JP2006092606A - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
JP2006092606A
JP2006092606A JP2004274074A JP2004274074A JP2006092606A JP 2006092606 A JP2006092606 A JP 2006092606A JP 2004274074 A JP2004274074 A JP 2004274074A JP 2004274074 A JP2004274074 A JP 2004274074A JP 2006092606 A JP2006092606 A JP 2006092606A
Authority
JP
Japan
Prior art keywords
light
order light
order
region
diffractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004274074A
Other languages
Japanese (ja)
Inventor
Masahiro Matsumaru
正宏 松丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004274074A priority Critical patent/JP2006092606A/en
Publication of JP2006092606A publication Critical patent/JP2006092606A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup device in which tracking adjustment is easily conducted by a tracking signal whose offset voltage is eliminated, even though the position of a lens 6 is moved with respect to an optical recording medium 8. <P>SOLUTION: The optical pickup device conducts tracking control and has: a semiconductor laser 1; a condenser lens 6; a composite diffraction element 10 which has a plurality of diffraction divided surfaces that receive reflected light beams 13 being reflected from an optical recording medium 8, diffracted and generated and diffract and divide the beams 13 into a plurality of light beams; an optical detector 11 which receives the plurality of diffracted and divided light beams so as to convert the beams into electric signals; and a push-pull circuit 14 which receives electric signals from the optical detector 11 and outputs a tracking signal. The composite diffraction element 10 having the plurality of diffraction divided surfaces, divides the portion where the zero-order light beams and the ±first-order light beams among the reflected light beams 13 generated from the optical recording medium 8 are overlapped, into two, and emits the one to the optical detector 11 and the other to the outside of the optical detector 11, and also emits only the portion of all zero-order light beams of the reflected light beams 13 generated from the optical recording medium 8 to the optical detector 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、光記録媒体としての光ディスクに、画像や情報を記録、再生するための光ピックアップ装置及びその動作方法に関する。   The present invention relates to an optical pickup device for recording and reproducing an image and information on an optical disk as an optical recording medium, and an operation method thereof.

図8に従来の光ピックアップ装置の概要を示し説明する。
この光ピックアップ装置は、光ビーム12を発生する半導体レーザ素子からなるレーザ1、光ビーム12を平行光にするレンズ2、レーザ1の方向からの光ビーム12は通過し、反対方向からの光ビームは反射する偏光プリズム3、光ビームの光路を変更する全反射ミラー4、レーザ光を円偏光するλ/4板5、光ビーム13を集光するレンズ6、レンズ6を稼動してトラッキング位置を合わせるムービングコイル7、画像や情報を記録する光記録媒体として使用される光ディスク8、反射光13を集光するレンズ9、反射光13を受光し回折する回折素子10‘、回折された反射光13を受光し電気信号に変換する光検出器11及び光検出器11から出力される電気信号を入力しトラッキング信号を出力するプッシュプル回路14から構成される。
FIG. 8 shows an outline of a conventional optical pickup device and will be described.
This optical pickup device includes a laser 1 composed of a semiconductor laser element that generates a light beam 12, a lens 2 that converts the light beam 12 into parallel light, a light beam 12 from the direction of the laser 1, and a light beam from the opposite direction. Operates the reflecting prism 3, the total reflection mirror 4 that changes the optical path of the light beam, the λ / 4 plate 5 that circularly polarizes the laser light, the lens 6 that condenses the light beam 13, and the lens 6. Moving coil 7 to be combined, optical disk 8 used as an optical recording medium for recording images and information, lens 9 for condensing reflected light 13, diffractive element 10 ′ for receiving and diffracting reflected light 13, and diffracted reflected light 13 And a push-pull circuit 14 that receives an electrical signal output from the photodetector 11 and outputs a tracking signal. .

まずレーザ1から出射された光ビーム12をレンズ2で平行光に揃え、偏光プリズム3を通過させた後全反射ミラー4で光ディスク8の方向に光ビーム12を反射させた後、λ/4板5で円偏光してレンズ6で光ディスク8の記録面に集光する。レンズ6はムービングコイル7により可動し光ディスク8のトラック(案内溝)に光ビームの位置を合わせる。   First, the light beam 12 emitted from the laser 1 is made into parallel light by the lens 2, passed through the polarizing prism 3, reflected by the total reflection mirror 4 in the direction of the optical disk 8, and then the λ / 4 plate. The light is circularly polarized by 5 and condensed on the recording surface of the optical disk 8 by the lens 6. The lens 6 is moved by the moving coil 7 and aligns the position of the light beam with the track (guide groove) of the optical disk 8.

光ディスク8の記録面にはレンズ6により集光された光ビーム12の集光スポットが常に所定の半径位置を追従し得るようにするために、光ディスク8にはグルーブと呼ばれる案内溝が設けられている。
この案内溝で反射された光ビーム12は0次回折光、−1次回折光、+1次回折光で構成される反射光13となってレンズ6、λ/4板5、全反射ミラー4を経由して偏光プリズム3で全反射された反射光13がレンズ9で集光され回折素子10‘で回折して光検出器11により受光される。
On the recording surface of the optical disc 8, a guide groove called a groove is provided on the optical disc 8 so that the condensing spot of the light beam 12 collected by the lens 6 can always follow a predetermined radial position. Yes.
The light beam 12 reflected by this guide groove becomes reflected light 13 composed of 0th-order diffracted light, −1st-order diffracted light, and + 1st-order diffracted light, and passes through the lens 6, λ / 4 plate 5, and total reflection mirror 4. The reflected light 13 totally reflected by the polarizing prism 3 is collected by the lens 9, diffracted by the diffraction element 10 ′, and received by the photodetector 11.

光検出器11は4つの光検出部A,B,C,Dで構成され受光した光ビームの反射光を2つの電気信号に変換して出力する。
この2つの電気信号は光検出部C,Dの加算信号と光検出部A,Bの加算信号をプッシュプル回路14へ送り、そしてプッシュプル回路14からトラッキング信号TEを出力する。このトラッキング信号TEは光ディスク8の案内溝の中心部で反射されればTE=0となる。
The photodetector 11 includes four photodetectors A, B, C, and D, converts the reflected light of the received light beam into two electrical signals and outputs them.
These two electrical signals are sent to the push-pull circuit 14 as an addition signal from the photodetecting units C and D and from the push-pull circuit 14, and output a tracking signal TE from the push-pull circuit 14. If this tracking signal TE is reflected at the center of the guide groove of the optical disc 8, TE = 0.

もし、案内溝の中心から反射光が外れればトラッキング信号TEに差分電圧が発生するから、この発生した電圧を制御信号としてムービングコイル7へ送りレンズ6を可動して案内溝の中心へ移動させてトラッキング調整を行う。
このようにして、グルーブの中心にレンズ6により集光された集光スポットの中心を常に一致させる。
If the reflected light deviates from the center of the guide groove, a differential voltage is generated in the tracking signal TE. The generated voltage is sent to the moving coil 7 as a control signal to move the lens 6 and move it to the center of the guide groove. Make tracking adjustments.
In this way, the center of the focused spot focused by the lens 6 is always aligned with the center of the groove.

