JP2006091392A - Electric-field-controlled anamorphic liquid crystal lens - Google Patents

Electric-field-controlled anamorphic liquid crystal lens Download PDF

Info

Publication number
JP2006091392A
JP2006091392A JP2004276314A JP2004276314A JP2006091392A JP 2006091392 A JP2006091392 A JP 2006091392A JP 2004276314 A JP2004276314 A JP 2004276314A JP 2004276314 A JP2004276314 A JP 2004276314A JP 2006091392 A JP2006091392 A JP 2006091392A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
substrate
anamorphic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004276314A
Other languages
Japanese (ja)
Other versions
JP4277775B2 (en
Inventor
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004276314A priority Critical patent/JP4277775B2/en
Publication of JP2006091392A publication Critical patent/JP2006091392A/en
Application granted granted Critical
Publication of JP4277775B2 publication Critical patent/JP4277775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously and variably control the shape and direction of an ellipse and a focal distance by forming elliptic refractive index distribution. <P>SOLUTION: A liquid crystal lens is provided with: a first substrate having a first electrode; a second substrate; a second electrode arranged on the outside of the second substrate and forming a circular hole type pattern; and a liquid crystal layer stored between the first and second substrates and orienting liquid crystal molecules: and allowed to be driven by applying voltage between the first electrode and the second electrode and controlling the orientation of the liquid crystal molecules. The second electrode is divided into a plurality of parts by slits formed continuously to the hole type pattern part and potential distribution is formed by applying voltage for setting a pair of electrodes opposed to each other in the diameter direction of the hole type pattern to the same potential to variably control optical characteristics on the basis of elliptic refractive index distribution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、楕円形状の屈折率の空間分布特性を有する液晶レンズにおいて、楕円の長軸方向及び長軸と短軸の比を電圧により可変することができ、かつ焦点距離特性を容易に調整することができる電界制御アナモルフィック液晶レンズに関する。   In the liquid crystal lens having an elliptical refractive index spatial distribution characteristic, the present invention can vary the major axis direction of the ellipse and the ratio of the major axis to the minor axis by voltage, and easily adjust the focal length characteristic. The present invention relates to an electric field control anamorphic liquid crystal lens.

近年薄型軽量の平板型表示パネルに利用されている液晶素子は、液晶素子を構成する2枚の基板表面の処理や、外部印加電圧により、液晶分子の配向状態を容易に制御することができ、また電圧印加により実効的な屈折率を異常光に対する値から常光に対する値まで連続的に可変できるという、優れた特性を有している。   In recent years, a liquid crystal element used in a thin and light flat panel display panel can easily control the alignment state of liquid crystal molecules by processing the surface of two substrates constituting the liquid crystal element or by applying an external voltage. Further, it has an excellent characteristic that the effective refractive index can be continuously varied from a value for extraordinary light to a value for ordinary light by applying a voltage.

このように、低電圧印加により分子配向状態を大幅に可変制御できる液晶は、ディスプレイを始め各種の光学素子に応用され始めている。これまで液晶素子における屈折率の空間分布特性を利用した光学素子として、液晶分子が基板に平行で一方向に配向するような強い配向規制力を有する配向処理を行い、直径が数100μmの円形の穴型パターンを有する電極を用いて作製した液晶素子おいて、軸対称的な不均一電界による液晶分子配向効果に基づく屈折率の空間分布特性を利用して、セルフォックレンズと同様の空間的な屈折率分布特性を有する液晶マイクロレンズを得る方法が報告されている(特許文献1、非特許文献1及び非特許文献2)。
また、円形穴型パターン電極と液晶層の間に絶縁性媒質を挿入することで、レンズの有効径を大きくした液晶レンズが考案され(特許文献2)、印加電圧により焦点距離やレンズ特性を大幅に可変制御できるという優れた特徴を有していることから、種々の微小光学デバイスへの応用が期待されている。
As described above, the liquid crystal capable of greatly variably controlling the molecular orientation state by applying a low voltage has begun to be applied to various optical elements including a display. As an optical element utilizing the spatial distribution characteristics of the refractive index in a liquid crystal element so far, an alignment process having a strong alignment regulating force such that liquid crystal molecules are aligned in one direction parallel to the substrate is performed, and a circular shape having a diameter of several hundreds of μm is performed. In a liquid crystal device fabricated using an electrode with a hole pattern, the spatial distribution characteristics of the refractive index based on the liquid crystal molecular alignment effect due to an axially symmetric non-uniform electric field are used to obtain the same spatial characteristics as those of a SELFOC lens. A method for obtaining a liquid crystal microlens having a refractive index distribution characteristic has been reported (Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).
In addition, a liquid crystal lens with an increased effective diameter of the lens has been devised by inserting an insulating medium between the circular hole pattern electrode and the liquid crystal layer (Patent Document 2), and the focal length and lens characteristics are greatly increased by the applied voltage. Therefore, it is expected to be applied to various micro optical devices.

