JP2006090402A - Turbocharger rotation supporting device - Google Patents

Turbocharger rotation supporting device Download PDF

Info

Publication number
JP2006090402A
JP2006090402A JP2004275591A JP2004275591A JP2006090402A JP 2006090402 A JP2006090402 A JP 2006090402A JP 2004275591 A JP2004275591 A JP 2004275591A JP 2004275591 A JP2004275591 A JP 2004275591A JP 2006090402 A JP2006090402 A JP 2006090402A
Authority
JP
Japan
Prior art keywords
bearing housing
peripheral surface
outer peripheral
turbocharger
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275591A
Other languages
Japanese (ja)
Inventor
Shinji Fujita
慎治 藤田
Michita Hokao
道太 外尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004275591A priority Critical patent/JP2006090402A/en
Publication of JP2006090402A publication Critical patent/JP2006090402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/44Hole or pocket sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supercharger (AREA)
  • Rolling Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent metal contact and thus wear between the outer peripheral face of a bearing housing and the inner peripheral face of a casing when starting/stopping an engine. <P>SOLUTION: This turbocharger rotation supporting device comprises a rotating shaft having a turbine fixed to one end and an impeller fixed to the other end, the bearing housing having a pair of rolling bearings provided at two places distant in the axial direction for rotatably supporting the rotating shaft, and the casing storing the bearing housing. A gap space formed between the outer peripheral face of the bearing housing and the inner peripheral face of the casing is filled with lubricating oil to form an oil film. A recessed portion is formed in the outer peripheral face of the bearing housing, which solves the problem. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はターボチャージャ用回転支持装置に関し、特に軸受けハウジングと該軸受ハウジングを収容するケーシングの磨耗を低減したターボチャージャ用回転支持装置に関する。   The present invention relates to a rotation support device for a turbocharger, and more particularly to a rotation support device for a turbocharger in which wear of a bearing housing and a casing that houses the bearing housing is reduced.

エンジンの出力を排気量を変えずに増大させるため、エンジンに送り込む空気を排気のエネルギにより圧縮するターボチャージャが広く使用されている。このターボチャージャは、排気のエネルギを、排気通路の途中に設けたタービンにより回収し、このタービンをその端部に固定した回転軸により、給気通路の途中に設けたコンプレッサのインペラを回転させる。このインペラは、エンジンの運転に伴って数万〜十数万min-1(rpm)の速度で回転し、給気通路を通じてエンジンに送り込まれる空気を圧縮する。 In order to increase the engine output without changing the displacement, a turbocharger that compresses the air fed into the engine with the energy of the exhaust is widely used. The turbocharger collects exhaust energy by a turbine provided in the middle of the exhaust passage, and rotates an impeller of a compressor provided in the middle of the air supply passage by a rotating shaft fixed to the end of the turbine. The impeller rotates at a speed of tens of thousands to several ten thousand min −1 (rpm) as the engine is operated, and compresses air fed into the engine through the air supply passage.

図3は、この様な従来のターボチャージャの一例を示したものである。また、図4は図3の部分拡大図である。このターボチャージャは、排気流路1を流通する排気により、回転軸2の一端(図3の左側)に固定したタービン3を回転させる。回転軸2の回転は、回転軸2の他端(図3の右側)に固定したインペラ4に伝わり、このインペラ4が給気流路5内で回転する。この結果、この給気流路5の上流端開口から吸引された空気が圧縮されて、ガソリン、軽油等の燃料と共にエンジンのシリンダ室内(図示せず)に送り込まれる。   FIG. 3 shows an example of such a conventional turbocharger. FIG. 4 is a partially enlarged view of FIG. This turbocharger rotates the turbine 3 fixed to one end (left side in FIG. 3) of the rotating shaft 2 by exhaust gas flowing through the exhaust passage 1. The rotation of the rotating shaft 2 is transmitted to the impeller 4 fixed to the other end (right side in FIG. 3) of the rotating shaft 2, and the impeller 4 rotates in the air supply passage 5. As a result, the air sucked from the upstream end opening of the air supply passage 5 is compressed and sent together with fuel such as gasoline and light oil into the cylinder chamber (not shown) of the engine.

この様なターボチャージャの回転軸2は、数万〜十数万min-1もの高速で回転し、しかも、エンジンの運転状況に応じてその回転速度が頻繁に変化する。従って、回転軸2は軸受ハウジング6に対し、小さな回転抵抗で支持する必要がある。このために従来から、軸受ハウジング6の内側に設けられた第一、第二の玉軸受7、8により、回転軸2を回転自在に支持する構成を採用している。 The rotating shaft 2 of such a turbocharger rotates at a high speed of tens of thousands to several tens of thousands of min −1 , and the rotation speed frequently changes according to the operating state of the engine. Therefore, it is necessary to support the rotating shaft 2 with a small rotational resistance with respect to the bearing housing 6. For this reason, conventionally, a configuration in which the rotary shaft 2 is rotatably supported by the first and second ball bearings 7 and 8 provided inside the bearing housing 6 has been adopted.

更に、上記軸受ハウジング6を納めたケーシング18内に給油通路19を設け、この軸受ハウジング6並びに上記第一、第二の玉軸受7、8を冷却及び潤滑自在としている。即ち、ターボチャージャを装着したエンジンの運転時に、潤滑油は給油通路19の上流端に設けたフィルタ20により異物を除去されて、ケーシング18の内周面と軸受ハウジング6の外周面との間に形成された円環状の隙間空間21に送り込まれる。そして、この隙間空間21を上記潤滑油で満たすことにより、軸受ハウジング6の外周面とケーシング18の内周面との間に全周にわたって油膜(オイルフィルム)を形成し、これらケーシング18及び軸受ハウジング6を冷却すると共に、回転軸2の回転に基づく振動を減衰する、オイルフィルムダンパを構成している。このような構成のターボチャージャ用回転支持装置としては、例えば、特開2001−140888号公報に開示されている(特許文献1)。
特開2001−140888号公報
Further, an oil supply passage 19 is provided in a casing 18 in which the bearing housing 6 is housed, and the bearing housing 6 and the first and second ball bearings 7 and 8 can be cooled and lubricated. That is, when the engine equipped with the turbocharger is operated, the lubricating oil is removed of foreign matters by the filter 20 provided at the upstream end of the oil supply passage 19, so that the gap between the inner peripheral surface of the casing 18 and the outer peripheral surface of the bearing housing 6 is reduced. It is fed into the formed annular gap space 21. Then, by filling the gap space 21 with the lubricating oil, an oil film (oil film) is formed over the entire circumference between the outer peripheral surface of the bearing housing 6 and the inner peripheral surface of the casing 18, and the casing 18 and the bearing housing are formed. An oil film damper is configured that cools 6 and attenuates vibrations based on rotation of the rotating shaft 2. A turbocharger rotation support device having such a configuration is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-140888 (Patent Document 1).
JP 2001-140888 A

しかしながら、上記オイルフィルムダンパはエンジン内を循環するエンジンオイルにより行なっているため、エンジンの起動時又は停止時には十分な油膜が形成されない。このため、エンジンの起動又は停止時には軸受ハウジング6の外周面とケーシング18の内周面との間で接触が起こり、軸受ハウジング6の外周面とケーシング18の内周面が摩耗するという問題がある。   However, since the oil film damper is made of engine oil circulating in the engine, a sufficient oil film is not formed when the engine is started or stopped. For this reason, when the engine is started or stopped, there is a problem that contact occurs between the outer peripheral surface of the bearing housing 6 and the inner peripheral surface of the casing 18, and the outer peripheral surface of the bearing housing 6 and the inner peripheral surface of the casing 18 wear. .

このようにして発生した摩耗粉はエンジンオイルに混入してエンジン内を循環し、第一、第二の玉軸受7、8に噛み込まれ、各玉13、13の転動面や外輪軌道9及び内輪軌道11に摩耗や圧痕等の損傷が生じる可能性がある。この様な損傷が生じると、回転軸2が数万〜十数万min-1の高速回転した場合に、第一、第二の玉軸受7、8から振動や騒音が発生する可能性があり、上記ターボチャージャの信頼性及び耐久性が低下するため、好ましくない。 The abrasion powder generated in this way is mixed into the engine oil and circulates in the engine, and is caught in the first and second ball bearings 7 and 8, and the rolling surfaces of the balls 13 and 13 and the outer ring raceway 9. In addition, the inner ring raceway 11 may be damaged such as wear or indentation. If such damage occurs, vibration and noise may be generated from the first and second ball bearings 7 and 8 when the rotary shaft 2 rotates at a high speed of several tens of thousands to several ten thousand min −1 . This is not preferable because the reliability and durability of the turbocharger are lowered.

従って本発明の目的は、エンジンの起動・停止時における軸受ハウジングの外周面とケーシングの内周面との間での金属接触、ひいては摩耗の発生を防止することである。   Accordingly, an object of the present invention is to prevent metal contact between the outer peripheral surface of the bearing housing and the inner peripheral surface of the casing, and hence the occurrence of wear, when the engine is started and stopped.

上記課題を解決するため、本発明は、一端部にタービンが固定され、他端部にインペラが固定された回転軸と、軸方向に離隔した2個所位置に設けた1対の転がり軸受により前記回転軸を回転自在に支持する軸受ハウジングと、前記軸受ハウジングを収容するケーシングと、を備え、前記軸受ハウジングの外周面と前記ケーシングの内周面との間に形成された隙間空間を潤滑油で満たすことにより油膜が形成されるターボチャージャ用回転支持装置において、前記軸受ハウジングの外周面に、凹部が形成されたことを特徴とする。   In order to solve the above-described problems, the present invention provides a rotating shaft having a turbine fixed at one end and an impeller fixed at the other end, and a pair of rolling bearings provided at two positions separated in the axial direction. A bearing housing that rotatably supports the rotating shaft, and a casing that accommodates the bearing housing, and a gap space formed between an outer peripheral surface of the bearing housing and an inner peripheral surface of the casing is made of lubricating oil. In the turbocharger rotation support device in which an oil film is formed by filling, a concave portion is formed on the outer peripheral surface of the bearing housing.

このような構成により、前記軸受ハウジングの外周面に形成された凹部が油溜めとして機能し、エンジンの起動・停止時においても前記軸受ハウジングの外周面に十分な油膜を形成することができる。   With such a configuration, the recess formed in the outer peripheral surface of the bearing housing functions as an oil sump, and a sufficient oil film can be formed on the outer peripheral surface of the bearing housing even when the engine is started and stopped.

上記発明の好ましい態様によれば以下の通りである。前記凹部の直径は、0.1〜100μmであることが好ましく、直径0.5〜20μmであることがより好ましい。   According to the preferable aspect of the said invention, it is as follows. The diameter of the concave portion is preferably 0.1 to 100 μm, and more preferably 0.5 to 20 μm.

また、前記凹部の直径は、前記軸受ハウジングの回転方向(Dr)と軸方向(Dv)の比で表したとき下記式(1)で表す関係であることが油溜め機能を発揮する上で好適である。
Dv/Dr≧1 (1)
Further, the diameter of the recess is preferably a relationship expressed by the following formula (1) when expressed as a ratio of the rotation direction (Dr) and the axial direction (Dv) of the bearing housing in order to exert an oil sump function. It is.
Dv / Dr ≧ 1 (1)

また、前記凹部の深さは、0.1〜20μmであることが好ましい。   Moreover, it is preferable that the depth of the said recessed part is 0.1-20 micrometers.

また、前記凹部に、固体潤滑剤が充填されてなることが好ましい。かかる固体潤滑剤を充填することで、軸受ハウジングの外周面の凹部に充填された固体潤滑剤が回転軸の遠心力等で徐々に脱落し、ケーシングの内周面と軸受ハウジングの外周面との接触に伴う摩耗をさらに低減することができる。   Moreover, it is preferable that the concave portion is filled with a solid lubricant. By filling such a solid lubricant, the solid lubricant filled in the recesses on the outer peripheral surface of the bearing housing gradually falls off due to centrifugal force of the rotating shaft, etc., and the inner peripheral surface of the casing and the outer peripheral surface of the bearing housing Wear caused by contact can be further reduced.

前記固体潤滑剤の硬さは、前記ハウジングの外周面の硬さよりも100HV以上低いことが好ましい。これにより、ショットブラスト等において固体潤滑剤をショット粒として使用する場合でも、保持器の変形を防止することができる。   The hardness of the solid lubricant is preferably 100 HV or less lower than the hardness of the outer peripheral surface of the housing. Thereby, even when a solid lubricant is used as shot grains in shot blasting or the like, deformation of the cage can be prevented.

前記転がり軸受は、玉軸受であり、かつ、該玉軸受を構成する玉がセラミック製であることが好ましい。これにより、転がり軸受を構成する外輪及び内輪との耐焼付き性や耐熱性を向上させることができる。   The rolling bearing is preferably a ball bearing, and the balls constituting the ball bearing are preferably made of ceramic. Thereby, the seizure resistance and heat resistance with the outer ring and the inner ring constituting the rolling bearing can be improved.

本発明に係るターボチャージャ回転支持装置は、軸受ハウジング外周面に微小な凹凸が形成されたことにより、軸受ハウジング外周面に潤滑油が保持されるため、エンジンの運転開始直後、軸受ハウジングの外周面とケーシングの内周面にエンジンオイルが行き渡るまでの間、或いはエンジンの急加減速に伴ってエンジンオイルの供給が追いつかない場合でも、部品同士の潤滑を確保できる。その結果、転がり軸受への異物の噛み込みを防止できるため、ターボチャージャの信頼性及び耐久性の向上を図ることができる。   In the turbocharger rotation support device according to the present invention, since the lubricating oil is held on the outer peripheral surface of the bearing housing by forming minute irregularities on the outer peripheral surface of the bearing housing, the outer peripheral surface of the bearing housing immediately after the start of engine operation. Even when the engine oil has spread over the inner peripheral surface of the casing, or even when the supply of engine oil cannot catch up with the rapid acceleration / deceleration of the engine, it is possible to ensure lubrication between components. As a result, it is possible to prevent foreign matter from getting into the rolling bearing, so that the reliability and durability of the turbocharger can be improved.

次に、本発明に係るターボチャージャ用回転支持装置について更に詳細に説明する。図1に、本発明のターボチャージャ用回転支持装置に係る実施形態の一例を示す。なお、本発明の特徴は、軸受ハウジング40の外周面41に凹部42を形成することにより、凹部42が油溜めとして機能し、エンジンの起動・停止時においても軸受ハウジング40の外周面41に十分な油膜を形成する点にある。ターボチャージャ用回転支持装置の全体構成については、前述の図3に示した構造を含み、従来から知られている回転支持装置と同様であるため、同等部分に関する説明は省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。   Next, the rotation support device for a turbocharger according to the present invention will be described in more detail. FIG. 1 shows an example of an embodiment according to a rotation support device for a turbocharger of the present invention. The feature of the present invention is that the concave portion 42 functions as an oil sump by forming the concave portion 42 on the outer peripheral surface 41 of the bearing housing 40. It is in the point which forms a proper oil film. The overall structure of the turbocharger rotation support device includes the structure shown in FIG. 3 described above, and is the same as the conventionally known rotation support device, so the description of the equivalent parts is omitted or simplified. The description will focus on the features of the present invention.

図1に示すように、軸受ハウジング40の外周面41の全面にわたり、微小な凹部42が形成されている。   As shown in FIG. 1, a minute recess 42 is formed over the entire outer peripheral surface 41 of the bearing housing 40.

この表面に設けられた微小な凹部42の直径は0.1〜100μmが好ましく、直径0.5〜20μmであることがより好ましい。直径0.1μm未満では十分な油溜め機能を発揮することができない。また、直径100μmを超えると軸受ハウジングの外周面の真円度が悪くなる結果、振動が発生しやすくなる。   The diameter of the minute recesses 42 provided on the surface is preferably 0.1 to 100 μm, and more preferably 0.5 to 20 μm. If the diameter is less than 0.1 μm, a sufficient oil sump function cannot be exhibited. On the other hand, if the diameter exceeds 100 μm, the roundness of the outer peripheral surface of the bearing housing deteriorates, and vibration is likely to occur.

凹部42の深さは、真円度と油膜形成能力のバランスの観点から、0.1〜20μmが好ましく、0.2〜5μmであることがより好ましい。   The depth of the recess 42 is preferably 0.1 to 20 μm, and more preferably 0.2 to 5 μm, from the viewpoint of the balance between roundness and oil film forming ability.

また、前記凹部42の直径は、軸受ハウジング40の回転方向(Dr)と軸方向(Dv)の比で表したとき下記式(1)で表す関係を有している。
Dv/Dr≧1 (1)
Further, the diameter of the concave portion 42 has a relationship represented by the following formula (1) when expressed as a ratio of the rotation direction (Dr) and the axial direction (Dv) of the bearing housing 40.
Dv / Dr ≧ 1 (1)

即ち、形成されている凹部42の形状は、軸方向(Dv)に長軸を有する楕円形である。但し、上記の条件を満たしていれば、楕円形に限定されず、例えば、長方形等であってもよい。   That is, the shape of the formed recess 42 is an ellipse having a major axis in the axial direction (Dv). However, as long as the above conditions are satisfied, the shape is not limited to an ellipse, and may be, for example, a rectangle.

上記のような微小な凹部42を軸受ハウジング外周面41に形成する方法としては、例えば、ショットピーニングやバレル処理が挙げられる。   Examples of the method for forming the minute concave portion 42 on the bearing housing outer peripheral surface 41 include shot peening and barrel processing.

軸受ハウジング40の材料としては、機械構造用炭素鋼(S45C)、高炭素クロム軸受鋼、浸炭鋼、中炭素合金鋼、機械構造用鋼、高Si高温鉄鋼、ステンレス、M50(AISI規格)、SKH等の耐熱鋼等の鉄鋼材料を用いることができる。また、表面強度を向上させるべく、浸炭処理や窒化処理、または浸炭窒化処理等を施すことが好ましい。   Materials for the bearing housing 40 include carbon steel for machine structure (S45C), high carbon chromium bearing steel, carburized steel, medium carbon alloy steel, steel for machine structure, high Si high temperature steel, stainless steel, M50 (AISI standard), SKH. Steel materials such as heat-resistant steel can be used. In order to improve the surface strength, it is preferable to perform carburizing treatment, nitriding treatment, or carbonitriding treatment.

軸受ハウジング40の外周面41に形成された凹部42には、固体潤滑剤43が充填されている。ここで、「固体潤滑剤」とは、非油溶性の潤滑剤のことをいい、一般に使用されている固体潤滑剤を用いることができるが、具体的には、例えば、ポリエチレン、フッ素樹脂、ナイロン、ポリアセタール、ポリオレフイン、ポリエステル、金属石鹸、MoS2、WS2、BN、黒鉛、フッ化カルシウム、フッ化バリウム等を挙げることができる。 A recess 42 formed in the outer peripheral surface 41 of the bearing housing 40 is filled with a solid lubricant 43. Here, the “solid lubricant” refers to a non-oil-soluble lubricant, and a commonly used solid lubricant can be used. Specifically, for example, polyethylene, fluororesin, nylon , Polyacetal, polyolefin, polyester, metal soap, MoS 2 , WS 2 , BN, graphite, calcium fluoride, barium fluoride, and the like.

凹部42に固体潤滑剤43を充填する方法としては、ショットピーニング、ショットブラスト等により、固体潤滑剤43を塑性変形させて、機械的なかみ合いを利用する方法がある。また、前加工としてバレル加工を行い、その後、固体潤滑剤43を塑性変形させて充填することもできる。   As a method for filling the concave portion 42 with the solid lubricant 43, there is a method in which the solid lubricant 43 is plastically deformed by shot peening, shot blasting, or the like, and mechanical engagement is used. Moreover, barrel processing can be performed as preprocessing, and then the solid lubricant 43 can be plastically deformed and filled.

固体潤滑剤43は、その硬さが軸受ハウジング40の外周面41の硬さよりも100HV以上低いことが好ましい。滑り軸受ならびに転がり軸受等の機械部品においては、異物が混入すると著しく寿命が低下することが知られている。また、ショットブラスト等により固体潤滑剤43を凹部42に充填する場合、固体潤滑剤43の硬さと軸受ハウジング40の外周面41の硬さの差が100HV未満の場合では、固体潤滑剤43をショット粒として使用したときに軸受ハウジング40が変形する恐れがある。   The solid lubricant 43 preferably has a hardness that is lower by 100 HV or more than the hardness of the outer peripheral surface 41 of the bearing housing 40. In mechanical parts such as a slide bearing and a rolling bearing, it is known that the lifetime is remarkably reduced when foreign matter is mixed. Further, when the solid lubricant 43 is filled in the recess 42 by shot blasting or the like, if the difference between the hardness of the solid lubricant 43 and the hardness of the outer peripheral surface 41 of the bearing housing 40 is less than 100 HV, the solid lubricant 43 is shot. When used as a grain, the bearing housing 40 may be deformed.

以上のような理由から、凹部42から脱落した場合に著しく寿命を低下させない固体潤滑剤は、軸受ハウジング40の外周面41の硬さより100HVより低い硬さを有するものが選択される。上述した観点から、さらに好ましい固体潤滑剤は、軸受ハウジング40の外周面41の硬さより300HV以上低い硬さを有するものである。   For the reasons described above, a solid lubricant that has a hardness lower than 100 HV than the hardness of the outer peripheral surface 41 of the bearing housing 40 is selected as the solid lubricant that does not significantly reduce the life when it falls off from the recess 42. From the viewpoint described above, a more preferable solid lubricant has a hardness that is 300 HV or more lower than the hardness of the outer peripheral surface 41 of the bearing housing 40.

図4に示す第一、第二の玉軸受7及び8を構成する外輪10、内輪12及び各玉13、13は、耐熱性を有するものが用いられる。このうちの外輪10及び内輪12は、0.7〜1.5重量%のけい素(Si)と、0.5〜2.0重量%のクロム(Cr)と、0.5〜2.0重量%のモリブデン(Mo)とを含む高Si高温鉄鋼や、ステンレス、M50(
AISI規格)、SKH(ハイス)等の耐熱鋼等の鉄鋼材料、或いは、窒化けい素等のセラミック材料により製造される。
As the outer ring 10, the inner ring 12, and the balls 13, 13 constituting the first and second ball bearings 7 and 8 shown in FIG. 4, those having heat resistance are used. Outer ring 10 and inner ring 12 are 0.7 to 1.5% by weight of silicon (Si), 0.5 to 2.0% by weight of chromium (Cr), and 0.5 to 2.0%. High-Si high-temperature steel containing molybdenum (Mo) by weight, stainless steel, M50 (
AISI standard), steel materials such as heat-resistant steel such as SKH (high speed), or ceramic materials such as silicon nitride.

前記鉄鋼材料を使用する場合には、表面強度を向上させるべく、浸炭処理や窒化処理、または浸炭窒化処理等を施すことが好ましい。特に、窒化処理を施す場合には、上記鉄鋼材料素地の硬さ劣化を抑制する観点から、塩浴室化処理又はガス窒化処理によって480℃以下で処理することが好ましい。   When the steel material is used, it is preferable to perform carburizing treatment, nitriding treatment, or carbonitriding treatment to improve the surface strength. In particular, when performing nitriding treatment, it is preferable to treat at 480 ° C. or less by salt bathing treatment or gas nitriding treatment from the viewpoint of suppressing the hardness deterioration of the steel material base.

また、上記窒化処理により形成する窒化層を、d相(Fe2N)、e相(Fe2N〜Fe3N)、Y'相(Fe4N)、CrN、及びCr2Nのうちの少なくとも何れかの窒化物をマルテンサイト地に多量に析出させたものとすれば、この窒化層を著しく高い硬さ並びに靭性を有するものにできる。 Further, the nitride layer formed by the nitriding treatment is made of d phase (Fe 2 N), e phase (Fe 2 N to Fe 3 N), Y ′ phase (Fe 4 N), CrN, and Cr 2 N. If a large amount of at least one nitride is deposited on the martensite, the nitride layer can have extremely high hardness and toughness.

前記セラミック材料を使用する場合は、HIP法、ガス圧焼結法等の加圧焼結により得ることができる。ここで、平均値で幅3μm以下、長さ4μm以上の柱状に成長した柱状結晶が窒化けい素粒全体の70%以上、好ましくは90%以上含まれたものが好ましく使用できるが、比強度の条件を満たす材料であれば常圧焼結のものでも良い。   When the ceramic material is used, it can be obtained by pressure sintering such as HIP method or gas pressure sintering method. Here, a columnar crystal having an average value of a width of 3 μm or less and a length of 4 μm or more in a columnar crystal containing 70% or more, preferably 90% or more of the entire silicon nitride grains can be preferably used. As long as the material satisfies the conditions, it may be pressureless sintered.

また、焼結体の重量を基準(100重量%)とした場合、助剤成分として、20重量%を上限として、Al2、O3、MgO、CeO等の金属酸化物、及びY23、Yb23、La23等の希土類酸化物の中から選択したものを前記セラミック材料に添加することもできる。 Further, when the weight criteria of the sintered body (100 wt%), as an auxiliary component, as up to 20 wt%, Al 2, O 3, MgO, a metal oxide CeO like, and Y 2 O 3 , Yb 2 O 3 , La 2 O 3 and other rare earth oxides may be added to the ceramic material.

また、この様な窒化けい素以外でも、熱伝導率の高い窒化けい素焼粘体を用いると、放熱性に優れるため好ましい。   In addition to such silicon nitride, it is preferable to use a silicon nitride sintered body having a high thermal conductivity because of excellent heat dissipation.

更に、図4に示す各玉13及び13は、外輪10及び内輪12との耐焼付き性や耐熱性を考慮して、外輪10及び内輪12の製造で用いる先述の鉄鋼材料やセラミック材料を用いることができる。勿論、鉄鋼材料を用いる場合には、上述した様な表面処理を施しても良い。セラミック材料が耐焼付き性および耐熱性に優れるため好適である。   Further, the balls 13 and 13 shown in FIG. 4 are made of the above-described steel material or ceramic material used for manufacturing the outer ring 10 and the inner ring 12 in consideration of seizure resistance and heat resistance with the outer ring 10 and the inner ring 12. Can do. Of course, when a steel material is used, the surface treatment as described above may be performed. Ceramic materials are preferred because they are excellent in seizure resistance and heat resistance.

また、上記第一、第二の玉軸受7、8に組み込む保持器14は、ポリイミドを主成分とした耐熱性合成樹脂材料を使用することができる。耐熱性を考慮すれば、アルミニウム(Al)合金及びマグネシウム(Mg)合金、チタン(Ti)合金等の軽量合金や、銅(Cu)合金、鉄(Fe)合金等の金属を使用してもよい。但し、金属合金製の保持器14の場合は、耐熱性並びに強度に優れるが、合成樹脂製の保持器14に比較して摺動性に劣る。このため、表面に酸化処理や窒化処理を施すか、鉛(Pb)、銀(Ag)等の軟質金属やDLC(ダイヤモンド状炭素)等の潤滑性被膜を形成することが好ましい。   The cage 14 incorporated in the first and second ball bearings 7 and 8 can be made of a heat-resistant synthetic resin material mainly composed of polyimide. Considering heat resistance, lightweight alloys such as aluminum (Al) alloy, magnesium (Mg) alloy, and titanium (Ti) alloy, and metals such as copper (Cu) alloy and iron (Fe) alloy may be used. . However, the cage 14 made of metal alloy is excellent in heat resistance and strength, but is inferior in slidability as compared with the cage 14 made of synthetic resin. For this reason, it is preferable to subject the surface to oxidation treatment or nitridation treatment, or to form a soft coating such as lead (Pb) or silver (Ag) or a lubricating film such as DLC (diamond-like carbon).

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、ショットピーニングにより該軸受ハウジングの外周面に凹部を形成した。凹部は、回転方向(Dr)の直径を5μm、軸方向(Dv)の直径を6μmとし(Dv/Dr=1.2)、深さを2.5μmとした。   A bearing housing made of carbon steel for machine structure (S45C) was used, and concave portions were formed on the outer peripheral surface of the bearing housing by shot peening. The recess has a diameter in the rotational direction (Dr) of 5 μm, a diameter in the axial direction (Dv) of 6 μm (Dv / Dr = 1.2), and a depth of 2.5 μm.

次いで、固体潤滑剤として二硫化モリブデンを使用し、ショットピーニングにより、上記のようにして形成された凹部に充填した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより280HV低い硬さのものを使用した。   Next, molybdenum disulfide was used as a solid lubricant, and the recesses formed as described above were filled by shot peening. Note that molybdenum disulfide having a hardness 280 HV lower than the hardness of the outer peripheral surface of the bearing housing was used.

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を10μm、軸方向(Dv)の直径を13μmとし(Dv/Dr=1.3)、深さを4μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより300HV低い硬さのものを使用した。   A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 10 μm in the rotational direction (Dr) and 13 μm in the axial direction (Dv) (Dv / Dr = 1.3). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 4 μm. The molybdenum disulfide having a hardness lower by 300 HV than the hardness of the outer peripheral surface of the bearing housing was used.

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を5μm、軸方向(Dv)の直径を6μmとし(Dv/Dr=1.2)、深さを0.1μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより200HV低い硬さのものを使用した。   A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 5 μm in the rotational direction (Dr) and 6 μm in the axial direction (Dv) (Dv / Dr = 1.2). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 0.1 μm. The molybdenum disulfide used had a hardness 200 HV lower than the hardness of the outer peripheral surface of the bearing housing.

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を10μm、軸方向(Dv)の直径を11μmとし(Dv/Dr=1.1)、深さを20μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより700HV低い硬さのものを使用した。   A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 10 μm in the rotational direction (Dr) and 11 μm in the axial direction (Dv) (Dv / Dr = 1.1). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 20 μm. The molybdenum disulfide having a hardness lower by 700 HV than the hardness of the outer peripheral surface of the bearing housing was used.

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を5μm、軸方向(Dv)の直径を9μmとし(Dv/Dr=1.8)、深さを3μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより700HV低い硬さのものを使用した。   A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 5 μm in the rotational direction (Dr) and 9 μm in the axial direction (Dv) (Dv / Dr = 1.8). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 3 μm. The molybdenum disulfide having a hardness lower by 700 HV than the hardness of the outer peripheral surface of the bearing housing was used.

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を10μm、軸方向(Dv)の直径を16μmとし(Dv/Dr=1.6)、深さを2μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより500HV低い硬さのものを使用した。
[比較例1]
A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 10 μm in the rotational direction (Dr) and 16 μm in the axial direction (Dv) (Dv / Dr = 1.6). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 2 μm. The molybdenum disulfide having a hardness lower by 500 HV than the hardness of the outer peripheral surface of the bearing housing was used.
[Comparative Example 1]

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部を形成せずに、軸受ハウジングの外周面に二硫化モリブデン処理を施した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより280HV低い硬さのものを使用した。
[比較例2]
A bearing housing made of carbon steel for machine structure (S45C) was used, and molybdenum disulfide treatment was applied to the outer peripheral surface of the bearing housing without forming a recess. Note that molybdenum disulfide having a hardness 280 HV lower than the hardness of the outer peripheral surface of the bearing housing was used.
[Comparative Example 2]

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、二硫化モリブデンとして、軸受ハウジングの外周面の硬さより300HV低い硬さのものを使用した以外は比較例1と同様の要領で軸受ハウジングを処理した。
[比較例3]
Bearing housing in the same manner as in Comparative Example 1 except that a carbon steel (S45C) bearing housing for machine structure is used, and molybdenum disulfide having a hardness of 300 HV lower than the hardness of the outer peripheral surface of the bearing housing is used. Processed.
[Comparative Example 3]

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、二硫化モリブデンとして、軸受ハウジングの外周面の硬さより80HV低い硬さのものを使用した以外は比較例1と同様の要領で軸受ハウジングを処理した。
[比較例4]
Bearing housing in the same manner as in Comparative Example 1 except that a carbon steel (S45C) bearing housing for machine structure is used, and molybdenum disulfide having a hardness 80 HV lower than the hardness of the outer peripheral surface of the bearing housing is used. Processed.
[Comparative Example 4]

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を10μm、軸方向(Dv)の直径を8μmとし(Dv/Dr=0.8)、深さを0.8μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより700HV低い硬さのものを使用した。
[比較例5]
A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 10 μm in the rotational direction (Dr) and 8 μm in the axial direction (Dv) (Dv / Dr = 0.8). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 0.8 μm. The molybdenum disulfide having a hardness lower by 700 HV than the hardness of the outer peripheral surface of the bearing housing was used.
[Comparative Example 5]

機械構造用炭素鋼(S45C)製の軸受ハウジングを使用し、凹部の形状は、回転方向(Dr)の直径を5μm、軸方向(Dv)の直径を6μmとし(Dv/Dr=1.2)、深さを4μmとした以外は実施例1と同様の要領で処理することにより、二硫化モリブデンが外周面の凹部に充填された軸受ハウジングを製造した。なお、二硫化モリブデンは、軸受ハウジングの外周面の硬さより80HV低い硬さのものを使用した。
[耐摩耗試験]
A bearing housing made of carbon steel for machine structure (S45C) is used, and the shape of the recess is 5 μm in the rotational direction (Dr) and 6 μm in the axial direction (Dv) (Dv / Dr = 1.2). A bearing housing in which molybdenum disulfide was filled in the recesses on the outer peripheral surface was manufactured by the same treatment as in Example 1 except that the depth was 4 μm. In addition, the molybdenum disulfide used the thing whose hardness is 80HV lower than the hardness of the outer peripheral surface of a bearing housing.
[Abrasion resistance test]

図2に示すようなサバン式摩耗試験機30を用い、以下の方法によって耐摩耗試験を行った。ピン31表面に、実施例1〜6と同様の条件で凹部(図示せず)を形成し、さらに、その凹部に二硫化モリブデンを充填した。そして、相手材すなわちリング状試験片32は同様にSUJ2を用い、ラップ加工を施すことによって、粗さが0.02μmRa以下となるようにした。   A wear resistance test was performed by the following method using a Sabang type wear tester 30 as shown in FIG. A recess (not shown) was formed on the surface of the pin 31 under the same conditions as in Examples 1 to 6, and the recess was filled with molybdenum disulfide. Then, the counterpart material, that is, the ring-shaped test piece 32, was similarly subjected to lapping by using SUJ2 so that the roughness was 0.02 μmRa or less.

そしてエンジンの起動・停止時の潤滑状態を再現するために鉱物油系の市販エンジンオイルEO(商品名ゼプロSL、出光興産社製)を10μl/minの割合でリング状試験片32に滴下し、2.2GPaの面圧Nをかけつつ、1.2m/sの滑り速度で2000m分回転し、ピン31の摩耗量(mg)を測定した。なお、試験は各5回行い、ピン31の磨耗量の平均値を求めた。そして、微小な凹凸の直径を100μmとしたものを摩耗面積を1として、比摩耗面積を算出することにより比較評価を行った。   Then, in order to reproduce the lubrication state at the time of starting and stopping the engine, a mineral oil-based commercial engine oil EO (trade name: Zepro SL, manufactured by Idemitsu Kosan Co., Ltd.) is dropped onto the ring-shaped test piece 32 at a rate of 10 μl / min. While applying a surface pressure N of 2.2 GPa, the pin 31 was rotated for 2000 m at a sliding speed of 1.2 m / s, and the wear amount (mg) of the pin 31 was measured. The test was performed five times, and the average value of the amount of wear of the pin 31 was determined. Then, a comparative evaluation was performed by calculating the specific wear area, where the wear area was 1 when the diameter of the minute unevenness was 100 μm.

評価基準は以下の通りである。
A:平均磨耗量が0.05mg未満
B:平均磨耗量が0.05〜0.1mg未満
C:平均磨耗量が0.1mg以上
The evaluation criteria are as follows.
A: Average wear amount is less than 0.05 mg B: Average wear amount is less than 0.05 to 0.1 mg C: Average wear amount is 0.1 mg or more

評価結果を表1に示す。表中、「Dv/Dr」は、「凹部の回転方向(Dr)の直径/軸方向(Dv)の直径」を意味し、「(ハウジングHV)−(固体潤滑剤HV)」は、「軸受ハウジングの外周面の硬さ−固体潤滑剤の硬さ」を意味する。   The evaluation results are shown in Table 1. In the table, “Dv / Dr” means “diameter of the rotational direction (Dr) of the recess / diameter of the axial direction (Dv)”, and “(housing HV) − (solid lubricant HV)” means “bearing “Hardness of outer peripheral surface of housing−hardness of solid lubricant”.

表1に示されるように、ピン31表面にDv/Dr≧1の条件を満たす凹部を設け、さらにその凹部に軸受ハウジングの外周面の硬さよりも100HVより低い硬さの固体潤滑剤を充填することにより、耐摩耗性の著しい向上が認められた。   As shown in Table 1, a recess satisfying the condition of Dv / Dr ≧ 1 is provided on the surface of the pin 31, and the recess is filled with a solid lubricant having a hardness lower than 100 HV than the hardness of the outer peripheral surface of the bearing housing. As a result, a significant improvement in wear resistance was observed.

Figure 2006090402
Figure 2006090402

本発明のターボチャージャ用回転支持装置に係る実施形態の一例を示す図である。It is a figure which shows an example of embodiment which concerns on the rotation support apparatus for turbochargers of this invention. 耐摩耗試験を説明するための図である。It is a figure for demonstrating an abrasion resistance test. 従来のターボチャージャの一例を示す図である。It is a figure which shows an example of the conventional turbocharger. 図3のターボチャージャの部分拡大図である。FIG. 4 is a partially enlarged view of the turbocharger of FIG. 3.

符号の説明Explanation of symbols

1:排気通路、2:回転軸、3:タービン、4:インペラ、5:給気通路、6:軸受ハウジング、7:第一の玉軸受、8:第二の玉軸受、10:外輪、11:内輪軌道、12:内輪、13:玉、14:保持器、18:ケーシング、19:給油通路、20:フィルタ、21:隙間空間、30:サバン式磨耗試験機、31:ピン、32:リング状試験片
40:軸受ハウジング、41:軸受ハウジングの外周面、42:凹部、43:固体潤滑剤
1: exhaust passage, 2: rotating shaft, 3: turbine, 4: impeller, 5: air supply passage, 6: bearing housing, 7: first ball bearing, 8: second ball bearing, 10: outer ring, 11 : Inner ring raceway, 12: Inner ring, 13: Ball, 14: Cage, 18: Casing, 19: Oil supply passage, 20: Filter, 21: Crevice space, 30: Sabang type wear tester, 31: Pin, 32: Ring Test piece 40: bearing housing, 41: outer peripheral surface of bearing housing, 42: recess, 43: solid lubricant

Claims (7)

一端部にタービンが固定され、他端部にインペラが固定された回転軸と、軸方向に離隔した2個所位置に設けた1対の転がり軸受により前記回転軸を回転自在に支持する軸受ハウジングと、前記軸受ハウジングを収容するケーシングと、を備え、前記軸受ハウジングの外周面と前記ケーシングの内周面との間に形成された隙間空間を潤滑油で満たすことにより油膜が形成されるターボチャージャ用回転支持装置において、
前記軸受ハウジングの外周面に、凹部が形成されたことを特徴とするターボチャージャ用回転支持装置。
A rotating shaft having a turbine fixed to one end and an impeller fixed to the other end; and a bearing housing that rotatably supports the rotating shaft by a pair of rolling bearings provided at two positions spaced apart in the axial direction; A turbocharger in which an oil film is formed by filling a gap space formed between an outer peripheral surface of the bearing housing and an inner peripheral surface of the casing with a lubricating oil. In the rotation support device,
A rotation support device for a turbocharger, wherein a recess is formed on an outer peripheral surface of the bearing housing.
前記凹部の直径が、0.1〜100μmであることを特徴とする請求項1記載のターボチャージャ用回転支持装置。   The turbocharger rotary support device according to claim 1, wherein a diameter of the concave portion is 0.1 to 100 μm. 前記凹部の直径が、前記軸受ハウジングの回転方向(Dr)と軸方向(Dv)の比で表したとき下記式(1)で表す関係であることを特徴とする請求項1又は2記載のターボチャージャ用回転支持装置。
Dv/Dr≧1 (1)
3. The turbo according to claim 1, wherein the diameter of the recess is a relationship expressed by the following formula (1) when expressed by a ratio of a rotation direction (Dr) and an axial direction (Dv) of the bearing housing. Rotating support device for charger.
Dv / Dr ≧ 1 (1)
前記凹部の深さが、0.1〜20μmであることを特徴とする請求項1〜3のいずれか1項記載のターボチャージャ用回転支持装置。   The rotation support device for a turbocharger according to any one of claims 1 to 3, wherein the depth of the recess is 0.1 to 20 µm. 前記凹部に、固体潤滑剤が充填されてなることを特徴とする請求項1〜4のいずれか1項記載のターボチャージャ用回転支持装置。   The turbocharger rotary support device according to any one of claims 1 to 4, wherein the concave portion is filled with a solid lubricant. 前記固体潤滑剤の硬さは、前記軸受ハウジングの外周面の硬さよりも100HV以上低いことを特徴とする請求項5記載のターボチャージャ用回転支持装置。   The turbocharger rotary support device according to claim 5, wherein the hardness of the solid lubricant is 100HV or more lower than the hardness of the outer peripheral surface of the bearing housing. 前記転がり軸受が玉軸受であり、かつ、該玉軸受を構成する玉がセラミック製であることを特徴とする請求項1〜6のいずれか1項記載のターボチャージャ用回転支持装置。


The rotation support device for a turbocharger according to any one of claims 1 to 6, wherein the rolling bearing is a ball bearing, and the balls constituting the ball bearing are made of ceramic.


JP2004275591A 2004-09-22 2004-09-22 Turbocharger rotation supporting device Pending JP2006090402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275591A JP2006090402A (en) 2004-09-22 2004-09-22 Turbocharger rotation supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275591A JP2006090402A (en) 2004-09-22 2004-09-22 Turbocharger rotation supporting device

Publications (1)

Publication Number Publication Date
JP2006090402A true JP2006090402A (en) 2006-04-06

Family

ID=36231580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275591A Pending JP2006090402A (en) 2004-09-22 2004-09-22 Turbocharger rotation supporting device

Country Status (1)

Country Link
JP (1) JP2006090402A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105077A1 (en) * 2010-02-23 2011-09-01 日本精工株式会社 Roller bearing and process for producing same
US9587515B2 (en) 2011-06-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Bearing device for turbocharger
US9695708B2 (en) 2015-04-12 2017-07-04 Honeywell International Inc. Turbocharger spring assembly
WO2017168634A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Rotary machine
US9963998B2 (en) 2013-06-18 2018-05-08 Honeywell International Inc. Assembly with bearings and spacer
US9976476B2 (en) 2015-04-12 2018-05-22 Honeywell International Inc. Turbocharger bearing assembly
US10151344B2 (en) 2014-10-24 2018-12-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
US10208623B2 (en) 2015-04-12 2019-02-19 Garrett Transportation I Inc. Turbocharger bearing assembly
DE112019006674T5 (en) 2019-02-21 2021-10-28 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. turbocharger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105077A1 (en) * 2010-02-23 2011-09-01 日本精工株式会社 Roller bearing and process for producing same
US9587515B2 (en) 2011-06-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Bearing device for turbocharger
US9963998B2 (en) 2013-06-18 2018-05-08 Honeywell International Inc. Assembly with bearings and spacer
US10151344B2 (en) 2014-10-24 2018-12-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
US9695708B2 (en) 2015-04-12 2017-07-04 Honeywell International Inc. Turbocharger spring assembly
US9976476B2 (en) 2015-04-12 2018-05-22 Honeywell International Inc. Turbocharger bearing assembly
US10208623B2 (en) 2015-04-12 2019-02-19 Garrett Transportation I Inc. Turbocharger bearing assembly
WO2017168634A1 (en) * 2016-03-30 2017-10-05 三菱重工業株式会社 Rotary machine
JPWO2017168634A1 (en) * 2016-03-30 2018-10-04 三菱重工エンジン&ターボチャージャ株式会社 Rotating machine
US10934887B2 (en) 2016-03-30 2021-03-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotary machine
DE112019006674T5 (en) 2019-02-21 2021-10-28 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. turbocharger
US11719124B2 (en) 2019-02-21 2023-08-08 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger

Similar Documents

Publication Publication Date Title
CN1985100B (en) Rolling device
JPH0632740U (en) Ball Bearing for Turbocharger
JPWO2013039177A1 (en) Sliding member and sliding material composition
WO2006001124A1 (en) Rolling bearing
JP2006090402A (en) Turbocharger rotation supporting device
JP5199728B2 (en) Rotary compressor
JP2006220240A (en) Cryogenic ultra-fast anti-friction bearing
JPH02271106A (en) Sliding bearing device
JP2005195148A (en) Thrust needle roller bearing
JP2002039191A (en) Rotating support device for turbocharger
JP2002129969A (en) Rotation supporting device for turbocharger
JPWO2013161775A1 (en) Rolling bearing
JP2004332899A (en) Solid lubrication rolling bearing
JP2018150988A (en) Rolling bearing
JP5609152B2 (en) Rotary compressor
JP2006071022A (en) Rolling bearing
JP2003049841A (en) Rolling device and retainer for rolling device
JP2002242937A (en) Cage of rolling bearing for turbocharger, manufacturing method thereof, and rotational support apparatus for turbocharger
JP2006105323A (en) Ball bearing
JP2005127270A (en) Rolling bearing device for supporting impeller
JP2006037853A (en) Rotation support device for turbocharger
JP2003139147A (en) Rolling device
JP2013072439A (en) Rolling bearing
JP2002147247A (en) Rotation support device for turbocharger
JP2000248954A (en) Rotor support device for turbocharger