光検出器11における0次回折光はほぼ100%検出するような寸法に設定される。すなわち0次回折光直径D0に対し横方法に光検出器幅W0、縦方向に光検出器長さL0の寸法に光検出器を設定するが、反射光を十分に受光するためD0<W0,L0とする。
具体例としては、光検出器11の寸法を縦、横共に6000λ(λ:光の波長、例として650nmに設定)とする。
The size of the zero-order diffracted light in the photodetector 11 is set so as to detect almost 100%. That is, the photodetector is set to the dimension of the photodetector width W0 laterally with respect to the 0th-order diffracted light diameter D0 and the photodetector length L0 longitudinally, but D0 <W0, L0 in order to sufficiently receive the reflected light. And
As a specific example, the size of the photodetector 11 is 6000λ (λ: wavelength of light, for example, set to 650 nm) in both the vertical and horizontal directions.

図9に光検出器11に照射される光ディスク8により反射された反射光13による0次光、−1次光、+1次光の分布例を示す。そして光検出器11上において図10(1)に示すように、A1,A2,C1,C2は0次光のみの部分、B1,B2は0次光と−1次光の重畳した部分、D1,D2は0次光、+1次光の重畳した部分であり、図10(2)に示すように−1次光はEの部分、+1次光はFの部分とする。   FIG. 9 shows an example of the distribution of the 0th-order light, the −1st-order light, and the + 1st-order light by the reflected light 13 reflected by the optical disk 8 irradiated on the photodetector 11. On the photodetector 11, as shown in FIG. 10 (1), A1, A2, C1, and C2 are portions of only the 0th order light, B1 and B2 are portions where the 0th order light and the −1st order light are superimposed, D1 , D2 are portions where the 0th-order light and the + 1st-order light are superimposed. As shown in FIG. 10B, the −1st-order light is the E portion and the + 1st-order light is the F portion.

そして4つの光検出部に分割されている光検出器11の出力を左右に2つずつ合成してプッシュプル回路14にそれぞれ入力しトラッキング信号TEを検出すると、光ディスク8上でトラックに入射する光と反射する光が相互に干渉して回折されるため−1次光、+1次光はオフセット分を含まない交流分となるのに対し、光ディスク8上で入射する光が直接反射する光となる0次光はオフセット分が主体となる。このオフセット分はレンズ6と光ディスク8との間の傾斜で変化する。   Then, when the outputs of the photodetectors 11 divided into four photodetectors are combined into two on the left and right and input to the push-pull circuit 14 to detect the tracking signal TE, the light incident on the track on the optical disk 8 And -1st order light and + 1st order light are AC components that do not include an offset component, whereas light incident on the optical disc 8 is directly reflected light. The zero-order light is mainly offset. This offset changes with the inclination between the lens 6 and the optical disk 8.

0次光の部分を左右に分割すると最適に半分ずつ位置調整された場合は等しくなるが、レンズ6と光ディスク8との間に傾斜があると光ディスクの内周側と外周側でオフセット分が異なってくる。   If the zero-order light part is divided into left and right parts, the positions are optimally adjusted by half, but if there is an inclination between the lens 6 and the optical disk 8, the offset is different between the inner and outer peripheral sides of the optical disk. Come.

このため、図10(3)に示すように右側のD=D1+D2は0次光で、+1次光Fと重畳した部分であり、左側のB=B1+B2は0次光で、−1次光Eと重畳した部分であり、この右側半分の0次光(D)と左側半分の0次光(B)によるオフセット分が異なってくるため、これを光検出器11に入射しプッシュプル回路14で電気信号に変換し差分をとってトラッキング信号TE=(E+B)−(F+D)とすると図10(4)に示すようにトラッキング信号TEのオフセット分は0とならず、この結果トラック位置調整時に誤動作を生ずる。   For this reason, as shown in FIG. 10 (3), D = D1 + D2 on the right side is the 0th order light and is a portion superimposed on the + 1st order light F, B = B1 + B2 on the left side is the 0th order light, and the −1st order light E Since the offset due to the right half 0th order light (D) and the left half 0th order light (B) is different, it is incident on the photodetector 11 and pushed by the push-pull circuit 14. When converted into an electrical signal and the difference is taken to make the tracking signal TE = (E + B) − (F + D), as shown in FIG. 10 (4), the offset of the tracking signal TE does not become 0, and as a result, malfunction occurs when adjusting the track position. Is produced.

このオフセット電圧については特許文献1の図5及び図10に、前述の説明のように変動することが記載されている。
そして、回折素子については特許文献1に記載されているように1面のみに回折部分を設けている。このためオフセット分を調整するため、特許文献1に記載されているように種々の形状のレンズを付加する必要があった。
特開2003−123279
It is described in FIG. 5 and FIG. 10 of Patent Document 1 that the offset voltage varies as described above.
As for the diffractive element, as described in Patent Document 1, a diffractive portion is provided on only one surface. Therefore, in order to adjust the offset, it is necessary to add lenses having various shapes as described in Patent Document 1.
JP 2003-123279 A

しかしながら、上述したように図8に示す従来の標準的な形状の光検出器11で、光ディスク8から光ビーム12を反射して得られた反射光13として0次光、−1次光、+1次光を生成し、これを回折素子10‘を通過させた後光検出器11で受光して図8に示すプッシュプル回路14に加えてトラッキング信号を得ようとすると、図10のグラフから分かるように、レンズ6と光ディスク8が傾斜していると光ディスク8に対するレンズ6の位置が移動するほどトラッキング信号に含まれるオフセット電圧(直流分)が増大するためトラッキング調整が困難であるという問題点があった。   However, as described above, the reflected light 13 obtained by reflecting the light beam 12 from the optical disk 8 with the conventional standard-shaped photodetector 11 shown in FIG. When the next light is generated and passed through the diffractive element 10 ′ and received by the photodetector 11 to obtain the tracking signal in addition to the push-pull circuit 14 shown in FIG. 8, it can be seen from the graph of FIG. As described above, when the lens 6 and the optical disk 8 are tilted, the offset voltage (DC component) included in the tracking signal increases as the position of the lens 6 with respect to the optical disk 8 moves, so that tracking adjustment becomes difficult. there were.

そこで本発明は、上記のような問題点を解消するためになされたもので、オフセット電圧に影響されないで容易なトラッキング調整を行うことができる光ピックアップ装置及びその動作方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide an optical pickup device capable of performing easy tracking adjustment without being affected by an offset voltage, and an operation method thereof. To do.