対向する一対の直径が数100μm以下の円形穴型パターンをスリットにより分割し、各電極部分にそれぞれ異なる電圧を印加することで、光軸に垂直な平面内で焦点の位置を変える液晶マイクロレンズが考案されている(特許文献3)。   A liquid crystal microlens that changes the position of a focal point in a plane perpendicular to the optical axis by dividing a pair of opposed circular hole patterns with a diameter of several hundred μm or less by slits and applying different voltages to each electrode part. It has been devised (Patent Document 3).

また、同様に直径が数100μm以下の円形穴型パターンをスリットにより分割した構造をとり、基板界面における液晶分子の配向規制力が非常に弱い配向膜を使用することで、入射光の偏光方向を回転制御できる液晶偏光制御装置が報告されている(特許文献4)。   Similarly, a circular hole pattern having a diameter of several hundred μm or less is divided by slits, and an alignment film having a very weak alignment regulating force for liquid crystal molecules at the substrate interface is used to change the polarization direction of incident light. A liquid crystal polarization control device capable of rotation control has been reported (Patent Document 4).

さらに、寸法が数100μmの円形の穴型パターンを楕円形の形状とすることで、屈折率分布が楕円形状となり、楕円の長軸方向と短軸方向で屈折率分布や焦点距離特性が異なる、大きな非点収差を有する電界制御アナモルフィック液晶レンズを構成できることが報告されている(非特許文献3)。   Furthermore, by making the circular hole pattern having a dimension of several hundred μm into an elliptical shape, the refractive index distribution becomes an elliptical shape, and the refractive index distribution and the focal length characteristics are different between the major axis direction and the minor axis direction of the ellipse. It has been reported that an electric field controlled anamorphic liquid crystal lens having large astigmatism can be constructed (Non-patent Document 3).

特開平11−109303JP-A-11-109303 特開2004−4616JP2004-4616 特開平11−109304JP-A-11-109304 特開2001−272687JP 2001-272687 A 能勢敏明,佐藤進(T. Nose and S. Sato),「不均一電界を用いた液晶マイクロレンズ(Liquid-crystal microlens obtained with a nonuniform electric field)」,Liquid Crystals,1989年,Vol.5,P. 1425-1433Toshiaki Nose, Susumu Sato (T. Nose and S. Sato), “Liquid-crystal microlens obtained with a nonuniform electric field”, Liquid Crystals, 1989, Vol. 5, P 1425-1433 佐藤進、「液晶の世界」、産業図書株式会社、1994年4月15日、P. 186-189Susumu Sato, “The World of Liquid Crystals”, Sangyo Tosho Co., Ltd., April 15, 1994, p. 186-189 本間道則、能勢敏明、佐藤進(M. Honma, T. Nose and S. Sato), 「アナモルフィック液晶マイクロレンズの光学的特性及びそのレーザダイオードコリメーションへn応用(Optical properties of anamorphic liquid crystal microlens and their application for laser diode collimation, Japanese Journal of Applied Physics, 1999年,Vol. 38, No. 1A, P.89-94M. Honma, T. Nose and S. Sato, “Optical properties of anamorphic liquid crystal microlenses and their application to laser diode collimation (Optical properties of anamorphic liquid crystal microlens and their application for laser diode collimation, Japanese Journal of Applied Physics, 1999, Vol. 38, No. 1A, P.89-94

しかしながら、液晶マイクロレンズ構造において、電極を分割した構造では液晶分子の配向方向が異なる領域の境界部に生じるディスクリネーションラインが発生して光学特性が劣化するという問題があり、また直径が数100μm程度と制限され、比較的大きな寸法のレンズ構造とすることは困難であった。   However, in the liquid crystal microlens structure, there is a problem that in the structure in which the electrode is divided, a disclination line is generated at the boundary between regions where the alignment directions of liquid crystal molecules are different, and the optical characteristics are deteriorated, and the diameter is several hundred μm. However, it was difficult to obtain a lens structure having a relatively large size.

