JP2006091673A - Manufacturing method for liquid crystal display - Google Patents

Manufacturing method for liquid crystal display Download PDF

Info

Publication number
JP2006091673A
JP2006091673A JP2004279466A JP2004279466A JP2006091673A JP 2006091673 A JP2006091673 A JP 2006091673A JP 2004279466 A JP2004279466 A JP 2004279466A JP 2004279466 A JP2004279466 A JP 2004279466A JP 2006091673 A JP2006091673 A JP 2006091673A
Authority
JP
Japan
Prior art keywords
liquid crystal
array substrate
crystal display
pixel
counter substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279466A
Other languages
Japanese (ja)
Inventor
Kenta Fukatsu
健太 深津
Ryuichi Togawa
隆一 外川
Yoshitaka Kawada
義高 川田
Katsuya Yamada
勝哉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004279466A priority Critical patent/JP2006091673A/en
Publication of JP2006091673A publication Critical patent/JP2006091673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a liquid crystal display which is not influenced by the behavior of an air bubble and with which stable repair quality is obtained. <P>SOLUTION: The manufacturing method for the liquid crystal display 10 which is constituted by sandwiching a liquid crystal material 13 between an array substrate 11 and a counter substrate 12 and has a plurality of pixels 23 includes: an information generation step of detecting an electric signal from a pixel electrode 15 of each pixel 23 formed on the array substrate 11 and generating positional information of a 2nd defect pixel 23A to be repaired on the basis of the electric signal; a sticking step of sticking the array substrate 11 and counter substrate 12 together after the information generation step; a laser irradiation step of making the 2nd defect pixel 23A being a repair target be irradiated with pulse laser light L on the basis of the positional information after the sticking step; and an injection step of injecting the liquid crystal material 13 into a space between the array substrate 11 and counter substrate 12 after the laser irradiation step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、輝点不良等の不良画素を滅点化する工程を有する液晶ディスプレイの製造方法に関する。   The present invention relates to a method for manufacturing a liquid crystal display having a step of darkening defective pixels such as defective bright spots.

液晶ディスプレイの製造工程で発生する不良のうち、常時光が透過する画素は輝点不良と呼ばれている。この輝点不良は非常に目立つため、通常はこれが一つでもあると製品として出荷することができない。   Of the defects that occur in the manufacturing process of the liquid crystal display, the pixels that always transmit light are called bright spot defects. This bright spot defect is very conspicuous, and usually it cannot be shipped as a product if there is even one.

一方、常時光を遮断する画素は、滅点不良と呼ばれるが、この滅点不良は輝点不良と比較して目立ち難いため、これがあっても許される場合が多い。従って、液晶ディスプレイの製造工程では、点灯評価で発見された輝点不良を滅点不良に変える滅点化リペアが行われることがある。   On the other hand, a pixel that always blocks light is called a dark spot defect. However, since this dark spot defect is less noticeable than a bright spot defect, it is often permitted even if it exists. Therefore, in the manufacturing process of the liquid crystal display, a dark spot repair for changing the bright spot defect found in the lighting evaluation into a dark spot defect may be performed.

滅点化リペアには、大別して電気的な方法と光学的な方法がある。前者は、液晶基板上の配線を切断したり、短絡させたりすることで、画素電極に電圧がかからないようにする方法である。この方法だと、リペア後の暗さレベルは100%であるが、輝点不良の原因によってリペアできるものとできないものがあり、救済率が低い。   There are roughly two types of dark spot repairs: electrical methods and optical methods. The former is a method of preventing voltage from being applied to the pixel electrode by cutting or short-circuiting the wiring on the liquid crystal substrate. With this method, the darkness level after repair is 100%, but there are some that can be repaired and some that cannot be repaired due to the cause of the bright spot failure, and the repair rate is low.

