JP2006090879A - Optical measurement instrument and optical measurement method - Google Patents

Optical measurement instrument and optical measurement method Download PDF

Info

Publication number
JP2006090879A
JP2006090879A JP2004277578A JP2004277578A JP2006090879A JP 2006090879 A JP2006090879 A JP 2006090879A JP 2004277578 A JP2004277578 A JP 2004277578A JP 2004277578 A JP2004277578 A JP 2004277578A JP 2006090879 A JP2006090879 A JP 2006090879A
Authority
JP
Japan
Prior art keywords
measurement
light
measured
optical
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277578A
Other languages
Japanese (ja)
Inventor
Haruo Ura
治男 浦
Takeshi Uozumi
健史 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soatec Inc
Original Assignee
Soatec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soatec Inc filed Critical Soatec Inc
Priority to JP2004277578A priority Critical patent/JP2006090879A/en
Publication of JP2006090879A publication Critical patent/JP2006090879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the shapes of uneven objects under measurement with high accuracy. <P>SOLUTION: This optical measurement instrument is equipped with: a plurality of measurement parts 101 to 103 and a control part 104. The measurement parts 101 to 103 comprise light sources 105, 107, and 109 for outputting light for measurement, and light detection parts 106, 108, and 110 for detecting the light for measurement reflected by the objects 114 and 115 under measurement. The control part 104 calculates the shapes of the objects 114 and 115 based on the light for measurement detected by the plurality of measurement parts 101 to 103. The optical axes of the light for measurement outputted from the light sources 105, 107, and 109 of the respective measurement parts 101 to 103, are kept from crossing each other while the respective light sources 105, 107, and 109 output the light for measurement so that it passes through a common area 113 in a prescribed domain. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光源で発生する測定用光を被測定物に照射すると共に前記被測定物で反射した前記測定用光を検出し、前記検出した測定用光に基づいて前記被測定物の形状等を測定する光学式測定装置及び前記光学式測定装置を用いた光学式測定方法に関する。   The present invention detects the measurement light reflected by the measurement object while irradiating the measurement light generated by the light source and the shape of the measurement object based on the detected measurement light The present invention relates to an optical measurement device that measures the above and an optical measurement method using the optical measurement device.

従来から、レーザ光源等の光源から発生したレーザ光線等の測定用光を被測定物に照射し、被測定物で反射した前記測定用光を検出することによって、前記被測定物の形状や所定位置からの前記被測定物の距離等を測定するようにした光学式測定装置が開発されている(例えば、非特許文献1参照)。   Conventionally, the measurement object such as a laser beam generated from a light source such as a laser light source is irradiated on the object to be measured, and the measurement light reflected by the object to be measured is detected. An optical measuring device that measures the distance of the object to be measured from a position has been developed (for example, see Non-Patent Document 1).

図4は、非特許文献1に記載された光学式測定装置の測定原理を示す原理図であり、三角測距方式の測定原理を示している。
図4において、401は所定位置から被測定物mまでの距離や被測定物mの形状等を測定するための測定用光を出力する光源としての発光素子(例えば、半導体レーザや赤外線発光ダイオード)、402は投光レンズ、403は受光レンズ、404は光検出部としてのPSD(Position Sensitive Detector)、405は投光レンズ402の光学軸(レンズの中心を通りレンズ面に直角な軸)、406は受光レンズ403の光学軸、mは被測定物である。尚、光検出部としては、PSD404の代わりにCCD(Charge Coupled Device)等も使用可能であるが、以下の説明ではPSD404を用いた例で説明する。
FIG. 4 is a principle diagram showing the measurement principle of the optical measurement device described in Non-Patent Document 1, and shows the measurement principle of the triangulation system.
In FIG. 4, 401 denotes a light emitting element (for example, a semiconductor laser or an infrared light emitting diode) as a light source that outputs measurement light for measuring a distance from a predetermined position to the object to be measured m, a shape of the object to be measured m, and the like. , 402 is a light projecting lens, 403 is a light receiving lens, 404 is a PSD (Position Sensitive Detector) as a light detection unit, 405 is an optical axis of the light projecting lens 402 (an axis passing through the center of the lens and perpendicular to the lens surface), 406 Is the optical axis of the light receiving lens 403, and m is the object to be measured. As the light detection unit, a CCD (Charge Coupled Device) or the like can be used instead of the PSD 404. In the following description, an example using the PSD 404 will be described.

発光素子401から出力された測定用光は、投光レンズ402によって所定の指向性が付与され、被測定物mに照射される。被測定物mに到達した測定用光は、被測定物mによって乱反射され、該反射光の一部が受光レンズ403によってPSD404上にスポット(点)として集光される。
これにより、被測定物mで反射された測定用光はPSD404によって検出される。このとき、PSD404上の受光スポットは、受光レンズ403と被測定物mとの距離に応じて、その位置が変化する。したがって、PSD404上の受光スポット位置を電気的に検出することにより、予め定めた所定位置から被測定物mまでの距離を測定することが可能になる。
The measurement light output from the light emitting element 401 is given a predetermined directivity by the light projection lens 402 and is irradiated to the object m to be measured. The measurement light that reaches the measurement object m is irregularly reflected by the measurement object m, and a part of the reflected light is collected as a spot (point) on the PSD 404 by the light receiving lens 403.
As a result, the measurement light reflected by the measurement object m is detected by the PSD 404. At this time, the position of the light receiving spot on the PSD 404 changes according to the distance between the light receiving lens 403 and the object m to be measured. Therefore, by electrically detecting the light receiving spot position on the PSD 404, it is possible to measure the distance from the predetermined position to the object m to be measured.

これを図4を用いて説明すると、投光レンズ402と受光レンズ403の中心間距離(基線長)をA、受光レンズ403の焦点距離をfとし、投光レンズ402から出力される測定用光の広がりやレンズ402、403の厚み・収差は無視し、受光レンズ403から距離fの位置にPSD404の受光面があるものとする。この場合、所定位置である投光レンズ402から被測定物mまでの距離dは、中心間距離A、焦点距離f及び受光スポットの位置Xを用いて、幾何学的に次式で求められる。
d=A・f/X
中心間距離A及び受光レンズ403の焦点距離fは既知の値であるため、PSD404における受光スポットの位置Xを検出することにより、所定位置から被測定物mまでの距離、被測定物mの形状、被測定物mの移動量等を光学的に測定することができる。以上のようにして、簡単な構成で高精度に、被測定物mの形状等を測定することが可能である。
This will be described with reference to FIG. 4. A measuring distance output from the light projecting lens 402 with a center distance (base line length) between the light projecting lens 402 and the light receiving lens 403 being A and a focal length of the light receiving lens 403 being f. And the thickness and aberration of the lenses 402 and 403 are ignored, and the light receiving surface of the PSD 404 is located at a distance f from the light receiving lens 403. In this case, the distance d from the light projecting lens 402, which is a predetermined position, to the object m to be measured is obtained geometrically by the following equation using the center-to-center distance A, the focal distance f, and the position X of the light receiving spot.
d = A · f / X
Since the center-to-center distance A and the focal length f of the light receiving lens 403 are known values, by detecting the position X of the light receiving spot in the PSD 404, the distance from the predetermined position to the object m to be measured, and the shape of the object m to be measured The amount of movement of the object to be measured m can be optically measured. As described above, it is possible to measure the shape or the like of the measurement object m with high accuracy with a simple configuration.

ところで、被測定物には凸部や凹部を有するものが多々存在する。図5は、凸部502及び凹部503を有する被測定物501の形状を測定する場合の説明図であり、同図(a)は凸部502の形状を測定する場合の説明図、同図(b)は凹部503の形状を測定する場合の説明図である。
被測定物501の凸部502の形状を測定する場合には、図5(a)に示すように、光学式測定装置(図示せず)から測定用光504を被測定物501の凸部502に照射し、凸部502で反射した前記測定用光を光学式測定装置で検出し、所定の形状算出処理を行うことによって被測定物501の凸部502の形状を算出する。
By the way, many objects to be measured have convex portions and concave portions. FIG. 5 is an explanatory diagram in the case of measuring the shape of the object 501 having the convex portion 502 and the concave portion 503, and FIG. 5A is an explanatory diagram in the case of measuring the shape of the convex portion 502. b) is an explanatory diagram in the case of measuring the shape of the recess 503.
When measuring the shape of the convex portion 502 of the device under test 501, as shown in FIG. 5A, the measurement light 504 is sent from the optical measuring device (not shown) to the convex portion 502 of the device under test 501. The shape of the convex portion 502 of the measurement object 501 is calculated by detecting the measurement light reflected on the convex portion 502 with an optical measurement device and performing a predetermined shape calculation process.

このとき、凸部502の中央部付近では、光学式測定装置からの測定用光が被測定物501の凸部502の面に対して略直角に照射されるため、凸部502に照射された測定用光の大部分は凸部502から光学式測定装置側に反射する。したがって、光学式測定装置では該反射した測定用光を良好に検出することができるため、該検出した測定用光に基づいて被測定物501の凸部形状等を算出することが可能になり、高精度な測定が可能になる。   At this time, in the vicinity of the central portion of the convex portion 502, the measurement light from the optical measurement device is irradiated at a substantially right angle with respect to the surface of the convex portion 502 of the object 501. Most of the measurement light is reflected from the convex portion 502 toward the optical measuring device. Therefore, the optical measurement apparatus can detect the reflected measurement light satisfactorily, so that it is possible to calculate the convex shape of the measurement object 501 based on the detected measurement light, High-precision measurement is possible.

しかしながら、凸部502の端部付近では、光学式測定装置からの測定用光が被測定物501の凸部502の面に対して略平行に照射されることになるため、凸部502に照射された測定用光の大部分は凸部502から光学式測定装置側へ反射しないことになる。したがって、光学式測定装置では該反射した測定用光を良好に検出することができないため、被測定物501の形状等の算出が困難になり、測定精度が劣化するという問題がある。   However, in the vicinity of the end of the convex portion 502, the measurement light from the optical measuring device is irradiated substantially parallel to the surface of the convex portion 502 of the object 501. Most of the measured light is not reflected from the convex portion 502 toward the optical measuring device. Therefore, since the reflected measurement light cannot be detected satisfactorily by the optical measurement device, it is difficult to calculate the shape of the object to be measured 501 and the measurement accuracy is deteriorated.

一方、被測定物501の凹部503の形状を測定する場合には、図5(b)に示すように、光学式測定装置から測定用光504を被測定物501の凹部503に照射し、凹部503で反射した前記測定用光を光学式測定装置で検出し、所定の形状算出処理を行うことによって被測定物501の凹部503の形状を算出する。
このとき、凹部503の中央部付近では、光学式測定装置からの測定用光が被測定物501の凹部503の面に対して略直角に照射されるため、凹部503に照射された測定用光の大部分は凹部503から光学式測定装置側に反射する。したがって、光学式測定装置では該反射した測定用光を良好に検出することができるため、該検出した測定用光に基づいて被測定物501の凹部形状等を算出することが可能になり、高精度な測定が可能になる。
On the other hand, when measuring the shape of the recess 503 of the object 501 to be measured, as shown in FIG. 5B, the measurement light 504 is irradiated from the optical measuring device to the recess 503 of the object 501 to be measured. The measurement light reflected at 503 is detected by an optical measurement device, and the shape of the recess 503 of the measurement object 501 is calculated by performing a predetermined shape calculation process.
At this time, in the vicinity of the central portion of the concave portion 503, the measurement light from the optical measurement device is irradiated at a substantially right angle to the surface of the concave portion 503 of the object 501 to be measured. Most of the light is reflected from the concave portion 503 toward the optical measuring device. Therefore, the optical measurement apparatus can detect the reflected measurement light satisfactorily, so that it is possible to calculate the concave shape of the measurement object 501 based on the detected measurement light. Accurate measurement is possible.

しかしながら、凹部503の端部付近では、光学式測定装置からの測定用光が被測定物501の凹部503の面に対して略平行に照射されることになるため、凹部503に照射された測定用光の大部分は凹部503から光学式測定装置側へ反射しないことになる。したがって、光学式測定装置では該反射した測定用光を良好に検出することができないため、被測定物501の形状等の算出が困難になり、測定精度が劣化するという問題がある。   However, in the vicinity of the end of the concave portion 503, the measurement light from the optical measurement device is irradiated substantially parallel to the surface of the concave portion 503 of the object 501 to be measured. Most of the light for use will not be reflected from the concave portion 503 to the optical measuring device side. Therefore, since the reflected measurement light cannot be detected satisfactorily by the optical measurement device, it is difficult to calculate the shape of the object to be measured 501 and the measurement accuracy is deteriorated.

また、図6に示すように、測定対象が車両の場合、車両本体301とドア本体302との間の間隙303を測定する必要性があるが、車両本体の端部304付近やドア本体302の端部305付近の形状や寸法を測定する必要があるが、端部304、305付近では、光学式測定装置からの測定用光が端部304、305の面に対して略平行に照射されるため、端部304、305の位置測定が困難であり、したがって、間隙303の距離の測定が困難という問題がある。
情報調査会より出版された「センサ技術」(1992年10月号(Vol.12.No.11))
As shown in FIG. 6, when the measurement target is a vehicle, it is necessary to measure the gap 303 between the vehicle main body 301 and the door main body 302. Although it is necessary to measure the shape and dimensions in the vicinity of the end portion 305, in the vicinity of the end portions 304 and 305, the measurement light from the optical measurement device is irradiated substantially parallel to the surfaces of the end portions 304 and 305. For this reason, it is difficult to measure the positions of the end portions 304 and 305, and therefore it is difficult to measure the distance of the gap 303.
"Sensor Technology" published by the Information Research Committee (October 1992 issue (Vol.12.No.11))

本発明は、凹凸を有する被測定物の形状や端部を高精度に測定できるようにすることを課題としている。   This invention makes it a subject to enable it to measure the shape and edge part of a to-be-measured object which has an unevenness | corrugation with high precision.

本発明によれば、測定用光を出力する光源と被測定物で反射してきた前記測定用光を検出する光検出部とを有する複数の測定手段と、前記複数の測定手段で検出した測定用光に基づいて前記被測定物の形状を算出する算出手段とを備え、前記各測定手段の光源から出力される測定用光の光軸は相互に交差しないと共に所定範囲内の共通領域を通るように前記各光源は測定用光を出力することを特徴とする光学式測定装置が提供される。
各測定手段の光源から出力される測定用光の光軸は相互に交差しないと共に所定範囲内の共通領域を通るように前記各光源は測定用光を出力する。算出手段は、前記複数の測定手段の光検出部で検出した測定用光に基づいて前記被測定物の形状を算出する。
According to the present invention, a plurality of measurement means having a light source that outputs measurement light and a light detection unit that detects the measurement light reflected by the object to be measured, and the measurement detected by the plurality of measurement means Calculation means for calculating the shape of the object to be measured based on light, and the optical axes of the measurement light output from the light sources of the measurement means do not cross each other and pass through a common area within a predetermined range. In addition, there is provided an optical measuring device characterized in that each light source outputs measurement light.
The light sources output the measurement light so that the optical axes of the measurement light output from the light sources of the measurement means do not intersect each other and pass through a common area within a predetermined range. The calculation means calculates the shape of the object to be measured based on the measurement light detected by the light detection units of the plurality of measurement means.

ここで、前記測定手段は3つ配設されて成り、前記算出手段は、前記各測定手段で検出した測定用光に基づいて前記被測定物の形状を算出するように構成してもよい。
また、前記各測定手段の光源は、同一円周上に等間隔に配設されて成るように構成してもよい。
また、前記算出手段は、前記3つの測定手段のうちの2つの測定手段で検出した測定用光に基づいて前記被測定物の形状を算出するように構成してもよい。
Here, three measurement means may be provided, and the calculation means may be configured to calculate the shape of the object to be measured based on the measurement light detected by each measurement means.
Further, the light sources of the measuring means may be configured to be arranged at equal intervals on the same circumference.
The calculation unit may be configured to calculate the shape of the object to be measured based on the measurement light detected by two of the three measurement units.

また、本発明によれば、前記いずれか一に記載の光学式測定装置を用いて被測定物の形状を測定するとき、前記被測定物の凸面を測定するときには、前記被測定物を前記共通領域よりも前記各測定手段に近い位置に配設して測定を行うことを特徴とする光学式測定方法が提供される。被測定物の凸面を測定するときには、前記被測定物を共通領域よりも各測定手段に近い位置に配設して測定を行う。
ここで、前記いずれか一に記載の光学式測定装置を用いて被測定物の形状を測定するとき、前記被測定物の凹面を測定するときには、前記被測定物を前記共通領域よりも前記各測定手段から遠い位置に配設して測定を行うようにしてもよい。
According to the present invention, when measuring the shape of the object to be measured using the optical measuring device according to any one of the above, when measuring the convex surface of the object to be measured, the object to be measured is used as the common object. There is provided an optical measurement method characterized in that measurement is performed by disposing at a position closer to each measurement means than an area. When measuring the convex surface of the object to be measured, the object to be measured is disposed at a position closer to each measuring means than the common area.
Here, when measuring the shape of the object to be measured using the optical measuring device according to any one of the above, when measuring the concave surface of the object to be measured, the object to be measured is more than the common region. The measurement may be performed by disposing at a position far from the measurement means.

本発明の光学式測定装置によれば、凹凸を有する被測定物の形状を高精度に測定することが可能になる。また、被測定物の端部を高精度に測定することが可能になる。
また、本発明の光学式測定方法によれば、凹凸を有する被測定物の形状を高精度に測定することが可能になる。また、被測定物の端部を高精度に測定することが可能になる。
According to the optical measuring device of the present invention, it becomes possible to measure the shape of the object to be measured having irregularities with high accuracy. Moreover, it becomes possible to measure the edge part of a to-be-measured object with high precision.
Further, according to the optical measurement method of the present invention, it becomes possible to measure the shape of the object to be measured having irregularities with high accuracy. Moreover, it becomes possible to measure the edge part of a to-be-measured object with high precision.

以下、図面を参照して、本発明の実施の形態に係る光学式測定装置及び光学式測定方法について説明する。尚、本発明の実施の形態に係る光学式測定装置は、光学式測定装置の光源からの測定用光を被測定物に照射し、前記被測定物で反射した前記測定用光を前記光学式測定装置の光検出部で検出し、前記光検出部で検出した信号に基づいて算出手段により前記被測定物の形状や所定位置から前記被測定物までの距離等を測定するようにした光学式測定装置である。また、本発明の実施の形態に係る光学式測定方法は、前記光学式測定装置を用いて被測定物の形状等を測定する光学的測定方法である。以下の各図において、同一部分には同一符号を付している。   Hereinafter, an optical measuring device and an optical measuring method according to an embodiment of the present invention will be described with reference to the drawings. The optical measurement apparatus according to the embodiment of the present invention irradiates the measurement object with the measurement light from the light source of the optical measurement apparatus, and reflects the measurement light reflected by the measurement object. An optical type that is detected by the light detection unit of the measuring device and measures the shape of the object to be measured, the distance from the predetermined position to the object to be measured, and the like by the calculation means based on the signal detected by the light detector It is a measuring device. An optical measurement method according to an embodiment of the present invention is an optical measurement method for measuring the shape or the like of an object to be measured using the optical measurement apparatus. In the following drawings, the same parts are denoted by the same reference numerals.

図1は本発明の実施の形態に係る三角測距方式の光学式測定装置の外観斜視図、図2は図1に示した光学式測定装置の正面図であり、各々、形状等の測定対象である被測定物114、115とともに示している。
図1及び図2において、光学式測定装置は、複数(本実施の形態では3つ)の測定手段(第1の測定手段としての第1の測定部101、第2の測定手段としての第2の測定部102、第3の測定手段としての第3の測定部103)と、各測定部101〜103の制御や各測定部101〜103で検出した測定用光に基づいて被測定物の形状等を算出する制御部104とを備えている。
FIG. 1 is an external perspective view of a triangulation optical measuring device according to an embodiment of the present invention, and FIG. 2 is a front view of the optical measuring device shown in FIG. These are shown together with the measured objects 114 and 115.
1 and 2, the optical measurement apparatus includes a plurality of (three in the present embodiment) measurement means (a first measurement unit 101 as a first measurement means and a second measurement means as a second measurement means). , The third measuring unit 103 as the third measuring means, and the shape of the object to be measured based on the control of each measuring unit 101 to 103 and the measuring light detected by each measuring unit 101 to 103 And a control unit 104 that calculates the above.

各測定部101〜103は、所定の基準位置を基準とする既知の位置に配設されている。また、各測定部101〜103は電気ケーブルによって制御部104に電気的に接続されている。
各測定部101〜103には、異なる領域を(測定領域)を測定するように予め測定領域が割り当てられており、各測定部101〜103は被測定物の異なる領域を各々測定する。ここで、各測定部101〜103に割り当てられた測定領域とは、各測定部101〜103の光源105、107、109から出力される測定用光が被測定物で反射して所定割合以上反射して戻るような領域である。
Each of the measuring units 101 to 103 is disposed at a known position with a predetermined reference position as a reference. Moreover, each measurement part 101-103 is electrically connected to the control part 104 with the electrical cable.
Each measurement unit 101 to 103 is assigned a measurement region in advance so as to measure a different region (measurement region), and each measurement unit 101 to 103 measures a different region of the object to be measured. Here, the measurement area allocated to each of the measurement units 101 to 103 is that the measurement light output from the light sources 105, 107, and 109 of each of the measurement units 101 to 103 is reflected by the object to be measured and reflected by a predetermined ratio or more. It is an area that returns.

即ち、各光源105、107、109から出力される測定用光が被測定物の表面に対して、直角により近くなるような所定値以上の角度で入射する領域である。各測定部101〜103の測定領域を前記のような領域に割り当てることにより、各測定部101〜103の光源105、107、109から出力された測定用光は、多くが被測定物で反射して角測定部101〜103の光検出部106、108、110に戻り、検出されるため、凹凸部を有する被測定物の形状等の測定が良好に行われることになる。   That is, this is a region where the measurement light output from each of the light sources 105, 107, and 109 is incident on the surface of the object to be measured at an angle of a predetermined value or more that is closer to a right angle. By allocating the measurement areas of the measurement units 101 to 103 to the areas as described above, most of the measurement light output from the light sources 105, 107, and 109 of the measurement units 101 to 103 is reflected by the object to be measured. Therefore, since the detection is returned to the light detection units 106, 108, and 110 of the angle measurement units 101 to 103, the shape and the like of the object to be measured having the concavo-convex part are measured favorably.

制御部104は、各測定部101〜103の光源105、107、109を、各測定部101〜103に割り当てられた各測定領域を測定用光で走査するように各光源105、107、109を回転制御する。
制御部104は、各測定部101〜103が各々担当して測定した被測定物の領域の測定データを合成することによって、全体的な被測定物の形状等を算出する。
The control unit 104 controls the light sources 105, 107, and 109 of the measurement units 101 to 103 to scan the measurement regions assigned to the measurement units 101 to 103 with the measurement light. Control rotation.
The control unit 104 calculates the overall shape of the object to be measured by synthesizing the measurement data of the area of the object to be measured that is measured by each of the measuring units 101 to 103.

即ち、制御部104は、各測定部101〜103で測定して得られた被測定用光に対応する信号に基づいて、被測定物の全体的な形状を算出する。測定部101〜103は所定の基準位置を基準とする位置に配設されているため、各測定部101〜103で測定される測定用信号は、各測定部101〜103に共通する基準位置を基準とする信号であるため、制御部104は各測定部101〜103からの信号を容易に合成して被測定物の全体的な形状等を算出することができる。   That is, the control unit 104 calculates the overall shape of the object to be measured based on the signal corresponding to the light for measurement obtained by the measurement by the measuring units 101 to 103. Since the measurement units 101 to 103 are disposed at positions with reference to a predetermined reference position, the measurement signals measured by the measurement units 101 to 103 have a reference position common to the measurement units 101 to 103. Since the signal is a reference signal, the control unit 104 can easily synthesize the signals from the measurement units 101 to 103 to calculate the overall shape of the object to be measured.

各測定部101〜103は、各々、測定用光を出力する光源(例えば、レーザ、発光ダイオード(LED))105、107、109と、被測定物から反射してきた測定用光を検出する光検出部(例えば、PSD(Position Sensitive Detector)、CCD(Charge Coupled Device))106、108、110を有している。光源105、107、109の発光は制御部104によって制御される。また、光検出部106、108、110によって検出した測定用光に対応する信号が制御部104に送信され、制御部104は算出手段として機能して、光検出部106、108、110で検出した測定用光に基づいて、被測定物の形状等を算出する。   Each of the measuring units 101 to 103 is a light source (for example, laser, light emitting diode (LED)) 105, 107, 109 that outputs measurement light, and light detection that detects the measurement light reflected from the object to be measured. Sections (for example, PSD (Position Sensitive Detector), CCD (Charge Coupled Device)) 106, 108, 110. Light emission of the light sources 105, 107, and 109 is controlled by the control unit 104. In addition, a signal corresponding to the measurement light detected by the light detection units 106, 108, and 110 is transmitted to the control unit 104, and the control unit 104 functions as a calculation unit and is detected by the light detection units 106, 108, and 110. Based on the measurement light, the shape of the object to be measured is calculated.

各測定部101〜103は、垂直方向に設けられた垂直軸112を中心とする円111の円周上に等間隔に配設されている。即ち、3つの測定部101〜103は、水平面内に設けられた同一の円111の円周上に等間隔(即ち、正三角形の頂点)に配設されている。
各測定部101〜103の光源105、107、109から出力される測定用光の光軸は相互に交差しないように構成されると共に、所定面積の円形領域である所定の共通領域113を通るように構成されている。
Each measurement part 101-103 is arrange | positioned at equal intervals on the periphery of the circle | round | yen 111 centering on the vertical axis | shaft 112 provided in the perpendicular direction. That is, the three measuring units 101 to 103 are arranged at equal intervals (that is, apexes of an equilateral triangle) on the circumference of the same circle 111 provided in the horizontal plane.
The optical axes of the measurement light beams output from the light sources 105, 107, and 109 of the measurement units 101 to 103 are configured not to cross each other and pass through a predetermined common area 113 that is a circular area having a predetermined area. It is configured.

各光源105、107、109から出力される測定用光の光軸は垂直軸112に対して所定角度内で傾斜するように構成される。共通領域113は、光源105、107、109によって構成される水平面内の面積が最も狭くなる部分の領域である。
本実施の形態では、共通領域113よりも各測定部101〜103に近い領域を第1領域、共通領域113よりも各測定部101〜103から遠い領域を第2領域とし、凸面形状を測定する被測定物114は第1領域に配設して測定し、凹面形状を測定する被測定物115は第2領域に配設して測定するようにしている。
The optical axis of the measurement light output from each light source 105, 107, 109 is configured to be inclined within a predetermined angle with respect to the vertical axis 112. The common area 113 is an area where the area in the horizontal plane constituted by the light sources 105, 107, and 109 is the narrowest.
In the present embodiment, a region closer to each measurement unit 101 to 103 than the common region 113 is defined as a first region, and a region farther from each measurement unit 101 to 103 than the common region 113 is defined as a second region, and the convex shape is measured. An object to be measured 114 is arranged and measured in the first area, and an object to be measured 115 for measuring the concave shape is arranged and measured in the second area.

以上のように構成された本発明の実施の形態に係る光学式測定装置及び光学式測定方法を詳細に説明する。
先ず、被測定物115の凹面形状を測定する場合、被測定物115を第2領域に配設する。
この状態で、制御部104は、各測定部101〜103を制御して、各測定部101〜103の光源105、107、109から測定用光を出力する。このとき、制御部104は、各測定部101〜103の光源105、107、109から出力される測定用光が相互に交差しないように、且つ、各測定部101〜103に予め割り当てた領域を各測定部101〜103の光源105、107、109が測定用光で走査するように、各測定部101〜103を制御する。
The optical measuring apparatus and the optical measuring method according to the embodiment of the present invention configured as described above will be described in detail.
First, when measuring the concave shape of the DUT 115, the DUT 115 is disposed in the second region.
In this state, the control unit 104 controls the measurement units 101 to 103 and outputs measurement light from the light sources 105, 107, and 109 of the measurement units 101 to 103. At this time, the control unit 104 assigns areas allocated in advance to the measurement units 101 to 103 so that the measurement lights output from the light sources 105, 107, and 109 of the measurement units 101 to 103 do not intersect each other. The measurement units 101 to 103 are controlled so that the light sources 105, 107, and 109 of the measurement units 101 to 103 scan with measurement light.

測定部101の光源105から出力された前記測定用光は、共通領域113を介して被測定物115に到達した後に被測定物115の凹面で反射し、該反射した測定用光は再び共通領域113を介して測定部101側に戻り、光検出部106で検出される。光検出部106で検出する測定用信号には、測定部101に予め割り当てられた測定領域における被測定物115の形状を表すための基礎となる点群データ(被測定物115の形状を表すための被測定物115における複数の点のデータ:形状のデータ)が含まれている。光検出部106は、前記測定用光を検出して、対応する電気信号を制御部104に出力する。前記電気信号には、測定部101に予め割り当てられた測定領域における被測定物115の形状のデータが含まれている。   The measurement light output from the light source 105 of the measurement unit 101 reaches the measurement object 115 via the common area 113 and then is reflected by the concave surface of the measurement object 115, and the reflected measurement light is again reflected in the common area. It returns to the measurement unit 101 side via 113 and is detected by the light detection unit 106. In the measurement signal detected by the light detection unit 106, point cloud data (in order to represent the shape of the measurement object 115) serving as a basis for representing the shape of the measurement object 115 in the measurement region previously assigned to the measurement unit 101. The data of a plurality of points in the DUT 115: shape data). The light detection unit 106 detects the measurement light and outputs a corresponding electrical signal to the control unit 104. The electrical signal includes data on the shape of the DUT 115 in the measurement region previously assigned to the measurement unit 101.

測定部102の光源107から出力された前記測定用光は、共通領域113を介して被測定物115に到達した後に被測定物115の凹面で反射し、該反射した測定用光は再び共通領域113を介して測定部102側に戻り、光検出部108で検出される。光検出部108で検出する測定用信号には、測定部102に予め割り当てられた測定領域における被測定物115の形状のデータが含まれている。光検出部108は、前記測定用光を検出して、対応する電気信号を制御部104に出力する。前記電気信号には、測定部102に予め割り当てられた測定領域における被測定物115の形状のデータが含まれている。   The measurement light output from the light source 107 of the measurement unit 102 reaches the measurement object 115 via the common region 113 and then is reflected by the concave surface of the measurement object 115. The reflected measurement light is again reflected in the common region. It returns to the measurement unit 102 side through 113 and is detected by the light detection unit 108. The measurement signal detected by the light detection unit 108 includes data on the shape of the object 115 to be measured in the measurement region previously assigned to the measurement unit 102. The light detection unit 108 detects the measurement light and outputs a corresponding electrical signal to the control unit 104. The electrical signal includes data on the shape of the DUT 115 in the measurement region previously assigned to the measurement unit 102.

また、測定部103の光源109から出力された前記測定用光は、共通領域113を介して被測定物115に到達した後に被測定物115の凹面で反射し、該反射した測定用光は再び共通領域113を介して測定部103側に戻り、光検出部110で検出される。光検出部110で検出する測定用信号には、測定部103に予め割り当てられた測定領域における被測定物115の形状のデータが含まれている。光検出部110は、前記測定用光を検出して、対応する電気信号を制御部104に出力する。前記電気信号には、測定部103に予め割り当てられた測定領域における被測定物115の形状のデータが含まれている。
制御部104は、各光検出部106、108、110から入力された前記測定用光に対応する信号に基づいて、被測定物115の形状を算出する。即ち、制御部104は、各光検出部106、108、110から入力された前記測定用光に対応する信号を合成することにより、被測定物115の形状を算出する。
The measurement light output from the light source 109 of the measurement unit 103 reaches the measurement object 115 via the common region 113 and then is reflected by the concave surface of the measurement object 115, and the reflected measurement light is again reflected. It returns to the measurement unit 103 side through the common region 113 and is detected by the light detection unit 110. The measurement signal detected by the light detection unit 110 includes data on the shape of the measurement object 115 in the measurement region previously assigned to the measurement unit 103. The light detection unit 110 detects the measurement light and outputs a corresponding electrical signal to the control unit 104. The electrical signal includes data on the shape of the DUT 115 in the measurement region assigned in advance to the measurement unit 103.
The control unit 104 calculates the shape of the DUT 115 based on signals corresponding to the measurement light input from the light detection units 106, 108, and 110. That is, the control unit 104 calculates the shape of the measurement object 115 by combining signals corresponding to the measurement light input from the light detection units 106, 108, and 110.

一方、被測定物が凸面形状を有する被測定物114の場合には、被測定物114を第1領域に配設する。この状態で、前記同様の動作を行う。この場合、被測定物114が凸部形状を有するものの、被測定物114は第1領域に配設した状態で測定されるため、各測定部101〜103の光源105、107、109から出力される測定用光は、被測定物114の凸面表面に対してより直角に近い角度で照射されることになるため、各測定部101〜103の光検出部106、108、110は被測定物114で反射された測定用光の多くを検出することができる。したがって、凸面を有する被測定物114の形状等の測定を高精度に行うことが可能になる。   On the other hand, when the device under test is a device under test 114 having a convex shape, the device under test 114 is arranged in the first region. In this state, the same operation as described above is performed. In this case, although the device under test 114 has a convex shape, the device under test 114 is measured in a state of being arranged in the first region, and therefore is output from the light sources 105, 107, and 109 of the measurement units 101 to 103. Since the measurement light to be measured is irradiated at an angle closer to a right angle with respect to the convex surface of the object to be measured 114, the light detection units 106, 108, and 110 of each of the measurement units 101 to 103 are Most of the measurement light reflected by can be detected. Therefore, it is possible to measure the shape of the measurement object 114 having a convex surface with high accuracy.

前記実施の形態では、各測定部101〜103を所定位置に固定して配設した例で説明したが、垂直軸112を中心にして回転する円盤上に、該円盤の円周方向に沿って等間隔に各測定部101〜103を取り付け、制御部104によってモータを回転制御することにより、前記円盤を前記モータで所定角度ずつ回転させながら測定を行うようにしてもよい。これにより、被測定物における陰に隠れた部分等も正確に測定することが可能になる。   In the above-described embodiment, the measurement units 101 to 103 are described as being fixedly disposed at predetermined positions. However, on the disk that rotates about the vertical axis 112, along the circumferential direction of the disk. The measurement units 101 to 103 may be attached at equal intervals, and the motor may be rotationally controlled by the control unit 104 so that the measurement is performed while rotating the disk by a predetermined angle by the motor. Thereby, it is possible to accurately measure a portion hidden behind the object to be measured.

図3は、本発明の他の実施の形態に係る光学式測定装置及び光学式測定方法を説明するための正面図であり、図1及び図2と同一部分には同一符号を付している。前記実施の形態では、3つの測定部101〜103を使用すると共に、凸部や凹部を有する被測定物114、115を測定したが、本実施の形態では3つの測定部101〜103のうち、2つの測定部101、103を使用して、被測定物の端部を測定するようにしている。   FIG. 3 is a front view for explaining an optical measuring device and an optical measuring method according to another embodiment of the present invention, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. . In the above-described embodiment, the three measuring units 101 to 103 are used, and the measured objects 114 and 115 having convex portions and concave portions are measured, but in the present embodiment, of the three measuring units 101 to 103, Two measuring units 101 and 103 are used to measure the end of the object to be measured.

図3において、光学式測定装置自体は前記実施の形態に係る光学式測定装置であるが、本実施の形態では、3つの測定部101〜103のうち、測定部102は使用せずに、2つの測定部101、103を使用して、被測定物の端部を測定する。
また、本実施の形態では、測定対象は車両であり、車両本体301とドア302の間の隙間を測定する例を示している。
In FIG. 3, the optical measurement device itself is the optical measurement device according to the above embodiment, but in this embodiment, the measurement unit 102 is not used among the three measurement units 101 to 103, and 2 The two measuring units 101 and 103 are used to measure the end of the object to be measured.
In the present embodiment, the measurement target is a vehicle, and an example in which a gap between the vehicle main body 301 and the door 302 is measured is shown.

図3に示すように、被測定物(車両)は、共通領域113よりも光学式測定装置から遠い領域である第2領域に配設して測定を行う。
この場合、制御部104は、各測定部101、103を制御して、各測定部101、103の光源105、109から測定用光を出力する。このとき、制御部104は、各測定部101、103の光源105、109から出力される測定用光が相互に交差しないように、且つ、各測定部101、103に予め割り当てた領域を各測定部101、103の光源105、109が測定用光で走査するように、各測定部101、103を制御する。
As shown in FIG. 3, the object to be measured (vehicle) is placed in a second region that is farther from the optical measurement device than the common region 113 for measurement.
In this case, the control unit 104 controls the measurement units 101 and 103 to output measurement light from the light sources 105 and 109 of the measurement units 101 and 103. At this time, the control unit 104 measures the areas previously assigned to the measurement units 101 and 103 so that the measurement lights output from the light sources 105 and 109 of the measurement units 101 and 103 do not intersect each other. The measurement units 101 and 103 are controlled so that the light sources 105 and 109 of the units 101 and 103 scan with the measurement light.

測定部101の光源105から出力された前記測定用光は、共通領域113を介して被測定物に到達した後に車両本体301の端部304周辺及びドア本体302の端部305周辺で反射し、該反射した測定用光は再び共通領域113を介して測定部101側に戻り、光検出部106で検出される。光検出部106で検出する測定用信号には、測定部101に予め割り当てられた測定領域における被測定物の形状のデータが含まれている。光検出部106は、前記測定用光を検出して、対応する電気信号を制御部104に出力する。   The measurement light output from the light source 105 of the measuring unit 101 is reflected around the end 304 of the vehicle main body 301 and the end 305 of the door main body 302 after reaching the object to be measured via the common region 113. The reflected measurement light returns to the measurement unit 101 side again through the common region 113 and is detected by the light detection unit 106. The measurement signal detected by the light detection unit 106 includes data on the shape of the object to be measured in the measurement region previously assigned to the measurement unit 101. The light detection unit 106 detects the measurement light and outputs a corresponding electrical signal to the control unit 104.

前記電気信号には、測定部101に予め割り当てられた測定領域における被測定物の形状のデータが含まれている。尚、測定部103からの測定用光は車両本体301の端部304の面に対してより直角に近い角度で入射し、端部304で反射する測定用光は測定部103でより多く検出されるため、車両本体301の端部304は測定部103によって正確に測定が行われる。   The electrical signal includes data on the shape of the object to be measured in the measurement region previously assigned to the measurement unit 101. Note that the measurement light from the measurement unit 103 is incident on the surface of the end 304 of the vehicle main body 301 at an angle closer to a right angle, and more measurement light reflected by the end 304 is detected by the measurement unit 103. Therefore, the end 304 of the vehicle main body 301 is accurately measured by the measuring unit 103.

測定部103の光源109から出力された前記測定用光は、共通領域113を介して被測定物に到達した後に車両本体301の端部304周辺及びドア本体302の端部305周辺で反射し、該反射した測定用光は再び共通領域113を介して測定部103側に戻り、光検出部110で検出される。光検出部110で検出する測定用信号には、測定部103に予め割り当てられた測定領域における被測定物の形状のデータが含まれている。光検出部110は、前記測定用光を検出して、対応する電気信号を制御部104に出力する。   The measurement light output from the light source 109 of the measurement unit 103 is reflected around the end 304 of the vehicle main body 301 and the end 305 of the door main body 302 after reaching the object to be measured through the common region 113. The reflected measurement light returns to the measurement unit 103 side again through the common region 113 and is detected by the light detection unit 110. The measurement signal detected by the light detection unit 110 includes data on the shape of the object to be measured in the measurement region assigned in advance to the measurement unit 103. The light detection unit 110 detects the measurement light and outputs a corresponding electrical signal to the control unit 104.

前記電気信号には、測定部103に予め割り当てられた測定領域における被測定物の形状のデータが含まれている。尚、測定部101からの測定用光はドア本体302の端部305の面に対してより直角に近い角度で入射し、端部305で反射する測定用光は測定部101でより多く検出されるため、ドア本体302の端部305は測定部101によって正確に測定が行われる。   The electrical signal includes data on the shape of the object to be measured in the measurement region previously assigned to the measurement unit 103. Note that the measurement light from the measurement unit 101 is incident on the surface of the end 305 of the door body 302 at an angle closer to a right angle, and more measurement light reflected by the end 305 is detected by the measurement unit 101. Therefore, the end portion 305 of the door main body 302 is accurately measured by the measurement unit 101.

制御部104は、各光検出部106、110から入力された前記測定用光に対応する信号に基づいて、被測定物(車両本体301及びドア本体302)の形状を算出し、これにより、間隙303の距離を算出する。即ち、制御部104は、各光検出部106、110から入力された前記測定用光に対応する信号を合成することにより、被測定物の端部304、305を算出し、又、間隙303を算出する。   The control unit 104 calculates the shape of the object to be measured (the vehicle main body 301 and the door main body 302) based on the signal corresponding to the measurement light input from each of the light detection units 106 and 110. The distance 303 is calculated. That is, the control unit 104 calculates the end portions 304 and 305 of the object to be measured by synthesizing signals corresponding to the measurement light input from the light detection units 106 and 110, and sets the gap 303. calculate.

前記実施の形態では、各測定部101、103を所定位置に固定して配設した例で説明したが、前記実施の形態と同様に、垂直軸を中心にして回転する円盤上に、該円盤の円周方向に沿って等間隔に各測定部101〜103を取り付け、制御部104によってモータを回転制御することにより、前記円盤を前記モータで所定角度ずつ回転させながら測定を行うようにしてもよい。これにより、被測定物における陰に隠れた部分等も正確に測定することが可能になる。
また、各測定部101、103を、被測定物の端部を横切る方向(図3では左右方向)に所定速度で移動させながら、各測定部101、103によって被測定物の端部304、305、あるいは、間隙303を測定するようにしてもよい。
In the above-described embodiment, the measurement units 101 and 103 have been described as being fixedly arranged at predetermined positions. However, as in the above-described embodiment, the disk is rotated on a disk that rotates about a vertical axis. The measurement units 101 to 103 are attached at equal intervals along the circumferential direction of the motor, and the rotation of the motor is controlled by the control unit 104, so that the measurement is performed while rotating the disk by a predetermined angle. Good. Thereby, it is possible to accurately measure a portion hidden behind the object to be measured.
Further, the measuring units 101 and 103 move the measuring units 101 and 103 at a predetermined speed in a direction crossing the end of the measured object (left and right direction in FIG. 3), and the measuring units 101 and 103 end the measured object ends 304 and 305. Alternatively, the gap 303 may be measured.

また、前記各実施の形態では、各測定部101〜103で検出した測定用光に対応する信号を、算出手段を構成する制御部104に送信し、制御部104で被測定物の全体的な形状等を算出するように構成したが、各測定部101〜103に個別の算出手段を設けておき、各測定部101〜103で測定した領域における被測定物の形状(部分的な形状)等を各測定部101〜103に設けられた個別の算出手段によって算出し、各測定部101〜103の個別の算出手段で算出した部分的な形状を、算出手段を構成する制御部104で合成して、被測定物の全体的な形状等を算出するようにしてもよい。   Further, in each of the above embodiments, a signal corresponding to the measurement light detected by each of the measurement units 101 to 103 is transmitted to the control unit 104 constituting the calculation means, and the control unit 104 performs overall measurement of the object to be measured. Although it was comprised so that a shape etc. might be calculated, the individual measurement means was provided in each measurement part 101-103, and the shape (partial shape) of the to-be-measured object in the area | region measured by each measurement part 101-103 etc. Is calculated by the individual calculating means provided in each of the measuring units 101 to 103, and the partial shapes calculated by the individual calculating means of each of the measuring units 101 to 103 are synthesized by the control unit 104 constituting the calculating means. Thus, the overall shape or the like of the object to be measured may be calculated.

この場合も、各測定部101〜103の個別の算出手段及び算出手段を構成する制御部104は、複数の測定部101〜103で検出した測定用光に基づいて被測定物の形状を算出する算出手段を構成することになる。
また、前記各実施の形態では、三角測距方式の光学式測定装置や光学式測定方法の例で説明したが、これに限定されるものではない。
Also in this case, the control unit 104 constituting the individual calculation units and calculation units of the measurement units 101 to 103 calculates the shape of the object to be measured based on the measurement light detected by the plurality of measurement units 101 to 103. The calculation means is configured.
In each of the above-described embodiments, the example of the optical measuring apparatus and the optical measuring method of the triangulation system has been described, but the present invention is not limited to this.

以上述べたように、前記各実施の形態に係る光学式測定装置によれば、測定用光を出力する光源105、107、109と被測定物114、115で反射してきた前記測定用光を検出する光検出部106、108、110とを有する複数の測定部101〜103と、前記複数の測定部101〜103で検出した測定用光に基づいて前記被測定物114、115の形状を算出する算出手段104とを備え、前記各測定部101〜103の光源105、107、109から出力される測定用光の光軸は相互に交差しないと共に所定範囲内の共通領域113を通るように前記各光源105、107、109は測定用光を出力することを特徴とするように構成されている。   As described above, according to the optical measurement device according to each of the embodiments, the measurement light reflected from the light sources 105, 107, and 109 and the measured objects 114 and 115 that output the measurement light is detected. A plurality of measuring units 101 to 103 having photodetecting units 106, 108, and 110 that calculate the shapes of the objects to be measured 114 and 115 based on the measurement light detected by the plurality of measuring units 101 to 103. Calculation means 104, and the optical axes of the measurement light beams output from the light sources 105, 107, and 109 of the measurement units 101 to 103 do not cross each other and pass through the common region 113 within a predetermined range. The light sources 105, 107, and 109 are configured to output measurement light.

したがって、凹面あるいは凸面を有する被測定物114、115の形状を高精度に測定することが可能になる。また、被測定物の端部304、305や間隙303を高精度に測定することが可能になる。また、各光源から出力される測定用光が相互に交差することがなく、相互に干渉することがないため、良好な測定が可能になる。
前記各実施の形態に係る光学式測定方法は、前記いずれかの光学式測定装置を用いて被測定物114、115の形状を測定するとき、前記被測定物114の凸面を測定するときには、前記被測定物114を共通領域113よりも前記各測定部101〜103に近い位置に配設して測定を行うようにしている。
Therefore, it becomes possible to measure the shape of the DUTs 114 and 115 having a concave surface or a convex surface with high accuracy. Further, the end portions 304 and 305 and the gap 303 of the object to be measured can be measured with high accuracy. In addition, since the measurement lights output from the respective light sources do not cross each other and do not interfere with each other, good measurement is possible.
In the optical measurement method according to each of the above embodiments, when measuring the shape of the measurement object 114 or 115 using any one of the optical measurement devices, when measuring the convex surface of the measurement object 114, The measurement object 114 is arranged at a position closer to the measurement units 101 to 103 than the common region 113 to perform measurement.

また、前記被測定物115の凹面を測定するときには、前記被測定物115を前記共通領域113よりも前記各測定部101〜103から遠い位置に配設して測定を行うようにしている。
したがって、凹面あるいは凸面を有する被測定物114、115の形状を高精度に測定することが可能になる。
また、前記いずれかの光学式測定装置を用いて被測定物の端部304、305形状を測定する場合には、前記被測定物を前記共通領域113よりも前記各測定部101〜103から遠い位置に配設して測定を行うようにしている。したがって、被測定物の端部304、305や間隙303を高精度に測定することが可能になる。尚、この場合、前記被測定物を前記共通領域113よりも前記各測定部101〜103に近い位置に配設して測定を行うようにしても測定は可能である。
Further, when measuring the concave surface of the measurement object 115, the measurement object 115 is arranged at a position farther from the measurement units 101 to 103 than the common region 113 for measurement.
Therefore, it becomes possible to measure the shape of the DUTs 114 and 115 having a concave surface or a convex surface with high accuracy.
Further, when measuring the shape of the end portions 304 and 305 of the object to be measured using any one of the optical measuring devices, the object to be measured is farther from the measuring units 101 to 103 than the common region 113. It is arranged at a position to perform measurement. Therefore, the end portions 304 and 305 and the gap 303 of the object to be measured can be measured with high accuracy. In this case, the measurement can be performed even if the measurement object is disposed at a position closer to the measurement units 101 to 103 than the common region 113.

自動車用トランスミッション等をはじめとして、種々の凹凸面や穴端部を有する被測定物の形状測定を行う光学式測定装置や光学式測定方法に適用可能である。   The present invention can be applied to an optical measurement apparatus and an optical measurement method for measuring the shape of an object to be measured having various uneven surfaces and hole ends, such as an automobile transmission.

本発明の実施の形態に係る光学式測定装置の外観斜視図である。1 is an external perspective view of an optical measuring device according to an embodiment of the present invention. 本発明の実施の形態に係る光学式測定装置の正面図である。It is a front view of the optical measuring device which concerns on embodiment of this invention. 本発明の他の実施の形態に係る光学式測定装置の正面図である。It is a front view of the optical measuring device which concerns on other embodiment of this invention. 従来の光学式測定装置の測定原理を示す原理図である。It is a principle figure which shows the measurement principle of the conventional optical measuring device. 従来の光学式測定装置による測定の説明図である。It is explanatory drawing of the measurement by the conventional optical measuring device. 従来の光学式測定装置による測定の説明図である。It is explanatory drawing of the measurement by the conventional optical measuring device.

符号の説明Explanation of symbols

101〜103・・・測定部
104・・・算出手段を構成する制御部
105、107、109・・・光源
106、108、110・・・光検出部
111・・・円
112・・・垂直軸
113・・・共通領域
114、115・・・被測定物
301・・・車両本体
302・・・ドア本体
303・・・間隙
304、305・・・端部
101-103 ... measurement unit 104 ... control units 105, 107, 109 ... light source 106, 108,110 ... light detection unit 111 ... circle 112 ... vertical axis constituting calculation means 113 ... Common area 114, 115 ... DUT 301 ... Vehicle body 302 ... Door body 303 ... Gap 304, 305 ... End

Claims (6)

測定用光を出力する光源と被測定物で反射してきた前記測定用光を検出する光検出部とを有する複数の測定手段と、
前記複数の測定手段で検出した測定用光に基づいて前記被測定物の形状を算出する算出手段とを備え、
前記各測定手段の光源から出力される測定用光の光軸は相互に交差しないと共に所定範囲内の共通領域を通るように前記各光源は測定用光を出力することを特徴とする光学式測定装置。
A plurality of measuring means having a light source that outputs measurement light and a light detection unit that detects the measurement light reflected by the measurement object;
Calculating means for calculating the shape of the object to be measured based on the measurement light detected by the plurality of measuring means;
Optical measurement characterized in that each light source outputs measurement light so that the optical axes of the measurement light output from the light sources of each measurement means do not cross each other and pass through a common area within a predetermined range apparatus.
前記測定手段は3つ配設されて成り、
前記算出手段は、前記各測定手段で検出した測定用光に基づいて前記被測定物の形状を算出することを特徴とする請求項1記載の光学式測定装置。
The measuring means is arranged in three,
The optical measurement apparatus according to claim 1, wherein the calculation unit calculates a shape of the object to be measured based on measurement light detected by the measurement units.
前記各測定手段の光源は、同一円周上に等間隔に配設されて成ることを特徴とする請求項1又は2記載の光学式測定装置。   3. The optical measuring apparatus according to claim 1, wherein the light sources of the measuring means are arranged at equal intervals on the same circumference. 前記算出手段は、前記3つの測定手段のうちの2つの測定手段で検出した測定用光に基づいて前記被測定物の形状を算出することを特徴とする請求項2又は3記載の光学式測定装置。   4. The optical measurement according to claim 2, wherein the calculating means calculates the shape of the object to be measured based on measurement light detected by two of the three measuring means. apparatus. 請求項1乃至4のいずれか一に記載の光学式測定装置を用いて被測定物の形状を測定するとき、前記被測定物の凸面を測定するときには、前記被測定物を前記共通領域よりも前記各測定手段に近い位置に配設して測定を行うことを特徴とする光学式測定方法。   When measuring the shape of the object to be measured using the optical measuring device according to any one of claims 1 to 4, when measuring the convex surface of the object to be measured, the object to be measured is more than the common region. An optical measurement method, wherein the measurement is performed by being arranged at a position close to each of the measurement means. 請求項1乃至4のいずれか一に記載の光学式測定装置を用いて被測定物の形状を測定するとき、前記被測定物の凹面を測定するときには、前記被測定物を前記共通領域よりも前記各測定手段から遠い位置に配設して測定を行うことを特徴とする請求項5記載の光学式測定方法。   When measuring the shape of the object to be measured using the optical measuring device according to any one of claims 1 to 4, when measuring the concave surface of the object to be measured, the object to be measured is more than the common region. 6. The optical measurement method according to claim 5, wherein the measurement is performed by disposing at a position far from each of the measurement means.
JP2004277578A 2004-09-24 2004-09-24 Optical measurement instrument and optical measurement method Pending JP2006090879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277578A JP2006090879A (en) 2004-09-24 2004-09-24 Optical measurement instrument and optical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277578A JP2006090879A (en) 2004-09-24 2004-09-24 Optical measurement instrument and optical measurement method

Publications (1)

Publication Number Publication Date
JP2006090879A true JP2006090879A (en) 2006-04-06

Family

ID=36232010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277578A Pending JP2006090879A (en) 2004-09-24 2004-09-24 Optical measurement instrument and optical measurement method

Country Status (1)

Country Link
JP (1) JP2006090879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031364A1 (en) * 2014-08-29 2016-03-03 日立オートモティブシステムズ株式会社 Method for manufacturing component and manufacturing device using such method, and volume measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031364A1 (en) * 2014-08-29 2016-03-03 日立オートモティブシステムズ株式会社 Method for manufacturing component and manufacturing device using such method, and volume measuring method
CN106489061A (en) * 2014-08-29 2017-03-08 日立汽车系统株式会社 The manufacture method of part and the manufacture device using it, cubage measuring method
JPWO2016031364A1 (en) * 2014-08-29 2017-06-01 日立オートモティブシステムズ株式会社 Manufacturing method of parts, manufacturing apparatus using the same, volume measuring method

Similar Documents

Publication Publication Date Title
JP5016245B2 (en) Measurement system for determining the six degrees of freedom of an object
JP6256995B2 (en) Coordinate measuring system and method
JP2779242B2 (en) Optoelectronic angle measurement system
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
CN101641566B (en) Measuring instrument and method for determining geometric properties of profiled elements
JP2004170412A (en) Method and system for calibrating measuring system
TWI420081B (en) Distance measuring system and distance measuring method
CN101545761A (en) Optical measuring system with multiple degrees of freedom
US20080174785A1 (en) Apparatus for the contact-less, interferometric determination of surface height profiles and depth scattering profiles
CN111580072A (en) Surveying instrument and method of calibrating a surveying instrument
JP6288280B2 (en) Surface shape measuring device
JPH0514217B2 (en)
CN101469975A (en) Optical detecting instrument and method thereof
JP2006090879A (en) Optical measurement instrument and optical measurement method
US11635490B2 (en) Surveying system having a rotating mirror
JP2987540B2 (en) 3D scanner
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JP5751514B2 (en) Sphere diameter measuring method and measuring device
KR20070015267A (en) Light displacement measuring apparatus
JPH01235807A (en) Depth measuring instrument
JP7428492B2 (en) Inspection method and correction method
JP4031124B2 (en) Optical hole shape measuring method and measuring apparatus
JP2008256463A (en) Measurement apparatus and miller attitude rotation and monitoring apparatus
JPH06137827A (en) Optical level difference measuring apparatus
CN112902838A (en) Zero sensor and detection system