さらに、楕円形状の穴型パターン電極を利用する電界制御アナモルフィック液晶レンズでは、楕円の長軸及び短軸方向とその形状すなわち長軸と短軸の比が定まっており、印加電圧可変等により、これらのパラメータを変化させることは困難であるという問題があった。   Furthermore, in an electric field control anamorphic liquid crystal lens using an elliptical hole-shaped pattern electrode, the major axis and minor axis direction of the ellipse and the shape thereof, that is, the ratio of the major axis to the minor axis, are determined. There is a problem that it is difficult to change these parameters.

本発明の目的は、上述の各問題を解決し、機械的な可動部分を持たずに簡単な構成で、寸法が数mm以上の開口部を有すると共に、ディスクリネーションラインの発生を抑制し、きわめて迅速に楕円形状の屈折率分布を有し、楕円の長軸方向の回転及び長軸と短軸の比等の楕円形状、及び各焦点距離等を連続的に制御することができる電界制御アナモルフィック液晶レンズを提供することにある。   The object of the present invention is to solve the above-mentioned problems, with a simple configuration without mechanical moving parts, having an opening with a dimension of several millimeters or more, and suppressing the occurrence of disclination lines, An electric field control analog which has an elliptical refractive index distribution very quickly, and can continuously control the elliptical shape such as rotation of the ellipse in the major axis direction and the ratio of the major axis to the minor axis, and the respective focal lengths. The object is to provide a morphic liquid crystal lens.

本発明は前記課題を解決するために、第1の電極を有する第1の基板と、第2の基板と、前記第2の基板の外部に配置した円形状の穴型パターンが設けられている第2の電極と、前記第1の基板と第2の基板との間に収容された液晶分子を配向させた液晶層とを備え、前記第1の電極と第2の電極との間に電圧を加えて液晶分子の配向制御を行うことで動作する液晶レンズにおいて、前記第2の電極が前記穴型パターン部と連続的に設けられたスリットにより複数部分に分割された穴型分割パターン電極であり、前記複数部分に分割された電極の穴型パターンの直径方向に対向する対の電極を同電位とする電圧を加えて電位分布を形成することで、楕円形状の屈折率分布に基づく光学的特性の可変制御を得られるようにしたことを特徴とする電界制御アナモルフィック液晶レンズを提供する。   In order to solve the above problems, the present invention is provided with a first substrate having a first electrode, a second substrate, and a circular hole pattern disposed outside the second substrate. A second electrode, and a liquid crystal layer in which liquid crystal molecules accommodated between the first substrate and the second substrate are aligned, and a voltage is applied between the first electrode and the second electrode. In the liquid crystal lens that operates by controlling the orientation of liquid crystal molecules in addition to the above, the second electrode is a hole-shaped divided pattern electrode that is divided into a plurality of portions by slits provided continuously with the hole-shaped pattern portion. Optically based on an elliptical refractive index distribution by forming a potential distribution by applying a voltage that makes the pair of electrodes opposed to each other in the diameter direction of the hole pattern of the electrode divided into a plurality of portions have the same potential. The feature is that variable control of characteristics can be obtained. To provide a field control anamorphic liquid crystal lens.

また、前記穴型分割パターン電極の直径方向に対向する対の電極が異なる電位とする電圧を加えて電位分布を形成することで、楕円の中心が円形穴型開口部の中心軸からずれた屈折率分布に基づく光学的特性の可変制御を得られるようにしたことを特徴とする請求項1記載の電界制御アナモルフィック液晶レンズを提供する。   In addition, the pair of electrodes opposed to each other in the diameter direction of the hole-shaped divided pattern electrode is applied with a voltage having a different potential to form a potential distribution, whereby the center of the ellipse is refracted from the center axis of the circular hole-shaped opening. 2. An electric field controlled anamorphic liquid crystal lens according to claim 1, wherein variable control of optical characteristics based on the rate distribution can be obtained.

さらに、前記の電界制御アナモルフィック液晶レンズにおいて、前記第2の電極の外部に絶縁層を介して第3の電極を配置し、この第3の電極に前記第1の電極と第2の電極との間に加える電圧とは独立した第2の電圧を加えて光学的特性の可変制御を得られるようにしたことを特徴とする電界制御アナモルフィック液晶レンズを提供する。   Further, in the electric field control anamorphic liquid crystal lens, a third electrode is disposed outside the second electrode through an insulating layer, and the first electrode and the second electrode are disposed on the third electrode. An electric field controlled anamorphic liquid crystal lens is provided, wherein a variable voltage can be controlled by applying a second voltage independent of the voltage applied between the first and second voltages.

上記の手段により、機械的な動作を伴うことなく、楕円の長軸方向及び長軸と短軸の比、並びに長軸及び短軸各々の焦点距離等の光学的特性を連続的に可変制御することができる。   By the above means, the optical characteristics such as the major axis direction of the ellipse, the ratio of the major axis to the minor axis, and the focal length of each major axis and minor axis are continuously variably controlled without mechanical action. be able to.