後者は、レーザの照射により画素内に微粒子を発生させ、この微粒子を配向膜に堆積させることで、光の透過率を下げる方法である。この方法だと、輝点不良の原因を問わずリペアが可能であるため、救済率が高い。しかしながら、十分な暗さレベルを得られる条件を決めるのが難しい。特に、微小なスポット径に集光されたパルスレーザにより画素を走査するリペア方法は以下[1]〜[3]の点で難しい。   The latter is a method of reducing light transmittance by generating fine particles in a pixel by laser irradiation and depositing the fine particles on an alignment film. With this method, repair is possible regardless of the cause of the bright spot failure, so the repair rate is high. However, it is difficult to determine the conditions for obtaining a sufficient darkness level. In particular, the repair method of scanning pixels with a pulse laser focused on a small spot diameter is difficult in terms of [1] to [3] below.

[1]輝点不良の画素全体を滅点化するためには、発生した微粒子がパルスレーザの走査経路だけでなく、その周辺にまで飛散する必要がある。 [1] In order to darken all the pixels with defective bright spots, the generated fine particles need to be scattered not only to the scanning path of the pulse laser but also to the periphery thereof.

[2]微粒子を飛散させるためには、パルスレーザの照射点付近の液晶層に気泡が存在する必要がある。 [2] In order to disperse the fine particles, it is necessary that bubbles exist in the liquid crystal layer near the irradiation point of the pulse laser.

[3]微粒子を安定した密度、分布で堆積させるためには、気泡を十分大きくするか、あるいは気泡の成長、移動に合わせて走査経路、走査速度を設定する必要がある。 [3] In order to deposit fine particles with a stable density and distribution, it is necessary to make the bubbles sufficiently large or to set the scanning path and scanning speed in accordance with the growth and movement of the bubbles.

次に、図4を参照しながら従来の滅点化リペアを説明する。   Next, the conventional dark spot repair will be described with reference to FIG.

図4は従来の滅点化リペアの様子を説明するための説明図である。   FIG. 4 is an explanatory diagram for explaining the state of the conventional dark spot repair.

パルスレーザLによる輝点不良100の走査を開始すると、パルスレーザLの照射点付近の液晶層101内に気泡102が発生するとともに、ITO103、配向膜104a、104b、カラーフィルタ105等の材料からなる微粒子106が発生する。   When scanning of the bright spot defect 100 by the pulse laser L is started, bubbles 102 are generated in the liquid crystal layer 101 in the vicinity of the irradiation point of the pulse laser L, and materials such as the ITO 103, the alignment films 104a and 104b, and the color filter 105 are formed. Fine particles 106 are generated.

この微粒子106は、気泡102内を飛散し、配向膜104a、104bの表面に堆積することで、アレイ基板107と対向基板108の液晶層109と接する面に凹凸110を形成する。これにより、液晶層109の配向性が低下して、輝点不良100が滅点化される。
特開平8−15660号公報
The fine particles 106 scatter in the bubbles 102 and deposit on the surfaces of the alignment films 104a and 104b, thereby forming irregularities 110 on the surface of the array substrate 107 and the counter substrate 108 that are in contact with the liquid crystal layer 109. Thereby, the orientation of the liquid crystal layer 109 is lowered, and the bright spot defect 100 is darkened.
JP-A-8-15660

従来の方法で光学的な滅点化リペアを行う場合、気泡の挙動によってその出来栄えが大きく左右される。そのため、安定したリペア品質が得られず、製品として出荷できる液晶ディスプレイを製造するのに時間がかかり過ぎるという問題があった。   When performing the optical darkening repair by the conventional method, the quality is greatly influenced by the behavior of the bubbles. For this reason, there is a problem in that stable repair quality cannot be obtained and it takes too much time to manufacture a liquid crystal display that can be shipped as a product.

本発明は、上記事情を鑑みてなされたものであって、その目的とするところは、気泡の挙動の影響を受けない、安定したリペア品質を得られる液晶ディスプレイの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a liquid crystal display that is not affected by the behavior of bubbles and that can obtain stable repair quality. .

上記課題を解決し目的を達成するために、本発明の液晶ディスプレイの製造方法は次のように構成されている。   In order to solve the above-described problems and achieve the object, the liquid crystal display manufacturing method of the present invention is configured as follows.