上記目的を達成するための手段として、本発明は、光記録媒体に照射する光ビームを出射するための半導体レーザと、前記半導体レーザから出射した光ビームを集光して集光スポットを生成し前記光記録媒体に照射する集光レンズと、前記光記録媒体から反射された反射光を回折する回折素子と、複数の分割領域を有し、前記回折素子で回折された回折光を受光して光電変換する光検出器と、前記光検出器で光電変換された電気信号からトラッキング信号を得るプッシュプル回路とを有する光ピックアップ装置であって、前記回折素子は、前記光記録媒体からの反射光を入射する一方の面が前記反射光を回折すると共に屈折させ0次光と±1次光に分岐する第1回折屈折面を有し、前記第1回折屈折面で分岐された0次光と±1次光を入射する他方の面が中央部に遮光領域と、直径方向にあって前記遮光部を除く領域が第1直線及び前記遮光部を挟み前記直線に平行な2つの平行線で分割され、かつ前記遮光部と外周部との間に直径方向にあって前記遮光部を除く領域が前記第1直線に直交する第2直線により分割されて、前記第2直線を中心とする時計周り方向に見て第1〜8回折屈折領域とを有し、前記第1、第4、第5、第8回折屈折領域、には前記第1回折屈折領域で分岐された0次光が照射され、前記光検出器は、前記第2回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第1受光領域と、前記第3回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第2受光領域と、前記第6回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第3受光領域と、前記第7回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第4受光領域と、からなり、前記第1、第4、第5、第8回折領域から出射された0次光を前記第1〜前記第4受光領域で受光する構成としたことを特徴とする光ピックアップ装置を提供する。
第2の発明は、半導体レーザから出射される光ビームを光記録媒体に照射し、前記光ビームを集光して集光スポットを生成し、集光レンズにより前記光記録媒体に照射し、前記光記録媒体から反射された反射光を回折素子で回折して回折光を生成した後、複数の分割領域を有し、前記回折光を受光して光検出器で光電変換し、前記光検出器で光電変換された電気信号からトラッキング信号を得る光ピックアップ装置の動作方法であって、前記回折素子は、前記光記録媒体からの反射光を入射する一方の面が前記反射光を回折すると共に屈折させ0次光と±1次光に分岐する第1回折屈折面を有し、前記第1回折屈折面で分岐された0次光と±1次光を入射する他方の面が中央部に遮光領域と、直径方向にあって前記遮光部を除く領域が第1直線及び前記遮光部を挟み前記直線に平行な2つの平行線で分割され、かつ前記遮光部と外周部との間に直径方向にあって前記遮光部を除く領域が前記第1直線に直交する第2直線により分割されて、前記第2直線を中心とする時計周り方向に見て第1〜8回折屈折領域とを有し、前記第1、第4、第5、第8回折屈折領域には前記第1回折屈折領域で分岐された0次光を照射し、前記光検出器は、前記第2回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第1受光領域と、前記第3回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第2受光領域と、前記第6回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第3受光領域と、前記第7回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第4受光領域と、を有し、前記第1、第4、第5、第8回折領域から出射された0次光を前記第1〜前記第4受光領域で受光し、前記第1〜第4受光領域で受光された0次光と±1次光を演算することにより前記トラッキング信号を得ることを特徴とする光ピックアップ装置の動作方法を提供する。
As means for achieving the above object, the present invention provides a semiconductor laser for emitting a light beam to be applied to an optical recording medium, and a light spot emitted from the semiconductor laser to generate a condensed spot. A condenser lens that irradiates the optical recording medium; a diffraction element that diffracts the reflected light reflected from the optical recording medium; and a plurality of divided regions that receive the diffracted light diffracted by the diffraction element. An optical pickup device having a photodetector for photoelectric conversion and a push-pull circuit for obtaining a tracking signal from an electrical signal photoelectrically converted by the photodetector, wherein the diffractive element reflects reflected light from the optical recording medium. A first diffractive refractive surface that diffracts and refracts the reflected light and divides the reflected light into zero-order light and ± first-order light, and the zero-order light branched by the first diffractive refracting surface; ± primary light is incident The other surface is a light shielding region at the center, and the region excluding the light shielding portion in the diameter direction is divided by a first straight line and two parallel lines parallel to the straight line across the light shielding portion, and the light shielding portion A region in the diametrical direction between the outer peripheral portion and excluding the light-shielding portion is divided by a second straight line orthogonal to the first straight line, and the first to first directions seen from the clockwise direction around the second straight line. And the first, fourth, fifth, and eighth diffractive refractive regions are irradiated with zero-order light branched in the first diffractive refractive region, and the photodetector includes: A first light-receiving region that receives one of the zero-order light and the ± first-order light branched in the second diffractive-refractive region, and the zero-order light and the ± first-order light branched in the third diffractive-refractive region. Either a second light receiving region that receives one of the light, a zero-order light or a ± first-order light branched in the sixth diffractive refractive region And a fourth light receiving region for receiving either the 0th order light or the ± first order light branched in the seventh diffractive refractive region, and the first, fourth, There is provided an optical pickup device characterized in that zero-order light emitted from the fifth and eighth diffraction regions is received by the first to fourth light receiving regions.
The second invention irradiates an optical recording medium with a light beam emitted from a semiconductor laser, condenses the light beam to generate a condensing spot, irradiates the optical recording medium with a condensing lens, The reflected light reflected from the optical recording medium is diffracted by a diffractive element to generate diffracted light, and then has a plurality of divided regions, receives the diffracted light and photoelectrically converts it by a photodetector. The method of operating an optical pickup device that obtains a tracking signal from an electrical signal photoelectrically converted by the diffractive element, wherein the diffraction element diffracts the reflected light and refracts the one surface on which the reflected light from the optical recording medium is incident. A first diffractive surface splitting into 0th order light and ± 1st order light, and the other surface on which the 0th order light and ± 1st order light split by the first diffractive refractive surface is incident is shielded at the center. The first straight line is the area and the area excluding the light shielding portion in the diameter direction. And a region which is divided by two parallel lines sandwiching the light shielding portion and parallel to the straight line, and which is in a diametrical direction between the light shielding portion and the outer peripheral portion and excluding the light shielding portion is orthogonal to the first straight line. The first, fourth, fifth, and eighth diffractive refractive regions are divided by two straight lines and viewed in the clockwise direction around the second straight line. The first-order light branched in the first diffractive refractive region is irradiated, and the photodetector receives either the zero-order light or ± first-order light branched in the second diffractive refractive region. A light-receiving region, a second light-receiving region that receives one of the zero-order light and the ± first-order light branched in the third diffractive-refractive region, and the zero-order light that is branched in the sixth diffractive-refractive region and ± A third light-receiving region that receives one of the primary lights, a zero-order light and a ± first-order light branched by the seventh diffractive refractive region. A fourth light receiving region that receives one of the shifts, and the first to fourth light receiving regions receive zero-order light emitted from the first, fourth, fifth, and eighth diffraction regions. An operation method of the optical pickup device is provided, wherein the tracking signal is obtained by calculating zero order light and ± first order light received in the first to fourth light receiving regions.

本発明によれば、前記回折素子は、前記光記録媒体からの反射光を入射する一方の面が前記反射光を回折すると共に屈折させ0次光と±1次光に分岐する第1回折屈折面を有し、前記第1回折屈折面で分岐された0次光と±1次光を入射する他方の面が中央部に遮光領域と、直径方向にあって前記遮光部を除く領域が第1直線及び前記遮光部を挟み前記直線に平行な2つの平行線で分割され、かつ前記遮光部と外周部との間に直径方向にあって前記遮光部を除く領域が前記第1直線に直交する第2直線により分割されて、前記第2直線を中心とする時計周り方向に見て第1〜8回折屈折領域とを有し、前記第1、第4、第5、第8回折屈折領域、には前記第1回折屈折領域で分岐された0次光が照射され、前記光検出器は、前記第2回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第1受光領域と、前記第3回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第2受光領域と、前記第6回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第3受光領域と、前記第7回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第4受光領域と、からなり、前記第1、第4、第5、第8回折領域から出射された0次光を前記第1〜前記第4受光領域で受光する構成としたので、オフセット電圧に影響されないため容易なトラッキング調整を行うことができる。   According to the present invention, the diffractive element has a first diffractive refraction in which one surface on which the reflected light from the optical recording medium is incident diffracts and refracts the reflected light and branches into 0th order light and ± first order light. The other surface on which the 0th-order light and the ± 1st-order light branched by the first diffractive refracting surface are incident is a light-shielding region in the center, and the region excluding the light-shielding portion is in the diameter direction. A straight line and two parallel lines that are parallel to the straight line with the light-shielding part interposed therebetween, and a region that is in the diametrical direction between the light-shielding part and the outer peripheral part and that excludes the light-shielding part is orthogonal to the first straight line The first, fourth, fifth, and eighth diffractive refractive regions are divided by the second straight line, and viewed in the clockwise direction around the second straight line. Are irradiated with 0th-order light branched in the first diffractive refraction region, and the photodetector detects the second diffractive refraction region. A first light-receiving region that receives one of the zero-order light and the ± first-order light branched in the region, and one of the zero-order light and the ± first-order light branched in the third diffractive refractive region A second light-receiving region, a third light-receiving region that receives one of the zeroth-order light and the ± first-order light branched in the sixth diffractive-refractive region, and the zeroth-order branched in the seventh diffractive-refractive region. And a fourth light-receiving region that receives either one of the light and the ± first-order light, and the 0th-order light emitted from the first, fourth, fifth, and eighth diffraction regions Since it is configured to receive light in the four light receiving regions, it is not affected by the offset voltage, so that easy tracking adjustment can be performed.