以下、この発明の実施の形態について図面を参照して詳細に説明する。実施の形態の断面図として示した図1(A)において、11は第1の基板(例えば厚みが1.3mmの透明ガラス)であり、内面側に、第1の電極21(材料としてはITO、インジウム・スズ・酸化物)が形成されている。この第1の電極21側に、平行に対向して、第2の基板(例えば厚みが1.3mmの透明ガラス)12が配置されている。第2の基板12の外側には第2の電極22(材料としては約150nmの厚みのアルミニウム薄膜)が形成されている。この第2の電極22は、図1(B)に示すように円形の穴型パターン22a(例えば直径7mm)を有しており、10μm幅のスリットで8分割されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1A shown as a cross-sectional view of the embodiment, reference numeral 11 denotes a first substrate (for example, transparent glass having a thickness of 1.3 mm), and a first electrode 21 (as a material is ITO as a material) , Indium, tin, and oxide). A second substrate (for example, a transparent glass having a thickness of 1.3 mm) 12 is disposed on the first electrode 21 side so as to face each other in parallel. A second electrode 22 (a thin aluminum film having a thickness of about 150 nm) is formed on the outside of the second substrate 12. As shown in FIG. 1B, the second electrode 22 has a circular hole pattern 22a (for example, a diameter of 7 mm), and is divided into eight by a 10 μm wide slit.

第1の基板11の第1の電極21側と、第2の基板12との間には、液晶分子を一方向に配向させた液晶層31(材料としてはメルク社製E44、例えば厚みが130μm)が形成されている。41、42は、液晶層31の厚みを一定に保つためのスペーサである。
液晶層を挟む第1と第2の基板も面には、液晶を一方向に配向させるために図示されていないポリイミド膜SE−2170を約150nmの厚みに塗布し、熱処理を行い安定化させた後に一方向にラビング処理が施されている。
Between the first substrate 21 side of the first substrate 11 and the second substrate 12, a liquid crystal layer 31 in which liquid crystal molecules are aligned in one direction (the material is E44 manufactured by Merck, for example, a thickness of 130 μm). ) Is formed. 41 and 42 are spacers for keeping the thickness of the liquid crystal layer 31 constant.
On the surfaces of the first and second substrates sandwiching the liquid crystal layer, a polyimide film SE-2170 (not shown) was applied to a thickness of about 150 nm in order to align the liquid crystal in one direction, and stabilized by heat treatment. Later, rubbing is applied in one direction.

このような構成によると、8分割された円形穴型パターン電極の直径方向に対応するそれぞれ対をなす電極、図1(B)で例えばA1−A2に電源51(1kHz)から可変抵抗器を通して同電位とする電圧Vaを加え、他の対をなす電極B1−B2、C1−C2、D1−D2にそれぞれ異なる所定の電圧Vb、Bc、Vdを加えて、電位分布を形成することで、液晶分子が最も低い電位の電極対を長軸方向とした楕円形状に分布した屈折率特性、すなわち楕円形状の光学位相分布を形成することができる。   According to such a configuration, the electrodes corresponding to the diameter direction of the circular hole pattern electrode divided into eight parts are respectively paired, for example, A1-A2 in FIG. 1 (B) through the variable resistor from the power source 51 (1 kHz). By applying a voltage Va as a potential and applying different predetermined voltages Vb, Bc, Vd to the other pairs of electrodes B1-B2, C1-C2, D1-D2 to form a potential distribution, liquid crystal molecules The refractive index characteristic distributed in an elliptical shape with the electrode pair having the lowest potential as the major axis direction, that is, an elliptical optical phase distribution can be formed.

8分割されたすべての電極A1−A2、B1−B2、C1−C2、D1−D2を同電位とする電圧を第1の電極との間に加えることで、特許文献2に記述されている液晶レンズと同様のレンズ特性及び焦点可変特性が得られる。   The liquid crystal described in Patent Document 2 is applied by applying a voltage between all the electrodes A1-A2, B1-B2, C1-C2, and D1-D2 divided into eight to the same potential. Lens characteristics and variable focus characteristics similar to the lens can be obtained.