(1)アレイ基板と対向基板で液晶材料を挟んでなる、複数の画素を有する液晶ディスプレイの製造方法において、上記アレイ基板に形成された各画素の画素電極から電気信号を検出し、この電気信号に基づいてリペア対象となる画素の位置情報を作成する情報作成工程と、上記情報作成工程の後、上記アレイ基板と対向基板とを貼り合せる貼り合せ工程と、上記貼り合せ工程の後、上記位置情報に基づいて上記リペア対象となる画素にレーザを照射するレーザ照射工程と、上記レーザ照射工程の後、上記アレイ基板と対向基板の間に上記液晶材料を注入する注入工程とを具備することを特徴とする。 (1) In a method of manufacturing a liquid crystal display having a plurality of pixels, in which a liquid crystal material is sandwiched between an array substrate and a counter substrate, an electrical signal is detected from the pixel electrode of each pixel formed on the array substrate, and the electrical signal An information creation process for creating position information of a pixel to be repaired based on the above, a bonding process for bonding the array substrate and the counter substrate after the information creation process, and a position after the bonding process A laser irradiation step of irradiating the pixel to be repaired with a laser based on information; and an injection step of injecting the liquid crystal material between the array substrate and the counter substrate after the laser irradiation step. Features.

本発明によれば、気泡の挙動の影響を受けない、安定したリペア品質が得られる。   According to the present invention, stable repair quality that is not affected by the behavior of bubbles can be obtained.

以下、図面を参照しながら本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の一実施の形態に係る液晶ディスプレイ10の断面図である。   FIG. 1 is a cross-sectional view of a liquid crystal display 10 according to an embodiment of the present invention.

図1に示すように、この液晶ディスプレイ10は、アレイ基板11と対向基板12を有している。これらアレイ基板11と対向基板12は、5μm程度の隙間Gを空けて対向配置されており、その間には液晶材料13が封入されている。   As shown in FIG. 1, the liquid crystal display 10 has an array substrate 11 and a counter substrate 12. The array substrate 11 and the counter substrate 12 are arranged to face each other with a gap G of about 5 μm, and a liquid crystal material 13 is sealed between them.

アレイ基板11は透明なガラス基板14を有し、その液晶材料13側の表面にはITO製の画素電極15、PI製の配向膜16が順に形成され、液晶材料13の反対側の表面には偏光フィルム17が貼付されている。   The array substrate 11 has a transparent glass substrate 14, an ITO pixel electrode 15 and a PI alignment film 16 are sequentially formed on the surface of the liquid crystal material 13, and on the opposite surface of the liquid crystal material 13. A polarizing film 17 is attached.

一方、対向基板12は透明なガラス基板18を有し、その液晶材料13側の表面にはRGB3色からなるカラーフィルタ19、ITO製の導電性薄膜20、PI製の配向膜21が順に形成され、液晶材料13の反対側の表面には偏光フィルム22が貼付されている。   On the other hand, the counter substrate 12 has a transparent glass substrate 18, and a color filter 19 composed of RGB three colors, an ITO conductive thin film 20, and a PI alignment film 21 are sequentially formed on the surface of the liquid crystal material 13. A polarizing film 22 is affixed to the opposite surface of the liquid crystal material 13.

図2は同実施の形態に係る液晶ディスプレイ10の製造工程を示す工程図である。   FIG. 2 is a process diagram showing a manufacturing process of the liquid crystal display 10 according to the embodiment.

図2に示すように、まずアレイ基板11を製造する(ステップS1)。そして、アレイテスタによりアレイ基板11の各画素電極15の帯電量を測定し、帯電量が規定範囲から外れている画素23(以下、「第1の不良画素23」と称する。)を検出して、その位置情報(以下、「第1の位置情報」と称する。)を作成する。なお、帯電量が規定範囲から外れている第1の不良画素23は、液晶ディスプレイ10の点灯時に常時光を通す、いわゆる輝点不良のような欠陥画素の可能性がある。   As shown in FIG. 2, the array substrate 11 is first manufactured (step S1). Then, the charge amount of each pixel electrode 15 of the array substrate 11 is measured by the array tester, and a pixel 23 whose charge amount is out of the specified range (hereinafter referred to as “first defective pixel 23”) is detected. The position information (hereinafter referred to as “first position information”) is created. Note that the first defective pixel 23 whose charge amount is out of the specified range may be a defective pixel such as a so-called bright spot defect that always transmits light when the liquid crystal display 10 is turned on.