以下に本発明の実施形態に係る光ピックアップ装置について図1〜図7を用いて説明する。図1は本発明の実施形態に係る光ピックアップ装置の概要を示す図である。図2は複合回折素子10における各回折面及び光検出器11面における回折分割光パターンを示す図である。図3は複合回折素子10の入射光に対する回折分割光の光路の回折分割状態を示す図である。図4は複合回折素子10と光検出器11との概要寸法を示す図である。図5は複合回折素子10の第2回折面と光検出器11面における回折分割光パターンの寸法と詳細を示す図である。図6は光ディスク8が傾斜した場合の光検出器上11の光量を示す。図7は図5に示す回折分割光パターンの各部分のトラッキング信号及び合成信号例を示す図である。   Hereinafter, an optical pickup device according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing an outline of an optical pickup device according to an embodiment of the present invention. FIG. 2 is a diagram showing a diffraction-divided light pattern on each diffraction surface in the composite diffraction element 10 and on the surface of the photodetector 11. FIG. 3 is a diagram showing a diffraction division state of the optical path of the diffraction division light with respect to the incident light of the composite diffraction element 10. FIG. 4 is a diagram showing outline dimensions of the composite diffraction element 10 and the photodetector 11. FIG. 5 is a diagram showing the dimensions and details of the diffraction-divided light pattern on the second diffraction surface of the composite diffraction element 10 and the surface of the photodetector 11. FIG. 6 shows the amount of light on the photodetector 11 when the optical disk 8 is tilted. FIG. 7 is a diagram showing an example of a tracking signal and a combined signal of each part of the diffraction-divided light pattern shown in FIG.

本発明の実施形態に係る光ピックアップ装置は、図1に示すように、光記録媒体8に照射する光ビーム12を出射するための半導体レーザ1と、半導体レーザ1から出射した光ビーム12を集光して集光スポットを生成し光記録媒体8に照射する集光レンズ6と、光記録媒体8から反射、回折されて生成された反射光13を受光し複数光に回折分割する複数の回折分割面とを有する複合回折素子10と、複数の回折分割光を受光して電気信号に変換する光検出器11と、光検出器11から電気信号を入力しトラッキング信号を出力するプッシュプル回路14と、を少なくとも有し、トラッキング信号を用いてトラッキング制御を行う光ピックアップ装置であって、複数の回折分割面を有する複合回折素子10は、光記録媒体8から反射、回折されて生成された反射光13の中の0次光と±1次光とが重なる部分を2つに分割し、一方を光検出器11に他の一方を光検出器11外に出射し、光記録媒体8から反射、回折されて生成された反射光13の中の0次光のみの部分全てを光検出器11に出射するものである。   As shown in FIG. 1, an optical pickup device according to an embodiment of the present invention collects a semiconductor laser 1 for emitting a light beam 12 for irradiating an optical recording medium 8 and a light beam 12 emitted from the semiconductor laser 1. A condensing lens 6 that generates light and generates a condensing spot and irradiates the optical recording medium 8, and a plurality of diffractions that receive the reflected light 13 that is reflected and diffracted from the optical recording medium 8 and diffracts and divides it into a plurality of lights A composite diffractive element 10 having a split surface, a photodetector 11 that receives a plurality of diffracted split beams and converts them into an electrical signal, and a push-pull circuit 14 that receives an electrical signal from the photodetector 11 and outputs a tracking signal. And a composite diffractive element 10 having a plurality of diffraction division surfaces is reflected and diffracted from the optical recording medium 8. The portion where the 0th order light and the ± 1st order light overlap in the generated reflected light 13 is divided into two, one is emitted to the photodetector 11 and the other is emitted outside the photodetector 11, All of the portion of the reflected light 13 reflected and diffracted from the optical recording medium 8 and only the zero-order light is emitted to the photodetector 11.

次に詳細に図1を用いて光ピックアップ装置の概要を示し説明する。この光ピックアップ装置は、光ビーム12を発生する半導体レーザ素子からなるレーザ1、光ビーム12を平行光にするレンズ2、レーザ1の方向からの光ビーム12は通過し、反対方向からの光ビームは反射する偏光プリズム3、光ビームの光路を変更する全反射ミラー4、レーザ光を円偏光するλ/4板5、光ビーム13を集光するレンズ6、レンズ6を稼動してトラッキング位置を合わせるムービングコイル7、画像や情報を記録する光記録媒体として使用される光ディスク8、反射光13を集光するレンズ9、反射光13を受光し複数の回折分割光に回折分割する複合回折素子10、複数の回折分割光に回折分割された反射光13を受光し電気信号に変換する光検出器11及びプッシュプル回路14から構成される。   Next, the outline of the optical pickup device will be described and explained in detail with reference to FIG. This optical pickup device includes a laser 1 composed of a semiconductor laser element that generates a light beam 12, a lens 2 that converts the light beam 12 into parallel light, a light beam 12 from the direction of the laser 1, and a light beam from the opposite direction. Operates the reflecting prism 3, the total reflection mirror 4 that changes the optical path of the light beam, the λ / 4 plate 5 that circularly polarizes the laser light, the lens 6 that condenses the light beam 13, and the lens 6. A moving coil 7 to be combined, an optical disk 8 used as an optical recording medium for recording images and information, a lens 9 for condensing the reflected light 13, and a composite diffractive element 10 for receiving the reflected light 13 and diffracting it into a plurality of diffracted light beams. , Comprising a photodetector 11 and a push-pull circuit 14 that receive the reflected light 13 diffracted and divided into a plurality of diffracted light beams and convert it into an electrical signal.

そして、レーザ1から出射された光ビーム12をレンズ2で平行光に揃え、偏光プリズム3を通過させた後、全反射ミラー4で光ディスク8の方向に光ビーム12を反射させた後、λ/4板5で円偏光してレンズ6で光ディスク8の記録面に集光する。レンズ6はムービングコイル7により可動し光ディスク8のトラック(案内溝)に光ビームの位置を合わせる。   Then, the light beam 12 emitted from the laser 1 is collimated by the lens 2 and passed through the polarizing prism 3, and then reflected by the total reflection mirror 4 in the direction of the optical disk 8, then λ / It is circularly polarized by the four plates 5 and condensed on the recording surface of the optical disk 8 by the lens 6. The lens 6 is moved by the moving coil 7 and aligns the position of the light beam with the track (guide groove) of the optical disk 8.