図2には、第1の電極21と8分割されたすべての電極A1−A2、B1−B2、C1−C2、D1−D2が同電位となるように電圧を加えたとき、この第2の電極との間に加える電圧を40Vrmsから130Vrmsまで変化したときの焦点距離の変化と電圧の関係を示している。電圧を可変することで、焦点距離が連続的に可変される。   In FIG. 2, when the voltage is applied so that the first electrode 21 and all of the eight electrodes A1-A2, B1-B2, C1-C2, and D1-D2 have the same potential, The graph shows the relationship between the change in focal length and the voltage when the voltage applied between the electrodes is changed from 40 Vrms to 130 Vrms. By changing the voltage, the focal length is continuously changed.

図3(A)、図3(B)、図3(C)は、本発明の電界制御アナモルフィック液晶レンズを光軸方向からみた光波の位相分布(干渉縞)を示している。8分割された円形穴型パターン電極の直径方向に対応するそれぞれ対をなす電極A1−A2、B1−B2、C1−C2、D1−D2、に同一の電圧60Vrmsを加えると、図3(A)に示したように同心円状の干渉パターンとなり、良好なレンズ特性を示している。ここで、各々の隣り合う干渉縞が光波の位相差が2πすなわち1波長分のずれに対応している。図3(B)は、電極対A1−A2の電位Vaを最も低い20Vrmsとし、電極対A1−A2と直交する電極対C1−C2の電位Vcを最も高い60Vrmsとし、その間にある電極対B1−B2、D1−D2の電位Vb、Vdを中間の値40Vrmsとしたときの干渉パターンを示している。図3(C)は、同様にVa=30Vrms、Vc=90Vrms、Vb=Vd=60Vrmsとなる電圧を加えたときの干渉パターンを示している。各々の対をなす電極に異なる電圧を加えると、最も低い電位の電極対の方向を長軸とする楕円形状の干渉パターンが得られる。また、各電極対の電位を可変することで、干渉縞の密度、すなわち光波の位相差分布特性を可変することができる。   FIGS. 3A, 3B, and 3C show light wave phase distributions (interference fringes) when the electric field controlled anamorphic liquid crystal lens of the present invention is viewed from the optical axis direction. When the same voltage 60 Vrms is applied to the electrodes A1-A2, B1-B2, C1-C2, and D1-D2 corresponding to the diameter direction of each of the eight divided circular hole pattern electrodes, FIG. As shown in FIG. 4, the interference pattern becomes a concentric circle, which shows good lens characteristics. Here, each adjacent interference fringe corresponds to a phase difference of 2π, that is, a shift of one wavelength. FIG. 3B shows that the potential Va of the electrode pair A1-A2 is the lowest 20 Vrms, the potential Vc of the electrode pair C1-C2 orthogonal to the electrode pair A1-A2 is the highest 60 Vrms, and the electrode pair B1- The interference patterns are shown when the potentials Vb and Vd of B2 and D1-D2 are set to an intermediate value of 40 Vrms. FIG. 3C similarly shows an interference pattern when voltages of Va = 30 Vrms, Vc = 90 Vrms, and Vb = Vd = 60 Vrms are applied. When a different voltage is applied to each pair of electrodes, an elliptical interference pattern whose major axis is the direction of the electrode pair having the lowest potential is obtained. Further, by varying the potential of each electrode pair, it is possible to vary the density of interference fringes, that is, the phase difference distribution characteristics of light waves.

図4(A)、図4(B)は、上記の実施形態において、電界制御アナモルフィック液晶レンズにおける光の位相遅れφの様子を示している。図4(A)は、Va=20Vrms、Vb=40Vrms、Vc=60Vrms、Vd=40Vrmsの電圧を加えたときの光の位相遅れ特性を示している。図4(B)は、Va=30Vrms、Vb=40Vrms、Vc=90Vrms、Vd=60Vrmsの電圧を加えたときの光の位相遅れ特性を示している。図4(A)、(B)で、黒丸印は楕円状の屈折率分布の長軸方向、白丸印は楕円状の屈折率分布の短軸方向に対するそれぞれ実測値であり、実線は実測値に最も近くなるように定めた2乗曲線である。楕円の長軸方向と短軸方向とで異なる2乗分布の位相特性を示している。図4(A)では長軸方向及び短軸方向の焦点距離が概略64cm、24cmとなり、図4(B)ではそれぞれ47cmと20cmとなっている。
図5(A)、図5(B)、図5(C)、図5(D)は、楕円状の屈折率分布特性の長軸方向、すなわち最も低い電位とした電極対をA1−A2、B1−B2、C1−C2、D1−D2と順次変化したときの干渉パターンを示している。楕円の長軸方向が回転移動しており、その方向を制御できることを示している。
4A and 4B show the state of the phase delay φ of light in the electric field controlled anamorphic liquid crystal lens in the above embodiment. FIG. 4A shows the phase delay characteristics of light when voltages of Va = 20 Vrms, Vb = 40 Vrms, Vc = 60 Vrms, and Vd = 40 Vrms are applied. FIG. 4B shows the phase delay characteristics of light when voltages of Va = 30 Vrms, Vb = 40 Vrms, Vc = 90 Vrms, and Vd = 60 Vrms are applied. In FIGS. 4A and 4B, the black circles are measured values with respect to the major axis direction of the elliptical refractive index distribution, and the white circles are measured values with respect to the minor axis direction of the elliptical refractive index distribution, and the solid line represents the measured values. A square curve determined to be closest. The phase characteristics of the square distribution are different between the major axis direction and the minor axis direction of the ellipse. In FIG. 4A, the focal lengths in the major axis direction and the minor axis direction are approximately 64 cm and 24 cm, respectively, and in FIG. 4B, they are 47 cm and 20 cm, respectively.
5A, FIG. 5B, FIG. 5C, and FIG. 5D show the ellipsoidal refractive index distribution characteristic in the major axis direction, that is, the electrode pair that has the lowest potential, A1-A2, The interference patterns when B1-B2, C1-C2, and D1-D2 are sequentially changed are shown. It shows that the major axis direction of the ellipse is rotating and the direction can be controlled.

なお、本発明では第2の電極22を8分割した実施例について説明したが、電極の分割数をさらに多くすると、楕円の長軸方向の制御をより高精細に行うことができる。また、上記の構成に限定されるものではない。   In the present invention, the example in which the second electrode 22 is divided into eight has been described. However, when the number of divided electrodes is further increased, the control of the ellipse in the major axis direction can be performed with higher definition. Moreover, it is not limited to said structure.

さらに、各対となる電極間に電位差を設けることで、楕円の中心が円形穴型パターンの中心から変位した非対称の屈折率分布特性を得ることができる。この場合には、非点収差特性及び偏向特性を有する液晶レンズを構成することが可能となる。   Furthermore, by providing a potential difference between each pair of electrodes, it is possible to obtain an asymmetric refractive index distribution characteristic in which the center of the ellipse is displaced from the center of the circular hole pattern. In this case, a liquid crystal lens having astigmatism characteristics and deflection characteristics can be configured.

また、第2の電極の外部に絶縁層を介して第3の電極を配置し、この第3の電極に前記第1の電極と第2の電極との間に加える電圧とは独立した第2の電圧を加えることで、楕円の長軸及び短軸方向及びその楕円型の屈折率分布の形状が一定で、且つ長軸及び短軸方向の焦点距離を広範囲にわたって連続的に可変することができる。   In addition, a third electrode is disposed outside the second electrode via an insulating layer, and a second voltage independent of the voltage applied to the third electrode between the first electrode and the second electrode is provided. By applying this voltage, the major axis and minor axis direction of the ellipse and the shape of the elliptical refractive index distribution can be constant, and the focal length in the major axis and minor axis direction can be continuously varied over a wide range. .

本発明の電界制御アナモルフィック液晶レンズは、半導体レーザのような楕円形状の出力光ビームの形状補正や、非点収差を有する光学系の収差補正など、特に収差が回転する場合など種々の用途が可能である。   The electric field control anamorphic liquid crystal lens of the present invention has various applications such as when the aberration is rotated, such as the shape correction of an elliptical output light beam such as a semiconductor laser, or the aberration correction of an optical system having astigmatism. Is possible.

本発明における電界制御アナモルフィック液晶レンズの一実施の形態を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows one Embodiment of the electric field control anamorphic liquid crystal lens in this invention. 本発明に係わる電界制御アナモルフィック液晶レンズの機能を説明するために、印加電圧に対する焦点距離が変化する様子を示す説明図。Explanatory drawing which shows a mode that the focal distance with respect to an applied voltage changes in order to demonstrate the function of the electric field control anamorphic liquid crystal lens concerning this invention. 本発明に係わる電界制御アナモルフィック液晶レンズの機能を説明するために、電界制御アナモルフィック液晶レンズを通過する光波の位相が変化する様子を光軸方向から見て示す説明図。FIG. 3 is an explanatory diagram showing a state in which the phase of a light wave passing through an electric field control anamorphic liquid crystal lens changes from the optical axis direction in order to explain the function of the electric field control anamorphic liquid crystal lens according to the present invention. 本発明に係わる電界制御アナモルフィック液晶レンズの機能を説明するために、電界制御アナモルフィック液晶レンズの光波に対する位相遅れの分布が変化した例を示す説明図。FIG. 3 is an explanatory diagram showing an example in which the distribution of phase lag with respect to light waves of the electric field controlled anamorphic liquid crystal lens is changed in order to explain the function of the electric field controlled anamorphic liquid crystal lens according to the present invention. 本発明に係わる電界制御アナモルフィック液晶レンズの機能を説明するために、電界制御アナモルフィック液晶レンズを通過する光波の位相が変化する様子を光軸方向から見て示す説明図。FIG. 3 is an explanatory diagram showing a state in which the phase of a light wave passing through an electric field control anamorphic liquid crystal lens changes from the optical axis direction in order to explain the function of the electric field control anamorphic liquid crystal lens according to the present invention.

符号の説明Explanation of symbols

11・・・第1の基板、12・・・第2の基板、21・・・第1の電極、22・・・第2の電極、22a・・・円形穴、31・・・液晶層、41・・・スペーサ、42・・・スペーサ、51・・・電源(1kHz)。
DESCRIPTION OF SYMBOLS 11 ... 1st board | substrate, 12 ... 2nd board | substrate, 21 ... 1st electrode, 22 ... 2nd electrode, 22a ... Circular hole, 31 ... Liquid crystal layer, 41 ... spacer, 42 ... spacer, 51 ... power source (1 kHz).

Claims (3)

第1の電極を有する第1の基板と、第2の基板と、前記第2の基板の外部に配置した円形状の穴型パターンが設けられている第2の電極と、前記第1の基板と第2の基板との間に収容された液晶分子を配向させた液晶層とを備え、前記第1の電極と第2の電極との間に電圧を加えて液晶分子の配向制御を行うことで動作する液晶レンズにおいて、前記第2の電極が前記穴型パターン部と連続的に設けられたスリットにより複数部分に分割された穴型分割パターン電極であり、前記複数部分に分割された電極の穴型パターンの直径方向に対向する対の電極を同電位とする電圧を加えて電位分布を形成することで、楕円形状の屈折率分布に基づく光学的特性の可変制御を得られるようにしたことを特徴とする電界制御アナモルフィック液晶レンズ。 A first substrate having a first electrode; a second substrate; a second electrode provided with a circular hole-shaped pattern disposed outside the second substrate; and the first substrate A liquid crystal layer in which liquid crystal molecules accommodated between the first electrode and the second substrate are aligned, and a voltage is applied between the first electrode and the second electrode to control the alignment of the liquid crystal molecules. The second electrode is a hole-shaped divided pattern electrode that is divided into a plurality of portions by a slit continuously provided with the hole-shaped pattern portion, and the electrode divided into the plurality of portions By applying a voltage that makes the pair of electrodes facing the diameter direction of the hole pattern the same potential to form a potential distribution, variable control of optical characteristics based on an elliptical refractive index distribution can be obtained. Electric field controlled anamorphic liquid crystal lens 前記穴型分割パターン電極の直径方向に対向する対の電極が異なる電位とする電圧を加えて電位分布を形成することで、楕円の中心が円形穴型開口部の中心軸からずれた屈折率分布に基づく光学的特性の可変制御を得られるようにしたことを特徴とする請求項1記載の電界制御アナモルフィック液晶レンズ。 Refractive index distribution in which the center of the ellipse is deviated from the center axis of the circular hole-shaped opening by applying a voltage that makes the pair of electrodes opposed to each other in the diameter direction of the hole-shaped divided pattern electrode have different potentials. 2. The electric field control anamorphic liquid crystal lens according to claim 1, wherein variable control of the optical characteristics based on the above is obtained. 請求項1及び請求項2に記載の電界制御アナモルフィック液晶レンズにおいて、前記第2の電極の外部に絶縁層を介して第3の電極を配置し、この第3の電極に前記第1の電極と第2の電極との間に加える電圧とは独立した第2の電圧を加えて光学的特性の可変制御を得られるようにしたことを特徴とする電界制御アナモルフィック液晶レンズ。
3. The electric field controlled anamorphic liquid crystal lens according to claim 1, wherein a third electrode is disposed outside the second electrode through an insulating layer, and the first electrode is disposed on the third electrode. An electric field controlled anamorphic liquid crystal lens characterized in that a variable control of optical characteristics can be obtained by applying a second voltage independent of a voltage applied between the electrode and the second electrode.
JP2004276314A 2004-09-24 2004-09-24 Electric field controlled anamorphic liquid crystal lens Expired - Fee Related JP4277775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276314A JP4277775B2 (en) 2004-09-24 2004-09-24 Electric field controlled anamorphic liquid crystal lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276314A JP4277775B2 (en) 2004-09-24 2004-09-24 Electric field controlled anamorphic liquid crystal lens