そして、第1の位置情報に基づいて第1の不良画素23を良点化リペアするとともに、良点化リペアしても良点化されない第1の不良画素23(以下、「第2の不良画素23A」と称する。)を検出して、その位置情報(以下、「第2の位置情報」と称する。)を作成する(ステップS2)。なお、良点化リペアを行っても良点化されない第2の不良画素23Aは、輝点不良のような欠陥画素の可能性が極めて高い。   The first defective pixel 23 is repaired based on the first position information, and the first defective pixel 23 (hereinafter referred to as “second defective pixel”, which is not improved even if the repair is performed). 23A ") is detected, and its position information (hereinafter referred to as" second position information ") is created (step S2). It should be noted that the second defective pixel 23A that does not become a good spot even when the good spot repair is performed has a very high possibility of a defective pixel such as a bright spot defect.

一方、上記工程と別工程で対向基板12を製造する(ステップS3)。   On the other hand, the counter substrate 12 is manufactured in a separate process from the above process (step S3).

第2の位置情報の作成、及び対向基板12の製造が終了したら、アレイ基板11と対向基板12を5μm程度の間隔で貼り合わせる(ステップS4)。そして、貼り合わされたアレイ基板11と対向基板12を一画面分ごと、すなわち一液晶ディスプレイ10ごとに分割する(ステップS5)。   When the creation of the second position information and the manufacture of the counter substrate 12 are completed, the array substrate 11 and the counter substrate 12 are bonded together at an interval of about 5 μm (step S4). Then, the bonded array substrate 11 and counter substrate 12 are divided for each screen, that is, for each liquid crystal display 10 (step S5).

次に、アレイテスタにより作成された第2の位置情報に基づいて、第2の不良画素23AをパルスレーザLで走査する。これにより、第2の不良画素23Aが点灯評価に先立って滅点化される(ステップS6)。なお、第2の不良画素23AをパルスレーザLで走査して滅点化する様子は後で詳細に説明する。   Next, the second defective pixel 23A is scanned by the pulse laser L based on the second position information created by the array tester. As a result, the second defective pixel 23A is darkened prior to the lighting evaluation (step S6). The manner in which the second defective pixel 23A is scanned with the pulse laser L to darken will be described in detail later.

次に、アレイ基板11と対向基板12の隙間Gに液晶材料13を注入し、その周囲を封止材(図示しない)で封止する(ステップS7)。そして、アレイ基板11および対向基板12の、液晶材料13の反対側の表面に偏光板17、22を貼付し(ステップS8)、液晶ディスプレイ10が完成する。   Next, the liquid crystal material 13 is injected into the gap G between the array substrate 11 and the counter substrate 12, and the periphery thereof is sealed with a sealing material (not shown) (step S7). Then, polarizing plates 17 and 22 are attached to the surfaces of the array substrate 11 and the counter substrate 12 opposite to the liquid crystal material 13 (step S8), and the liquid crystal display 10 is completed.

液晶ディスプレイ10が完成したら、点灯評価を行い、液晶ディスプレイ10の表示画面に輝点不良が存在しないか検査する(ステップS9)。この検査により輝点不良が無ければ、次の工程に搬送される。   When the liquid crystal display 10 is completed, lighting evaluation is performed and it is inspected whether there is a bright spot defect on the display screen of the liquid crystal display 10 (step S9). If there is no bright spot defect by this inspection, it is conveyed to the next step.

次に、第2の不良画素23Aを滅点化する様子(上記ステップS6)について詳細に説明する。   Next, how the second defective pixel 23A is darkened (step S6) will be described in detail.

図3は同実施の形態に係る第2の滅点化リペアの様子を説明する説明図である。   FIG. 3 is an explanatory diagram for explaining a state of the second dark spot repair according to the embodiment.

先ず、第2の位置情報に基づいて第2の不良画素23AをパルスレーザLで走査する。これにより、第2の不良画素23Aに対応する位置の配向膜16、21、画素電極15、導電性薄膜20、カラーフィルタ19等が加工され、その付近にこれらの材料からなる微粒子30が発生する。   First, the second defective pixel 23A is scanned with the pulse laser L based on the second position information. As a result, the alignment films 16 and 21, the pixel electrode 15, the conductive thin film 20, the color filter 19 and the like at positions corresponding to the second defective pixels 23A are processed, and fine particles 30 made of these materials are generated in the vicinity thereof. .

この微粒子30はアレイ基板11と対向基板12の隙間Gを飛散し、配向膜16、21上に堆積する。これにより、アレイ基板11と対向基板12の内面には凹凸31が形成され、液晶材料13の配向性を低下させる。その結果、上述のように、第2の不良画素23Aが液晶ディスプレイ10の点灯評価に先立って滅点化される。   The fine particles 30 scatter in the gap G between the array substrate 11 and the counter substrate 12 and are deposited on the alignment films 16 and 21. Thereby, irregularities 31 are formed on the inner surfaces of the array substrate 11 and the counter substrate 12, and the orientation of the liquid crystal material 13 is lowered. As a result, as described above, the second defective pixel 23A is darkened prior to the lighting evaluation of the liquid crystal display 10.

ここで重要なのは、アレイ基板11と対向基板12の隙間Gに液晶材料13を注入する前に、第2の不良画素23AをパルスレーザLで走査し、アレイ基板11と対向基板12の内面に凹凸31を形成していることである。   What is important here is that before the liquid crystal material 13 is injected into the gap G between the array substrate 11 and the counter substrate 12, the second defective pixel 23A is scanned with the pulse laser L, and the inner surfaces of the array substrate 11 and the counter substrate 12 are uneven. 31 is formed.

このため、パルスレーザLの照射により発生した微粒子30は、液状の液晶材料13に邪魔されることなく、アレイ基板11と対向基板12の間の隙間Gを自由に飛散することができるから、第2の不良画素23A全体に亘って微粒子30が略均一な密度、分布で堆積し、第2の不良画素23Aを確実に滅点化することができる。   Therefore, the fine particles 30 generated by the irradiation of the pulse laser L can be freely scattered in the gap G between the array substrate 11 and the counter substrate 12 without being obstructed by the liquid liquid crystal material 13. The fine particles 30 are deposited with a substantially uniform density and distribution over the entire two defective pixels 23A, and the second defective pixels 23A can be reliably darkened.

これにより、液晶ディスプレイ10の完成後に行われる点灯評価で輝点不良が発見されて再リペアを行うような事態が低減されるから、液晶ディスプレイ10の製造時間が短縮され、ひいては生産性を向上することができる。   As a result, a situation in which a bright spot failure is found in the lighting evaluation performed after the completion of the liquid crystal display 10 and repair is performed is reduced, so that the manufacturing time of the liquid crystal display 10 is shortened and thus productivity is improved. be able to.

なお、本発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。   In addition, this invention is not limited to the said embodiment, In an implementation stage, a component can be deform | transformed and embodied in the range which does not deviate from the summary. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment.

本発明の一実施の形態に係る液晶ディスプレイの断面図。1 is a cross-sectional view of a liquid crystal display according to an embodiment of the present invention. 同実施の形態に係る液晶ディスプレイの製造工程を示す工程図。Process drawing which shows the manufacturing process of the liquid crystal display which concerns on the same embodiment. 同実施の形態に係る第2の不良画素の滅点化リペアの様子を説明する説明図。Explanatory drawing explaining the mode of the darkening repair of the 2nd defective pixel which concerns on the embodiment. 従来の滅点化リペアの様子を説明するための説明図。Explanatory drawing for demonstrating the mode of the conventional darkening repair.

符号の説明Explanation of symbols

10…液晶ディスプレイ、11…アレイ基板、12…対向基板、13…液晶材料、15…画素電極、23…画素、23A…第2の不良画素、L…パルスレーザ。   DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display, 11 ... Array substrate, 12 ... Opposite substrate, 13 ... Liquid crystal material, 15 ... Pixel electrode, 23 ... Pixel, 23A ... Second defective pixel, L ... Pulse laser.

Claims (1)

アレイ基板と対向基板で液晶材料を挟んでなる、複数の画素を有する液晶ディスプレイの製造方法において、
上記アレイ基板に形成された各画素の画素電極から電気信号を検出し、この電気信号に基づいてリペア対象となる画素の位置情報を作成する情報作成工程と、
上記情報作成工程の後、上記アレイ基板と対向基板とを貼り合せる貼り合せ工程と、
上記貼り合せ工程の後、上記位置情報に基づいて上記リペア対象となる画素にレーザを照射するレーザ照射工程と、
上記レーザ照射工程の後、上記アレイ基板と対向基板の間に上記液晶材料を注入する注入工程と、
を具備することを特徴とする液晶ディスプレイの製造方法。
In a manufacturing method of a liquid crystal display having a plurality of pixels, wherein a liquid crystal material is sandwiched between an array substrate and a counter substrate,
An information creation step of detecting an electrical signal from the pixel electrode of each pixel formed on the array substrate and creating position information of a pixel to be repaired based on the electrical signal;
After the information creation step, a bonding step of bonding the array substrate and the counter substrate;
After the bonding step, a laser irradiation step of irradiating the pixel to be repaired with a laser based on the position information;
After the laser irradiation step, an injection step of injecting the liquid crystal material between the array substrate and the counter substrate;
A method of manufacturing a liquid crystal display, comprising:
JP2004279466A 2004-09-27 2004-09-27 Manufacturing method for liquid crystal display Pending JP2006091673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279466A JP2006091673A (en) 2004-09-27 2004-09-27 Manufacturing method for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279466A JP2006091673A (en) 2004-09-27 2004-09-27 Manufacturing method for liquid crystal display

Publications (1)

Publication Number Publication Date
JP2006091673A true JP2006091673A (en) 2006-04-06

Family

ID=36232701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279466A Pending JP2006091673A (en) 2004-09-27 2004-09-27 Manufacturing method for liquid crystal display

Country Status (1)

Country Link
JP (1) JP2006091673A (en)

Similar Documents

Publication Publication Date Title
US8462311B2 (en) Display panel and method of repairing bright point thereof
TWI386709B (en) Method for repairing defective cell of liquid crystal panel
KR101117982B1 (en) Liquid Crystal Display Device And Method For Repairing Bright Spot Of The Same
KR101232136B1 (en) Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same
JP2006171680A (en) Liquid crystal display
JP4546429B2 (en) Liquid crystal display device and manufacturing method thereof
CN101424840A (en) Method for repairing LCD device
KR100877015B1 (en) Color filter substrate, color liquid crystal display device using the same, and method for repairing the same
JP4537983B2 (en) Liquid crystal display device and manufacturing method thereof
JP4354946B2 (en) Liquid crystal display panel and repair method thereof
US20210223582A1 (en) Method for repairing a display panel and a display panel
KR101214045B1 (en) Method and device for repairing brightness defect of liquid crystal display panel
CN101510016B (en) Flat display panel, optoelectronic device and bright point repairing method thereof
JP2015175857A (en) Display device and manufacturing method thereof
CN106054416A (en) Liquid crystal display thin film transistor structure
JP2006091673A (en) Manufacturing method for liquid crystal display
JP2008216810A (en) Liquid crystal panel inspecting device and liquid crystal panel inspection method
JP2005134562A (en) Display device and its manufacturing method
JP2006091672A (en) Defect pixel correcting method for liquid crystal display, and liquid crystal display
KR20090114214A (en) Method and apparatus for repairing a defect of liquid crystal display panel
JP2010015072A (en) Correcting method of color filter substrate, and its device
KR101331433B1 (en) Liquid Crystal Display and Manufacturing Method Thereof
CN101382709A (en) Thin film transistor structure for liquid crystal display device
KR20080001109A (en) Method of repair an liquid crystal cell, method of manufacturing liquid crystal display device using the same, and liquid crystal display repaired using the same
KR20060096575A (en) Liquid crystal display device and method for repairing bright spot of the same