与する因子の提供が可能となる。   The present invention provides a simple method for identifying factors involved in the differentiation of megakaryocytes into megakaryocyte processes and / or platelets, which allows multi-sample processing reflecting biological events. In addition, the identification method of the present invention makes it possible to provide factors involved in the differentiation of megakaryocytes into platelets.

本発明者らは上記課題を解決すべく、巨核球としての性質を持つ培養細胞株であるUT−7/TPO細胞を用いて巨核球から血小板への分化に関与する因子を同定するための方法を構築した。UT−7/TPO細胞とは、巨核芽球性白血病(megakaryoblastic leukemia)患者から分離されたUT−7細胞の亜株(sub−line)でTPO依存的増殖能および巨核球への分化能を持つ。これまでの詳細な生化学および/または分子生物学的研究により、UT−7/TPO細胞は巨核球前駆細胞および巨核球としての性質を維持していることが明らかとなっている(Komatsu N.,et al.,Blood,vol.87,4552−4560,(1996))。しかし、このUT−7/TPO細胞が巨核球から血小板に分化および/または成熟するか否かは検討されていない。   In order to solve the above-mentioned problems, the present inventors use a UT-7 / TPO cell, which is a cultured cell line having properties as a megakaryocyte, to identify a factor involved in the differentiation of megakaryocytes into platelets. Built. UT-7 / TPO cells are sub-lines of UT-7 cells isolated from patients with megakaryoblastic leukemia and have TPO-dependent proliferation ability and differentiation ability into megakaryocytes. . Previous detailed biochemical and / or molecular biological studies have revealed that UT-7 / TPO cells maintain megakaryocyte progenitor and megakaryocyte properties (Komatsu N. et al.). , Et al., Blood, vol. 87, 4552-4560, (1996)). However, whether or not the UT-7 / TPO cells differentiate and / or mature from megakaryocytes into platelets has not been investigated.

本発明者らは、UT−7/TPO細胞は、自然発生的な巨核球胞体突起形成は起こさないが、特定の培養条件において巨核球から巨核球胞体突起への形態変化を示すことを見出した。具体的には、UT−7/TPO細胞は自然発生的な巨核球胞体突起の形成は全く起こさない(すなわち、通常の継代操作および培養操作では巨核球から巨核球胞体突起に変化しない)が、フィブロネクチンを添加した培養条件において巨核球から巨核球胞体突起への分化を示す。   The present inventors have found that UT-7 / TPO cells do not undergo spontaneous megakaryocyte formation but show a morphological change from megakaryocyte to megakaryocyte projection in certain culture conditions. . Specifically, UT-7 / TPO cells do not form any spontaneous megakaryocyte processes (ie, they do not change from megakaryocytes to megakaryocyte processes in normal passage and culture procedures). FIG. 4 shows differentiation from megakaryocytes to megakaryocyte processes in culture conditions supplemented with fibronectin.

さらに、本発明者らは、この形態変化は、生体内事象を反映したものであることを見出した。具体的には、巨核球から巨核球胞体突起への分化に関連する因子の同定において確立された方法であるマウス骨髄細胞由来の初代培養細胞を用いる方法においても、UT−7/TPO細胞において設定された条件と類似の条件下(すなわち、フィブロネクチン添加)で、巨核球から巨核球胞体突起への形態変化が促進されることを見出した。これにより本発明者らは、UT−7/TPO細胞を用いた巨核球から巨核球胞体突起への分化に関連する因子の同定方法が、生体内での巨核球から巨核球胞体突起への分化段階を反映した方法であることを確認した。UT−7/TPO細胞を用いる本発明の方法は、UT−7/TPO細胞の培養に手間がかからないので、多検体を簡便かつ短時間で実施することができる。一般に、インビトロで巨核球を血小板に分化誘導しても巨核球胞体突起までしか分化しないことが知られている。巨核球胞体突起の細胞は血小板の直前段階の細胞であること、および巨核球胞体突起まで誘導できれば血小板までの分化は十分に方向付けられていることから、本発明者らは、UT−7/TPO細胞を用いれば巨核球から巨核球胞体突起への分化に関連する因子だけでなく、巨核球から血小板への分化に関連する因子も同定できると考えている。   Furthermore, the present inventors have found that this morphological change reflects an in vivo event. Specifically, in a method using primary cultured cells derived from mouse bone marrow cells, which is a method established in the identification of factors related to differentiation from megakaryocytes to megakaryocyte processes, it is set in UT-7 / TPO cells. It was found that morphological changes from megakaryocytes to megakaryocyte spores are promoted under conditions similar to those described above (ie, addition of fibronectin). Accordingly, the present inventors have identified a method for identifying a factor related to differentiation from a megakaryocyte to a megakaryocyte vesicle process using UT-7 / TPO cells. Confirmed that the method reflects the stage. Since the method of the present invention using UT-7 / TPO cells does not require time and labor for culturing UT-7 / TPO cells, it is possible to carry out multiple samples conveniently and in a short time. In general, it is known that even when megakaryocytes are induced to differentiate into platelets in vitro, only megakaryocyte processes are differentiated. Since the cells of megakaryocyte vesicle processes are cells immediately before platelets, and differentiation to platelets is sufficiently directed if they can be induced to megakaryocyte processes, the present inventors have made UT-7 / If TPO cells are used, it is considered that not only factors related to differentiation from megakaryocytes to megakaryocyte processes but also factors related to differentiation from megakaryocytes to platelets can be identified.

本明細書において、「巨核球前駆細胞」とは、造血幹細胞から、骨髄系前駆細胞を経て、さらに巨核球系細胞へと分化したものである。この巨核球前駆細胞がさらに分化すると巨核球となる。   In the present specification, the “megakaryocyte progenitor cell” is a cell differentiated from a hematopoietic stem cell through a myeloid progenitor cell and further into a megakaryocyte cell. When this megakaryocyte progenitor cell is further differentiated, it becomes a megakaryocyte.

本明細書において、「巨核球」とは、巨核球系前駆細胞がさらに分化したものであり、細胞質の分裂を伴わないDNA合成(endomitosis)によって、核内のDNA量は、8〜32Nとなっている。細胞質は広く、ピンク色を呈し、微細なアズール好性顆粒が認められ、大型な細胞で100μmを超えるものもある。分子マーカー的には、CD41陽性である。   In the present specification, the “megakaryocyte” is a further differentiated megakaryocyte progenitor cell, and the amount of DNA in the nucleus is 8 to 32 N due to DNA synthesis (endomitosis) without cytoplasm division. ing. The cytoplasm is wide, pink, fine azurophilic granules are observed, and some large cells exceed 100 μm. As a molecular marker, it is CD41 positive.

本明細書において、「巨核球胞体突起」とは、血小板の直前段階の細胞を意味する。巨核球胞体突起は、成熟した巨核球が核数の増加を伴わずに変化する、ひも状の構造を特徴とする細胞の形態で、このひも状構造が細かく切断され血小板になると考えられている。   In the present specification, the “megakaryocytes” means a cell immediately before platelets. Meganuclear vesicle process is a cell form characterized by a string-like structure in which mature megakaryocytes change without increasing the number of nuclei, and it is thought that this string-like structure is finely cut into platelets .

本明細書において、「血小板」とは、巨核球が、巨核球胞体突起と呼ばれる形態変化を経て、そのひも状構造の細胞質が断片化されて、形成されたものである。血小板は、止血機構に重要な役割を果たす、核を有しない円盤状の直径2〜4μmの小さな血球成分であり、分子マーカーは、CD41陽性である。
UT−7/TPO細胞とは、巨核芽球性白血病(megakaryoblastic leukemia)患者から分離されたUT−7細胞の亜株である。UT−7/TPO細胞は、文献に記載の方法(Komatsu N.,et al.,Blood,vol.87,4552−4560,(1996))に従ってUT−7細胞にTPOを作用させることによって入手可能である。これまでの詳細な生化学および/または分子生物学的研究により、UT−7/TPO細胞は巨核球前駆細胞および巨核球としての性質を維持していることが明らかとなっている(Komatsu N.,et al.,Blood,vol.87,4552−4560,(1996))。しかし、このUT−7/TPO細胞が巨核球から血小板に分化または成熟するか否かは検討されていない。
In the present specification, “platelet” is a megakaryocyte formed by undergoing a morphological change called megakaryocyte prosthesis and fragmenting the cytoplasm of the string-like structure. Platelet is a small blood cell component having a diameter of 2 to 4 μm without a nucleus that plays an important role in the hemostatic mechanism, and the molecular marker is CD41 positive.
UT-7 / TPO cells are a sub-line of UT-7 cells isolated from patients with megakaryoblastic leukemia. UT-7 / TPO cells can be obtained by allowing TPO to act on UT-7 cells according to a method described in the literature (Komatsu N., et al., Blood, vol. 87, 4552-4560, (1996)). It is. Previous detailed biochemical and / or molecular biological studies have revealed that UT-7 / TPO cells maintain megakaryocyte progenitor and megakaryocyte properties (Komatsu N. et al.). , Et al., Blood, vol. 87, 4552-4560, (1996)). However, it has not been investigated whether or not these UT-7 / TPO cells differentiate or mature from megakaryocytes into platelets.

本発明の方法において、無血清培地に懸濁した細胞を96ウェルプレートなどの培養用プレートに播種し、試験サンプルを添加し37℃でCOインキュベータ中で培養する。巨核球から血小板への分化に関与するか否かを試験する候補因子の添加は、細胞の播種の前であっても、播種と同時であっても、播種の後であってもよいが、好ましくは、細胞の播種と同時である。培養用プレートはコラーゲンコートを施したものであってもコラーゲンコートを施していないものであってもよいが、コラーゲンコートを施した培養用プレートが好ましい。好ましくは約1〜6時間、より好ましくは約1〜3時間培養した後、細胞の形態変化を観察することによって候補因子の活性を評価する。 In the method of the present invention, cells suspended in a serum-free medium are seeded on a culture plate such as a 96-well plate, a test sample is added, and the cells are cultured at 37 ° C. in a CO 2 incubator. The addition of a candidate factor to test whether it is involved in differentiation from megakaryocytes to platelets may be before cell seeding, at the same time as seeding, or after seeding, Preferably, it is simultaneously with the seeding of cells. The culture plate may be a collagen-coated or non-collagen-coated plate, but a culture-coated plate is preferred. Preferably, after culturing for about 1 to 6 hours, more preferably about 1 to 3 hours, the activity of the candidate factor is evaluated by observing cell shape change.

評価する細胞が巨核球、巨核球胞体突起、または血小板のいずれかであることの判断は、細胞の形態変化によって行なう。巨核球、巨核球胞体突起、または血小板の分化マーカーとして一般に使用されるCD41やフォンビルブラント因子は三者間で共通に発現しており、分化マーカーのみを用いて巨核球、巨核球胞体突起、および血小板を識別することはできず、顕微鏡またはカメラ等による目視が必須である。形態の観察は、細胞を染色せずに実施してもよいし、細胞を染色してから観察してもよいが、細胞を染色してから観察することが好ましい。酵素活性に基づく染色または免疫染色によって細胞の形態をより明確にすることができる。酵素活性に基づく染色としては、例えば、コリンエステラーゼ染色が挙げられる。免疫染色に用いることができる抗体としては、抗CD41抗体、抗フォンビルブラント因子抗体等が挙げられる。以下の実施例にも記載するように、巨核球、巨核球胞体突起または血小板の膜蛋白質特異的マーカーとしてCD41(インテグリンaII、GPIIb)およびフォンビルブラント因子を用い、これらのマーカーの局在性を免疫染色により解析した。これらのマーカーは、巨核球表面にも血小板の膜表面にも局在する。これらのマーカーが、形態変化した巨核球の突起部分にも存在するならば、この突起構造は血小板形成の過程で現れるものと考えられる。   Judgment that the cells to be evaluated are megakaryocytes, megakaryocyte processes, or platelets is made based on cell shape change. CD41 and von Willebrand factor, commonly used as megakaryocytes, megakaryocyte processes, or platelet differentiation markers, are expressed in common among the three, and using only differentiation markers, megakaryocytes, megakaryocyte processes, In addition, platelets cannot be identified, and visual observation with a microscope or a camera is essential. The morphology may be observed without staining the cells or may be observed after staining the cells, but it is preferable to observe after staining the cells. Cell morphology can be further clarified by staining based on enzyme activity or immunostaining. Examples of staining based on enzyme activity include cholinesterase staining. Examples of antibodies that can be used for immunostaining include anti-CD41 antibodies and anti-von Willebrand factor antibodies. As described in the following examples, CD41 (integrin aII, GPIIb) and von Willebrand factor were used as membrane protein-specific markers for megakaryocytes, megakaryocytes, or platelets, and the localization of these markers was determined. Analysis was performed by immunostaining. These markers are localized both on the megakaryocyte surface and on the platelet membrane surface. If these markers are also present in the protrusions of megakaryocytes that have undergone morphological changes, this protrusion structure is considered to appear during the process of platelet formation.

本発明者らは、UT−7/TPO細胞がフィブロネクチンの添加により、再現性良く巨核球胞体突起に形態変化することを見出した。フィブロネクチンとしては、哺乳動物由来のフィブロネクチンが挙げられる。ヒト、サル、マウス、ラット、ウサギ、ネコ、イヌ、ウシ、またはウマ由来のフィブロネクチンが好ましく、ヒト由来のフィブロネクチンがより好ましく、ヒト血清由来のフィブロネクチンがさらにより好ましい。細胞に添加するフィブロネクチンの濃度としては、好ましくは100ng/mL〜10μg/mL、より好ましくは250ng/mL〜8μg/mLである。   The present inventors have found that UT-7 / TPO cells undergo morphological changes to megakaryocyte spores with good reproducibility by the addition of fibronectin. Examples of fibronectin include mammal-derived fibronectin. Fibronectin derived from human, monkey, mouse, rat, rabbit, cat, dog, cow, or horse is preferred, fibronectin derived from human is more preferred, and fibronectin derived from human serum is even more preferred. The concentration of fibronectin added to the cells is preferably 100 ng / mL to 10 μg / mL, more preferably 250 ng / mL to 8 μg / mL.

本発明によって、巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進する因子を同定することができる。具体的には、(1)UT−7/TPO細胞に候補因子を添加し、(2)候補因子を添加したUT−7/TPO細胞が巨核球胞体突起および/または血小板に形態変化したときに、その候補因子を巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進する因子として同定することができる。   According to the present invention, it is possible to identify factors that induce and / or promote differentiation from megakaryocytes to megakaryocyte processes and / or platelets. Specifically, (1) when a candidate factor is added to a UT-7 / TPO cell, and (2) when the UT-7 / TPO cell to which the candidate factor has been added has undergone a morphologic change to megakaryocyte processes and / or platelets. The candidate factor can be identified as a factor that induces and / or promotes the differentiation of megakaryocytes into megakaryocyte processes and / or platelets.

また、本発明によって、フィブロネクチンを陽性コントロールとして用いて巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進する因子を同定することができる。具体的には、(1)一方のUT−7/TPO細胞にフィブロネクチンを添加し、他方のUT−7/TPO細胞に候補因子を添加し、(2)候補因子を添加したUT−7/TPO細胞が、フィブロネクチンを添加した細胞と比較して同様に巨核球胞体突起および/または血小板に形態変化したときに、その候補因子を巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進する因子として同定することができる。   In addition, according to the present invention, it is possible to identify factors that induce and / or promote differentiation from megakaryocytes to megakaryocyte processes and / or platelets using fibronectin as a positive control. Specifically, (1) fibronectin is added to one UT-7 / TPO cell, a candidate factor is added to the other UT-7 / TPO cell, and (2) UT-7 / TPO to which the candidate factor is added. When cells change shape to megakaryocyte processes and / or platelets as compared to cells supplemented with fibronectin, the candidate factor induces differentiation from megakaryocytes to megakaryocyte processes and / or platelets and And / or can be identified as a facilitating factor.

あるいは、フィブロネクチンを用いて、巨核球から巨核球胞体突起および/または血小板への分化を阻害および/または抑制する因子を同定することができる。具体的には、(1)巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進する濃度のフィブロネクチンならびに候補因子をUT−7/TPO細胞に添加し、(2)UT−7/TPO細胞が巨核球のままである場合に、その候補因子を巨核球から巨核球胞体突起および/または血小板への分化を阻害および/または抑制する因子として同定することができる。細胞に添加するフィブロネクチンの濃度としては、好ましくは100ng/mL〜10μg/mL、より好ましくは250ng/mL〜8μg/mLである。   Alternatively, fibronectin can be used to identify factors that inhibit and / or suppress the differentiation of megakaryocytes into megakaryocyte processes and / or platelets. Specifically, (1) a concentration of fibronectin and a candidate factor that induces and / or promotes the differentiation of megakaryocytes into megakaryocyte processes and / or platelets is added to UT-7 / TPO cells, and (2) UT When the -7 / TPO cells remain megakaryocytes, the candidate factor can be identified as a factor that inhibits and / or suppresses the differentiation of megakaryocytes to megakaryocyte processes and / or platelets. The concentration of fibronectin added to the cells is preferably 100 ng / mL to 10 μg / mL, more preferably 250 ng / mL to 8 μg / mL.

さらに、フィブロネクチンを用いて、巨核球から巨核球胞体突起および/または血小板への分化をフィブロネクチンと共同して誘導および/または促進する因子を同定することができる。具体的には、(1)(A)巨核球から巨核球胞体突起および/または血小板への分化は誘導しないが巨核球から巨核球胞体突起および/または血小板への分化を方向付ける濃度のフィブロネクチンと(B)候補因子を、UT−7/TPO細胞に添加し、(2)そのUT−7/TPO細胞が血小板および/または巨核球胞体突起への分化したときに、その候補因子を、巨核球から血小板および/または巨核球胞体突起への分化をフィブロネクチンと共同して誘導および/または促進する因子として同定することができる。本明細書において、「巨核球から巨核球胞体突起および/または血小板への分化は誘導しないが巨核球から巨核球胞体突起および/または血小板への分化を方向付ける濃度」とは、その濃度のフィブロネクチン単独では巨核球から巨核球胞体突起および/または血小板への分化を誘導も促進もしないが、共同して作用する因子の存在下で巨核球から巨核球胞体突起および/または血小板への分化を誘導および/または促進するようなフィブロネクチンの濃度をいう。巨核球から巨核球胞体突起および/または血小板への分化は誘導しないが巨核球から巨核球胞体突起および/または血小板への分化を方向付けるフィブロネクチンの濃度とは、好ましくは10ng/mL〜125ng/mLの範囲であり、より好ましくは10ng/mL〜62.5ng/mLの範囲である。   In addition, fibronectin can be used to identify factors that induce and / or promote differentiation from megakaryocytes to megakaryocyte processes and / or platelets in conjunction with fibronectin. Specifically, (1) (A) fibronectin at a concentration that does not induce differentiation from megakaryocytes to megakaryocyte processes and / or platelets but directs differentiation from megakaryocytes to megakaryocyte processes and / or platelets. (B) A candidate factor is added to UT-7 / TPO cells, and (2) when the UT-7 / TPO cells differentiate into platelets and / or megakaryocyte processes, To platelets and / or megakaryocyte processes can be identified as factors that induce and / or promote in conjunction with fibronectin. In the present specification, “the concentration that does not induce differentiation from megakaryocytes to megakaryocyte processes and / or platelets but directs differentiation from megakaryocytes to megakaryocyte processes and / or platelets” means fibronectin at that concentration. Alone does not induce or promote the differentiation of megakaryocytes into megakaryocyte processes and / or platelets, but induces differentiation from megakaryocytes to megakaryocyte processes and / or platelets in the presence of co-acting factors And / or the concentration of fibronectin that promotes. The concentration of fibronectin that does not induce differentiation of megakaryocytes into megakaryocyte processes and / or platelets but directs differentiation from megakaryocytes to megakaryocyte processes and / or platelets is preferably 10 ng / mL to 125 ng / mL More preferably, it is the range of 10 ng / mL-62.5 ng / mL.

以下、実施例を示してこの発明をさらに詳細かつ具体的に説明するが、この発明は以下の実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail and specifically with reference to Examples, but the present invention is not limited to the following Examples.

(実施例1.UT−7/TPO細胞を用いた血小板への分化誘導)
(1.1.UT−7/TPO細胞を用いた形態変化の誘導)
5% COインキュベータ中、継代用培地(Iscove’s Modified Dulbecco’s Medium(IMDM)(LIFE TECHNOLOGIES社製)+10% ウシ胎仔血清(FBS)(MOREGATE社製)+6ng/mL TPO(PEPRO TECH EC LTD社製))を用いて25cmフラスコにて培養したUT−7/TPO細胞の懸濁液(10mL)を15mL遠沈管に入れ、約2時間自然沈降させた。上清を7mL除去後、新たに7mLの継代用培地を加え、懸濁して細胞数を測定した。約2mLの細胞懸濁液を、室温にて1,000rpmで、5分間遠心した。上清を捨て2.0×10個/mLになるように形態変化誘導用培地(300μg/mL トランスフェリン(LIFE TECHNOLOGIES社製)を含むDullbecco’s Modified Eagle’s Medium(DMEM)(SIGMA社製))にて細胞を懸濁した。形態変化誘導用培地にて16μg/mL フィブロネクチン(CHEMICON社製)溶液を調製した。
(Example 1. Induction of differentiation into platelets using UT-7 / TPO cells)
(1.1. Induction of morphological change using UT-7 / TPO cells)
Subculture medium (Iscove's Modified Dulbecco's Medium (IMDM) (manufactured by LIFE TECHNOLOGIES)) + 10% fetal bovine serum (FBS) (manufactured by MOREGATE) + 6 ng / mL TPO (PEPRO TECT) in a 5% CO 2 incubator A suspension of UT-7 / TPO cells (10 mL) cultured in a 25 cm 2 flask using a 25 cm 2 flask was placed in a 15 mL centrifuge tube and allowed to spontaneously settle for about 2 hours. After removing 7 mL of the supernatant, 7 mL of the subculture medium was newly added, suspended, and the number of cells was measured. About 2 mL of the cell suspension was centrifuged at 1,000 rpm for 5 minutes at room temperature. Dullbecco including morphological changes induced medium to be 2.0 × 10 5 cells / mL supernatant discarded (300 [mu] g / mL transferrin (LIFE TECHNOLOGIES Co.)'s Modified Eagle's Medium (DMEM ) (SIGMA Co. )) To suspend the cells. A 16 μg / mL fibronectin (manufactured by CHEMICON) solution was prepared in a morphological change induction medium.

Collagen Coated Microplate 96−ウェル(旭テクノグラス社製)のウェル中でフィブロネクチン溶液の2倍系列希釈液を作製した。液量は20μL/ウェルとし、16μg/mLを最高濃度として11段階の希釈を行った。それぞれのウェルに上記の調製した細胞懸濁液20μLを添加して混合後、5% COインキュベータ中、37℃にて約1時間保温した。各ウェルの容量は40μLで、フィブロネクチンの最終濃度は7.8ng/mLから8μg/mLまでとした。また、20μL/ウェルずつの形態変化誘導用培地と細胞懸濁液とを混合したコントロールも用意した。形態変化の割合は顕微鏡観察により評価した。 A 2-fold serial dilution of fibronectin solution was prepared in the wells of Collagen Coated Microplate 96-well (Asahi Techno Glass). The liquid volume was 20 μL / well, and 11 stages of dilution were performed with the maximum concentration of 16 μg / mL. 20 μL of the cell suspension prepared above was added to each well and mixed, followed by incubation at 37 ° C. for about 1 hour in a 5% CO 2 incubator. The volume of each well was 40 μL, and the final concentration of fibronectin was 7.8 ng / mL to 8 μg / mL. In addition, a control in which a 20 μL / well morphological change induction medium and a cell suspension were mixed was also prepared. The rate of morphological change was evaluated by microscopic observation.

観察された形態変化は、いくつかの特徴があった(図1)。成熟化が進んだと考えられる大型の細胞から比較的高頻度で突起の出現が見られたが、小型の細胞でも形態変化が誘導された。突起構造は細胞からほぼ直線的に伸びる形で出現し、多い場合はひとつの細胞から4〜5本現れた(図1,下の矢印で示した細胞)。通常は直線上の突起構造のみが観察されたが、時々突起の中間部付近に節状の円形の構造物が観察された。一本の突起構造からの枝分かれは観察されなかった。形態変化は、突起物の出現が特徴であって、通常細胞自体には大きな変化は伴わないが、特に小型の細胞の場合でまれに細胞側も変化して、全体として紡錘状の形態を示すこともあった(図1,上の矢印で示した細胞)。   The observed morphological changes had several characteristics (FIG. 1). Protrusions appeared relatively frequently from large cells that were thought to have matured, but morphological changes were induced even in small cells. The protrusion structure appeared in a form extending almost linearly from the cell, and in many cases, 4 to 5 appeared from one cell (the cell indicated by the arrow in FIG. 1). Usually, only a straight protrusion structure was observed, but sometimes a node-like circular structure was observed near the middle of the protrusion. No branching from a single protrusion structure was observed. Morphological changes are characterized by the appearance of protrusions and usually do not undergo major changes in the cells themselves, but in particular in the case of small cells, the cell side also rarely changes, showing a spindle-like morphology as a whole. In some cases (FIG. 1, cells indicated by the upper arrow).

2本以上の突起が形成されている細胞が鏡検(倍率100倍)一視野あたり平均5以上存在する場合を+、1以上5未満の場合を±、1未満の場合を−として、誘導条件の検討を行った。その結果、コラーゲンコートしたプレート上、フィブロネクチン濃度250ng/mL以上で形態変化が誘導され、フィブロネクチン濃度4〜8μg/mLで最も高い効率が得られることがわかった(表1)。形態変化する細胞は、最高で全体の約5%であった。コラーゲンコートしたプレート上で、8μg/mL フィブロネクチンの刺激により形態が変化した細胞の例を図1に示した。   Induction conditions, where cells having two or more protrusions formed are present on average at 5 or more per microscopic examination (100 times magnification), + is 1 or more and less than 5 and ± is less than 1 Was examined. As a result, it was found that morphological changes were induced at a fibronectin concentration of 250 ng / mL or more on a collagen-coated plate, and that the highest efficiency was obtained at a fibronectin concentration of 4-8 μg / mL (Table 1). The maximum number of cells that changed their shape was about 5%. An example of cells whose morphology has been changed by stimulation with 8 μg / mL fibronectin on a collagen-coated plate is shown in FIG.

Figure 2006094827
Figure 2006094827

(1.2.形態変化を誘導したUT−7/TPO細胞の抗CD41抗体を用いた免疫染色)
5% COインキュベータ中、継代用培地(IMDM+10%FBS+6ng/mL TPO)を用いて25cmフラスコにて培養したUT−7/TPO細胞の懸濁液(10mL)を15mL遠沈管に入れ、約2時間自然沈降させた。上清を7mL除去後、新たに7mLの継代用培地(IMDM+10% FBS+6ng/mL TPO)を加え、懸濁して細胞数を測定した。約2mLの細胞懸濁液を、室温にて1,000rpmで、5分間遠心した。上清を捨て3.8×10個/mLになるように、形態変化誘導用培地(300μg/mL トランスフェリンを含むDMEM)にて調製した。16μg/mLのフィブロネクチン溶液を、形態変化誘導用培地にて調製した。上記の調製した細胞懸濁液(40μL)と、調製したフィブロネクチン溶液(40μL)を混合した。Collagen I Cellware 8−well CultureSlide(Becton Dickinson社製)を用意し、上記の混合液を4ウェルにスポットした。その後5% COインキュベータ中、37℃にて約1時間保温し、形態変化を誘導させた。
(1.2. Immunostaining of anti-CD41 antibody of UT-7 / TPO cells in which morphological change was induced)
A suspension of UT-7 / TPO cells (10 mL) cultured in a 25 cm 2 flask using a subculture medium (IMDM + 10% FBS + 6 ng / mL TPO) in a 5% CO 2 incubator was placed in a 15 mL centrifuge tube. Allowed to settle for hours. After removing 7 mL of the supernatant, 7 mL of subculture medium (IMDM + 10% FBS + 6 ng / mL TPO) was newly added, suspended, and the number of cells was measured. About 2 mL of the cell suspension was centrifuged at 1,000 rpm for 5 minutes at room temperature. The supernatant was discarded and prepared in a morphological change induction medium (DMEM containing 300 μg / mL transferrin) so as to be 3.8 × 10 5 cells / mL. A 16 μg / mL fibronectin solution was prepared in a morphological change induction medium. The prepared cell suspension (40 μL) was mixed with the prepared fibronectin solution (40 μL). Collagen I Cellware 8-well CultureSlide (manufactured by Becton Dickinson) was prepared, and the above mixture was spotted on 4 wells. Thereafter, the cells were kept at 37 ° C. for about 1 hour in a 5% CO 2 incubator to induce morphological changes.

形態変化誘導処理を行った細胞を含むCultureSlideに、100μLの10% ホルマリン溶液を細胞液スポット上に滴下した。室温にて10分間放置し、細胞を固定した。固定後、細胞をPhosphate Buffered Salts(PBS)(TAKARA BIO INC社製)(0.1mL)で3回洗浄した。0.75% ウシ血清アルブミン(BSA)(LIFE TECHNOLOGIES社製)を含むPBS(100μL)で、細胞を室温にて約1時間ブロッキングした。ブロッキング後、細胞をPBS(0.1mL)で3回洗浄し、一次抗体(抗CD41抗体(フナコシ社製)あるいは陰性コントロール用抗体(ノーマルマウスIgG:Santa Cruz社製))を添加した。抗CD41抗体は4滴/ウェル添加し、陰性コントロール用抗体は250倍希釈したものを50μL/ウェル添加した。約1〜1.5時間室温にて放置した。細胞をPBS(0.1mL)で3回洗浄し、100倍希釈した二次抗体(FITC−ヤギ抗マウスIgG:Santa Cruz社製)を50μL/ウェル添加した。このCultureSlideをアルミホイルで遮光して、約1〜1.5時間室温にて放置した。PBS(0.1mL)で3回洗浄し、CultureSlideのチャンバーをはずした。VECTASHIELD(VECTOR社製)を1滴/ウェル滴下した。カバーガラスをつけ、トップコートでシールした後、蛍光顕微鏡で鏡検した。鏡検終了後、作製したプレパラートは、アルミホイルで遮光して冷蔵保存した。プレパラート作製後、一週間以内に共焦点レーザー顕微鏡で鏡検した。   100 μL of a 10% formalin solution was dropped onto the cell solution spot on the CultureSlide containing the cells subjected to the morphological change induction treatment. The cells were fixed by leaving at room temperature for 10 minutes. After fixing, the cells were washed three times with Phosphate Buffered Salts (PBS) (manufactured by TAKARA BIO INC) (0.1 mL). Cells were blocked for about 1 hour at room temperature with PBS (100 μL) containing 0.75% bovine serum albumin (BSA) (LIFE TECHNOLOGIES). After blocking, the cells were washed 3 times with PBS (0.1 mL), and a primary antibody (anti-CD41 antibody (manufactured by Funakoshi) or negative control antibody (normal mouse IgG: manufactured by Santa Cruz)) was added. The anti-CD41 antibody was added at 4 drops / well, and the negative control antibody was diluted 250-fold and added at 50 μL / well. It was left at room temperature for about 1 to 1.5 hours. The cells were washed three times with PBS (0.1 mL), and a secondary antibody (FITC-goat anti-mouse IgG: manufactured by Santa Cruz) diluted 100 times was added at 50 μL / well. This CultureSlide was shielded from light with aluminum foil and left at room temperature for about 1 to 1.5 hours. After washing 3 times with PBS (0.1 mL), the CultureSlide chamber was removed. 1 drop / well of VECTASHIELD (manufactured by VECTOR) was added. A cover glass was attached and sealed with a top coat, and then examined with a fluorescence microscope. After completion of the microscopic examination, the prepared slide was shielded from light with aluminum foil and stored refrigerated. After preparation of the preparation, it was microscopically examined with a confocal laser microscope within one week.

作製したプレパラートを蛍光顕微鏡で鏡検したところ、抗CD41抗体を添加した細胞のみが染色され、陰性コントロール用抗体を添加した細胞は染色されなかった。さらに、共焦点レーザー顕微鏡で鏡検したところ、抗CD41抗体を添加した細胞では細胞の周縁部と突起部分が顕著に染色されており、陰性コントロール用抗体を添加した細胞では染色が確認されなかった(図2)。   When the prepared preparation was examined with a fluorescence microscope, only the cells to which the anti-CD41 antibody was added were stained, and the cells to which the negative control antibody was added were not stained. Further, when microscopically examined with a confocal laser microscope, the peripheral edge and the protrusion of the cell were markedly stained in the cells to which the anti-CD41 antibody was added, and the staining was not confirmed in the cells to which the negative control antibody was added. (FIG. 2).

(1.3.形態変化を誘導したUT−7/TPO細胞の抗フォンビルブラント因子抗体を用いた免疫染色)
5% COインキュベータ中、継代用培地(IMDM+10%FBS+6ng/mL TPO)を用いて25cmフラスコにて培養したUT−7/TPO細胞の懸濁液(10mL)を15mL遠沈管に入れて、約2時間自然沈降させた。上清を7mL除去後、新たに7mLの継代用培地(IMDM+10%FBS+6ng/mL TPO)を加え、懸濁して細胞数を測定した。約2mLの細胞懸濁液を、室温にて1,000rpmで、5分間遠心した。上清を捨て3.8×10個/mLになるように、形態変化誘導用培地(300mg/mL トランスフェリンを含むDMEM)にて調製した。16μg/mLのフィブロネクチン溶液を、形態変化誘導用培地にて調製した。上記の調製した細胞懸濁液(40μL)と、調製したフィブロネクチン溶液(40μL)を混合した。Collagen I Cellware 8−well CultureSlide(Becton Dickinson社製)を用意し、上記の混合液を4ウェルにスポットした。その後5% COインキュベータ中、37℃にて約1時間保温し、形態変化を誘導させた。
(1.3. Immunostaining of UT-7 / TPO cells induced morphological changes using anti-von Willebrand factor antibody)
A suspension of UT-7 / TPO cells (10 mL) cultured in a 25 cm 2 flask using a subculture medium (IMDM + 10% FBS + 6 ng / mL TPO) in a 5% CO 2 incubator was placed in a 15 mL centrifuge tube, and about It was allowed to settle for 2 hours. After removing 7 mL of the supernatant, 7 mL of a subculture medium (IMDM + 10% FBS + 6 ng / mL TPO) was newly added, suspended, and the number of cells was measured. About 2 mL of the cell suspension was centrifuged at 1,000 rpm for 5 minutes at room temperature. The supernatant was discarded and prepared in a morphological change induction medium (DMEM containing 300 mg / mL transferrin) so as to be 3.8 × 10 5 cells / mL. A 16 μg / mL fibronectin solution was prepared in a morphological change induction medium. The prepared cell suspension (40 μL) was mixed with the prepared fibronectin solution (40 μL). Collagen I Cellware 8-well CultureSlide (manufactured by Becton Dickinson) was prepared, and the above mixture was spotted on 4 wells. Thereafter, the cells were kept at 37 ° C. for about 1 hour in a 5% CO 2 incubator to induce morphological changes.

形態変化誘導処理を行った細胞を含むCultureSlideに、100μLの10% ホルマリン溶液を細胞液スポット上に滴下した。室温にて10分間放置し、細胞を固定した。固定後、PBS(0.1mL)で3回洗浄した。0.75% BSAを含むPBS(100μL)で、室温にて約1時間ブロッキングした。ブロッキング後、細胞をPBS(0.1mL)で3回洗浄し、一次抗体{抗フォンビルブラント因子抗体(Santa Cruz社製)あるいは陰性コントロール用抗体(ノーマルヤギIgG:Santa Cruz社製)}を添加した。抗フォンビルブラント因子抗体は100倍希釈したものを50μL/ウェル添加し、陰性コントロール用抗体は250倍希釈したものを50μL/ウェル添加した。約1〜1.5時間室温にて放置した。細胞をPBS(0.1mL)で3回洗浄し、100倍希釈した二次抗体(FITC−ロバ抗ヤギIgG:Santa Cruz社製)を50μL/ウェル添加した。このCultureSlideをアルミホイルで遮光して、約1〜1.5時間室温にて放置した。細胞をPBS(0.1mL)で3回洗浄し、CultureSlideのチャンバーをはずした。VECTASHIELD(VECTOR社製)を1滴/ウェル滴下した。カバーガラスをつけ、トップコートでシールした後、蛍光顕微鏡で鏡検した。鏡検終了後、作製したプレパラートは、アルミホイルで遮光して冷蔵保存した。プレパラート作製後、一週間以内に共焦点レーザー顕微鏡で鏡検した。   100 μL of a 10% formalin solution was dropped onto the cell solution spot on the CultureSlide containing the cells subjected to the morphological change induction treatment. The cells were fixed by leaving at room temperature for 10 minutes. After fixation, the plate was washed 3 times with PBS (0.1 mL). Blocking was performed with PBS containing 0.75% BSA (100 μL) at room temperature for about 1 hour. After blocking, the cells were washed 3 times with PBS (0.1 mL) and added with a primary antibody {anti-von Willebrand factor antibody (Santa Cruz) or negative control antibody (Normal goat IgG: Santa Cruz)} did. Anti-von Willebrand factor antibody was diluted 100-fold with 50 μL / well, and negative control antibody was diluted 250-fold with 50 μL / well. It was left at room temperature for about 1 to 1.5 hours. The cells were washed three times with PBS (0.1 mL), and a secondary antibody (FITC-donkey anti-goat IgG: manufactured by Santa Cruz) diluted 100 times was added at 50 μL / well. This CultureSlide was shielded from light with aluminum foil and left at room temperature for about 1 to 1.5 hours. The cells were washed 3 times with PBS (0.1 mL) and the CultureSlide chamber was removed. 1 drop / well of VECTASHIELD (manufactured by VECTOR) was added. A cover glass was attached and sealed with a top coat, and then examined with a fluorescence microscope. After completion of the microscopic examination, the prepared slide was shielded from light with aluminum foil and stored refrigerated. After preparation of the preparation, it was microscopically examined with a confocal laser microscope within one week.

作製したプレパラートを蛍光顕微鏡で鏡検したところ、抗フォンビルブラント因子抗体を添加した細胞のみが染色され、陰性コントロール用抗体を添加した細胞は染色されなかった。さらに、共焦点レーザー顕微鏡で鏡検したところ、抗フォンビルブラント因子抗体を添加した細胞では周縁部と突起部分が顕著に染色されており、陰性コントロール用抗体を添加した細胞は染色されなかった(図3)。   When the prepared preparation was examined with a fluorescence microscope, only the cells to which the anti-von Willebrand factor antibody was added were stained, and the cells to which the negative control antibody was added were not stained. Furthermore, when examined with a confocal laser microscope, the cells added with the anti-von Willebrand factor antibody were markedly stained at the periphery and protrusions, and the cells added with the negative control antibody were not stained ( FIG. 3).

免疫染色したサンプルを共焦点レーザー顕微鏡で観察した実験によって、抗CD41抗体および抗フォンビルブラント因子抗体が細胞表面および突起部分に特異的に結合することが明らかになった(図2および3)。これは、フィブロネクチンによって分化を誘導したUT−7/TPO細胞の細胞表面および突起部分に血小板のマーカー蛋白質であるCD41およびフォンビルブラント因子が発現していることを示す。一方、コントロール抗体ではシグナルはほとんど検出されなかった。また、正常の巨核球がポリリジンプレート上に接着する際に生じる糸状偽足(filopodia)の中にはフォンビルブラント因子は存在しないことが報告されているので、この突起が接着に関係したものである可能性は低い。従って、本実施例の結果は、UT−7/TPO細胞の形態変化(突起形成)がヒトの巨核球から血小板形成への分化によるものであることを示唆する。   An experiment in which the immunostained sample was observed with a confocal laser microscope revealed that the anti-CD41 antibody and the anti-von Willebrand factor antibody were specifically bound to the cell surface and the protrusion (FIGS. 2 and 3). This indicates that CD41 and von Willebrand factor, which are platelet marker proteins, are expressed on the cell surface and protrusions of UT-7 / TPO cells whose differentiation was induced by fibronectin. On the other hand, almost no signal was detected with the control antibody. In addition, it has been reported that von Willebrand factor does not exist in the filamentous pseudopods that occur when normal megakaryocytes adhere to polylysine plates. It is unlikely. Therefore, the results of this example suggest that the morphological change (projection formation) of UT-7 / TPO cells is due to differentiation from human megakaryocytes to platelet formation.

(実施例2.マウス骨髄由来巨核球細胞を用いた血小板への分化誘導)
実施例1のUT−7/TPO細胞を用いる方法が妥当であるか否かを検討するために、巨核球から血小板への分化および/または誘導の研究において確立されているマウス骨髄由来巨核球を用いて、本質的に実施例1と同様の実験を行い比較検討した。
(Example 2. Induction of differentiation into platelets using mouse bone marrow derived megakaryocyte cells)
In order to examine whether or not the method using UT-7 / TPO cells of Example 1 is appropriate, mouse bone marrow-derived megakaryocytes established in studies of differentiation and / or induction from megakaryocytes to platelets were used. The same experiment as in Example 1 was conducted and comparatively examined.

(2.1.マウス骨髄由来巨核球細胞を用いた巨核球胞体突起の形成)
まず、マウス骨髄を採取し、培養するために以下の操作を行なった。1回のマウス骨髄採取につき、ddyマウス(日本SLC、5週齢以上)10匹を準備し、その体重を測定した。ddyマウス1匹あたり、大腿骨を2本摘出し、PBS(TAKARA BIO INC社製)(20mL入りのシャーレ(旭テクノグラス社製)内へ湿保存した。全10匹のマウス大腿骨を採取後、それに付随している肉片をおおまかにトリミングした。このときPBS(−)20mL入りのシャーレは、適宜新たなものに交換し、できるだけ大腿骨以外のもの例えば肉片や体毛を、次のステージに持ち越さないようにした。続いて滅菌したキムワイプなどを用い、大腿骨に付随する肉片をさらにトリミングした。大腿骨の両端をダイヤモンド刃付きの動物解剖用ハサミにてカット後、HBSS(−)(Hanks’Balanced Salt Solution,LIFE TECHNOLOGIES社製)(20mL入りシャーレ内で、25G×1針付き1mLシリンジ(ともにテルモ社製)を用い、HBSS(−)にてサスペンドするようにして骨髄を採取した。骨髄採取後、その細胞懸濁液20mLを50mL遠沈管へ移した。シャーレをさらにHBSS(−)5mLで洗い込みをし、その細胞懸濁液を先の50mL遠沈管へと移した。50mL遠沈管内の約25mLの細胞懸濁液を、軽く均一にサスペンドした後、10分間静置した。10分後、50mL遠沈管内の上清を回収して、細胞をカウントした。細胞をカウント後、上記上清を室温にて1,000rpmで、5分間遠心した。遠心終了後、沈殿物を巨核球増殖培地(IMDM+10% FBS+10ng/mL TPO)20mLにてサスペンドした。培養には、浮遊細胞用75cmフラスコ(住友ベークライト社製)を用いることとし、8個用意した。そして75cmフラスコ1個あたり、先の細胞懸濁液2.5mLと巨核球増殖培地17.5mLを混合し、5% COインキュベータ中、37℃にて5日間培養した。
(2.1. Formation of megakaryocyte prosthesis using mouse bone marrow derived megakaryocyte cells)
First, the following operations were performed to collect and culture mouse bone marrow. For each mouse bone marrow collection, 10 ddy mice (Japan SLC, 5 weeks old or older) were prepared, and their body weights were measured. For each ddy mouse, two femurs were extracted and wet-stored in PBS (manufactured by TAKARA BIO INC) (20 mL petri dish (Asahi Techno Glass)) After collecting all 10 mouse femurs At this time, the petri dish containing 20 mL of PBS (-) was replaced with a new one as appropriate, and items other than the femur such as meat pieces and body hair were carried over to the next stage. Subsequently, a piece of meat attached to the femur was further trimmed using a sterilized Kimwipe etc. After cutting both ends of the femur with an animal dissection scissors with a diamond blade, HBSS (-) (Hanks' Balanced Salt Solution, manufactured by LIFE TECHNOLOGIES) (in a 20 mL petri dish, 25 Using a 1 mL syringe with 1 needle (both from Terumo), bone marrow was collected by suspending with HBSS (−), and 20 mL of the cell suspension was transferred to a 50 mL centrifuge tube after bone marrow collection. Was further washed with 5 mL of HBSS (−), and the cell suspension was transferred to the previous 50 mL centrifuge tube, and about 25 mL of the cell suspension in the 50 mL centrifuge tube was suspended lightly and uniformly. After 10 minutes, the supernatant in the 50 mL centrifuge tube was collected and the cells were counted, and after counting the cells, the supernatant was centrifuged at 1,000 rpm at room temperature for 5 minutes. After completion, the precipitate was suspended in 20 mL of megakaryocyte growth medium (IMDM + 10% FBS + 10 ng / mL TPO), and cultured in a 75 cm 2 flask for floating cells (manufactured by Sumitomo Bakelite). 8) were prepared, and 2.5 mL of the previous cell suspension and 17.5 mL of megakaryocyte growth medium were mixed per 75 cm 2 flask, and maintained at 37 ° C. in a 5% CO 2 incubator. For 5 days.

次に、マウス骨髄由来巨核球を選択的に培養するために以下の操作を行なった。上記のように、5% COインキュベータ中、75cmフラスコにて5日間培養したマウス骨髄細胞(20mL)を8個用意し、その骨髄細胞培養液を、50mL遠沈管4本へ移した(約40mL×4本)。そして室温にて1,000rpmで、5分間遠心した。遠心終了後、沈殿物を巨核球誘導培地(IMDM+10ng/mL TPO+10μg/mL インシュリン(和光純薬社製)+5μg/mL トランスフェリン+0.1% BSA)40mLにてサスペンドした(遠沈管1本あたり10mLとした)。培養は、浮遊細胞用25cmフラスコ(住友ベークライト社製)を用いることとし、8個用意した。そして25cmフラスコ1個あたり、先の細胞懸濁液5mLを分注し、5% COインキュベータ中、37℃にて2日間培養した。 Next, in order to selectively culture mouse bone marrow-derived megakaryocytes, the following operation was performed. As described above, 8 mouse bone marrow cells (20 mL) cultured in a 75 cm 2 flask in a 5% CO 2 incubator for 5 days were prepared, and the bone marrow cell culture solution was transferred to 4 50 mL centrifuge tubes (approximately 40 mL x 4). And it centrifuged at 1,000 rpm at room temperature for 5 minutes. After completion of the centrifugation, the precipitate was suspended in 40 mL of megakaryocyte induction medium (IMDM + 10 ng / mL TPO + 10 μg / mL insulin (Wako Pure Chemical Industries) +5 μg / mL transferrin + 0.1% BSA) (10 mL per centrifuge tube). ). For the culture, 25 cm 2 flasks (manufactured by Sumitomo Bakelite Co., Ltd.) for floating cells were used, and eight were prepared. Then, 5 mL of the previous cell suspension was dispensed per 25 cm 2 flask and cultured at 37 ° C. for 2 days in a 5% CO 2 incubator.

次いで、マウス骨髄由来巨核球を調製するために以下の操作を行なった。上記のように、5% COインキュベータ中、25cmフラスコにて2日間培養したマウス骨髄細胞(5mL)を8個用意し、その骨髄細胞培養液を、15mL遠沈管4本へ移し(約10mL×4本)、1時間静置させ、細胞を自然沈降させた。1時間の自然沈降後、15mL遠沈管の下部2.0mLを採取した(2.0mL×4本)。新たに15mL遠沈管を2本用意し、各1本ずつその底部から16% BSA/HBSS(−)1.5mL、4% BSA/HBSS(−)3.0mL、2% BSA/HBSS(−)1.5mL、そして最上段に自然沈降を終えたサンプル4.0mLを静かに重層し、1時間静置させ、BSA/HBSS(−)密度勾配沈降法を行った。上記のように1時間のBSA/HBSS(−)密度勾配沈降法を実施した後、15mL遠沈管各1本ずつより下部2.0mLを採取した。続いて、2本の遠沈管内の細胞溶液を1本にまとめた(2.0mL×2本を4.0mLへ)。さらにIMDM 6.0mLを加え、軽くサスペンドし室温にて1,000rpmで、5分間遠心することによって、選択的に培養したマウス骨髄由来巨核球を回収した。遠心終了後、沈殿物(マウス骨髄由来巨核球)を、巨核球突起形成培地(IMDM+10μg/mL インシュリン+5μg/mL トランスフェリン+10ng/mL IL−6(upstate社社)+20μM 硫酸亜鉛(和光純薬社製)+0.1% BSA)1.0mLにてサスペンドし、細胞をカウントした。細胞をカウントした後、実験の目的に応じた細胞溶液濃度に、巨核球突起形成培地を用い希釈した。これによって回収したマウス骨髄由来巨核球を実験の目的に応じた細胞溶液濃度に調製した。 Subsequently, the following operation was performed in order to prepare mouse bone marrow-derived megakaryocytes. As described above, 8 mouse bone marrow cells (5 mL) cultured in a 25 cm 2 flask in a 5% CO 2 incubator for 2 days were prepared, and the bone marrow cell culture solution was transferred to 4 15 mL centrifuge tubes (about 10 mL). X4) The cells were allowed to stand for 1 hour to allow the cells to settle naturally. After spontaneous sedimentation for 1 hour, the lower 2.0 mL of 15 mL centrifuge tube was collected (2.0 mL × 4 tubes). Two new 15mL centrifuge tubes are prepared, each one from the bottom 16% BSA / HBSS (-) 1.5mL, 4% BSA / HBSS (-) 3.0mL, 2% BSA / HBSS (-) 1.5 mL, and 4.0 mL of the sample that had spontaneously settled at the top, were layered gently, allowed to stand for 1 hour, and subjected to BSA / HBSS (−) density gradient sedimentation. After performing the BSA / HBSS (−) density gradient sedimentation method for 1 hour as described above, 2.0 mL of the lower part was collected from each 15 mL centrifuge tube. Subsequently, the cell solutions in the two centrifuge tubes were combined into one (2.0 mL × 2 to 4.0 mL). Further, 6.0 mL of IMDM was added, the suspension was gently suspended, and centrifuged at 1,000 rpm for 5 minutes at room temperature to collect selectively cultured mouse bone marrow-derived megakaryocytes. After centrifuging, the precipitate (mouse bone marrow-derived megakaryocyte) was treated with megakaryocyte projection medium (IMDM + 10 μg / mL insulin + 5 μg / mL transferrin + 10 ng / mL IL-6 (upstate) +20 μM zinc sulfate (Wako Pure Chemical Industries)) (+ 0.1% BSA) was suspended in 1.0 mL, and the cells were counted. After counting the cells, the cells were diluted with a megakaryocyte formation medium to a cell solution concentration according to the purpose of the experiment. The mouse bone marrow-derived megakaryocytes recovered in this manner were prepared at a cell solution concentration according to the purpose of the experiment.

上記のように調製したマウス骨髄由来巨核球を用いて、以下のような巨核球胞体突起細胞への分化を調べた。上記の調製した巨核球をCollagen Coated Microplate 96−well(旭テクノグラス社製)へ700細胞/ウェルで播種した。液量は、75μL/ウェルとした。巨核球突起形成培地を用いてフィブロネクチン溶液を作製し、512μg/mLを最高濃度として8μg/mLまで7段階の2倍系列希釈液を作製した。上記の細胞を播種したそれぞれのウェルに、上記で調製したフィブロネクチン溶液25μLを添加して混合後、5% COインキュベータ中、37℃にて培養を開始した。各ウェルの容量は100μLで、フィブロネクチンの最終濃度は2μg/mLから128μg/mLまでとした。またコントロールとして、巨核球突起形成培地のみを添加して混合したサンプルも用意した。 Using the mouse bone marrow-derived megakaryocytes prepared as described above, the following differentiation into megakaryocyte blastoid cells was examined. The megakaryocytes prepared as described above were seeded in Collagen Coated Microplate 96-well (Asahi Techno Glass Co., Ltd.) at 700 cells / well. The liquid volume was 75 μL / well. A fibronectin solution was prepared using a megakaryocyte projection formation medium, and a 7-fold 2-fold serial dilution was prepared up to 8 μg / mL with 512 μg / mL as the maximum concentration. To each well seeded with the above cells, 25 μL of the fibronectin solution prepared above was added and mixed, and then culture was started at 37 ° C. in a 5% CO 2 incubator. The volume of each well was 100 μL and the final concentration of fibronectin was 2 μg / mL to 128 μg / mL. As a control, a sample prepared by adding only the megakaryocyte formation medium and mixing them was also prepared.

1日間の培養後、倒立顕微鏡Leica DMILにて鏡検し、ウェルあたりの巨核球胞体突起数を計測した。図4に誘導された巨核球胞体突起細胞の形態を示す。また、図5にフィブロネクチンの濃度と誘導された巨核球胞体突起様細胞の数との関係を示した。   After culturing for one day, it was microscopically examined with an inverted microscope Leica DMIL, and the number of megakaryocyte projections per well was counted. FIG. 4 shows the morphology of the megakaryocyte sprout cells induced. FIG. 5 shows the relationship between the concentration of fibronectin and the number of megakaryocyte-like cells induced.

マウス骨髄由来巨核球を用いた場合も、フィブロネクチンによって巨核球胞体突起細胞への形態変化が観察された(図4および5)。   When mouse bone marrow derived megakaryocytes were used, morphological changes to megakaryocyte spores were observed by fibronectin (FIGS. 4 and 5).

本実施例において、フィブロネクチンを添加したUT−7/TPO細胞の形態変化(実施例1)は、フィブロネクチンを添加したマウス骨髄由来巨核球の形態変化(実施例2)と同様の変化であったことが実証された。上記にも説明したように、マウス骨髄由来巨核球細胞は、巨核球から血小板への分化誘導の研究において頻繁に使用されている細胞である。信頼性のあるマウス骨髄由来巨核球細胞を用いる方法と同様の分化形態を示すことから、UT−7/TPO細胞を用いる方法も巨核球から血小板への分化プロセスを反映した方法であるといえる。さらに、UT−7/TPO細胞は自然発生的な巨核球胞体突起形成を起こさないので実験に使用し易く、巨核球から血小板へ分化を誘導、促進、阻害、または抑制する因子の同定に好適であるといえる。   In this example, the morphological change of UT-7 / TPO cells added with fibronectin (Example 1) was similar to the morphological change of mouse bone marrow-derived megakaryocytes added with fibronectin (Example 2). Has been demonstrated. As described above, mouse bone marrow-derived megakaryocyte cells are frequently used in studies on differentiation induction from megakaryocytes to platelets. Since the differentiation form similar to that using a reliable mouse bone marrow-derived megakaryocyte cell is shown, the method using a UT-7 / TPO cell can be said to be a method reflecting the differentiation process from megakaryocytes to platelets. Furthermore, since UT-7 / TPO cells do not cause spontaneous megakaryocyte formation, they are easy to use in experiments, and are suitable for identifying factors that induce, promote, inhibit or suppress differentiation from megakaryocytes to platelets. It can be said that there is.

図1は、フィブロネクチン刺激によりUT−7/TPO細胞に認められる突起状形態変化を示す。A.フィブロネクチン非添加。B.8μg/mLのフィブロネクチンを添加した際の細胞の形態。矢印は典型的な形態変化を起こした細胞を示す。FIG. 1 shows the prominent morphological changes observed in UT-7 / TPO cells upon fibronectin stimulation. A. No fibronectin added. B. Cell morphology upon addition of 8 μg / mL fibronectin. Arrows indicate cells that have undergone typical morphological changes. 図2は、フィブロネクチン刺激により形態変化したUT−7/TPO細胞におけるCD41の局在性を示す。二次抗体にFITC−ヤギ抗マウスIgGを用い、共焦点レーザー顕微鏡にて鏡検した。A:一次抗体は、抗CD41抗体を用いた。B:一次抗体は、陰性コントロール用抗体(ノーマルマウスIgG)を用いた。FIG. 2 shows the localization of CD41 in UT-7 / TPO cells whose morphology has been changed by fibronectin stimulation. FITC-goat anti-mouse IgG was used as the secondary antibody, and was examined with a confocal laser microscope. A: Anti-CD41 antibody was used as the primary antibody. B: As a primary antibody, a negative control antibody (normal mouse IgG) was used. 図3は、フィブロネクチン刺激により形態変化したUT−7/TPO細胞におけるフォンビルブラント因子の局在性を示す。二次抗体にFITC−ロバ抗ヤギIgGを用い、共焦点レーザー顕微鏡にて鏡検した。A:一次抗体は、抗フォンビルブラント因子抗体を用いた。B:一次抗体は、陰性コントロール用抗体(ノーマルヤギIgG)を用いた。FIG. 3 shows the localization of von Willebrand factor in UT-7 / TPO cells morphologically changed by fibronectin stimulation. FITC-donkey anti-goat IgG was used as the secondary antibody, and microscopically examined with a confocal laser microscope. A: An anti-von Willebrand factor antibody was used as the primary antibody. B: As a primary antibody, a negative control antibody (normal goat IgG) was used. 図4は、マウス骨髄細胞由来巨核球からフィブロネクチンによって誘導された巨核球胞体突起細胞の形態を示す。フィブロネクチン含有培地中で一晩培養した巨核球の形態を顕微鏡により観察した。巨核球胞体突起に特徴的なひも状構造が観察された。1〜3.フィブロネクチンの添加によって巨核球胞体突起形態変化を起こした細胞。1〜3は各々、同一条件下での細胞である。4.フィブロネクチン非存在下で培養したコントロール細胞(巨核球)。FIG. 4 shows the morphology of megakaryocyte spores induced by fibronectin from mouse bone marrow cell-derived megakaryocytes. The morphology of megakaryocytes cultured overnight in fibronectin-containing medium was observed with a microscope. A string-like structure characteristic of megakaryocyte projections was observed. 1-3. Cells that have undergone megakaryocytic process changes due to the addition of fibronectin. 1-3 are cells under the same conditions. 4). Control cells (megakaryocytes) cultured in the absence of fibronectin. 図5は、フィブロネクチンがマウス骨髄細胞由来巨核球から巨核球胞体突起細胞への分化に与える効果を示す。ddyマウス大腿骨由来骨髄細胞から成熟させた巨核球(700細胞/ウェル/96ウェルプレート)を、種々の濃度のフィブロネクチンを含む培地中で96ウェルプレートを用いて一晩培養した後、巨核球胞体突起形態変化を起こした細胞数を測定した。各濃度3連にて実験を行い、平均値を示した。エラーバーは標準偏差を示す。縦軸はウェルあたりの巨核球胞体突起細胞の数を示し、横軸はフィブロネクチンの濃度(μg/mL)を示す。FIG. 5 shows the effect of fibronectin on the differentiation of mouse bone marrow cell-derived megakaryocytes into megakaryocyte progenitor cells. Megakaryocytes matured from bone marrow cells derived from ddy mice (700 cells / well / 96-well plate) were cultured overnight in a medium containing various concentrations of fibronectin using a 96-well plate, followed by megakaryocytes. The number of cells that caused a change in protrusion morphology was measured. Experiments were performed at each concentration in triplicate and average values were shown. Error bars indicate standard deviation. The vertical axis represents the number of megakaryocyte spores per well, and the horizontal axis represents the fibronectin concentration (μg / mL).

Claims (8)

巨核球から血小板への分化を誘導および/または促進する因子の同定方法であって、以下:
(1)候補因子をUT−7/TPO細胞に添加する工程、および
(2)UT−7/TPO細胞が血小板に分化したか否かを判定する工程
を含む方法。
A method for identifying a factor that induces and / or promotes differentiation of megakaryocytes into platelets, comprising:
(1) adding a candidate factor to UT-7 / TPO cells, and (2) determining whether the UT-7 / TPO cells have differentiated into platelets.
請求項1に記載の方法によって同定された、巨核球から血小板への分化を誘導および/または促進する因子。 A factor that induces and / or promotes differentiation of megakaryocytes into platelets, identified by the method of claim 1. 巨核球から巨核球胞体突起(proplatelet)への分化を誘導および/または促進する因子の同定方法であって、以下:
(1)候補因子をUT−7/TPO細胞に添加する工程、および
(2)UT−7/TPO細胞が巨核球胞体突起(proplatelet)に分化したか否かを判定する工程
を含む方法。
A method for identifying a factor that induces and / or promotes differentiation of a megakaryocyte into a megakaryocyte proplet, comprising:
(1) adding a candidate factor to UT-7 / TPO cells, and (2) determining whether the UT-7 / TPO cells have differentiated into megakaryocyte projections.
請求項3に記載の方法によって同定された、巨核球から巨核球胞体突起(proplatelet)への分化を誘導および/または促進する因子。 A factor that induces and / or promotes differentiation from a megakaryocyte to a megakaryocyte protelet identified by the method of claim 3. 巨核球から血小板への分化を阻害および/または抑制する因子の同定方法であって、以下:
(1)フィブロネクチンおよび候補因子をUT−7/TPO細胞の培養液中に添加する工程、
(2)UT−7/TPO細胞から血小板への分化が阻害および/または抑制されたか否かを判定する工程
を包含する方法。
A method for identifying a factor that inhibits and / or suppresses differentiation of megakaryocytes into platelets, comprising:
(1) A step of adding fibronectin and a candidate factor into a culture solution of UT-7 / TPO cells,
(2) A method comprising a step of determining whether differentiation from UT-7 / TPO cells into platelets is inhibited and / or suppressed.
請求項5に記載の方法によって同定された、巨核球から血小板への分化を阻害および/または抑制する因子。 A factor identified by the method according to claim 5, which inhibits and / or suppresses differentiation of megakaryocytes into platelets. 巨核球から巨核球胞体突起(proplatelet)への分化を阻害および/または抑制する因子の同定方法であって、以下:
(1)フィブロネクチンおよび候補因子をUT−7/TPO細胞の培養液中に添加する工程、
(2)UT−7/TPO細胞から巨核球胞体突起(proplatelet)への分化が阻害および/または抑制されたか否かを判定する工程
を包含する方法。
A method for identifying a factor that inhibits and / or suppresses differentiation of a megakaryocyte to a megakaryocyte proplet, comprising:
(1) A step of adding fibronectin and a candidate factor into a culture solution of UT-7 / TPO cells,
(2) A method comprising the step of determining whether differentiation from UT-7 / TPO cells to megakaryocyte prosthetics is inhibited and / or suppressed.
請求項7に記載の方法によって同定された、巨核球から巨核球胞体突起(proplatelet)への分化を阻害および/または抑制する因子。
A factor that is identified by the method according to claim 7 and that inhibits and / or suppresses the differentiation of megakaryocytes into megakaryocyte prosthetics.
JP2004287226A 2004-09-30 2004-09-30 Method for identifying factor for adjusting platelet differentiation Pending JP2006094827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287226A JP2006094827A (en) 2004-09-30 2004-09-30 Method for identifying factor for adjusting platelet differentiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287226A JP2006094827A (en) 2004-09-30 2004-09-30 Method for identifying factor for adjusting platelet differentiation

Publications (2)

Publication Number Publication Date
JP2006094827A true JP2006094827A (en) 2006-04-13
JP2006094827A5 JP2006094827A5 (en) 2007-10-11

Family

ID=36235225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287226A Pending JP2006094827A (en) 2004-09-30 2004-09-30 Method for identifying factor for adjusting platelet differentiation

Country Status (1)

Country Link
JP (1) JP2006094827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142457A1 (en) 2010-05-14 2011-11-17 国立大学法人熊本大学 Screening method for substance having hemocyte maturation acceleration action

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010034995, Blood, 87[11] (1996) p.4552−4560 *
JPN6010034996, Blood, 99[10] (2002) p.3579−3584 *
JPN6010035000, Blood, 92[8] (1998) p.2650−2656 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142457A1 (en) 2010-05-14 2011-11-17 国立大学法人熊本大学 Screening method for substance having hemocyte maturation acceleration action
EP2570483A1 (en) * 2010-05-14 2013-03-20 National University Corporation Kumamoto University Screening method for substance having hemocyte maturation acceleration action
EP2570483A4 (en) * 2010-05-14 2013-10-09 Univ Kumamoto Nat Univ Corp Screening method for substance having hemocyte maturation acceleration action
US9766227B2 (en) 2010-05-14 2017-09-19 Bloom Technology Co., Ltd. Screening method for substance having hemocyte maturation acceleration action

Similar Documents

Publication Publication Date Title
JP7373872B2 (en) Primary mammary epithelial cell culture medium, culture method, and use thereof
JP7461674B2 (en) Culture medium for esophageal squamous cell carcinoma epithelial cells, culture method, and use thereof
CN103937743B (en) A kind of method that candidate stem cell is obtained using three-dimensional inducible system
US20200071676A1 (en) Three-dimensional culture of primary cancer cells using tumor tissue
Hauschka Clonal analysis of vertebrate myogenesis: II. Environmental influences upon human muscle differentiation
JP2003513664A (en) Hematopoietic differentiation of human embryonic stem cells
JP2005521405A (en) Dedifferentiated programmable stem cells originating from monocytes and their production and use
Miller et al. Human and mouse hematopoietic colony-forming cell assays
WO2010101119A1 (en) Cell mass derived from cancer tissue and process for preparing same
Mahesparan et al. Extracellular matrix-induced cell migration from glioblastoma biopsy specimens in vitro
CZ301148B6 (en) Method of culturing human mezenchymal stem cells, particularly for facilitating fracture healing process, and bioreactor for carrying out the method
De Groot et al. Establishment of microglial cell cultures derived from postmortem human adult brain tissue: immunophenotypical and functional characterization
JP5758891B2 (en) How to get myofibroblasts
WO2022173300A1 (en) Method of producing an organoid
CN114246883A (en) Pharmaceutical composition and therapeutic agent and application thereof
Menè et al. Isolation and propagation of glomerular mesangial cells
JP2006094827A (en) Method for identifying factor for adjusting platelet differentiation
Unchern Basic techniques in animal cell culture
Smith et al. Isolation of CD31+ Bone Marrow Endothelial Cells (BMECs) from Mice
Hai et al. Efficient method to differentiate mouse embryonic stem cells into macrophages in vitro
JPH0372872A (en) Serum-free culture medium and method for culturing cell of mammals using the same
JP2022545215A (en) Methods for determining the suitability of cultured thymic tissue for human transplantation and methods related to the same
JP4809940B2 (en) Method for amplifying mononuclear cells isolated from blood in vitro
Weible et al. BMPRII+ neural precursor cells isolated and characterized from organotypic neurospheres: an: in vitro: model of human fetal spinal cord development
JP2007014273A (en) Hepatic tissue/organ and method for preparation thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100916