Publications (2)

Publication Number Publication Date
JP2006091392A true JP2006091392A (en) 2006-04-06
JP4277775B2 JP4277775B2 (en) 2009-06-10

Family

ID=36232458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276314A Expired - Fee Related JP4277775B2 (en) 2004-09-24 2004-09-24 Electric field controlled anamorphic liquid crystal lens

Country Status (1)

Country Link
JP (1) JP4277775B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925614B1 (en) 2007-12-05 2009-11-06 삼성전기주식회사 Liquid crystal lens having a aspherical optical properties
JP2013515969A (en) * 2009-12-23 2013-05-09 レンズヴェクター インコーポレイテッド Image stabilization and shift in liquid crystal lenses
KR101301955B1 (en) * 2006-12-04 2013-08-30 엘지디스플레이 주식회사 Lens pitch control method for Liquid crystal Lens
CN108957877A (en) * 2018-09-29 2018-12-07 京东方科技集团股份有限公司 Lens arrangement and its manufacturing method and operating method, electronic device
JPWO2020213723A1 (en) * 2019-04-19 2020-10-22

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301955B1 (en) * 2006-12-04 2013-08-30 엘지디스플레이 주식회사 Lens pitch control method for Liquid crystal Lens
KR100925614B1 (en) 2007-12-05 2009-11-06 삼성전기주식회사 Liquid crystal lens having a aspherical optical properties
JP2013515969A (en) * 2009-12-23 2013-05-09 レンズヴェクター インコーポレイテッド Image stabilization and shift in liquid crystal lenses
US9036102B2 (en) 2009-12-23 2015-05-19 Lensvector Inc. Image stabilization and shifting in a liquid crystal lens
JP2015180961A (en) * 2009-12-23 2015-10-15 レンズヴェクター インコーポレイテッドLensvector Incorporated Image stabilization ans shifting in liquid crystal lens
US9429799B2 (en) 2009-12-23 2016-08-30 Lensvector Inc. Image stabilization and shifting in a liquid crystal lens
CN108957877A (en) * 2018-09-29 2018-12-07 京东方科技集团股份有限公司 Lens arrangement and its manufacturing method and operating method, electronic device
US11378862B2 (en) 2018-09-29 2022-07-05 Boe Technology Group Co., Ltd. Optical axis tunable liquid crystal lens, electronic apparatus, display apparatus, and method of operating optical axis tunable liquid crystal lens
JPWO2020213723A1 (en) * 2019-04-19 2020-10-22
JP7252670B2 (en) 2019-04-19 2023-04-05 国立大学法人大阪大学 Liquid crystal elements, eyeglasses, head-mounted displays, contact lenses, and goggles
US11899336B2 (en) 2019-04-19 2024-02-13 Osaka University Liquid crystal element

Also Published As

Publication number Publication date
JP4277775B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4057597B2 (en) Optical element
ES2727498T3 (en) Lenses with power and electrically adjustable alignment
JP5882203B2 (en) Tunable electro-optic liquid crystal lens and method of forming the lens
JP6515115B2 (en) Electrically adjustable lens and lens system
JP5699394B2 (en) Liquid crystal cylindrical lens array and display device
TW201426143A (en) Capacitively coupled electric field control device
US8451408B2 (en) Electrically tunable liquid crystal lens set with central electrode
JP4435795B2 (en) Liquid crystal optical device
US10120239B2 (en) Vertical photo alignment method with maintaining position of mask unchanged and manufacture method of liquid crystal display panel utilizing the same
KR20080103097A (en) Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
JP2002357804A (en) Diffraction liquid crystal lens and multifocal diffraction liquid crystal lens
JP2006313248A (en) Liquid crystal lens
JP2015533226A5 (en)
US8228472B2 (en) Electrically tunable liquid crystal lens with central electrode
JP2006313243A (en) Liquid crystal lens
Ye et al. Liquid crystal lens with focus movable in focal plane
TW201821878A (en) Electrically tunable optical phase modulation element
JP2004004616A (en) Liquid crystal lens
JP2010107686A (en) Method for manufacturing liquid crystal lens, and liquid crystal lens
KR20160024252A (en) Optical modulatoin device including liquid crystal, driving method thereof, and optical device using the same
TWI815818B (en) Optical device with liquid crystal alignment
JP4277775B2 (en) Electric field controlled anamorphic liquid crystal lens
CN107357110B (en) Large-aperture liquid crystal lens array adopting composite dielectric layer
JP2010127976A (en) Variable focus lens
JP5451986B2 (en) Liquid crystal lens and vision correction device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees