JP2006093459A - Trench gate type semiconductor device and its manufacturing method - Google Patents

Trench gate type semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006093459A
JP2006093459A JP2004278187A JP2004278187A JP2006093459A JP 2006093459 A JP2006093459 A JP 2006093459A JP 2004278187 A JP2004278187 A JP 2004278187A JP 2004278187 A JP2004278187 A JP 2004278187A JP 2006093459 A JP2006093459 A JP 2006093459A
Authority
JP
Japan
Prior art keywords
region
trench
type semiconductor
semiconductor device
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004278187A
Other languages
Japanese (ja)
Other versions
JP4500639B2 (en
Inventor
Hideshi Takatani
秀史 高谷
Yasutsugu Okura
康嗣 大倉
Akira Kuroyanagi
晃 黒柳
Norihito Tokura
規仁 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2004278187A priority Critical patent/JP4500639B2/en
Publication of JP2006093459A publication Critical patent/JP2006093459A/en
Application granted granted Critical
Publication of JP4500639B2 publication Critical patent/JP4500639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a trench gate type semiconductor device which has a highly precise current sensing function and in which a high breakdown voltage is attained, and to provide a method of manufacturing it. <P>SOLUTION: The semiconductor device 100 includes a main cell 1 and a sense cell 2. The main cell 1 and the sense cell 2 are separated by a separated area 3. The main cell 1 and the sense cell 2 of the semiconductor device 100 become a mechanism which supports a breakdown voltage by P floating regions 51 and 52, in addition to the PN junction of an N<SP>-</SP>drift region 12 and a P<SP>-</SP>body region 41. A breakdown voltage maintaining mechanism equivalent to the main cell 1 and the sense cell 2 is provided even in the separated area 3 of the semiconductor device 100. More particularly, the P floating region 53 and its bottom reach the P floating region 53, and the gate trench 81 which contains a gate electrode 84 is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,電流センス機能を備えたトレンチゲート型半導体装置およびその製造方法に関する。さらに詳細には,高精度な電流センス機能を備えるとともに高耐圧化が図られたトレンチゲート型半導体装置およびその製造方法に関するものである。   The present invention relates to a trench gate type semiconductor device having a current sensing function and a manufacturing method thereof. More specifically, the present invention relates to a trench gate type semiconductor device having a high-accuracy current sensing function and a high breakdown voltage, and a method for manufacturing the same.

パワーデバイス用の半導体装置では,定格値以上の過電流が流れると接続されている負荷や素子自体が破壊されるおそれがある。そのため,パワーデバイス用の半導体装置では,このような事態を未然に防ぐために電流センス機能が設けられている。   In a power device semiconductor device, when an overcurrent exceeding the rated value flows, the connected load or the element itself may be destroyed. Therefore, a current sensing function is provided in a semiconductor device for power devices in order to prevent such a situation.

電流センス機能付きの半導体装置としては,例えば特許文献1に開示されているものがある。特許文献1に開示された半導体装置では,センスセルとメインセルとの間に不活性セルを配置している。これにより,センスセルからメインセルへ流出する寄生電流を防止し,信頼性が高いセンスセルを形成することができるとしている。   As a semiconductor device with a current sensing function, for example, there is one disclosed in Patent Document 1. In the semiconductor device disclosed in Patent Document 1, an inactive cell is arranged between a sense cell and a main cell. As a result, a parasitic current flowing from the sense cell to the main cell can be prevented and a highly reliable sense cell can be formed.

また,パワーデバイス用の半導体装置として,トレンチゲート構造を有する半導体装置(トレンチゲート型半導体装置)が提案されている。図11に,トレンチゲート型半導体装置の例を示す。トレンチゲート型半導体装置900は,図11中の上面側にN+ ソース領域31が設けられ,下側にN+ ドレイン領域11が設けられている。そして,それらの間には上面側から,Pボディ領域41およびN- ドリフト領域12が設けられている。さらに,半導体装置の上面側からPボディ領域41を貫通するトレンチ21が設けられている。また,トレンチ21には,ゲート電極22が内蔵されている。また,ゲート電極22は,トレンチ21の壁面に形成されたゲート絶縁膜24によりP- ボディ領域41から絶縁されている。 As a semiconductor device for power devices, a semiconductor device having a trench gate structure (trench gate type semiconductor device) has been proposed. FIG. 11 shows an example of a trench gate type semiconductor device. In the trench gate type semiconductor device 900, an N + source region 31 is provided on the upper surface side in FIG. 11, and an N + drain region 11 is provided on the lower side. Then, from the upper surface side between them, P body region 41 and N - drift region 12 is provided. Further, a trench 21 penetrating the P body region 41 from the upper surface side of the semiconductor device is provided. In addition, a gate electrode 22 is built in the trench 21. The gate electrode 22 is insulated from the P body region 41 by a gate insulating film 24 formed on the wall surface of the trench 21.

トレンチゲート型半導体装置900では,ゲート電極22への電圧印加によりP- ボディ領域41にチャネル効果を生じさせ,もってN+ ソース領域31とN- ドリフト領域12との間の導通をコントロールしている。すなわち,ゲート電極22のオンオフによって図11中の縦方向に流れる電流を制御している。
特開2000−323707号公報
In the trench gate type semiconductor device 900, a channel effect is generated in the P body region 41 by applying a voltage to the gate electrode 22, thereby controlling conduction between the N + source region 31 and the N drift region 12. . That is, the current flowing in the vertical direction in FIG. 11 is controlled by turning on and off the gate electrode 22.
JP 2000-323707 A

しかしながら,図11に示したようなトレンチゲート型半導体装置に電流センス機能を設けると,次のような問題があった。すなわち,従来のデバイス構造では,電流センス比(メインセル電流量/センスセル電流量)が小さくなる傾向がある。例えば,電流センス機能付きのトレンチゲート型半導体装置では,図12に示すようにセンスセルとメインセルとを分離する領域(以下,「分離エリア」とする)が設けられている。この分離エリアは不活性領域であり,N+ ソース領域31が設けられていない。そのため,分離エリアからセンスセルおよびメインセルに電流が流れ込むことになる(図12中の矢印は電流の流れを示す)。センスセルに流れ込む電流の全体量がメインセルと比較して著しく少ないことから,分離エリアから流れ込む電流の影響が大きくなる。その結果,電流センス比が小さくなると考えられる。 However, when the current sensing function is provided in the trench gate type semiconductor device as shown in FIG. 11, there is the following problem. That is, in the conventional device structure, the current sense ratio (main cell current amount / sense cell current amount) tends to be small. For example, in a trench gate type semiconductor device with a current sensing function, as shown in FIG. 12, a region for separating a sense cell and a main cell (hereinafter referred to as “isolation area”) is provided. This isolation area is an inactive region, and the N + source region 31 is not provided. Therefore, current flows from the separation area into the sense cell and the main cell (the arrow in FIG. 12 indicates the current flow). Since the total amount of current flowing into the sense cell is significantly smaller than that of the main cell, the influence of the current flowing from the separation area is increased. As a result, the current sense ratio is considered to be small.

また,図11に示したようなトレンチゲート型半導体装置では,一般的に高耐圧化と低オン抵抗化とがトレードオフの関係にある。そこで,本出願人は,高耐圧化と低オン抵抗化との両立を図るため,図13に示すような絶縁ゲート型半導体装置910を提案している(特願2003−375098号)。この絶縁ゲート型半導体装置910では,N- ドリフト領域12に囲まれるPフローティング領域51が設けられている。さらに,トレンチ21の底部は,Pフローティング領域51内に位置している。 Further, in the trench gate type semiconductor device as shown in FIG. 11, there is generally a trade-off relationship between high breakdown voltage and low on-resistance. Therefore, the present applicant has proposed an insulated gate semiconductor device 910 as shown in FIG. 13 (Japanese Patent Application No. 2003-375098) in order to achieve both high breakdown voltage and low on-resistance. In this insulated gate semiconductor device 910, a P floating region 51 surrounded by the N drift region 12 is provided. Further, the bottom of the trench 21 is located in the P floating region 51.

図13に示した半導体装置910では,N- ドリフト領域12内にPフローティング領域51を設けることにより,電界のピークの上昇を抑止することができる。そして,最大ピーク値を低減することで高耐圧化を図ることができる。また,高耐圧であることから,N- ドリフト領域12の不純物濃度を上げて低オン抵抗化を図ることができる。 In the semiconductor device 910 shown in FIG. 13, by providing the P floating region 51 in the N drift region 12, an increase in the electric field peak can be suppressed. A high breakdown voltage can be achieved by reducing the maximum peak value. Further, since a high-voltage, N - can raise the impurity concentration of the drift region 12 achieve low on resistance.

しかしながら,図13に示した半導体装置910に電流センス機能を設けると,次のような問題が生じた。すなわち,半導体装置910では,分離エリアとその他の領域とで耐圧保持機構が異なるため,耐圧の低下が懸念される。   However, when the semiconductor device 910 shown in FIG. 13 is provided with a current sensing function, the following problem occurs. That is, in the semiconductor device 910, since the withstand voltage holding mechanism is different between the isolation area and other regions, there is a concern that the withstand voltage may decrease.

つまり,図11に示したようなトレンチゲート型半導体装置では,ドレイン−ソース間(以下,「DS間」とする)の耐圧をP- ボディ領域41とN- ドリフト領域12とのPN接合箇所から広がる空乏層によって支えている。従って,トレンチゲート21やPフローティング領域51の有無は耐圧特性に大きな影響を与えない。しかしながら,図13に示したトレンチゲート型半導体装置910では,P- ボディ領域41とN- ドリフト領域12とのPN接合箇所から広がる空乏層に加え,Pフローティング領域51とのPN接合箇所から広がる空乏層によっても耐圧を支えている。この耐圧保持機構に違いにより,単にメインセルとセンスセルとを隔離する分離エリアを設けただけでは,設計時の耐圧を確保することができない。 That is, in the trench gate type semiconductor device as shown in FIG. 11, the breakdown voltage between the drain and source (hereinafter referred to as “between DS”) is increased from the PN junction between the P body region 41 and the N drift region 12. It is supported by a spreading depletion layer. Therefore, the presence / absence of the trench gate 21 and the P floating region 51 does not greatly affect the breakdown voltage characteristics. However, in the trench gate type semiconductor device 910 shown in FIG. 13, in addition to the depletion layer extending from the PN junction between the P body region 41 and the N drift region 12, the depletion extending from the PN junction with the P floating region 51 is performed. The pressure resistance is also supported by the layers. Due to the difference in the withstand voltage holding mechanism, the withstand voltage at the time of design cannot be ensured simply by providing an isolation area for isolating the main cell and the sense cell.

本発明は,前記した従来の技術が有する問題点を少なくとも1つ解決するためになされたものである。すなわちその課題とするところは,高精度な電流センス機能を備えるとともに高耐圧化が確実に図られたトレンチゲート型半導体装置およびその製造方法を提供することにある。   The present invention has been made to solve at least one of the problems of the prior art described above. That is, an object of the present invention is to provide a trench gate type semiconductor device having a high-accuracy current sensing function and ensuring a high breakdown voltage, and a method for manufacturing the same.