次に、光ディスク8の記録面にはレンズ6により集光された光ビーム12の集光スポットが常に所定の半径位置を追従し得るようにするために、光ディスク8にはグルーブと呼ばれる案内溝が設けられている。この案内溝で反射された光ビーム12は0次回折光、−1次回折光、+1次回折光で構成される反射光13となってレンズ6、λ/4板5、全反射ミラー4を経由して偏光プリズム3で全反射された反射光13がレンズ9で集光され、更に複合回折素子10で複数の回折光に分割されて光検出器11により受光される。   Next, on the recording surface of the optical disc 8, a guide groove called a groove is provided on the optical disc 8 so that the condensing spot of the light beam 12 collected by the lens 6 can always follow a predetermined radial position. Is provided. The light beam 12 reflected by this guide groove becomes reflected light 13 composed of 0th-order diffracted light, −1st-order diffracted light, and + 1st-order diffracted light, and passes through the lens 6, λ / 4 plate 5, and total reflection mirror 4. The reflected light 13 totally reflected by the polarizing prism 3 is collected by the lens 9, further divided into a plurality of diffracted lights by the composite diffraction element 10, and received by the photodetector 11.

また、図1に示すように反射光13はレンズ9にて集光した後、複合回折素子10において所定の回折分割光パターンに変換されて光検出器11に投射される。光検出器11は4つの光検出部A,B,C,Dで構成され受光した複数の回折分割光を2つの電気信号に変換して出力する。光検出器11には例えばPDICの名称で型名CXA2674EM(SONY製)が市販されており、この2つの電気信号は光検出部C,Dの加算信号と光検出部A,Bの加算信号を光検出器11内でプッシュプル回路14へ送り、そしてプッシュプル回路14からトラッキング信号TEを出力する。このトラッキング信号TEは光ディスク8の案内溝の中心部で反射されればTE=0となる。   As shown in FIG. 1, the reflected light 13 is condensed by the lens 9, converted into a predetermined diffraction division light pattern by the composite diffraction element 10, and projected onto the photodetector 11. The photodetector 11 includes four photodetectors A, B, C, and D, converts a plurality of received diffraction split lights into two electrical signals, and outputs the signals. For example, a model name CXA2674EM (manufactured by SONY) is commercially available for the photodetector 11 under the name of PDIC, and these two electric signals are obtained by adding the addition signal of the photodetectors C and D and the addition signal of the photodetectors A and B, respectively. The signal is sent to the push-pull circuit 14 in the photodetector 11 and the tracking signal TE is output from the push-pull circuit 14. If this tracking signal TE is reflected at the center of the guide groove of the optical disc 8, TE = 0.

そして、トラッキング信号TEをムービングコイル7に加えてレンズ6を稼動し光ビーム12の位置を光ディスク8のグルーブ溝の最適な位置であることを示すトラッキング信号TEが0となる値を示す位置までムービングコイル7を稼動させて移動する。   Then, the tracking signal TE is applied to the moving coil 7 and the lens 6 is operated to move the position of the light beam 12 to a position where the tracking signal TE indicating the optimum position of the groove groove of the optical disk 8 is zero. The coil 7 is operated to move.

すなわち、案内溝の中心から反射光が外れればトラッキング信号TEに差分電圧が発生するから、この発生した電圧を制御信号としてムービングコイル7へ送りレンズ6を可動して案内溝の中心へ移動させてトラッキング調整を行う。このようにして、グルーブの中心にレンズ6により集光された集光スポットの中心を常に一致させる。   That is, if the reflected light deviates from the center of the guide groove, a differential voltage is generated in the tracking signal TE. The generated voltage is sent to the moving coil 7 as a control signal, and the lens 6 is moved and moved to the center of the guide groove. Make tracking adjustments. In this way, the center of the focused spot focused by the lens 6 is always aligned with the center of the groove.

次に、図2(1)に示すように光ディスクからの反射光による回折光を0次光のみと0次光と1次光を重畳させた入射光として第1回析面と第2回析面とを有する複合回折素子10に照射し、まず、図2(2)に示すように第1回折面で複数に回折分割し、次に図2(3)に示すように第2回折面で更に回折分割されて所定の回折分割パターンで光検出器11に回折された複数の回折分割光を照射する。   Next, as shown in FIG. 2 (1), the diffracted light by the reflected light from the optical disc is incident light obtained by superimposing only the 0th-order light, the 0th-order light, and the first-order light. 2 is irradiated with a first diffraction surface as shown in FIG. 2 (2), and then divided into a plurality of diffraction surfaces as shown in FIG. 2 (3). Further, a plurality of diffracted light beams that are diffracted and diffracted by the photodetector 11 in a predetermined diffraction divided pattern are irradiated.

図3には図2に示す第2回折面で回折分割されて所定の回折分割パターンで光検出器11に回折されて照射される各パターン部分の光路を示す。中央部分のS11,S12とS21,S22は左右に交差するように2つに分割され、分割された一方は光検出器11に照射され、他の一方は光検出器11の外に照射される。
前後部分のS13,S14とS23,S24は2つに分割されるが全て光検出器11に照射される。
FIG. 3 shows an optical path of each pattern portion that is diffracted and divided by the second diffraction surface shown in FIG. The central portions S11, S12 and S21, S22 are divided into two so as to intersect left and right, one of the divided portions is irradiated to the photodetector 11, and the other one is irradiated to the outside of the photodetector 11. .
The front and rear portions S13, S14 and S23, S24 are divided into two parts, but all are irradiated to the photodetector 11.

このとき、中央部分のパターンS11,S12は前後分のS23,S24と同じ左側の光検出器11の光検出部A,B上に照射され、もう一方の中央部分のパターンS21,S22は前後分のS13,S14と同じ右側の光検出器11の光検出部C,D上に照射される。   At this time, the patterns S11 and S12 in the central portion are irradiated on the light detection portions A and B of the left photodetector 11 which are the same as the front and rear portions S23 and S24, and the patterns S21 and S22 in the other central portion are the front and rear portions. Are irradiated on the light detection units C and D of the right-side photodetector 11 as in S13 and S14.

この図2(1)に示す複合回折素子10の第1回折面と第2回析面の回折格子間隔P0,P1は略1μm〜3μmであり、溝深さt0は略1μm〜3μmであり、そして図4に示すように、複合回折素子10の厚さD0は略20μm〜100μmであり、複合回折素子10と光検出器11との間の距離器は略100μm〜300μmの範囲に設定する。   The diffraction grating spacings P0 and P1 between the first diffraction surface and the second diffraction surface of the composite diffraction element 10 shown in FIG. 2 (1) are approximately 1 μm to 3 μm, and the groove depth t0 is approximately 1 μm to 3 μm. As shown in FIG. 4, the thickness D0 of the composite diffraction element 10 is about 20 μm to 100 μm, and the distance between the composite diffraction element 10 and the photodetector 11 is set to a range of about 100 μm to 300 μm.

そして図4に示す複合素子10の各回折面の寸法構成により、複合回折素子10に投射された入射光A及び入射光Bは第1、第2回折面により光検出器11にそれぞれ半分ずつ分割されて投射される。また、第2回折面上の各パターンの寸法及び光検出器11の寸法を図5に示す。   Then, according to the dimensional configuration of each diffraction surface of the composite element 10 shown in FIG. 4, the incident light A and the incident light B projected onto the composite diffraction element 10 are divided by half into the photodetector 11 by the first and second diffraction surfaces, respectively. And projected. FIG. 5 shows the dimensions of the patterns on the second diffraction surface and the dimensions of the photodetector 11.

各パターンの移動についてより詳細に説明すると、図5(A)に示すように第2回折面上の回折分割光パターンはそれぞれの部分ごとに第2回折面で回折分割されて図5(B)に示すように光検出器11面上に照射される。
例えば0次光と1次光を重畳させたS11は左右に回折分割され光検出器11の光検出部Aの位置にS11として照射されるが、光検出器11の外にもS11として回折分割照射される。同様にして0次光と1次光を重畳させたS12,S21,S22も左右に回折分割されて光検出器11に図5(B)に示すようにそれぞれ照射される。
一方、0次光のみのS13,S14,S23,S24は前後に回折分割され、これら2つに回折分割された光はそれぞれ異なる光検出器11の光検出部に全て照射される。この0次光のみの場合は特に回折分割せずそのまま用いてもよい。
The movement of each pattern will be described in more detail. As shown in FIG. 5 (A), the diffraction-divided light pattern on the second diffractive surface is diffracted and divided by the second diffractive surface for each portion. As shown in FIG.
For example, S11 in which 0th-order light and primary light are superimposed is diffracted and divided to the left and right, and is irradiated as S11 to the position of the light detection unit A of the light detector 11. Irradiated. Similarly, S12, S21, and S22 in which the 0th-order light and the 1st-order light are superimposed are also diffracted and divided on the left and right sides, and irradiated to the photodetector 11 as shown in FIG. 5B.
On the other hand, S13, S14, S23, and S24 of only the 0th order light are diffracted and divided in the front and rear directions, and the light diffracted and divided into these two is all irradiated to the light detection portions of the different photodetectors 11, respectively. In the case of only the 0th-order light, it may be used as it is without being divided by diffraction.

この第2回折面上における回折分割パターンの寸法は、反射光13のスポット光直径6000λに対し、光ディスク8の案内溝による0次光と±1次光の重なっている領域S11,S12,S21,S22が略幅2000λ×高さ2000λ、光ディスク8の案内溝による0次光のみの外側の領域S13,S14,S23,S24は略幅3000λ×高さ1000λである(λ:使用するレーザ光の波長)。そして、光検出器11はこれに対して幅130μm×高さ130μmである。   The dimensions of the diffraction division pattern on the second diffraction surface are the areas S11, S12, S21, where the zero-order light and the ± first-order light from the guide groove of the optical disc 8 overlap with the spot light diameter 6000λ of the reflected light 13. S22 is approximately width 2000λ × height 2000λ, and regions S13, S14, S23, and S24 outside the zero-order light only by the guide groove of the optical disk 8 are approximately width 3000λ × height 1000λ (λ: wavelength of laser light to be used) ). The photodetector 11 is 130 μm wide × 130 μm high.

次に、図7に示すように、第2回折面上のパターン各部分の光を光検出器11に入射して電気信号に変換し、この電気信号に変換した各パターンのそれぞれのレベルをトラッキング信号TE用として使用する場合について説明する。   Next, as shown in FIG. 7, the light of each part of the pattern on the second diffractive surface is incident on the photodetector 11 and converted into an electrical signal, and the level of each pattern converted into this electrical signal is tracked. A case where the signal TE is used will be described.

まず、図5(A)の各パターンに照射される0次光の光量をそれぞれ図7(1)に示すように設定する。→A1:S23,A2:S24,B1:S21,B2:S22,C1:S13,C2:S14,D1:S11,D2:S12よりA=A1+A2,B=B1+B2,C=C1+C2,D=D1+D2とする。また、各パターンの0次光の光量比を測定したところA=B/2,C=D/2であった。
そして図7(2)に示すように、−1次光はE:S21+S22、+1次光はF:S11+S12とする。
First, the amount of zero-order light irradiated on each pattern in FIG. 5A is set as shown in FIG. 7A. → A1: S23, A2: S24, B1: S21, B2: S22, C1: S13, C2: S14, D1: S11, D2: From S12, A = A1 + A2, B = B1 + B2, C = C1 + C2, D = D1 + D2. . Moreover, when the light quantity ratio of the 0th-order light of each pattern was measured, they were A = B / 2 and C = D / 2.
As shown in FIG. 7B, the −1st order light is E: S21 + S22, and the + 1st order light is F: S11 + S12.

図6に示すように光ディスク8が傾斜すると、光検出器11に到達する光ディスクの反射光としての0次光が内周側半分と外周側半分の位置により光量に差を生ずる。すなわち図6に示すように内周側半分の方が光検出器11に近い距離にあると内周側半分の方の光量が大となる。   As shown in FIG. 6, when the optical disk 8 is tilted, the zero-order light as reflected light of the optical disk that reaches the photodetector 11 has a difference in light quantity depending on the positions of the inner half and the outer half. That is, as shown in FIG. 6, when the inner half is closer to the photodetector 11, the amount of light on the inner half is larger.

そして図7(3)のグラフに示すように0次光と+1次光が重畳した部分の光量はF+D、0次光と−1次光が重畳した部分の光量はE+Bとなりこれをこのまま光検出器11に照射すると図7(3)に示すグラフが得られる。このとき第2回折面で図5(B)に示すように、0次光と−1次光、0次光と-+1次光の重畳した部分を光検出器11に半分に分割して照射すると図7(4)に示すようにそれぞれが半分の光量のグラフとなる。そして図7(1)に示すように0次光をA、Cとした場合の光量のグラフを図7(4)に示す。   As shown in the graph of FIG. 7 (3), the light amount of the portion where the 0th-order light and the + 1st-order light are superimposed is F + D, and the light amount of the portion where the 0th-order light and the −1st-order light is superimposed is E + B. When irradiated to the vessel 11, the graph shown in FIG. 7 (3) is obtained. At this time, as shown in FIG. 5B on the second diffractive surface, the overlapped portion of the 0th-order light and the −1st-order light, the 0th-order light and the − + 1st-order light is divided into half and irradiated to the photodetector 11. Then, as shown in FIG. 7 (4), each becomes a graph of half light quantity. Then, as shown in FIG. 7 (1), a graph of the amount of light when the 0th-order light is A and C is shown in FIG. 7 (4).

図5(B)の各パターン構成に従って、0次光と−1次光、0次光と+1次光の重畳した部分と0次光を光検出器11の光検出部にそれぞれ照射すると、0次光と+1次光による(F+D)/2と0次光のみのAが加算され、0次光と−1次光による(E+B)/2と0次光のみのCが加算される。これを図7(5)のグラフに示す。   When the 0th-order light and the 0th-order light and the 0th-order light and the 0th-order light are irradiated to the light detection unit of the photodetector 11 according to each pattern configuration of FIG. (F + D) / 2 by the next-order light and + 1st-order light and A of only the 0th-order light are added, and (E + B) / 2 by the 0th-order light and -1st-order light and C of only the 0th-order light are added. This is shown in the graph of FIG.

このようにすると、0次光の光量を図7(1)に示すようにA=B/2、C=D/2とすると、(F+D)/2+A=F/2+A+C、(E+B)/2+C=E/2+A+Cとなりそれぞれの0次光の光量が等しくなる。これを光検出器11で電気信号に変換しプッシュプル回路14で差分信号とすると0次光分のA+Cは削除される。   In this way, assuming that the amount of 0th-order light is A = B / 2 and C = D / 2 as shown in FIG. 7A, (F + D) / 2 + A = F / 2 + A + C, (E + B) / 2 + C = E / 2 + A + C, and the amount of each zero-order light becomes equal. If this is converted into an electrical signal by the photodetector 11 and converted into a differential signal by the push-pull circuit 14, A + C for the 0th-order light is deleted.

これは、レンズ6と光ディスク8との間に傾斜があると光ディスクの内周側と外周側で光量差が生ずるからオフセット分が異なり、この結果0次光のAとCの光量が異なってくるが、このように中央部分の0次光分B,Dを左右に入れ替えることにより光検出器11の左右の光検出部に照射される0次光の光量が等しくなるから、プッシュプル回路14で差分を取れば0次光によって発生するオフセット分は図7(6)に示すように削除される。   This is because if there is an inclination between the lens 6 and the optical disc 8, a difference in the amount of light occurs between the inner periphery and the outer periphery of the optical disc, so that the amount of offset differs. As a result, the amounts of light of A and C in the 0th order light differ. However, the light quantity of the 0th order light irradiated to the left and right light detection units of the photodetector 11 becomes equal by switching the 0th order light components B and D in the central part to the left and right in this way. If the difference is taken, the offset generated by the 0th order light is deleted as shown in FIG.

以上述べてきたように、複合回折素子10によって前後左右に回折分割された複数の回折分割光の中0次光と1次光の重畳する部分を半分として光検出部11で所定のパターンで受光することによりオフセット分(直流分)の削除されたトラッキング信号を容易に得ることが出来る。   As described above, the light detection unit 11 receives a predetermined pattern by halving a portion where the 0th-order light and the 1st-order light overlap each other among the plurality of diffraction-divided light beams that are diffracted into the front, back, left, and right by the composite diffraction element 10. By doing so, it is possible to easily obtain a tracking signal from which the offset (DC component) has been deleted.

本発明の実施形態に係る光ピックアップ装置の概要を示す図である。It is a figure which shows the outline | summary of the optical pick-up apparatus which concerns on embodiment of this invention. 複合回折素子10における各回折面及び光検出器11面における回折分割光パターンを示す図である。FIG. 3 is a diagram showing a diffraction-divided light pattern on each diffraction surface in the composite diffraction element 10 and on the surface of the photodetector 11. 複合回折素子10の入射光に対する回折分割光の光路の回折分割状態を示す図である。3 is a diagram showing a diffraction division state of an optical path of diffraction division light with respect to incident light of the composite diffraction element 10. FIG. 複合回折素子10と光検出器11との寸法を示す図である。FIG. 3 is a diagram showing dimensions of a composite diffraction element 10 and a photodetector 11. 複合回折素子10の第2回折面と光検出器11面における回折分割光パターンの寸法と詳細を示す図である。FIG. 3 is a diagram showing dimensions and details of a diffraction-divided light pattern on the second diffraction surface of the composite diffraction element 10 and the surface of the photodetector 11. 光ディスク8が傾斜した場合の光検出器上11の光量を示す。The amount of light on the photodetector 11 when the optical disk 8 is tilted is shown. 図5に示す回折分割光パターンの各部分のトラッキング信号及び合成信号例を示す図である。It is a figure which shows the tracking signal and synthetic | combination signal example of each part of the diffraction division | segmentation light pattern shown in FIG. 従来の光ピックアップ装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional optical pick-up apparatus. 光検出器上の回折光の分布を示す図である。It is a figure which shows distribution of the diffracted light on a photodetector. 従来の回折分割光パターンの各部分のトラッキング信号及び合成信号例を示す図である。It is a figure which shows the tracking signal and synthetic | combination signal example of each part of the conventional diffraction division | segmentation light pattern.

符号の説明Explanation of symbols

1・・・レーザ(半導体レーザ)、2・・・レンズ、3・・・偏光プリズム、4・・・全反射ミラー、5・・・λ/4板、6・・・レンズ(可動部)、7・・・ムービングコイル、8・・・光ディスク、9・・・ レンズ、10・・・複合回折素子、10‘・・・回折素子、11・・・光検出器、12・・・光ビーム、13・・・反射光、14・・・プッシュプル回路

DESCRIPTION OF SYMBOLS 1 ... Laser (semiconductor laser), 2 ... Lens, 3 ... Polarizing prism, 4 ... Total reflection mirror, 5 ... λ / 4 plate, 6 ... Lens (movable part), DESCRIPTION OF SYMBOLS 7 ... Moving coil, 8 ... Optical disk, 9 ... Lens, 10 ... Compound diffraction element, 10 '... Diffraction element, 11 ... Photodetector, 12 ... Light beam, 13 ... reflected light, 14 ... push-pull circuit

Claims (2)

光記録媒体に照射する光ビームを出射するための半導体レーザと、前記半導体レーザから出射した光ビームを集光して集光スポットを生成し前記光記録媒体に照射する集光レンズと、前記光記録媒体から反射された反射光を回折する回折素子と、複数の分割領域を有し、前記回折素子で回折された回折光を受光して光電変換する光検出器と、前記光検出器で光電変換された電気信号からトラッキング信号を得るプッシュプル回路とを有する光ピックアップ装置であって、
前記回折素子は、前記光記録媒体からの反射光を入射する一方の面が前記反射光を回折すると共に屈折させ0次光と±1次光に分岐する第1回折屈折面を有し、前記第1回折屈折面で分岐された0次光と±1次光を入射する他方の面が中央部に遮光領域と、直径方向にあって前記遮光部を除く領域が第1直線及び前記遮光部を挟み前記直線に平行な2つの平行線で分割され、かつ前記遮光部と外周部との間に直径方向にあって前記遮光部を除く領域が前記第1直線に直交する第2直線により分割されて、前記第2直線を中心とする時計周り方向に見て第1〜8回折屈折領域とを有し、前記第1、第4、第5、第8回折屈折領域には前記第1回折屈折領域で分岐された0次光が照射され、
前記光検出器は、前記第2回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第1受光領域と、前記第3回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第2受光領域と、前記第6回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第3受光領域と、前記第7回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第4受光領域と、からなり、前記第1、第4、第5、第8回折領域から出射された0次光を前記第1〜前記第4受光領域で受光する構成としたことを特徴とする光ピックアップ装置。
A semiconductor laser for emitting a light beam for irradiating the optical recording medium; a condensing lens for condensing the light beam emitted from the semiconductor laser to generate a condensed spot and irradiating the optical recording medium; and the light A diffractive element that diffracts reflected light reflected from a recording medium, a photodetector that has a plurality of divided regions, receives diffracted light diffracted by the diffractive element, and performs photoelectric conversion; and An optical pickup device having a push-pull circuit for obtaining a tracking signal from the converted electric signal,
The diffractive element has a first diffractive refracting surface on which one surface on which reflected light from the optical recording medium is incident diffracts and refracts the reflected light and branches into zero-order light and ± first-order light, The other surface on which the 0th-order light and ± 1st-order light branched by the first diffractive refracting surface is incident is a light shielding region in the center, and the region excluding the light shielding portion in the diameter direction is the first straight line and the light shielding portion. Is divided by two parallel lines that are parallel to the straight line, and is divided by a second straight line that is in the diametrical direction between the light-shielding part and the outer peripheral part and that excludes the light-shielding part. And first to eighth diffracting / refracting regions when viewed in the clockwise direction around the second straight line, and the first, fourth, fifth, and eighth diffracting / refracting regions include the first diffracting region. The zero order light branched in the refraction area is irradiated,
The photodetector includes a first light-receiving region that receives one of the zero-order light and the ± first-order light branched in the second diffractive refractive region, and the zero-order light branched in the third diffractive refractive region. And a second light receiving region that receives one of ± first-order light, a third light-receiving region that receives one of zero-order light and ± first-order light branched in the sixth diffractive refractive region, A fourth light receiving region that receives either the 0th order light or the ± first order light branched in the seventh diffractive refractive region, and is emitted from the first, fourth, fifth, and eighth diffraction regions. An optical pickup device having a configuration in which the 0th-order light is received by the first to fourth light receiving regions.
半導体レーザから出射される光ビームを光記録媒体に照射し、前記光ビームを集光して集光スポットを生成し、集光レンズにより前記光記録媒体に照射し、前記光記録媒体から反射された反射光を回折素子で回折して回折光を生成した後、複数の分割領域を有し、前記回折光を受光して光検出器で光電変換し、前記光検出器で光電変換された電気信号からトラッキング信号を得る光ピックアップ装置の動作方法であって、
前記回折素子は、前記光記録媒体からの反射光を入射する一方の面が前記反射光を回折すると共に屈折させ0次光と±1次光に分岐する第1回折屈折面を有し、前記第1回折屈折面で分岐された0次光と±1次光を入射する他方の面が中央部に遮光領域と、直径方向にあって前記遮光部を除く領域が第1直線及び前記遮光部を挟み前記直線に平行な2つの平行線で分割され、かつ前記遮光部と外周部との間に直径方向にあって前記遮光部を除く領域が前記第1直線に直交する第2直線により分割されて、前記第2直線を中心とする時計周り方向に見て第1〜8回折屈折領域とを有し、前記第1、第4、第5、第8回折屈折領域には前記第1回折屈折領域で分岐された0次光を照射し、
前記光検出器は、前記第2回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第1受光領域と、前記第3回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第2受光領域と、前記第6回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第3受光領域と、前記第7回折屈折領域で分岐された0次光と±1次光のいずれか一方を受光する第4受光領域と、を有し、前記第1、第4、第5、第8回折領域から出射された0次光を前記第1〜前記第4受光領域で受光し、
前記第1〜第4受光領域で受光された0次光と±1次光を演算することにより前記トラッキング信号を得ることを特徴とする光ピックアップ装置の動作方法。

An optical recording medium is irradiated with a light beam emitted from a semiconductor laser, the light beam is condensed to generate a condensing spot, and the optical recording medium is irradiated with a condensing lens and reflected from the optical recording medium. The reflected light is diffracted by a diffractive element to generate diffracted light, and then has a plurality of divided regions. The diffracted light is received, photoelectrically converted by a photodetector, and photoelectrically converted by the photodetector. An operation method of an optical pickup device for obtaining a tracking signal from a signal,
The diffractive element has a first diffractive refracting surface on which one surface on which reflected light from the optical recording medium is incident diffracts and refracts the reflected light and branches into zero-order light and ± first-order light, The other surface on which the 0th-order light and ± 1st-order light branched by the first diffractive refracting surface is incident is a light shielding region in the center, and the region excluding the light shielding portion in the diameter direction is the first straight line and the light shielding portion. Is divided by two parallel lines that are parallel to the straight line, and is divided by a second straight line that is in the diametrical direction between the light-shielding part and the outer peripheral part and that excludes the light-shielding part. And first to eighth diffracting / refracting regions when viewed in the clockwise direction around the second straight line, and the first, fourth, fifth, and eighth diffracting / refracting regions include the first diffracting region. Irradiate zero-order light branched in the refraction area,
The photodetector includes a first light-receiving region that receives one of the zero-order light and the ± first-order light branched in the second diffractive refractive region, and the zero-order light branched in the third diffractive refractive region. And a second light receiving region that receives one of ± first-order light, a third light-receiving region that receives one of zero-order light and ± first-order light branched in the sixth diffractive refractive region, A fourth light receiving region for receiving either the 0th-order light or the ± first-order light branched in the seventh diffractive refractive region, and is emitted from the first, fourth, fifth, and eighth diffraction regions. Received zero-order light in the first to fourth light receiving regions,
An operation method of an optical pickup device, wherein the tracking signal is obtained by calculating 0th order light and ± 1st order light received in the first to fourth light receiving regions.

JP2004274074A 2004-09-21 2004-09-21 Optical pickup device Pending JP2006092606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274074A JP2006092606A (en) 2004-09-21 2004-09-21 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274074A JP2006092606A (en) 2004-09-21 2004-09-21 Optical pickup device

Publications (1)

Publication Number Publication Date
JP2006092606A true JP2006092606A (en) 2006-04-06

Family

ID=36233443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274074A Pending JP2006092606A (en) 2004-09-21 2004-09-21 Optical pickup device

Country Status (1)

Country Link
JP (1) JP2006092606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292609A (en) * 2018-06-14 2021-01-29 松下知识产权经营株式会社 Object detection device and photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292609A (en) * 2018-06-14 2021-01-29 松下知识产权经营株式会社 Object detection device and photodetector

Similar Documents

Publication Publication Date Title
JP2793067B2 (en) Light head
JPWO2006118082A1 (en) Optical head device and optical information processing device
JP4751444B2 (en) Optical disk device
KR100831138B1 (en) Apparatus for optically recording and reproducing information
KR20070015043A (en) Optical head and information recording/reproducing apparatus
JPH05307759A (en) Optical pickup
JP3545307B2 (en) Optical integrated unit, optical pickup device, and method of adjusting optical integrated unit
US8045443B2 (en) Optical pickup apparatus
JP5227926B2 (en) Optical pickup device and optical disk device
JP2007273013A (en) Design method of diffraction element, diffraction element, objective lens unit, optical pickup and optical disk device
JP4646930B2 (en) Diffraction element position adjustment method
KR100792659B1 (en) Optical device and optical pickup device
JP2006092606A (en) Optical pickup device
JP2003223738A (en) Optical pickup device and optical disk device, and optical device and composite optical element
JP2012113767A (en) Optical pickup device and optical information recording and reproducing device having the same
JP3389416B2 (en) Optical pickup device
JP4416228B2 (en) Optical pickup and optical information reproducing apparatus using the same
JP4170264B2 (en) Optical pickup device and optical information recording / reproducing device
JP2005038513A (en) Light reproducing method, optical head device and optical information processor
JP2009181670A (en) Optical head device and optical disk device
JP2004342166A (en) Optical pickup device
JP2693569B2 (en) Optical information recording / reproducing device
JP2014044780A (en) Optical pickup and disk device
JP5119194B2 (en) Optical pickup device
JP3836491B2 (en) Optical integrated unit and optical pickup device