この課題の解決を目的としてなされたトレンチゲート型半導体装置は,メインセル領域と,センスセル領域と,メインセル領域とセンスセル領域とを隔離する分離領域とを備え,トレンチゲート構造を有するトレンチゲート型半導体装置であって,半導体基板の主表面側に位置し,第1導電型半導体であるドリフト領域と,ドリフト領域の上面側に位置し,第2導電型半導体であるボディ領域と,ドリフト領域に囲まれるとともにメインセル領域内に位置し,第2導電型半導体である第1フローティング領域と,ドリフト領域に囲まれるとともにセンスセル領域内に位置し,第2導電型半導体である第2フローティング領域と,ドリフト領域に囲まれるとともに分離領域内に位置し,第2導電型半導体である第3フローティング領域とを有するものである。   A trench gate type semiconductor device for solving this problem includes a trench cell structure having a main cell region, a sense cell region, and an isolation region for isolating the main cell region and the sense cell region. An apparatus, which is located on the main surface side of a semiconductor substrate and surrounded by a drift region that is a first conductivity type semiconductor, a body region that is a second conductivity type semiconductor, and a drift region that is located on the upper surface side of the drift region And a first floating region that is a second conductivity type semiconductor and is surrounded by a drift region and is located in a sense cell region and a second floating region that is a second conductivity type semiconductor, and a drift A third floating region which is surrounded by the region and located in the isolation region and which is a second conductivity type semiconductor It is intended.

すなわち,本発明のトレンチゲート型半導体装置は,メインセル領域の他,電流検知用のセンスセル領域を備える,いわゆる電流センス機能付きの半導体装置である。このセンスセルは,不活性領域である分離領域によってメインセル領域から隔離されている。そして,メインセル領域内には,ドリフト領域(第1導電型半導体)に囲まれた第1フローティング領域(第2導電型半導体)を,センスセル領域内には,同じくドリフト領域に囲まれた第2フローティング領域(第2導電型半導体)をそれぞれ備え,これらにより電界のピーク点が少なくとも2箇所に形成される耐圧保持機構を有している。さらに,本発明のトレンチゲート型半導体装置は,不活性領域である分離領域内にもドリフト領域に囲まれた第3フローティング領域(第2導電型半導体)を設けている。この第3フローティング領域の存在によって,分離領域の耐圧保持機構をメインセル領域およびセンスセル領域と同等とすることができる。これにより,設計時の耐圧を確保することができ,高耐圧化を確実に図ることができる。   That is, the trench gate type semiconductor device of the present invention is a semiconductor device with a so-called current sensing function, which includes a sense cell region for current detection in addition to the main cell region. This sense cell is isolated from the main cell region by an isolation region which is an inactive region. A first floating region (second conductivity type semiconductor) surrounded by a drift region (first conductivity type semiconductor) is formed in the main cell region, and a second floating region (second conductivity type semiconductor) surrounded by the drift region is also formed in the sense cell region. Floating regions (second conductivity type semiconductors) are provided, respectively, and these have a withstand voltage holding mechanism in which electric field peak points are formed in at least two places. Furthermore, in the trench gate type semiconductor device of the present invention, a third floating region (second conductivity type semiconductor) surrounded by the drift region is also provided in the isolation region which is an inactive region. Due to the presence of the third floating region, the breakdown voltage holding mechanism of the isolation region can be made equivalent to that of the main cell region and the sense cell region. As a result, the withstand voltage at the time of design can be ensured and the withstand voltage can be reliably increased.

また,本発明のトレンチゲート型半導体装置は,分離領域内に第3フローティング領域を設けることにより,分離領域のうち,センスセル領域に電流が流れ込んでしまう領域を狭めることができる。よって,分離領域から流れ込む電流の影響が小さく,第3フローティング領域を有しないトレンチゲート型半導体装置と比較して,電流センス比が正確となる。   In addition, the trench gate type semiconductor device of the present invention can narrow the region of the isolation region where current flows into the sense cell region by providing the third floating region in the isolation region. Therefore, the influence of the current flowing from the isolation region is small, and the current sense ratio is accurate as compared with the trench gate type semiconductor device having no third floating region.

また,本発明のトレンチゲート型半導体装置は,分離領域内に位置し,ゲート電極と電気的に接続するとともにトレンチ構造を有する導体領域を有することとするとよりよい。つまり,分離領域内にもゲート電極を設けることとするとよりよい。   In addition, the trench gate type semiconductor device of the present invention is preferably provided with a conductor region located in the isolation region, electrically connected to the gate electrode and having a trench structure. That is, it is better to provide a gate electrode also in the isolation region.

すなわち,不活性領域である分離領域には,通常,導体であるゲート電極は設けられていない。そのため,空乏層の広がり方や電位分布がメインセル領域やセンスセル領域と異なる。従って,耐圧の低下が懸念される。そこで,分離領域内に導体領域を設け,ゲート電極と同等の電圧を印加することにより,空乏層の厚さや電位分布をメインセル領域やセンスセル領域と同等にする。これにより,分離領域での耐圧の低下を抑制することができる。   That is, the isolation region, which is an inactive region, is usually not provided with a gate electrode that is a conductor. Therefore, the depletion layer spreads and the potential distribution differs from the main cell region and the sense cell region. Therefore, there is a concern that the breakdown voltage will decrease. Therefore, by providing a conductor region in the isolation region and applying a voltage equivalent to that of the gate electrode, the thickness and potential distribution of the depletion layer are made equal to those of the main cell region and the sense cell region. Thereby, it is possible to suppress a decrease in breakdown voltage in the isolation region.

さらに,本発明のトレンチゲート型半導体装置は,ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が第1フローティング領域に位置し,ゲート電極を内蔵する第1トレンチ部と,ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が第2フローティング領域に位置し,ゲート電極を内蔵する第2トレンチ部と,ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が第3フローティング領域に位置し,導体領域を内蔵する第3トレンチ部とを有することとするとよりよい。   Furthermore, the trench gate type semiconductor device of the present invention penetrates the body region in the thickness direction of the semiconductor substrate and its bottom is located in the first floating region, and includes a first trench portion containing a gate electrode and a body region. It penetrates in the thickness direction of the semiconductor substrate and its bottom portion is located in the second floating region, penetrates the body region through the second trench portion containing the gate electrode in the thickness direction of the semiconductor substrate, and its bottom portion is third. It is better to have a third trench part located in the floating region and incorporating the conductor region.

すなわち,ドリフト領域内の深い位置にまで深堀りされたトレンチを設けることにより,分離領域からセンスセル領域に流れ込む電流をより確実に抑制することができる。よって,より高精度な電流センス機能を備えることができる。また,トレンチの底部からイオン注入が可能なため,フローティング領域の作製が容易である。   That is, by providing a trench that is deeply deep in the drift region, the current flowing from the isolation region to the sense cell region can be more reliably suppressed. Therefore, a more accurate current sensing function can be provided. In addition, since ions can be implanted from the bottom of the trench, it is easy to produce a floating region.

さらに,本発明のトレンチゲート型半導体装置の,第3フローティング領域の高さ寸法(半導体基板の厚さ方向の寸法)は,第1フローティング領域の高さ寸法や第2フローティング領域の高さ寸法と比較して大きいこととするとよりよい。すなわち,トレンチ構造を有する導体領域の底部は電界集中が起こり易く,絶縁破壊が生じるおそれがある。ところが,分離領域は不活性領域であるため,電流が流れない。そのため,分離領域内で絶縁破壊が生じると,素子破壊を招くおそれがある。そこで,分離領域内の第3フローティング領域のサイズを他の領域内のフローティング領域のサイズよりも大きくすることで分離領域の高耐圧化を図る。つまり,分離領域内に形成される空乏層の厚さをメインセル領域やセンスセル領域よりも厚くすることで高耐圧化を図る。これにより,分離領域内での素子破壊が回避される。   Furthermore, the height dimension of the third floating region (the dimension in the thickness direction of the semiconductor substrate) of the trench gate type semiconductor device of the present invention is the height dimension of the first floating region and the height dimension of the second floating region. It is better if it is large in comparison. That is, electric field concentration is likely to occur at the bottom of the conductor region having a trench structure, which may cause dielectric breakdown. However, since the isolation region is an inactive region, no current flows. For this reason, if dielectric breakdown occurs in the isolation region, there is a risk of element breakdown. Therefore, the breakdown voltage of the isolation region is increased by making the size of the third floating region in the isolation region larger than the size of the floating region in other regions. That is, the breakdown voltage is increased by making the depletion layer formed in the isolation region thicker than the main cell region and the sense cell region. Thereby, element destruction in the isolation region is avoided.

また,分離領域を高耐圧化するための別の手段としては,第3フローティング領域の深さ方向(半導体基板の厚さ方向)の位置が,第1フローティング領域の位置および第2フローティング領域の位置と比較して深いこととしてもよい。第3フローティング領域をこのように配置することで,分離領域内に形成される空乏層の厚さをメインセル領域やセンスセル領域よりも厚くすることができ,結果として分離領域の高耐圧化を図ることができる。   As another means for increasing the breakdown voltage of the isolation region, the position of the third floating region in the depth direction (thickness direction of the semiconductor substrate) is the position of the first floating region and the position of the second floating region. It may be deeper than By arranging the third floating region in this way, the thickness of the depletion layer formed in the isolation region can be made thicker than that of the main cell region and the sense cell region, and as a result, the isolation region can have a high breakdown voltage. be able to.

なお,第3フローティング領域を深い位置に形成するためには,例えば第3トレンチ部の深さを深くすればよい。また,不純物の注入時の加速電圧を高くすることによっても可能である。また,第3トレンチ部の溝幅を第1トレンチ部や第2トレンチ部の溝幅よりも広くすることによっても可能である。   In order to form the third floating region at a deep position, for example, the depth of the third trench portion may be increased. It is also possible to increase the acceleration voltage during impurity implantation. It is also possible to make the groove width of the third trench portion wider than the groove width of the first trench portion or the second trench portion.

また,本発明のトレンチゲート型半導体装置は,分離領域と隣接し,活性領域であるとともに分離領域をメインセル領域とセンスセル領域との少なくとも一方から隔離する第2分離領域を備え,第2分離領域内には,ドリフト領域に囲まれ,第2導電型半導体である第4フローティング領域が設けられ,第4フローティング領域の形態は,第3フローティング領域と略同一であることとするとよりよい。言い換えると,分離領域の周囲に分離領域と同等の耐圧保持機構を有する活性領域を設けることとするとよりよい。   The trench gate type semiconductor device of the present invention includes a second isolation region that is adjacent to the isolation region, is an active region, and isolates the isolation region from at least one of the main cell region and the sense cell region. Inside, a fourth floating region which is surrounded by a drift region and is a second conductivity type semiconductor is provided, and the form of the fourth floating region is preferably substantially the same as the third floating region. In other words, it is better to provide an active region having a breakdown voltage holding mechanism equivalent to that of the isolation region around the isolation region.

第4フローティング領域の形態が略同一であるとは,フローティング領域の寸法や濃度が等しい,さらには半導体基板の厚さ方向の位置が等しいことを意味する。また,ここでいう略同一とは,厳密に等しいことを意味するものではない。つまり,第2分離領域の耐圧が分離領域とほぼ同等となる程度であればよい。   That the fourth floating regions have substantially the same form means that the dimensions and concentration of the floating regions are the same, and that the position of the semiconductor substrate in the thickness direction is the same. Also, the term “substantially identical” does not mean that they are strictly equal. That is, it suffices if the breakdown voltage of the second isolation region is almost equal to that of the isolation region.

すなわち,フローティング領域の形態が異なる領域同士,つまり耐圧保持機構が異なる領域同士の境界周辺では耐圧が低下し易い。そして前述したように,不活性領域である分離領域内で絶縁破壊が生じると,素子破壊を招くおそれがある。そこで,分離領域の周囲には,分離領域と同等の耐圧保持機構を有する第2分離領域を設ける。つまり,耐圧が低下する部位,すなわち耐圧保持機能の変わり目を分離領域から離す。これにより,フローティング領域の形態の変わり目が第2分離領域とメインセル領域(あるいはセンスセル領域)との境界に存在することになる。これらの領域は活性領域であるため,万が一,絶縁破壊が生じたとしても,ブレイクダウン電流が流れることから素子破壊を回避することができる。従って,活性領域である第2分離領域が分離領域とその他の活性領域との間に介在することにより,不活性領域である分離領域での耐圧の低下が抑制されるとともに,結果として素子破壊が回避される。   That is, the breakdown voltage is likely to decrease in the vicinity of the boundary between regions having different forms of floating regions, that is, regions having different breakdown voltage holding mechanisms. As described above, when dielectric breakdown occurs in the isolation region, which is an inactive region, there is a risk of device breakdown. Therefore, a second separation region having a pressure resistance holding mechanism equivalent to that of the separation region is provided around the separation region. That is, the part where the breakdown voltage decreases, that is, the transition of the breakdown voltage holding function is separated from the separation region. As a result, a change in the shape of the floating region exists at the boundary between the second isolation region and the main cell region (or sense cell region). Since these regions are active regions, even if dielectric breakdown occurs, breakdown current flows, so that device breakdown can be avoided. Accordingly, the second isolation region, which is the active region, is interposed between the isolation region and the other active regions, so that the decrease in breakdown voltage in the isolation region, which is the inactive region, is suppressed, and as a result, element breakdown is prevented. Avoided.

また,本発明のトレンチゲート型半導体装置の製造方法は,メインセル領域と,センスセル領域と,メインセル領域とセンスセル領域とを隔離する分離領域とを備え,トレンチゲート構造を有するトレンチゲート型半導体装置の製造方法であって,半導体基板の上面にマスク材を形成し,そのマスク材をパターニングするパターニング工程と,パターニング工程の後に,マスクパターンに従って半導体基板を厚さ方向に掘り下げることにより,分離領域内に,第2導電型半導体であるボディ領域を貫通し,その底部が第1導電型半導体であるドリフト領域まで達するトレンチ部を形成するトレンチ部形成工程と,トレンチ部形成工程の後に,トレンチ部の底部から不純物を注入することにより,第2導電型半導体であるフローティング領域を形成する不純物注入工程とを含んでいる。   The method for manufacturing a trench gate type semiconductor device according to the present invention includes a main cell region, a sense cell region, and an isolation region that isolates the main cell region and the sense cell region, and has a trench gate structure. In the manufacturing method, a mask material is formed on the upper surface of the semiconductor substrate, and the mask material is patterned, and after the patterning step, the semiconductor substrate is dug in the thickness direction according to the mask pattern to thereby form the inside of the isolation region. In addition, a trench portion forming step of forming a trench portion penetrating through the body region that is the second conductivity type semiconductor and having a bottom portion reaching the drift region that is the first conductivity type semiconductor, and after the trench portion formation step, By injecting impurities from the bottom, the floating region which is the second conductivity type semiconductor is formed. And a impurity implantation step of forming.

すなわち,本発明のトレンチゲート型半導体装置の製造方法では,エピタキシャル成長等により基板上に単結晶半導体領域を形成した後,パターニング工程にてその半導体基板の主表面上に各トレンチ部用のマスクパターンを形成している。さらに,トレンチ部形成工程にて,分離領域内に,数本〜数十本のトレンチ部を形成している。そして,不純物注入工程にて,各トレンチ部の底部から不純物を注入することによりフローティング領域を形成している。すなわち,フローティング領域がドリフト領域等の単結晶半導体領域の形成後に形成されるため,フローティング領域の形成後に再度エピタキシャル成長により単結晶半導体層を形成する必要がない。従って,フローティング領域を有するトレンチゲート型半導体装置を簡便に作製することができる。また,熱負荷が小さいことから,微細化が可能である。   That is, in the method of manufacturing a trench gate type semiconductor device according to the present invention, after a single crystal semiconductor region is formed on a substrate by epitaxial growth or the like, a mask pattern for each trench portion is formed on the main surface of the semiconductor substrate in a patterning step. Forming. Further, several to several tens of trench portions are formed in the isolation region in the trench portion forming step. In the impurity implantation step, the floating region is formed by implanting impurities from the bottom of each trench. That is, since the floating region is formed after the formation of the single crystal semiconductor region such as the drift region, it is not necessary to form the single crystal semiconductor layer again by epitaxial growth after the formation of the floating region. Therefore, a trench gate type semiconductor device having a floating region can be easily manufactured. In addition, miniaturization is possible because the heat load is small.

また,トレンチ部形成工程の際,分離領域内に位置するトレンチ部を形成するとともに,メインセル領域内に位置するトレンチ部とセンスセル領域内に位置するトレンチ部との少なくとも一方を形成することとするとよりよい。これらのトレンチ部を同時に形成することにより,製造工程の簡素化が図られる。また,トレンチ部が同時に形成されることで,分離領域に位置するフローティング領域もメインセル領域やセンスセル領域に位置するフローティング領域とともに形成可能である。よって,分離領域の構成要素を形成することによる工程数の増加は生じない。   Further, in the trench portion forming step, the trench portion located in the isolation region is formed, and at least one of the trench portion located in the main cell region and the trench portion located in the sense cell region is formed. Better. By simultaneously forming these trench portions, the manufacturing process can be simplified. Further, since the trench portion is formed at the same time, the floating region located in the isolation region can be formed together with the floating region located in the main cell region and the sense cell region. Therefore, the number of processes does not increase due to the formation of the separation region components.

また,パターニング工程の際,分離領域内に形成されるトレンチ部の溝幅をメインセル領域およびセンスセル領域内に形成されるトレンチ部の溝幅よりも大きくなるようにパターニングすることとするとよりよい。すなわち,分離領域内のフローティング領域は,メインセル領域内やセンスセル領域内のフローティング領域よりも厚さ方向に深い位置に位置していることが望ましい。通常,フローティング領域の位置を異ならせるためには,パターニング,トレンチ部の形成,不純物の注入等の工程を繰り返し行わなければならず,非常に手間がかかる。しかし,トレンチの溝幅を大きくすることで,マイクロローディング効果により,同じ条件でエッチングした場合であっても,幅が広いトレンチの方が幅が狭いトレンチと比較して深い位置までエッチングすることができる。これにより,1回のトレンチ形成工程で深さが異なるトレンチを形成することができ,工程数の増加を抑制することができる。   Further, in the patterning step, it is better to pattern so that the groove width of the trench portion formed in the isolation region is larger than the groove width of the trench portion formed in the main cell region and the sense cell region. That is, it is desirable that the floating region in the isolation region is located deeper in the thickness direction than the floating regions in the main cell region and the sense cell region. Usually, in order to change the position of the floating region, it is necessary to repeatedly perform processes such as patterning, formation of a trench portion, and implantation of impurities, which is very troublesome. However, by increasing the groove width of the trench, it is possible to etch deeper in a wider trench than in a narrower trench even when etched under the same conditions due to the microloading effect. it can. As a result, trenches having different depths can be formed in one trench formation process, and an increase in the number of processes can be suppressed.

本発明のトレンチゲート型半導体装置では,分離領域内に,第3フローティング領域や,第3トレンチ部や,導体領域を設ける。すなわち,メインセル領域と同等の耐圧保持機構を設ける。これにより,耐圧の低下を抑制している。さらに,第3フローティング領域や第3トレンチ部によって,センスセル領域に流れ込む電流を抑制している。よって,本発明によれば,高精度な電流センス機能を備えるとともに高耐圧化が図られたトレンチゲート型半導体装置およびその製造方法が実現されている。   In the trench gate type semiconductor device of the present invention, the third floating region, the third trench portion, and the conductor region are provided in the isolation region. That is, a pressure resistance holding mechanism equivalent to the main cell region is provided. This suppresses a decrease in breakdown voltage. Further, the current flowing into the sense cell region is suppressed by the third floating region and the third trench portion. Therefore, according to the present invention, a trench gate type semiconductor device having a high-accuracy current sensing function and a high breakdown voltage and a method for manufacturing the same are realized.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,絶縁ゲートへの電圧印加により,DS間の導通をコントロールするパワーMOSに本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, the present invention is applied to a power MOS that controls conduction between DSs by applying a voltage to an insulated gate.

[第1の形態]
第1の形態に係る半導体装置100は,電流センス機能を備えたトレンチゲート型半導体装置であり,図1の平面図に示す構造を有している。半導体装置100は,メインセル1とセンスセル2とを備え,センスセル2が不活性領域である分離エリア3に取り囲まれる構造となっている。この分離エリア3により,メインセル1とセンスセル2とが隔離されている。なお,センスセル2の配置は,チップの中心に限定するものではなく,チップの端部やその他の領域であってもよい。
[First embodiment]
The semiconductor device 100 according to the first embodiment is a trench gate type semiconductor device having a current sensing function, and has a structure shown in the plan view of FIG. The semiconductor device 100 includes a main cell 1 and a sense cell 2, and the sense cell 2 is surrounded by an isolation area 3 that is an inactive region. By this separation area 3, the main cell 1 and the sense cell 2 are isolated. Note that the arrangement of the sense cells 2 is not limited to the center of the chip, but may be an end portion of the chip or another region.

図2は,図1に示した半導体装置100中のA−A部の断面を示す図である。半導体装置100では,半導体基板内における図1中の上面側に,N+ ソース領域31およびコンタクトP+ 領域32が設けられている。一方,下面側にはN+ ドレイン領域11が設けられている。それらの間には上面側から,P- ボディ領域41およびN- ドリフト領域12が設けられている。 FIG. 2 is a view showing a cross section of the AA portion in the semiconductor device 100 shown in FIG. In the semiconductor device 100, an N + source region 31 and a contact P + region 32 are provided on the upper surface side in FIG. On the other hand, an N + drain region 11 is provided on the lower surface side. Between them, a P body region 41 and an N drift region 12 are provided from the upper surface side.

また,半導体装置100のメインセル1には,上面側の一部を掘り込むことにより,P- ボディ領域41を貫通してなるゲートトレンチ21が形成されている。ゲートトレンチ21の底部には,絶縁物の堆積による堆積絶縁層23が形成されている。具体的に堆積絶縁層23は,酸化シリコンが堆積してできたものである。さらに,堆積絶縁層23上には,導体(例えば,ポリシリコン)の堆積によるゲート電極22が形成されている。ゲート電極22の下端は,P- ボディ領域41の下面より下方に位置している。そして,ゲート電極22は,ゲートトレンチ21の壁面に形成されているゲート絶縁膜24を挟んで,半導体基板のN+ ソース領域31およびP- ボディ領域41と対面している。すなわち,ゲート電極22は,ゲート絶縁膜24によりN+ ソース領域31およびP- ボディ領域41から絶縁されている。 Further, in the main cell 1 of the semiconductor device 100, a gate trench 21 that penetrates the P body region 41 is formed by digging a part on the upper surface side. A deposited insulating layer 23 is formed at the bottom of the gate trench 21 by depositing an insulator. Specifically, the deposited insulating layer 23 is formed by depositing silicon oxide. Furthermore, a gate electrode 22 is formed on the deposited insulating layer 23 by depositing a conductor (for example, polysilicon). The lower end of gate electrode 22 is located below the lower surface of P body region 41. The gate electrode 22 faces the N + source region 31 and the P body region 41 of the semiconductor substrate with a gate insulating film 24 formed on the wall surface of the gate trench 21 interposed therebetween. That is, the gate electrode 22 is insulated from the N + source region 31 and the P body region 41 by the gate insulating film 24.

また,半導体装置100のセンスセル2についても,メインセル1と同様に,P- ボディ領域41を貫通してなるゲートトレンチ71が形成されている。ゲートトレンチ71は,メインセル1のゲートトレンチ21と同様の構造を有しており,具体的には堆積絶縁層73,ゲート電極72,およびゲート絶縁膜74が形成されている。 Similarly to the main cell 1, a gate trench 71 formed through the P body region 41 is also formed in the sense cell 2 of the semiconductor device 100. The gate trench 71 has the same structure as the gate trench 21 of the main cell 1, and specifically, a deposited insulating layer 73, a gate electrode 72, and a gate insulating film 74 are formed.

このような構造を持つ半導体装置100では,ゲート電極22およびゲート電極72への電圧印加によりP- ボディ領域41にチャネル効果を生じさせ,もってN+ ソース領域31とN- ドリフト領域12との間の導通をコントロールしている。 In the semiconductor device 100 having such a structure, a channel effect is generated in the P body region 41 by applying a voltage to the gate electrode 22 and the gate electrode 72, so that the N + source region 31 and the N drift region 12 are connected. The continuity is controlled.

また,半導体装置100の分離エリア3についても,メインセル1と同様に,P- ボディ領域41を貫通してなるゲートトレンチ81が形成されている。ゲートトレンチ81についてもメインセル1のゲートトレンチ21と同様の構造を有しており,具体的には堆積絶縁層83,ゲート電極82,およびゲート絶縁膜84が形成されている。 Also in the isolation area 3 of the semiconductor device 100, as in the main cell 1, a gate trench 81 that penetrates the P body region 41 is formed. The gate trench 81 has the same structure as that of the gate trench 21 of the main cell 1, and specifically, a deposited insulating layer 83, a gate electrode 82, and a gate insulating film 84 are formed.

なお,分離エリア3では,不活性領域であることから,N+ ソース領域31が設けられていない。一方,コンタクトP+ 領域32については,寄生トランジスタの影響を回避し,アバランシェ耐量を大きくすることや,P- ボディ領域41の電位を安定させるために設ける。 Note that in the isolation area 3, since it is an inactive region, the N + source region 31 is not provided. On the other hand, the contact P + region 32 is provided to avoid the influence of the parasitic transistor, to increase the avalanche resistance, and to stabilize the potential of the P body region 41.

さらに,半導体装置100のメインセル1には,N- ドリフト領域12に囲まれたPフローティング領域51が形成されている。Pフローティング領域51は,図2中の正面から見て各ゲートトレンチの底部を中心とした略円形形状となっている。また,隣り合うPフローティング領域間には,十分なスペースがある。よって,オン状態において,Pフローティング領域51の存在がドレイン電流に対する妨げとなることはない。また,Pフローティング領域51の半径は,堆積絶縁層23の厚さ以下である。従って,堆積絶縁層23の上端は,Pフローティング領域51の上端よりも上方に位置する。よって,堆積絶縁層23上に堆積するゲート電極22とPフローティング領域51とは対面していない。なお,センスセル2にはPフローティング領域52が,分離エリア3にはPフローティング領域53がそれぞれ設けられ,これらについてもメインセル1のPフローティング領域51と同様の形態となっている。 Further, a P floating region 51 surrounded by the N drift region 12 is formed in the main cell 1 of the semiconductor device 100. The P floating region 51 has a substantially circular shape centered on the bottom of each gate trench when viewed from the front in FIG. In addition, there is sufficient space between adjacent P floating regions. Therefore, in the ON state, the presence of the P floating region 51 does not hinder the drain current. Further, the radius of the P floating region 51 is equal to or less than the thickness of the deposited insulating layer 23. Therefore, the upper end of the deposited insulating layer 23 is located above the upper end of the P floating region 51. Therefore, the gate electrode 22 deposited on the deposited insulating layer 23 and the P floating region 51 do not face each other. The sense cell 2 is provided with a P floating region 52, and the isolation area 3 is provided with a P floating region 53. These also have the same form as the P floating region 51 of the main cell 1.

なお,図1中,分離エリア3のゲートトレンチ71の本数は1本だけであるが,これは図の簡略化のために他のゲートトレンチ71を省略したためである。すなわち,実際には数本から数十本とまとまった状態で形成されている。同様に,メインセル1およびセンスセル2についても,数本から数十本とまとまった状態で形成されている。   In FIG. 1, the number of the gate trenches 71 in the isolation area 3 is only one. This is because the other gate trenches 71 are omitted for simplification of the drawing. That is, it is actually formed in a state of several to several tens. Similarly, the main cell 1 and the sense cell 2 are also formed in a state of several to several tens.

本形態の半導体装置100のメインセル1では,ゲート電極22を内蔵するゲートトレンチ21の下方にPフローティング領域51が設けられていることにより,それを有しないトレンチゲート型半導体装置(図11参照)と比較して,次のような特性を有する。すなわち,ゲート電圧のスイッチオフ時には,DS間の電圧によって,N- ドリフト領域12内ではP- ボディ領域41との間のPN接合箇所から空乏層が形成される。そして,そのPN接合箇所の近傍が電界強度のピーク点となる。空乏層の先端がPフローティング領域51に到達すると,Pフローティング領域51とP- ボディ領域41との間のN- ドリフト領域12が空乏化し,Pフローティング領域51がパンチスルー状態となってその電位が固定される。これにより,P- ボディ領域41との間のPN接合箇所付近の電界のピーク点の上昇が抑制される。また,DS間の印加電圧が高い場合には,Pフローティング領域51の下端部からも空乏層が形成される。そして,P- ボディ領域41との間のPN接合箇所とは別に,Pフローティング領域51の下端部の近傍でも電界強度のピーク点が生じる。このように電界強度を2分することにより,高耐圧化を図ることができる。さらに,Pフローティング領域51の段数を増やすことにより,さらなる高耐圧化を図ることができる。また,高耐圧であるため,N- ドリフト領域12の不純物濃度を上げて低オン抵抗化を図ることができる。なお,センスセル2および分離エリア3についても同様の耐圧保持機構を有しているため,同様の効果が期待できる。 In the main cell 1 of the semiconductor device 100 of the present embodiment, the P-floating region 51 is provided below the gate trench 21 containing the gate electrode 22, so that a trench gate type semiconductor device that does not have it (see FIG. 11). Compared with, it has the following characteristics. That is, when the gate voltage is switched off, a depletion layer is formed in the N drift region 12 from the PN junction with the P body region 41 due to the voltage between DS. The vicinity of the PN junction is the peak point of the electric field strength. When the tip of the depletion layer reaches the P floating region 51, the N drift region 12 between the P floating region 51 and the P body region 41 is depleted, and the P floating region 51 enters a punch-through state and the potential is Fixed. Thereby, an increase in the peak point of the electric field in the vicinity of the PN junction with the P body region 41 is suppressed. In addition, when the applied voltage between the DSs is high, a depletion layer is also formed from the lower end of the P floating region 51. In addition to the PN junction portion between the P body region 41 and the vicinity of the lower end portion of the P floating region 51, a peak point of the electric field strength is generated. By thus dividing the electric field strength into two, a high breakdown voltage can be achieved. Furthermore, by increasing the number of stages of the P floating region 51, it is possible to further increase the breakdown voltage. Further, since the withstand voltage is high, the on-resistance can be reduced by increasing the impurity concentration of the N drift region 12. Since the sense cell 2 and the isolation area 3 have the same withstand voltage holding mechanism, the same effect can be expected.

また,本形態の半導体装置100の分離エリア3では,ゲート電極82を内蔵するゲートトレンチ81およびN- ドリフト領域12に囲まれたPフローティング領域53を設けることにより,それを有しないトレンチゲート型半導体装置と比較して,次のような特性を有する。すなわち,分離エリア3についてもPフローティング領域53を設けることにより,メインセル1と同様に電界のピークの緩和を図ることができ,メインセル1と同等の高耐圧化を図ることができる。さらに,ゲート電極82を内蔵するゲートトレンチ81を設けることにより,空乏層の広がり方をメインセル1に近似させることができる。さらに,空乏層の広がり方をよりメインセル1に近似させるため,ゲートトレンチ21と同等の深さのゲートトレンチ81を形成する。すなわち,空乏層の広がり方をメインセル1と同等にするためにメインセル1と同様のゲート構造を設ける。このように分離エリア3のゲート機構および耐圧保持機構をメインセル1およびセンスセル2と同等とすることにより,分離エリア3での耐圧の低下を抑制することができる。 Further, in the isolation area 3 of the semiconductor device 100 of the present embodiment, a trench gate type semiconductor without the gate trench 81 including the gate electrode 82 and the P floating region 53 surrounded by the N drift region 12 is provided. Compared with the device, it has the following characteristics. In other words, by providing the P floating region 53 in the isolation area 3 as well, the peak of the electric field can be mitigated in the same manner as the main cell 1, and a high breakdown voltage equivalent to that of the main cell 1 can be achieved. Furthermore, by providing the gate trench 81 containing the gate electrode 82, it is possible to approximate how the depletion layer spreads to the main cell 1. Further, a gate trench 81 having a depth equivalent to that of the gate trench 21 is formed in order to approximate the spread of the depletion layer to the main cell 1. That is, a gate structure similar to that of the main cell 1 is provided in order to make the depletion layer spread in the same manner as the main cell 1. In this way, by making the gate mechanism and the breakdown voltage holding mechanism of the isolation area 3 equivalent to those of the main cell 1 and the sense cell 2, it is possible to suppress a decrease in breakdown voltage in the isolation area 3.

また,図3に示すように,分離エリア3内に,Pフローティング領域53および底部がPフローティング領域53に達するゲートトレンチ81を設けることにより,従来の構造(図12)と比較して横方向からの電流の流れを抑制することができる(図3中の矢印は電流の流れを示す)。つまり,従来の構造では,図12に示した断面において,次の式(1)にて規定される寸法Lの範囲内の電子がセンスセル2に流れ込む可能性がある。
L=(センスセルの幅)+(分離エリアの幅/2)×2 (1)
すなわち,広範囲にわたってセンスセル2に電子が流れ込むことになる。電流センス比が設計値よりも小さくなるのはこのためであると考えられる。しかし,本形態の半導体装置100では,図3に示した断面において,次の式(2)にて規定される寸法Wの範囲内の電子がセンスセル2に流れ込む。
W=(センスセルの幅)+(分離エリアとセンスエリアとの間で隣接するPフローティング領域間の距離/2)×2 (2)
すなわち,寸法Lと比較して,寸法Wの方がセンスセル2からのはみ出し分が小さい。そのため,分離エリア3から流れ込む電流の影響が小さくなる。その結果,電流センス比は,従来の構造と比較して正確となる。
Further, as shown in FIG. 3, by providing a P floating region 53 and a gate trench 81 whose bottom reaches the P floating region 53 in the isolation area 3, compared with the conventional structure (FIG. 12), the lateral direction can be improved. Current flow can be suppressed (arrows in FIG. 3 indicate current flow). That is, in the conventional structure, in the cross section shown in FIG. 12, there is a possibility that electrons within the dimension L defined by the following formula (1) flow into the sense cell 2.
L = (sense cell width) + (separation area width / 2) × 2 (1)
That is, electrons flow into the sense cell 2 over a wide range. This is considered to be the reason why the current sense ratio becomes smaller than the design value. However, in the semiconductor device 100 of the present embodiment, electrons within the range of the dimension W defined by the following equation (2) flow into the sense cell 2 in the cross section shown in FIG.
W = (width of sense cell) + (distance between adjacent P floating regions between isolation area and sense area / 2) × 2 (2)
That is, compared with the dimension L, the dimension W has a smaller protrusion from the sense cell 2. Therefore, the influence of the current flowing from the separation area 3 is reduced. As a result, the current sense ratio is accurate compared to the conventional structure.

続いて,図1に示した半導体装置100の製造プロセスを図4および図5により説明する。まず,N+ ドレイン領域11となるN+ 基板上に,N- 型シリコン層をエピタキシャル成長により形成する。このN- 型シリコン層(エピタキシャル層)は,N- ドリフト領域12,P- ボディ領域41,N+ ソース領域31の各領域となる部分である。そして,その後のイオン注入等によりP- ボディ領域41,N+ ソース領域31,およびコンタクトP+ 領域32が形成される。これにより,N+ ドレイン領域11上にエピタキシャル層を有する半導体基板が作製される。 Next, a manufacturing process of the semiconductor device 100 shown in FIG. 1 will be described with reference to FIGS. First, an N type silicon layer is formed on the N + substrate to be the N + drain region 11 by epitaxial growth. This N -type silicon layer (epitaxial layer) is a portion that becomes each of the N drift region 12, the P body region 41, and the N + source region 31. Then, a P body region 41, an N + source region 31, and a contact P + region 32 are formed by subsequent ion implantation or the like. Thereby, a semiconductor substrate having an epitaxial layer on the N + drain region 11 is manufactured.

次に,図4(a)に示すように,半導体基板上にHTO(High Temperatuer Oxide)などのハードマスク91を形成し,そのハードマスク91上にレジスト92を形成する。そして,図4(b)に示すように,ゲートトレンチ用のパターニングを行う。次に,マスクドライエッチングを行った後,トレンチドライエッチングを行う。このトレンチドライエッチングにより,図4(c)に示すようにP- ボディ領域41を貫通するゲートトレンチ21,71,81がまとめて形成される。トレンチドライエッチングを行った後,不要なハードマスク91およびレジスト92は除去する。 Next, as shown in FIG. 4A, a hard mask 91 such as HTO (High Temperatuer Oxide) is formed on the semiconductor substrate, and a resist 92 is formed on the hard mask 91. Then, as shown in FIG. 4B, patterning for the gate trench is performed. Next, after performing mask dry etching, trench dry etching is performed. By this trench dry etching, gate trenches 21, 71 and 81 penetrating the P body region 41 are collectively formed as shown in FIG. After performing trench dry etching, unnecessary hard mask 91 and resist 92 are removed.

次に,熱酸化処理を行うことにより,各ゲートトレンチのそれぞれの壁面に30nm程度の厚さの犠牲酸化膜を形成する。犠牲酸化膜は,各トレンチの側壁にイオン注入を行わないようにするためのものである。   Next, a sacrificial oxide film having a thickness of about 30 nm is formed on each wall surface of each gate trench by performing thermal oxidation treatment. The sacrificial oxide film is for preventing ion implantation from being performed on the sidewalls of the trenches.

次に,図4(d)に示すように,各トレンチの底面から不純物として例えばボロン(B)のイオン注入を行う。その後,熱拡散処理を行うことにより,図4(e)に示すようにPフローティング領域51,52,53がまとめて形成される。すなわち,1回の熱拡散処理によってすべてのエリア内のPフローティング領域を同時に形成する。その後,ウェットエッチングにて犠牲酸化膜を除去する。これにより,ドライエッチングによるダメージ層が除去される。   Next, as shown in FIG. 4D, for example, boron (B) ions are implanted as impurities from the bottom of each trench. Thereafter, P diffusion regions 51, 52, and 53 are collectively formed as shown in FIG. That is, P floating regions in all areas are simultaneously formed by one thermal diffusion process. Thereafter, the sacrificial oxide film is removed by wet etching. Thereby, the damage layer by dry etching is removed.

次に,CDE(Chemical Dry Etching)等の等方的なエッチング法を利用して各トレンチの壁面を平滑化した後,50nm程度の厚さの熱酸化膜を形成する。この熱酸化膜により,後述する絶縁膜の埋め込み性が向上するとともに界面準位の影響を排除することが可能となる。なお,シリコン表面が露出していた方が絶縁物の埋込み性が良い場合には,熱酸化膜を形成する必要はない。   Next, after smoothing the wall surface of each trench using an isotropic etching method such as CDE (Chemical Dry Etching), a thermal oxide film having a thickness of about 50 nm is formed. This thermal oxide film can improve the filling property of an insulating film, which will be described later, and can eliminate the influence of the interface state. If the silicon surface is exposed and the insulator is more embedded, it is not necessary to form a thermal oxide film.

次に,図5(f)に示すように,CVD(Chemical Vapor Deposition)法によって各ゲートトレンチ内に絶縁膜23を堆積する。具体的に絶縁膜23としては,例えばTEOS(Tetra-Ethyl-Orso-Silicate)を原料とした減圧CVD法,あるいはオゾンとTEOSとを原料としたCVD法によって形成されるシリコン酸化膜が該当する。この絶縁膜23が,図1中の堆積絶縁層23,73,83となる。   Next, as shown in FIG. 5F, an insulating film 23 is deposited in each gate trench by a CVD (Chemical Vapor Deposition) method. Specifically, the insulating film 23 corresponds to, for example, a silicon oxide film formed by a low pressure CVD method using TEOS (Tetra-Ethyl-Orso-Silicate) as a raw material or a CVD method using ozone and TEOS as raw materials. This insulating film 23 becomes the deposited insulating layers 23, 73, 83 in FIG.

次に,図5(g)に示すように,堆積絶縁層23に対してドライエッチングを行う。これにより,堆積絶縁層23の一部が除去(エッチバック)され,ゲート電極を形成するためのスペースが確保される。次に,熱酸化処理を行い,図5(h)に示すようにシリコン表面に膜厚が40nm〜100nmの範囲内の熱酸化膜24を形成する。この熱酸化膜24が,図1中のゲート酸化膜24,74,84となる。具体的には,H2 とO2 との混合気体の雰囲気中,900℃〜1100℃の範囲内の温度にて熱酸化処理を行う。 Next, as shown in FIG. 5G, dry etching is performed on the deposited insulating layer 23. Thereby, a part of the deposited insulating layer 23 is removed (etched back), and a space for forming the gate electrode is secured. Next, thermal oxidation treatment is performed to form a thermal oxide film 24 having a film thickness in the range of 40 nm to 100 nm on the silicon surface as shown in FIG. This thermal oxide film 24 becomes the gate oxide films 24, 74, 84 in FIG. Specifically, thermal oxidation treatment is performed at a temperature in the range of 900 ° C. to 1100 ° C. in an atmosphere of a mixed gas of H 2 and O 2 .

次に,エッチバックにて確保したスペースに対し,図5(i)に示すようにゲート材22を堆積する。具体的にゲート材22の成膜条件としては,例えば反応ガスをSiH4 を含む混合ガスとし,成膜温度を580℃〜640℃とし,常圧CVD法によって800nm程度の膜厚のポリシリコン膜を形成する。このポリシリコン膜が,図1中のゲート電極22,72,82となる。なお,ゲート電極22を形成する方法としては,導体を直接ゲートトレンチ21内に堆積する方法の他,一旦高抵抗の半導体を堆積させた後にその絶縁層に対して不純物を拡散させる方法がある。 Next, a gate material 22 is deposited in the space secured by the etch back as shown in FIG. Specifically, the film formation conditions for the gate material 22 include, for example, a reactive gas mixed gas containing SiH 4 , a film formation temperature of 580 ° C. to 640 ° C., and a polysilicon film having a thickness of about 800 nm by atmospheric pressure CVD. Form. This polysilicon film becomes the gate electrodes 22, 72 and 82 in FIG. As a method of forming the gate electrode 22, there is a method of depositing a conductor directly in the gate trench 21 or a method of once depositing a high resistance semiconductor and then diffusing impurities into the insulating layer.

次に,ゲート材22による電極層に対してエッチングを行う。その後,キャップ酸化を行うことにより,電極層の表面に酸化膜を形成する。最後に,ソース電極,ドレイン電極等を形成することにより,図1に示したようなトレンチゲート型の半導体装置100が作製される。   Next, the electrode layer made of the gate material 22 is etched. Thereafter, cap oxidation is performed to form an oxide film on the surface of the electrode layer. Finally, the trench gate type semiconductor device 100 as shown in FIG. 1 is manufactured by forming a source electrode, a drain electrode, and the like.

すなわち,本形態の半導体装置100の作製手順では,1回のエピタキシャル処理,およびエピタキシャル層の形成後の1回の熱拡散処理によってすべてのエリアのPフローティング領域を作製できる。そのため,熱負荷が小さく,作製工程が簡素である。   That is, in the manufacturing procedure of the semiconductor device 100 of this embodiment, the P floating regions in all areas can be manufactured by one epitaxial process and one thermal diffusion process after the formation of the epitaxial layer. Therefore, the heat load is small and the manufacturing process is simple.

[第2の形態]
第2の形態に係る半導体装置200は,図6の断面図に示す構造を有している。半導体装置200の特徴は,分離エリア3のPフローティング領域53のサイズが他のエリアのPフローティング領域のサイズよりも大きいことである。
[Second form]
The semiconductor device 200 according to the second embodiment has a structure shown in the sectional view of FIG. The semiconductor device 200 is characterized in that the size of the P floating region 53 in the isolation area 3 is larger than the size of the P floating region in other areas.

トレンチ型半導体装置では,特にゲート電極の底部に電界が集中し易い。当然,分離エリア3内のゲート電極82の底部にも電界集中が生じる。また,分離エリア3は不活性領域であるため,N+ ソース領域31が設けられていない。このことから,電界がより集中し易い。ところが,分離エリア3は,N+ ソース領域31が設けられていないため,ブレイクダウン電流が流れない。従って,分離エリア3内で絶縁破壊が生じると,ゲート酸化膜84等が破壊されるおそれがある。そこで,分離エリア3内のPフローティング領域53のサイズを他の領域内のPフローティング領域のサイズよりも大きくする。これにより,分離エリア3内の空乏層の厚さが他のエリアの厚さと比べて厚くなる(図6中の点線dは,ドレイン電極側に向かって広がるさなかの空乏層の先端を示す。図7乃至図9も同様である)。よって,分離エリア3は,他のエリアと比較して高耐圧となり,分離エリア3での絶縁破壊が抑制される。 In the trench type semiconductor device, the electric field tends to concentrate particularly on the bottom of the gate electrode. Naturally, electric field concentration also occurs at the bottom of the gate electrode 82 in the isolation area 3. Further, since the isolation area 3 is an inactive region, the N + source region 31 is not provided. For this reason, the electric field tends to concentrate more. However, since the N + source region 31 is not provided in the isolation area 3, no breakdown current flows. Therefore, when dielectric breakdown occurs in the isolation area 3, the gate oxide film 84 and the like may be destroyed. Therefore, the size of the P floating region 53 in the separation area 3 is made larger than the size of the P floating region in other regions. As a result, the thickness of the depletion layer in the isolation area 3 becomes thicker than the thickness of the other areas (the dotted line d in FIG. 6 indicates the tip of the depletion layer spreading toward the drain electrode side. The same applies to FIGS. 7 to 9. Therefore, the isolation area 3 has a higher breakdown voltage than other areas, and the dielectric breakdown in the isolation area 3 is suppressed.

なお,N- ドリフト領域12の厚さは,少なくとも分離エリア3内に形成される空乏層が広がりきれる厚さを確保する必要がある。そのため,メインセル1やセンスセル2内のN- ドリフト領域12には,空乏層の伸び代が分離エリア3よりも残った状態となる。 Note that the thickness of the N drift region 12 needs to be ensured so that at least the depletion layer formed in the isolation area 3 can be spread. For this reason, in the N drift region 12 in the main cell 1 or the sense cell 2, the depletion layer extension margin remains in the isolation area 3.

半導体装置200の製造プロセスでは,Pフローティング領域53を形成するための不純物のドーズ量をPフローティング領域51,52を形成するためのドーズ量よりも多くする。これに伴い,分離エリア3内のイオン注入をその他のエリアと別に行う。具体的には,図4(b)から図4(d)までのプロセスを繰り返し行う。   In the manufacturing process of the semiconductor device 200, the dose amount of the impurity for forming the P floating region 53 is set larger than the dose amount for forming the P floating regions 51 and 52. Accordingly, ion implantation in the separation area 3 is performed separately from other areas. Specifically, the processes from FIG. 4B to FIG. 4D are repeated.

[第3の形態]
第3の形態に係る半導体装置300は,図7の断面図に示す構造を有している。半導体装置300の特徴は,分離エリア3のPフローティング領域53の位置が他のエリアのPフローティング領域の位置よりも深いことである。これにより,第2の形態と同様に,分離エリア3内の空乏層の厚さが他のエリアの厚さと比べて厚くなる。よって,分離エリア3は,他のエリアと比較して高耐圧であり,分離エリア3での絶縁破壊の抑制を図ることができる。
[Third embodiment]
The semiconductor device 300 according to the third embodiment has a structure shown in the sectional view of FIG. The semiconductor device 300 is characterized in that the position of the P floating region 53 in the isolation area 3 is deeper than the position of the P floating region in other areas. As a result, as in the second embodiment, the thickness of the depletion layer in the isolation area 3 becomes thicker than the thickness of other areas. Therefore, the isolation area 3 has a higher breakdown voltage than the other areas, and the dielectric breakdown in the isolation area 3 can be suppressed.

Pフローティング領域53の位置を他のエリアのPフローティング領域の位置よりも深くするためには,2つの方法が考えられる。1つめの方法は,ゲートトレンチ81の深さを他のゲートトレンチの深さよりも深くすることである。そのような半導体装置を製造するためには,分離エリア3のトレンチエッチングと,その他のエリアのトレンチエッチングとを別々に行い,それぞれ所定の深さまでトレンチを掘り下げる。具体的には,図4(b)および図4(c)のプロセスを繰り返し行う。この1つめの方法によってトレンチの深さを約20%深くすることにより,DS間の耐圧が約10%高くなる。なお,図7の半導体装置300は1つめの方法によるものである。   In order to make the position of the P floating region 53 deeper than the position of the P floating region in other areas, two methods are conceivable. The first method is to make the depth of the gate trench 81 deeper than the depth of other gate trenches. In order to manufacture such a semiconductor device, the trench etching of the isolation area 3 and the trench etching of other areas are performed separately, and the trench is dug down to a predetermined depth. Specifically, the processes shown in FIGS. 4B and 4C are repeated. By increasing the trench depth by about 20% by this first method, the breakdown voltage between the DSs is increased by about 10%. Note that the semiconductor device 300 of FIG. 7 is based on the first method.

2つめの方法は,イオン注入時の加速電圧を他のエリアよりも高くすることである。この方法では,Pフローティング領域53を形成するための加速電圧を,Pフローティング領域51,52を形成するための加速電圧よりも高くする。これに伴い,分離エリア3内のイオン注入をその他のエリアと別に行う。具体的には,図4(b)から図4(d)までのプロセスを繰り返し行う。   The second method is to make the acceleration voltage at the time of ion implantation higher than other areas. In this method, the acceleration voltage for forming the P floating region 53 is set higher than the acceleration voltage for forming the P floating regions 51 and 52. Accordingly, ion implantation in the separation area 3 is performed separately from other areas. Specifically, the processes from FIG. 4B to FIG. 4D are repeated.

[第4の形態]
第4の形態に係る半導体装置400は,図8の断面図に示す構造を有している。半導体装置400の特徴は,分離エリア3のゲートトレンチ81の溝幅が他のエリアのゲートトレンチの溝幅よりも広いことである。すなわち,マイクロローディング効果により,同じ条件でエッチングした場合であっても,溝幅が広いトレンチの方が溝幅が狭いトレンチと比較して深い位置までエッチングされる。これにより,パターニングの際にトレンチの溝幅を広くするだけでトレンチの深さを深くすることができる。よって,第3の形態と同様に,分離エリア3内の空乏層の厚さが他のエリアの厚さと比べて厚くなる。よって,分離エリア3は,他のエリアと比較して高耐圧であり,分離エリア3での絶縁破壊の抑制を図ることができる。
[Fourth form]
The semiconductor device 400 according to the fourth embodiment has the structure shown in the cross-sectional view of FIG. The semiconductor device 400 is characterized in that the groove width of the gate trench 81 in the isolation area 3 is wider than the groove width of the gate trench in other areas. That is, due to the microloading effect, even when etching is performed under the same conditions, a trench having a wider groove is etched to a deeper position than a trench having a narrower groove. As a result, the trench depth can be increased simply by widening the trench width during patterning. Therefore, as in the third embodiment, the thickness of the depletion layer in the isolation area 3 is larger than the thickness of other areas. Therefore, the isolation area 3 has a higher breakdown voltage than the other areas, and the dielectric breakdown in the isolation area 3 can be suppressed.

半導体装置400の製造プロセスでは,レジストのパターニング時に溝幅が広いパターンと狭いパターンとをパターニングする。すなわち,第1の形態の製造プロセスと比較して,図4(a)でのマスクパターンが異なるのみである。すなわち,半導体装置400では,マスク設計で対応可能であるため,第2の形態あるいは第3の形態と比較して容易に実施することができる。また,工程数も,第2の形態あるいは第3の形態と比較して少ない。   In the manufacturing process of the semiconductor device 400, a pattern having a wide groove width and a narrow pattern are patterned during resist patterning. That is, only the mask pattern in FIG. 4A is different from the manufacturing process of the first embodiment. That is, in the semiconductor device 400, since it is possible to cope with the mask design, it can be easily implemented as compared with the second embodiment or the third embodiment. In addition, the number of steps is also small compared to the second embodiment or the third embodiment.

[第5の形態]
第5の形態に係る半導体装置500は,図9の断面図に示す構造を有している。半導体装置500の特徴は,不活性領域である分離エリア3とその他の活性領域とを隔離する境界エリア4を有していることである。具体的には,分離エリア3とメインエリア1との間と,分離エリア3とセンスセル2との間とに介在している。そして,境界エリア4内にも,その他のエリアと同様に,N- ドリフト領域12に囲まれたPフローティング領域54が設けられている。さらに,メインセル1やセンスセル2と同様に,ゲート電極62を内蔵し,その底部がPフローティング領域54内に位置するゲートトレンチ61が設けられている。また,N+ ソース領域31が設けられており,境界エリア4ではゲート電極62のオンによって縦方向に電流が流れる。すなわち,境界エリア4は,活性領域である。
[Fifth embodiment]
The semiconductor device 500 according to the fifth embodiment has the structure shown in the cross-sectional view of FIG. A feature of the semiconductor device 500 is that it has a boundary area 4 that separates the isolation area 3 which is an inactive area from other active areas. Specifically, it is interposed between the separation area 3 and the main area 1 and between the separation area 3 and the sense cell 2. Also in the boundary area 4, a P floating region 54 surrounded by the N drift region 12 is provided as in the other areas. Further, similarly to the main cell 1 and the sense cell 2, a gate trench 61 is provided which includes a gate electrode 62 and whose bottom is located in the P floating region 54. Further, an N + source region 31 is provided, and in the boundary area 4, a current flows in the vertical direction when the gate electrode 62 is turned on. That is, the boundary area 4 is an active area.

さらに,境界エリア4内のPフローティング領域54は,分離エリア3内のPフローティング領域53と同等の深さに位置する。すなわち,第2乃至第4の形態のように空乏層の厚さが異なる部位(具体的には,耐圧保持機構が異なる領域同士の境界周辺)が存在すると,その部位の耐圧が低下する。一方,分離エリア3は,N+ ソース領域31が設けられていないことから,ブレイクダウン電流が流れない。そのため,分離エリア3との境界周辺についても絶縁破壊を回避することが好ましい。そこで,分離エリア3と隣接する部位に分離エリア3と同等の耐圧保持機構を有する境界エリア4を設ける。 Further, the P floating region 54 in the boundary area 4 is located at the same depth as the P floating region 53 in the separation area 3. That is, if there is a portion where the thickness of the depletion layer is different (specifically, around the boundary between regions where the pressure resistance holding mechanisms are different) as in the second to fourth embodiments, the breakdown voltage of that portion is lowered. On the other hand, since no N + source region 31 is provided in the isolation area 3, no breakdown current flows. Therefore, it is preferable to avoid dielectric breakdown also around the boundary with the separation area 3. Therefore, a boundary area 4 having a pressure resistance holding mechanism equivalent to that of the separation area 3 is provided in a portion adjacent to the separation area 3.

これにより,空乏層の厚さが異なる部位,すなわち耐圧が低下する部位は活性領域内に存在することになる。そのため,万が一,絶縁破壊が生じたとしてもブレイクダウン電流が流れるため,素子破壊を回避することができる。   As a result, a portion where the thickness of the depletion layer is different, that is, a portion where the breakdown voltage is reduced is present in the active region. Therefore, even if dielectric breakdown occurs, breakdown current flows, so that element breakdown can be avoided.

なお,境界エリア4の耐圧保持機構は,図9に示したものに限るものではない。すなわち,分離エリア3と同等の耐圧保持機構であればよく,境界エリア4の耐圧保持機構は分離エリア3に合わせることになる。例えば,第2の形態で示したようにPフローティング領域53のサイズを大きくすることで分離エリア3の耐圧を向上させている場合には,境界エリア4でもPフローティング領域54のサイズをPフローティング領域53と同程度に大きくすればよい。   In addition, the pressure | voltage resistant holding mechanism of the boundary area 4 is not restricted to what was shown in FIG. That is, any pressure resistance holding mechanism equivalent to that of the separation area 3 may be used, and the pressure resistance holding mechanism in the boundary area 4 is matched to the separation area 3. For example, when the breakdown voltage of the isolation area 3 is improved by increasing the size of the P floating region 53 as shown in the second embodiment, the size of the P floating region 54 is also changed to the P floating region in the boundary area 4. What is necessary is just to make it as large as 53.

以上詳細に説明したように第1の形態の半導体装置100は,メインセル1とセンスセル2とを隔離する分離エリア3に,メインセル1およびセンスセル2と同等の耐圧保持機構を設けることとしている。具体的には,Pフローティング領域51,52によって耐圧を支えるメインセル1,センスセル2と同様に,分離エリア3にもPフローティング領域53を設けることとしている。これにより,電界強度のピーク点を2箇所に設けることができ,分離エリア3についてもメインセル1およびセンスセル2と同様の高耐圧化を図ることができる。よって,設計時の耐圧を確保することができる。   As described above in detail, in the semiconductor device 100 of the first embodiment, a breakdown voltage holding mechanism equivalent to that of the main cell 1 and the sense cell 2 is provided in the isolation area 3 that isolates the main cell 1 and the sense cell 2. Specifically, the P floating region 53 is provided in the isolation area 3 as well as the main cell 1 and the sense cell 2 that support the breakdown voltage by the P floating regions 51 and 52. Thereby, two peak points of the electric field strength can be provided, and the breakdown voltage can be increased similarly to the main cell 1 and the sense cell 2 in the separation area 3. Therefore, the withstand voltage at the time of design can be ensured.

また,半導体装置100では,分離エリア3内にもゲート電極84を設けることとしている。これにより,空乏層の厚さがメインセル1およびセンスセル2と同等になる。よって,分離エリア3での耐圧の低下がより抑制される。   In the semiconductor device 100, the gate electrode 84 is also provided in the isolation area 3. Thereby, the thickness of the depletion layer becomes equal to that of the main cell 1 and the sense cell 2. Therefore, a decrease in breakdown voltage in the separation area 3 is further suppressed.

また,半導体装置100では,分離エリア3内にもPフローティング領域53および底部がPフローティング領域53に達するゲートトレンチ81を設けることとしている。これにより,耐圧保持機構がメインセル1およびセンスセル2に対してより近似し,分離エリア3での耐圧の低下がより抑制される。さらに,ゲートトレンチ81が横方向の電流の流れを抑制することになる。そのため,分離エリア3から流れ込む電流の影響が小さく,電流センス比が従来の構造と比較して正確となる。   In the semiconductor device 100, the P floating region 53 and the gate trench 81 whose bottom reaches the P floating region 53 are also provided in the isolation area 3. As a result, the breakdown voltage holding mechanism is more approximate to the main cell 1 and the sense cell 2, and a decrease in breakdown voltage in the isolation area 3 is further suppressed. Furthermore, the gate trench 81 suppresses the current flow in the lateral direction. Therefore, the influence of the current flowing from the separation area 3 is small, and the current sense ratio is more accurate than the conventional structure.

また,第2の形態の半導体装置200では,分離エリア3内のPフローティング領域53のサイズを,メインセル1およびセンスセル2よりも大きくすることとしている。これにより,分離エリア3がメインセル1およびセンスセル2よりも確実に高耐圧となる。よって,分離エリア3での絶縁破壊が抑制され,設計時の耐圧を確実に確保することができる。   In the semiconductor device 200 of the second embodiment, the size of the P floating region 53 in the isolation area 3 is made larger than that of the main cell 1 and the sense cell 2. This ensures that the isolation area 3 has a higher breakdown voltage than the main cell 1 and the sense cell 2. Therefore, dielectric breakdown in the separation area 3 is suppressed, and the withstand voltage at the time of design can be ensured reliably.

また,第3の形態の半導体装置300では,分離エリア3内のPフローティング領域53の厚さ方向の位置を,メインセル1およびセンスセル2よりも深くすることとしている。これにより,分離エリア3がメインセル1およびセンスセル2よりも確実に高耐圧となる。よって,半導体装置300によっても半導体装置200と同様に,分離エリア3での絶縁破壊が抑制され,設計時の耐圧を確実に確保することができる。   Further, in the semiconductor device 300 of the third embodiment, the position in the thickness direction of the P floating region 53 in the isolation area 3 is made deeper than the main cell 1 and the sense cell 2. This ensures that the isolation area 3 has a higher breakdown voltage than the main cell 1 and the sense cell 2. Therefore, also in the semiconductor device 300, as in the semiconductor device 200, the dielectric breakdown in the isolation area 3 is suppressed, and the withstand voltage at the time of design can be reliably ensured.

また,第4の形態の半導体装置400では,分離エリア3内のゲートトレンチ81の溝幅を,メインセル1およびセンスセル2よりも広くすることとしている。これにより,マイクロローディング効果によって,同一のトレンチエッチング工程でゲートトレンチ81の深さをゲートトレンチ51,71よりも深くすることができる。すなわち,半導体装置300や半導体装置400よりも簡素な工程により分離エリア3の高耐圧を図ることができる。   In the semiconductor device 400 of the fourth embodiment, the groove width of the gate trench 81 in the isolation area 3 is made wider than that of the main cell 1 and the sense cell 2. Thereby, the depth of the gate trench 81 can be made deeper than that of the gate trenches 51 and 71 in the same trench etching process due to the microloading effect. That is, a high breakdown voltage of the separation area 3 can be achieved by a simpler process than the semiconductor device 300 or the semiconductor device 400.

また,第5の形態の半導体装置500では,分離エリア3とその他のエリアとを隔離する境界エリア4を設け,境界エリア4の耐圧保持機構を分離エリア3と同等とすることとしている。例えば,境界エリア4内にPフローティング領域54を設け,そのサイズおよび厚さ方向の位置を分離エリア3内のPフローティング領域53に合わせることとしている。これにより,不活性エリアでの絶縁破壊を確実に防止することができる。さらに,耐圧が低下する位置が活性エリア内となるため,万が一,絶縁破壊が生じたとしても電流の逃げ道は確保される。よって,素子破壊が防止される。   Further, in the semiconductor device 500 of the fifth embodiment, the boundary area 4 that isolates the separation area 3 from other areas is provided, and the withstand voltage holding mechanism of the boundary area 4 is made equal to that of the separation area 3. For example, a P floating region 54 is provided in the boundary area 4, and the size and position in the thickness direction are matched with the P floating region 53 in the separation area 3. As a result, dielectric breakdown in the inactive area can be reliably prevented. Furthermore, since the position where the withstand voltage decreases is within the active area, a current escape path is ensured even if dielectric breakdown occurs. Therefore, element destruction is prevented.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,ゲート絶縁膜24については,酸化膜に限らず,窒化膜等の他の種類の絶縁膜でもよいし,複合膜でもよい。また,半導体についても,シリコンに限らず,他の種類の半導体(SiC,GaN,GaAs等)であってもよい。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the gate insulating film 24 is not limited to an oxide film, and may be another type of insulating film such as a nitride film or a composite film. Also, the semiconductor is not limited to silicon, but may be other types of semiconductors (SiC, GaN, GaAs, etc.).

また,実施の形態の半導体装置は,図10に示すような伝導度変調型パワーMOS(IGBT)に対しても適用可能である。   The semiconductor device of the embodiment can also be applied to a conductivity modulation type power MOS (IGBT) as shown in FIG.

第1の形態に係るトレンチゲート半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trench gate semiconductor device which concerns on a 1st form. 図1の半導体装置におけるA−A断面の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the AA cross section in the semiconductor device of FIG. 1. 第1の形態に係るトレンチゲート型半導体装置の電流の流れを示す図である。It is a figure which shows the flow of the electric current of the trench gate type semiconductor device which concerns on a 1st form. 図1に示したトレンチゲート型半導体装置の製造工程を示す図(その1)である。FIG. 3 is a diagram (part 1) illustrating a manufacturing process of the trench gate type semiconductor device illustrated in FIG. 1; 図1に示したトレンチゲート型半導体装置の製造工程を示す図(その2)である。FIG. 4 is a diagram (part 2) illustrating a manufacturing process of the trench gate type semiconductor device illustrated in FIG. 1; 第2の形態に係るトレンチゲート半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trench gate semiconductor device which concerns on a 2nd form. 第3の形態に係るトレンチゲート半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trench gate semiconductor device which concerns on a 3rd form. 第4の形態に係るトレンチゲート半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trench gate semiconductor device which concerns on a 4th form. 第5の形態に係るトレンチゲート半導体装置の構造を示す平面図である。It is a top view which shows the structure of the trench gate semiconductor device which concerns on a 5th form. 本発明を伝導度変調型の半導体装置に適用した例を示す図である。It is a figure which shows the example which applied this invention to the conductivity modulation type semiconductor device. 従来の形態に係るトレンチゲート型半導体装置のデバイス構造を示す断面図である。It is sectional drawing which shows the device structure of the trench gate type semiconductor device which concerns on the conventional form. 従来の形態に係るトレンチゲート型半導体装置の電流の流れを示す図である。It is a figure which shows the flow of the electric current of the trench gate type semiconductor device which concerns on the conventional form. Pフローティング領域を有するトレンチゲート型半導体装置のデバイス構造を示す断面図である。It is sectional drawing which shows the device structure of the trench gate type semiconductor device which has P floating region.

符号の説明Explanation of symbols

1 メインセル(メインセル領域)
2 センスセル(センスセル領域)
3 分離エリア(分離領域)
4 境界エリア(第2分離領域)
11 N+ ドレイン領域
12 N- ドリフト領域(ドリフト領域)
21 ゲートトレンチ(第1トレンチ部)
22 ゲート電極(ゲート電極)
23 堆積絶縁層
24 ゲート絶縁膜
31 N+ ソース領域
41 P- ボディ領域(ボディ領域)
51 Pフローティング領域(第1フローティング領域)
52 Pフローティング領域(第2フローティング領域)
53 Pフローティング領域(第3フローティング領域)
54 Pフローティング領域(第4フローティング領域)
61 ゲートトレンチ
62 ゲート電極
71 ゲートトレンチ(第2トレンチ部)
72 ゲート電極(ゲート電極)
81 ゲートトレンチ(第3トレンチ部)
82 ゲート電極(導体領域)
100 半導体装置(トレンチゲート型半導体装置)
1 Main cell (main cell area)
2 Sense cell (sense cell area)
3 separation area (separation area)
4 border area (second separation area)
11 N + drain region 12 N drift region (drift region)
21 Gate trench (first trench part)
22 Gate electrode (gate electrode)
23 deposited insulating layer 24 gate insulating film 31 N + source region 41 P - body region (body region)
51 P floating area (first floating area)
52 P floating area (second floating area)
53 P floating area (third floating area)
54 P floating area (fourth floating area)
61 Gate trench 62 Gate electrode 71 Gate trench (second trench portion)
72 Gate electrode (gate electrode)
81 Gate trench (third trench)
82 Gate electrode (conductor area)
100 Semiconductor device (trench gate type semiconductor device)

Claims (11)

メインセル領域と,センスセル領域と,前記メインセル領域と前記センスセル領域とを隔離する分離領域とを備え,トレンチゲート構造を有するトレンチゲート型半導体装置において,
半導体基板の主表面側に位置し,第1導電型半導体であるドリフト領域と,
前記ドリフト領域の上面側に位置し,第2導電型半導体であるボディ領域と,
前記ドリフト領域に囲まれるとともに前記メインセル領域内に位置し,第2導電型半導体である第1フローティング領域と,
前記ドリフト領域に囲まれるとともに前記センスセル領域内に位置し,第2導電型半導体である第2フローティング領域と,
前記ドリフト領域に囲まれるとともに前記分離領域内に位置し,第2導電型半導体である第3フローティング領域とを有することを特徴とするトレンチゲート型半導体装置。
In a trench gate type semiconductor device comprising a main cell region, a sense cell region, and an isolation region separating the main cell region and the sense cell region, and having a trench gate structure,
A drift region located on the main surface side of the semiconductor substrate and being a first conductivity type semiconductor;
A body region located on the upper surface side of the drift region and being a second conductivity type semiconductor;
A first floating region surrounded by the drift region and located in the main cell region and being a second conductivity type semiconductor;
A second floating region surrounded by the drift region and located in the sense cell region and being a second conductivity type semiconductor;
A trench gate type semiconductor device comprising a third floating region which is surrounded by the drift region and located in the isolation region and which is a second conductivity type semiconductor.
請求項1に記載するトレンチゲート型半導体装置において,
前記分離領域内に位置し,ゲート電極と電気的に接続するとともにトレンチ構造を有する導体領域を有することを特徴とするトレンチゲート型半導体装置。
The trench gate type semiconductor device according to claim 1,
A trench gate type semiconductor device having a conductor region located in the isolation region and electrically connected to the gate electrode and having a trench structure.
請求項2に記載するトレンチゲート型半導体装置において,
前記ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が前記第1フローティング領域に位置し,ゲート電極を内蔵する第1トレンチ部と,
前記ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が前記第2フローティング領域に位置し,ゲート電極を内蔵する第2トレンチ部と,
前記ボディ領域を半導体基板の厚さ方向に貫通するとともにその底部が前記第3フローティング領域に位置し,前記導体領域を内蔵する第3トレンチ部とを有することを特徴とするトレンチゲート型半導体装置。
The trench gate type semiconductor device according to claim 2,
A first trench portion penetrating the body region in a thickness direction of the semiconductor substrate and having a bottom portion located in the first floating region and incorporating a gate electrode;
A second trench portion penetrating the body region in a thickness direction of the semiconductor substrate and having a bottom portion located in the second floating region and incorporating a gate electrode;
A trench gate type semiconductor device comprising: a third trench portion penetrating the body region in a thickness direction of the semiconductor substrate and having a bottom portion located in the third floating region and incorporating the conductor region.
請求項3に記載するトレンチゲート型半導体装置において,
前記第3フローティング領域の高さ寸法は,前記第1フローティング領域の高さ寸法や前記第2フローティング領域の高さ寸法と比較して大きいことを特徴とするトレンチゲート型半導体装置。
In the trench gate type semiconductor device according to claim 3,
A trench gate type semiconductor device, wherein a height dimension of the third floating region is larger than a height dimension of the first floating region and a height dimension of the second floating region.
請求項3に記載するトレンチゲート型半導体装置において,
前記第3フローティング領域の半導体基板の厚さ方向の位置は,前記第1フローティング領域の位置および前記第2フローティング領域の位置と比較して深いことを特徴とするトレンチゲート型半導体装置。
In the trench gate type semiconductor device according to claim 3,
A trench gate type semiconductor device, wherein a position of the third floating region in a thickness direction of the semiconductor substrate is deeper than a position of the first floating region and a position of the second floating region.
請求項5に記載するトレンチゲート型半導体装置において,
前記第3フローティング領域の溝幅は,前記第1フローティング領域の溝幅および前記第2フローティング領域の溝幅と比較して広いことを特徴とするトレンチゲート型半導体装置。
The trench gate type semiconductor device according to claim 5,
A trench gate type semiconductor device, wherein a groove width of the third floating region is wider than a groove width of the first floating region and a groove width of the second floating region.
請求項1から請求項6のいずれか1つに記載するトレンチゲート型半導体装置において,
前記分離領域と隣接し,活性領域であるとともに前記分離領域を前記メインセル領域と前記センスセル領域との少なくとも一方から隔離する第2分離領域を備え,
前記第2分離領域内には,
前記ドリフト領域に囲まれ,第2導電型半導体である第4フローティング領域が設けられ,
前記第4フローティング領域の形態は,前記第3フローティング領域と略同一であることを特徴とするトレンチゲート型半導体装置。
In the trench gate type semiconductor device according to any one of claims 1 to 6,
A second isolation region that is adjacent to the isolation region, is an active region, and isolates the isolation region from at least one of the main cell region and the sense cell region;
In the second separation region,
A fourth floating region which is surrounded by the drift region and is a second conductivity type semiconductor is provided;
The form of the fourth floating region is substantially the same as that of the third floating region.
メインセル領域と,センスセル領域と,前記メインセル領域と前記センスセル領域とを隔離する分離領域とを備え,トレンチゲート構造を有するトレンチゲート型半導体装置の製造方法において,
半導体基板の上面にマスク材を形成し,そのマスク材をパターニングするパターニング工程と,
前記パターニング工程の後に,マスクパターンに従って半導体基板を厚さ方向に掘り下げることにより,前記分離領域内に,第2導電型半導体であるボディ領域を貫通し,その底部が第1導電型半導体であるドリフト領域まで達するトレンチ部を形成するトレンチ部形成工程と,
前記トレンチ部形成工程の後に,前記トレンチ部の底部から不純物を注入することにより,第2導電型半導体であるフローティング領域を形成する不純物注入工程とを含むことを特徴とするトレンチゲート型半導体装置の製造方法。
In a manufacturing method of a trench gate type semiconductor device having a main cell region, a sense cell region, and an isolation region that isolates the main cell region and the sense cell region, and having a trench gate structure,
A patterning step of forming a mask material on the upper surface of the semiconductor substrate and patterning the mask material;
After the patterning step, the semiconductor substrate is dug in the thickness direction according to the mask pattern, thereby penetrating the body region, which is the second conductivity type semiconductor, into the isolation region, and the bottom of the drift is the first conductivity type semiconductor. A trench portion forming step for forming a trench portion reaching the region;
An impurity implantation step of forming a floating region which is a second conductivity type semiconductor by implanting impurities from the bottom of the trench portion after the trench portion forming step. Production method.
請求項8に記載するトレンチゲート型半導体装置の製造方法において,
前記トレンチ部形成工程では,前記分離領域内に位置するトレンチ部を形成するとともに,前記メインセル領域内に位置するトレンチ部と前記センスセル領域内に位置するトレンチ部との少なくとも一方を形成することを特徴とするトレンチゲート型半導体装置の製造方法。
In the manufacturing method of the trench gate type semiconductor device according to claim 8,
The trench part forming step includes forming a trench part located in the isolation region and forming at least one of a trench part located in the main cell region and a trench part located in the sense cell region. A method for manufacturing a trench gate type semiconductor device.
請求項8または請求項9に記載するトレンチゲート型半導体装置の製造方法において,
前記パターニング工程では,前記分離領域内に形成されるトレンチ部の溝幅を前記メインセル領域および前記センスセル領域内に形成されるトレンチ部の溝幅よりも大きくなるようにパターニングすることを特徴とするトレンチゲート型半導体装置の製造方法。
In the manufacturing method of the trench gate type semiconductor device according to claim 8 or 9,
In the patterning step, patterning is performed such that the groove width of the trench portion formed in the isolation region is larger than the groove width of the trench portion formed in the main cell region and the sense cell region. A method of manufacturing a trench gate type semiconductor device.
請求項8から請求項10のいずれか1つに記載するトレンチゲート型半導体装置の製造方法において,
前記トレンチ部の中に,その上端が前記フローティング領域の上端よりも上方に位置する絶縁層を形成する絶縁層形成工程と,
前記絶縁層上に導体層を形成する導体層形成工程を含むことを特徴とするトレンチゲート型半導体装置の製造方法。
In the manufacturing method of the trench gate type semiconductor device according to any one of claims 8 to 10,
An insulating layer forming step of forming an insulating layer in the trench portion, the upper end of which is located above the upper end of the floating region;
A method of manufacturing a trench gate type semiconductor device, comprising a conductor layer forming step of forming a conductor layer on the insulating layer.
JP2004278187A 2004-09-24 2004-09-24 Trench gate type semiconductor device and manufacturing method thereof Expired - Fee Related JP4500639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278187A JP4500639B2 (en) 2004-09-24 2004-09-24 Trench gate type semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278187A JP4500639B2 (en) 2004-09-24 2004-09-24 Trench gate type semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006093459A true JP2006093459A (en) 2006-04-06
JP4500639B2 JP4500639B2 (en) 2010-07-14

Family

ID=36234125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278187A Expired - Fee Related JP4500639B2 (en) 2004-09-24 2004-09-24 Trench gate type semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4500639B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021918A (en) * 2006-07-14 2008-01-31 Mitsubishi Electric Corp Semiconductor device
JP2009182113A (en) * 2008-01-30 2009-08-13 Renesas Technology Corp Semiconductor device, and manufacturing method of the same
JPWO2010119789A1 (en) * 2009-04-13 2012-10-22 ローム株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2012253391A (en) * 2008-01-29 2012-12-20 Fuji Electric Co Ltd Semiconductor device
CN102947934A (en) * 2010-06-24 2013-02-27 三菱电机株式会社 Power semiconductor device
US8963242B2 (en) 2012-09-21 2015-02-24 Kabushiki Kaisha Toshiba Power semiconductor device
US9318586B2 (en) 2012-09-21 2016-04-19 Samsung Electronics Co., Ltd. High voltage semiconductor device and method for fabricating the same
JP2016063107A (en) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 Semiconductor device
JP2020191422A (en) * 2019-05-23 2020-11-26 富士電機株式会社 Semiconductor device
JPWO2019155783A1 (en) * 2018-02-06 2021-01-14 住友電気工業株式会社 Silicon carbide semiconductor device
JP2021034528A (en) * 2019-08-22 2021-03-01 株式会社デンソー Switching element
CN113054012A (en) * 2021-02-23 2021-06-29 杭州士兰微电子股份有限公司 Insulated gate bipolar transistor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240194780A1 (en) 2021-05-27 2024-06-13 Mitsubishi Electric Corporation Semiconductor device and power conversion apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506335A (en) * 1991-01-31 1993-09-16 シリコニックス・インコーポレイテッド Power MOS field effect transistor
JPH1070271A (en) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd Improvement of semiconductor device
JPH1117179A (en) * 1997-06-24 1999-01-22 Toshiba Corp Semiconductor device
JP2000323707A (en) * 1999-05-07 2000-11-24 Hitachi Ltd Semiconductor device
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506335A (en) * 1991-01-31 1993-09-16 シリコニックス・インコーポレイテッド Power MOS field effect transistor
JPH1070271A (en) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd Improvement of semiconductor device
JPH1117179A (en) * 1997-06-24 1999-01-22 Toshiba Corp Semiconductor device
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
JP2000323707A (en) * 1999-05-07 2000-11-24 Hitachi Ltd Semiconductor device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021918A (en) * 2006-07-14 2008-01-31 Mitsubishi Electric Corp Semiconductor device
US9466711B2 (en) 2008-01-29 2016-10-11 Fuji Electric Co., Ltd. Semiconductor device
JP2012253391A (en) * 2008-01-29 2012-12-20 Fuji Electric Co Ltd Semiconductor device
US11749675B2 (en) 2008-01-29 2023-09-05 Fuji Electric Co., Ltd. Semiconductor device
US10916541B2 (en) 2008-01-29 2021-02-09 Fuji Electric Co., Ltd. Semiconductor device
JP2009182113A (en) * 2008-01-30 2009-08-13 Renesas Technology Corp Semiconductor device, and manufacturing method of the same
US8129780B2 (en) 2008-01-30 2012-03-06 Renesas Electronics Corporation Semiconductor device having a trench type high-power MISFET
JPWO2010119789A1 (en) * 2009-04-13 2012-10-22 ローム株式会社 Semiconductor device and manufacturing method of semiconductor device
CN102947934A (en) * 2010-06-24 2013-02-27 三菱电机株式会社 Power semiconductor device
KR101527270B1 (en) * 2010-06-24 2015-06-09 미쓰비시덴키 가부시키가이샤 Power semiconductor device
US20130168700A1 (en) * 2010-06-24 2013-07-04 Mitsubishi Electric Corporation Power semiconductor device
US9293572B2 (en) * 2010-06-24 2016-03-22 Mitsubishi Electric Corporation Power semiconductor device
US8963242B2 (en) 2012-09-21 2015-02-24 Kabushiki Kaisha Toshiba Power semiconductor device
US9318586B2 (en) 2012-09-21 2016-04-19 Samsung Electronics Co., Ltd. High voltage semiconductor device and method for fabricating the same
JP2016063107A (en) * 2014-09-19 2016-04-25 トヨタ自動車株式会社 Semiconductor device
JPWO2019155783A1 (en) * 2018-02-06 2021-01-14 住友電気工業株式会社 Silicon carbide semiconductor device
JP7156314B2 (en) 2018-02-06 2022-10-19 住友電気工業株式会社 Silicon carbide semiconductor device
US11784217B2 (en) 2018-02-06 2023-10-10 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
JP2020191422A (en) * 2019-05-23 2020-11-26 富士電機株式会社 Semiconductor device
JP7306060B2 (en) 2019-05-23 2023-07-11 富士電機株式会社 semiconductor equipment
JP2021034528A (en) * 2019-08-22 2021-03-01 株式会社デンソー Switching element
JP7326991B2 (en) 2019-08-22 2023-08-16 株式会社デンソー switching element
CN113054012A (en) * 2021-02-23 2021-06-29 杭州士兰微电子股份有限公司 Insulated gate bipolar transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP4500639B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4414863B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP4453671B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP5569162B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
JP4735235B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP4735224B2 (en) Insulated gate semiconductor device and manufacturing method thereof
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
US20100065908A1 (en) Alignment of trench for mos
JP5136578B2 (en) Semiconductor device
JP2005510881A5 (en)
JP2006210392A (en) Semiconductor device and manufacturing method thereof
JP4261335B2 (en) Manufacture of trench gate semiconductor devices
JP2012009545A (en) Semiconductor device manufacturing method
JP2010114152A (en) Semiconductor device, and method of manufacturing the same
JP2009088005A (en) Semiconductor device and method of manufacturing the same
JP4500639B2 (en) Trench gate type semiconductor device and manufacturing method thereof
JP4447474B2 (en) Semiconductor device and manufacturing method thereof
US20230207689A1 (en) Manufacturing method of semiconductor device and semiconductor device
KR20180090928A (en) Power semiconductor device and manufacturing method thereof
JP2005223255A (en) Insulated gate semiconductor apparatus and its manufacturing process
JP2006093193A (en) Semiconductor device and its manufacturing method
US20220285549A1 (en) Semiconductor device comprising mutually separated trench structures
JP2004200441A (en) Semiconductor device and its manufacturing method
JP2005252204A (en) Insulating gate type semiconductor device and method of manufacturing the same
JP2010192691A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4500639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees