JP2006089373A - Method for producing surface heating material - Google Patents

Method for producing surface heating material Download PDF

Info

Publication number
JP2006089373A
JP2006089373A JP2005287155A JP2005287155A JP2006089373A JP 2006089373 A JP2006089373 A JP 2006089373A JP 2005287155 A JP2005287155 A JP 2005287155A JP 2005287155 A JP2005287155 A JP 2005287155A JP 2006089373 A JP2006089373 A JP 2006089373A
Authority
JP
Japan
Prior art keywords
surface heating
heating material
producing
fiber
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005287155A
Other languages
Japanese (ja)
Inventor
Minoru Takahashi
稔 高橋
Ryoji Harada
良次 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO GIJUTSU KENKYUSHO KK
Original Assignee
SANGYO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO GIJUTSU KENKYUSHO KK filed Critical SANGYO GIJUTSU KENKYUSHO KK
Priority to JP2005287155A priority Critical patent/JP2006089373A/en
Publication of JP2006089373A publication Critical patent/JP2006089373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a surface heating material constituted of a formed carbonized material having a light, flexible and porous fiber structure good in processability and reactivity and a strong texture exhibiting high carbon properties by a very simple means at a low cost. <P>SOLUTION: A raw material having a porous structure consisting of an entangled combined body of cellulose single filaments having twisted, wavy and crimped forms is directly subjected to carbonizing/baking treatment by heating without adding a binder in a nonoxidative atmosphere. The entangled binding between the single filaments is strengthened by the carbonization-shrinkage effect generated by the above treatment, and the texture is stabilized and strengthened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単繊維の結合体から成る賦形炭化物によって構成された面発熱材を製造する方法に関するものである。   The present invention relates to a method for producing a surface heating material composed of a shaped carbide composed of a single fiber combination.

従来から、有機物から得られた炭素質体または炭素体(以下、総合して単に「炭化物」という。)は、その吸着的、電気的、断熱的、耐熱的、耐蝕的または機械的などの諸特性に応じて多彩な用途に供される。しかし、そのいずれもが、その使用目的に応じた適切な形態とされる必要がある。例えば、粉状、粒状、破砕状炭化物あるいは長繊維状、短繊維状、織布状、シート・マット状あるいはひも状の俗に「炭素繊維」と呼ばれる繊維状炭化物の諸形態がある。また、特に機械的特性を発揮させるために、別の物質を混合・加工した複合材料化も行われる場合がある。   Conventionally, a carbonaceous body or carbon body obtained from an organic substance (hereinafter, simply referred to as “carbide”) has a variety of adsorptive, electrical, adiabatic, heat resistance, corrosion resistance, and mechanical characteristics. It is used for various purposes according to the characteristics. However, any of them needs to be in an appropriate form according to the purpose of use. For example, there are various forms of fibrous carbides commonly called “carbon fibers” such as powdered, granular, crushed carbides, long fibers, short fibers, woven fabrics, sheet mats, or strings. In addition, in order to exhibit particularly mechanical characteristics, a composite material obtained by mixing and processing another substance may be used.

しかし、上述のように、諸用途に適応する形態に成形するためには、炭化工程とは別に、二次加工工程が必要となる。すなわち、炭化粉粒体の場合には、炭化後に粉砕、整粒を行う必要がある。また、炭化長繊維を綿状(チョップ)で利用する場合には、切断(チョッピング)工程により短繊維化を行う必要がある。さらに、炭化長繊維を織布、ひも状で利用する場合には、炭化後に、製織または編組工程を経なくてはならない。しかも、これらの加工工程において、元来伸度が小さくて折曲性に弱い炭素繊維としては、屈曲度が小さくて比較的平らな織物組織に限定して製織すべきであるから、ポーラス状厚組織などのものは、加工できない。さらに、上述のチョッピングされた炭化短繊維を抄紙法などでシートまたはマット状に成形する場合には、炭化素材に接着剤などのバインダ(すなわち、結合剤)を加えて一体成形される。しかし、この結果として得られた製品のいずれも、平らで薄手のものに限定されるほか、添加助剤がとかく炭化物本来の特性を損ない易い異物として残留するという致命的な欠点がある。   However, as described above, a secondary processing step is required in addition to the carbonization step in order to form a form suitable for various applications. That is, in the case of carbonized granular material, it is necessary to perform pulverization and sizing after carbonization. Further, when carbonized long fibers are used in a cotton form (chopped), it is necessary to shorten the fibers by a cutting (chopping) process. Furthermore, when carbonized continuous fibers are used in the form of woven fabric or string, weaving or braiding must be performed after carbonization. In addition, in these processing steps, carbon fibers that are originally low in elongation and weak in bendability should be woven limited to a relatively flat fabric structure with a low degree of bending. Things such as tissues cannot be processed. Further, when the above-mentioned chopped carbonized short fibers are formed into a sheet or a mat by a paper making method or the like, they are integrally formed by adding a binder (that is, a binder) such as an adhesive to the carbonized material. However, all of the products obtained as a result of this are limited to flat and thin products, and there is a fatal defect that the additive aid remains as a foreign substance that easily deteriorates the inherent characteristics of the carbide.

上述のように、用途により適用される二次加工は、非常に繁雑であって、場合によっては炭素特性を滅殺してしまい、また、いたずらにコストアップになるという問題がある。   As described above, the secondary processing applied depending on the application is very complicated, and in some cases, the carbon characteristics are destroyed, and there is a problem that the cost is unnecessarily increased.

本発明は、上述のような従来の炭化物の利用法に内在する多くの諸問題点を解決するために発明されたものであって、簡易な手法により、しかも、低コストでもって、ポーラス状繊維構造で高度な炭素特性を発揮する組織強固な賦形炭化物によって構成された面発熱材を製造する方法を提案するようにしたものである。   The present invention has been invented in order to solve many problems inherent in the above-described conventional use of carbides, and is a porous fiber by a simple method and at a low cost. The present invention proposes a method for producing a surface heating material constituted by a structure-hardened shaped carbide that exhibits advanced carbon characteristics in its structure.

本発明は、単繊維の結合体(すなわち、結合物)から成る賦形炭化物によって構成された面発熱材を製造する方法において、捩転、波状、捲縮の形態を備えたセルローズ系単繊維の搦合結合体から成るポーラス構造の原料を用意し、上記原料を、バインダを加えることなく、その形状のままで非酸化性雰囲気で加熱して炭化処理し、この処理で発生する炭化収縮作用により上記単繊維相互間の搦合結合を強化させて、その組織を安定強固にすることを特徴とする面発熱材の製造法に係るものである。本発明においては、上記セルローズ系単繊維は、その構造において、捩転、波状、捲縮などの形態を備えるだけでなく、搦合性に富み、しかも、外部表面積が著大であるのが好ましい。   The present invention relates to a method for producing a surface heating material constituted by a shaped carbide composed of a single-fiber bonded body (that is, a bonded material), and a cellulose-based single fiber having torsion, wavy, and crimped forms. A raw material having a porous structure composed of a composite bonded body is prepared, and the above raw material is carbonized by heating it in a non-oxidizing atmosphere without adding a binder, and by the carbonization shrinkage generated by this treatment. The present invention relates to a method for producing a surface heating material characterized by strengthening the intergranular bond between the single fibers and stabilizing and strengthening the structure. In the present invention, it is preferable that the cellulose single fiber not only has torsional, wavy, crimped, and the like in its structure, but also has excellent compatibility and a large external surface area. .

また、本発明においては、上記セルローズ系単繊維が木綿繊維であるのが好ましい。なお、木綿繊維は、ラセン状に捩転する天然撚りを有するので、人為的に、波状、捲縮の効果を付与する前処理を行う必要がない。また、本発明においては、上記ポーラス構造の原料がルーズファイバ(綿状物)、ラップ(むしろ綿)、スライバ(ひも状篠)、ロービング(粗糸)から選ばれる少なくとも1種であるのが好ましい。この場合、ポーラス構造の原料を軽量なものにすることができる。また、本発明においては、上記セルローズ系単繊維の繊維幅が0.01〜0.08mmであるのが好ましい。この場合、セルローズ系単繊維の繊維幅はきわめて小さくて、その表面積は大きい。また、本発明においては、上記賦形炭化物のカサ比重は、0.02以上であるのが好ましく、0.025以下であるのが好ましい。したがって、上記カサ比重は、0.02〜0.025であるのが好ましい。また、本発明においては、上記賦形炭化物の重量は、上記ポーラス構造の原料の33〜45%であるのが好ましい。   In the present invention, the cellulose single fiber is preferably a cotton fiber. In addition, since the cotton fiber has a natural twist that twists in a spiral shape, it is not necessary to artificially perform a pretreatment that imparts a wavy or crimped effect. In the present invention, it is preferable that the material of the porous structure is at least one selected from loose fiber (cotton), wrap (rather cotton), sliver (string-shaped shino), and roving (coarse yarn). . In this case, the porous structure material can be made lightweight. Moreover, in this invention, it is preferable that the fiber width of the said cellulose single fiber is 0.01-0.08 mm. In this case, the cellulose single fiber has a very small fiber width and a large surface area. In the present invention, the specific gravity of the shaped carbide is preferably 0.02 or more, and preferably 0.025 or less. Accordingly, the bulk specific gravity is preferably 0.02 to 0.025. In the present invention, the weight of the shaped carbide is preferably 33 to 45% of the raw material of the porous structure.

つぎに、本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail.

本発明の第1の特徴は、本発明において採用される原料がセルローズ系に属する繊維で外部表面積が著しく大きく、しかも、搦合性に富む単繊維であることであり、また、これを後述の機械操作により予め所望の形態に成形することであり、これは総ての繊維固有の搦合性により各単繊維間が搦合結合されているために、バインダなどの添加は全く必要なく、柔軟でポーラス状の単繊維結合体となることである。つぎに、上記原料をそのままの形態で加熱して炭化処理するが、ここで重要なことは、単繊維から成る個体原料が炭化反応の進行に伴なって物質としては炭化物を生成し、これと同時に、形態においては搦(からみ)合い原料個体の形態そのままの状態で一定の割合で収縮して、最後までその形態を保持することである。上記現象が本発明で採用した炭化による単繊維結合体の軽量かつポーラス化と、組織強化とのメカニズムである。   The first feature of the present invention is that the raw material employed in the present invention is a fiber belonging to the cellulosic system, the external surface area is remarkably large, and it is a single fiber rich in compatibility. It is pre-molded into a desired form by machine operation. This is because all the single fibers are combined and bonded by the inherent properties of all fibers, so there is no need to add a binder or the like. It becomes a porous single fiber bonded body. Next, the raw material is heated and carbonized as it is, but what is important here is that the solid raw material consisting of single fibers produces carbide as a substance as the carbonization reaction proceeds. At the same time, in the form, the entangled material is contracted at a certain rate while maintaining the form of the raw material individual, and the form is maintained until the end. The above phenomenon is the mechanism of the lightweight and porous single fiber bonded body by carbonization employed in the present invention and the strengthening of the structure.

また、一般的に、原料個体は炭化によりその本来の靱性を失って硬化し易いが、本発明に係る原料個体としては、繊細な繊度の小さな単繊維を採用するために、熱処理後の賦形炭化物の見掛けの硬化度の変化はきわめて少ない。これは、硬質ガラス板が繊細なガラス繊維に転ずると柔軟性を発揮するのと同理である。さらに、原料単繊維は従来の炭化材料(例えば、活性炭製造用のヤシ殻、オガクズなど)に較べて著しく繊細であり、本発明で採用するセルローズ系単繊維の繊維幅は0.01〜0.08mmときわめて小さいのが好ましく、また、その表面積は上記2種類の原料の数百倍程度と大きい。したがって、単繊維結合体の炭化物は、反応性がきわめて高く、その上に、炭化工程は勿論のこと、必要に応じて行う賦活処理などにおいても反応速度が早く、しかも、均一に進行するという利点がある。この点が、本発明の第2の特徴である。   In general, a raw material solid is easily cured by losing its original toughness due to carbonization, but the raw material solid according to the present invention is shaped after heat treatment in order to employ a single fiber having a small fineness. The change in the apparent degree of hardening of the carbide is very small. This is the same reason that a hard glass plate exhibits flexibility when it turns into a delicate glass fiber. Furthermore, the raw single fibers are remarkably more delicate than conventional carbonized materials (for example, coconut shells and sawdust for producing activated carbon), and the fiber width of the cellulose single fibers employed in the present invention is 0.01-0. It is preferably as small as 08 mm, and its surface area is as large as several hundred times that of the above two types of raw materials. Therefore, the carbide of the single fiber bonded body has extremely high reactivity, and in addition to the carbonization step, the reaction rate is high in the activation treatment performed as necessary, and the advantage is that it proceeds uniformly. There is. This is the second feature of the present invention.

つぎに、本発明における使用原料、炭化処理および得られた賦形炭化物の特性について、さらに詳述する。   Next, the raw materials used, carbonization treatment, and characteristics of the obtained shaped carbide in the present invention will be described in further detail.

使用原料としての単繊維はすべてセルローズを主成分とし、その繊維幅は約0.01〜0.08mmのものが好ましく、また、天然繊維や再生繊維素である人造繊維も、本発明に係る原料に含まれる。例えば、木綿、亜麻、大麻、黄麻、ラミー、楮、三椏、竹甘蔗、レイヨンなどの繊維が含まれる。また、繊維の搦合性は木綿ではラセン状に捩転する天然撚りを有するが、その他のものは、人為的に、波状、捲縮の効果を付与する前処理を必要とする。その一例として、上下に相対峙して圧転する加熱型付けロール間に原料短繊維を通して、所望の波状、捲縮状の形態を付与することができる。   Monofilaments used as raw materials are all composed mainly of cellulose, and preferably have a fiber width of about 0.01 to 0.08 mm, and natural fibers and artificial fibers that are regenerated fibers are also raw materials according to the present invention. include. For example, fibers such as cotton, flax, cannabis, jute, ramie, cocoon, cocoon, bamboo candy, and rayon are included. In addition, the consistency of the fiber has a natural twist that twists in a spiral shape in cotton, but the other requires artificially a pretreatment that imparts a wavy and crimped effect. As an example, a desired corrugated or crimped form can be imparted through the raw material short fibers between the heating mold rolls that are rolled up and down relative to each other.

つぎに、これらの搦合性単繊維を用いて、所望のポーラス状結合体を形成するためには、紡績工程において通常使用される機器がそのまま適用される。すなわち、単繊維のルーズファイバ(綿状物)を得るためには、原料繊維をボールブレーカ機に投入して、繊維塊を解きほぐすことで得られる。また、これをさらに打綿機で処理して、ラップ(むしろ綿)を得ることができる。スライバ(ひも状篠)は、ラップをさらに梳綿機で処理して得られる。また、ロービング(粗糸)は、上記スライバを練篠機で最小限の甘撚りを加えて作製される。   Next, in order to form a desired porous bonded body using these composite single fibers, equipment normally used in the spinning process is applied as it is. That is, in order to obtain a single fiber loose fiber (cotton-like material), it is obtained by putting raw fiber into a ball breaker machine and unraveling the fiber mass. Moreover, this can be further processed with a cotton-tapping machine to obtain a wrap (rather, cotton). The sliver is obtained by further processing the wrap with a carding machine. Roving (coarse yarn) is produced by adding the minimum sweet twist to the sliver with a kneading machine.

これらの原料の焼成炭化は、一般的に、非酸化性雰囲気中で300℃以上で約6時間加熱処理することによって行われるが、その加熱処理条件は、目的とする特性に応じて適宜調整する必要がある。また、炭化度と被処理体の形態変化とは、加熱処理条件により異なり、目的に応じた調整が必要である。   Firing and carbonization of these raw materials is generally performed by heat treatment at 300 ° C. or higher for about 6 hours in a non-oxidizing atmosphere, and the heat treatment conditions are appropriately adjusted according to the target characteristics. There is a need. Further, the degree of carbonization and the shape change of the object to be processed differ depending on the heat treatment conditions, and adjustment according to the purpose is necessary.

つぎに、上記方法で得られた本発明に係る面発熱材を構成する賦形炭化物の特性について説明する。   Next, the characteristics of the shaped carbide constituting the surface heating material according to the present invention obtained by the above method will be described.

古くから、炭化物は、機能材料として各分野に使用され、しかも、特に今日の新技術への参入には著しい飛躍が見られる。しかし、現在使用されている炭化物は、旧態依然の粉状体、粉体、破砕体が主流であって、近時台頭している炭素繊維の一部応用が見られるに過ぎない。また、上記3種類の物体(すなわち、粉状体、粉体、破砕体)および炭素繊維を新用途に適応させるためには、そのほとんどが、他の成分を添加した複合材料化によってその目的を達成するようにしているが、このことは、前述したように、製造工程の複雑化と異物混入とのために、プラス面以外に致命的なマイナス面を発生する恐れがある。   For a long time, carbides have been used in various fields as functional materials, and in particular, there has been a significant leap in the entry into today's new technology. However, the currently used carbides are mainly powders, powders, and crushed bodies, which are still old, and only some applications of carbon fibers that have recently emerged can be seen. Also, in order to adapt the above three types of objects (ie, powder, powder, crushed) and carbon fiber to new applications, most of them have achieved their purpose by making composite materials with other components added. As described above, this may cause a fatal negative surface in addition to the positive surface due to the complicated manufacturing process and contamination with foreign matter.

つぎに、本発明に係る面発熱材を構成する賦形炭化物の特徴を以下の(イ)項〜(ニ)項に列記する。
(イ)本発明に係る面発熱材を構成する賦形炭化物は、まずマクロ的にみると、柔軟性で軽量かつポーラス状であり、そのカサ比重は0.02〜0.025程度である。また、柔軟度において原材料(すなわち、単繊維結合体)と大差なく、したがって、このものは、炭化物として「しなやかさ」が大きく、任意の形態に変形可能であり、形態変化の自由度が大きくて、炭素繊維加工品をはるかにしのぎ、また、その重量においては、炭化処理後に原材料の約33〜45%に低下する。さらに、ポーラス度は、炭化収縮により原材料に較べて約20〜30%減少するが、従来の粉状、粒状炭化物または織布状炭素繊維の気体、液体の通過抵抗に較べて約1/5〜1/15と低値を示す。
(ロ)上記賦形炭化物をミクロ的にみると、炭化単繊維は、その繊維幅が原材料のそれと較べると約30〜40%低下して、より繊細になる。したがって、特にその吸着性能などは単位重量当りの表面積が増大して、従来品に較べて吸着速度および吸着飽和量が著しく増加する。
(ハ)上記賦形炭化物の電気的特性について述べると、炭化物利用の電気的特性の基本は、その電導性の優劣で決定されるが、特に炭素質成形体においては、炭素質相互間の直接的接触が電導性行路を形成し、その密度の多寡がその特性を左右する。しかし、上記賦形炭化物は、密度が高くて、相互に搦合い、その接触密度が大であるために、帯電防止(すなわち、帯電防止材)、電磁波シールド(すなわち、電磁波シールド材)、面発熱(すなわち、面発熱材)、各種の電極(すなわち、電極材料)、電気二重コンデンサ(すなわち、電気二重コンデンサのための材料)などに応用した場合に、きわめて適切な効果を発揮する。
(ニ)上記賦形炭化物の断熱性について述べると、ポーラス状の形態がその性能を倍加し、その上、軽量なので、機械設計上の利点になる。さらに、ポーラス状でかつ柔軟性であるために、各種のシールド(すなわち、シールド材)または各種のパッキング(すなわち、パッキング材)としても、機器に対して「なじみ」がよくて、適材となる。
Next, the characteristics of the shaped carbide constituting the surface heating material according to the present invention are listed in the following items (A) to (D).
(A) The shaped carbide constituting the surface heating material according to the present invention is, when viewed macroscopically, is flexible, lightweight and porous, and its bulk specific gravity is about 0.02 to 0.025. In addition, the flexibility is not much different from that of the raw material (ie, single fiber bonded body). Therefore, this material is “flexible” as a carbide, can be transformed into any form, and has a high degree of freedom of shape change. Much more than carbon fiber processed products, and its weight falls to about 33-45% of the raw material after carbonization. Furthermore, the degree of porosity is reduced by about 20 to 30% compared to the raw material due to carbonization shrinkage, but is about 1/5 compared to the passage resistance of gas and liquid of conventional powdery, granular carbide or woven carbon fiber. The value is as low as 1/15.
(B) When the shaped carbide is viewed microscopically, the carbonized monofilament has a fiber width that is about 30 to 40% lower than that of the raw material, and becomes finer. Therefore, especially in the adsorption performance, the surface area per unit weight is increased, and the adsorption rate and the adsorption saturation amount are remarkably increased as compared with the conventional product.
(C) Describing the electrical characteristics of the above-mentioned shaped carbides, the basics of the electrical characteristics of the use of carbides are determined by the superiority or inferiority of the electrical conductivity. Contact forms a conductive path, and its density affects its properties. However, since the above-mentioned shaped carbides are high in density, are mutually intertwined, and the contact density is large, antistatic (ie, antistatic material), electromagnetic wave shielding (ie, electromagnetic wave shielding material), surface heat generation When applied to (i.e., surface heating material), various electrodes (i.e., electrode materials), electric double capacitors (i.e., materials for electric double capacitors), etc., extremely appropriate effects are exhibited.
(D) The heat insulation property of the above-mentioned shaped carbide will be described as a mechanical design advantage because the porous form doubles its performance and is lightweight. Furthermore, since it is porous and flexible, various kinds of shields (that is, shielding materials) or various kinds of packings (that is, packing materials) have good “familiarity” with devices and are suitable materials.

なお、上述の各種の適応に際し、本発明に係る面発熱材を構成する賦形炭化物は、柔軟性でポーラス状のために、機器への装着、組込みがきわめて簡単かつ容易である。例えば、気相、液相の吸着またはろ過の目的のためには(換言すれば、吸着材またはろ過材としては)、簡単な円筒状エレメント構造物に単に詰め込み充填するかこれで包被するだけで、その目的を達成することができる。   In addition, in the various adaptations described above, the shaped carbide constituting the surface heating material according to the present invention is flexible and porous, so that it is very easy and easy to attach and assemble to equipment. For example, for gas phase, liquid phase adsorption or filtration purposes (in other words, as an adsorbent or filter media), simply pack or fill a simple cylindrical element structure. The purpose can be achieved.

上述のように、本発明に係る面発熱材を構成する賦形炭化物の形態変化に対する自由度は、他に類をみない利便性がある。   As described above, the degree of freedom with respect to the shape change of the shaped carbide constituting the surface heating material according to the present invention is as convenient as any other.

本発明によれば、加工性および反応性が良く軽量かつ柔軟にしてポーラス状の繊維構造で高度な炭素特性を発揮する組織強固な賦形炭化物によって構成された面発熱材を、非常に簡単な手法で、しかも、低コストで製造することができる。   According to the present invention, a surface heating material constituted by a structure-hardened shaped carbide that has high workability and reactivity, is lightweight and flexible, and exhibits a high carbon characteristic in a porous fiber structure, is very simple. This method can be manufactured at a low cost.

実施例1
綿花(米国産、繊維幅:0.02〜0.05mm、繊維長:15.0〜50.0mm、天然撚り数140〜240回/25cm)を原料とし、これをボールブレーカおよび打綿機で処理して、むしろ綿を作製した。このむしろ綿を幅14cmに裁断し、中空鉄芯に軽く捲上げした。つぎに、これを炭化炉中に装入し、非酸化性雰囲気中で徐々に加熱昇温した後に、炉内温度を600℃に昇温し、この温度でさらに3時間加熱して炭化焼成処理することによって、面発熱材を構成する賦形炭化物を得た。この賦形炭化物は、投入生むしろ綿と全く同形態で炭化され、組織が緻密になり、その寸法変化は生むしろ綿に対して幅が29%、厚さが35%それぞれ減少した。なお、この賦形炭化物の重量減は63%であった。また、この賦形炭化物のカサ比重は0.023であった。
Example 1
Cotton (made in the United States, fiber width: 0.02 to 0.05 mm, fiber length: 15.0 to 50.0 mm, natural twist number 140 to 240 times / 25 cm) is used as a raw material, and this is used with a ball breaker and a cotton hitting machine. Rather, cotton was made. Rather, the cotton was cut into a width of 14 cm and lightly wound up into a hollow iron core. Next, this was charged into a carbonization furnace and gradually heated and heated in a non-oxidizing atmosphere, and then the temperature in the furnace was raised to 600 ° C. and heated at this temperature for another 3 hours for carbonization firing treatment. By doing so, a shaped carbide constituting the surface heating material was obtained. The shaped carbide was carbonized in exactly the same form as the raw cotton, and the structure became dense, and the dimensional change was 29% smaller than the raw cotton and 35% thinner than the cotton. The weight loss of the shaped carbide was 63%. Moreover, the specific gravity of the shaped carbide was 0.023.

つぎに、この面発熱材を構成する賦形炭化物の強度および安定度について試験した。その結果を表1に示す。   Next, the strength and stability of the shaped carbide constituting the surface heating material were tested. The results are shown in Table 1.

Figure 2006089373
Figure 2006089373

表1に示した結果から、炭化繊維の真の引張り破断強度も低下していることが推測されるが、見掛け引張り強度は搦合効果によりあまり差異が認められなかった。また、横強度の増大は、炭化による単繊維の搦合い強化によるものと考えられる。   From the results shown in Table 1, it is presumed that the true tensile strength at break of the carbonized fibers is also decreased, but the apparent tensile strength was not significantly different due to the mating effect. Further, it is considered that the increase in the lateral strength is due to the strengthening of the single fibers due to carbonization.

つぎに、本発明に係る面発熱材を構成する賦形炭化物を水中に煮沸しながら浸漬して、その安定度を測定した。その結果を表2に示す。   Next, the shaped carbide constituting the surface heating material according to the present invention was immersed in water while boiling, and its stability was measured. The results are shown in Table 2.

Figure 2006089373
Figure 2006089373

表2に示した結果から、生むしろ綿は、横、縦ともに形態変化が大きく、特に横方向の変化が大きい。このことは、縦方向繊維間の搦合いが弱いことを意味している。一方、炭化むしろ綿は、形態変化が比較的小さく、表面状態も均一に平滑であった。   From the results shown in Table 2, raw rather than cotton has a large change in shape both horizontally and vertically, and particularly a large change in the horizontal direction. This means that the balance between the longitudinal fibers is weak. On the other hand, carbonized cotton has a relatively small shape change and a uniform surface condition.

実施例2
実施例1で使用した原料と同じ綿花をボールブレーカで均一に開綿してポーラス状とした綿状物(a)と、レーヨン糸(ビスコース法、1.5デニール長繊維)を表面温度400℃に加熱した圧転型付けロールにより波状形態としたものを長さ2.5cmにカットしてこれを開綿したもの(b)と、比較例1としての8号綿帆布(c)と、比較例2としての直径4mmの綿ロープ(d)と、比較例3としての上記レーヨン糸から編組された直径2.5mmの組ひも(e)とを、それぞれ、同一の炭化炉中に装入し、空気を遮断して加熱し、徐々に昇温させて2.5時間保持した後に、840℃に昇温して3.5時間加熱することによって、炭化焼成処理した。
Example 2
The same cotton as the raw material used in Example 1 was uniformly opened with a ball breaker and made into a porous form (a) and rayon yarn (viscose method, 1.5 denier long fiber) with a surface temperature of 400. Compared with the one obtained by cutting the corrugated shape into a length of 2.5 cm by using a pressing mold roll heated to ° C. (b) and No. 8 cotton canvas (c) as Comparative Example 1. A cotton rope (d) having a diameter of 4 mm as Example 2 and a braid (e) having a diameter of 2.5 mm knitted from the rayon yarn as Comparative Example 3 were respectively charged in the same carbonization furnace. Then, after heating with air shut off, the temperature was gradually raised and maintained for 2.5 hours, and then heated to 840 ° C. and heated for 3.5 hours to carry out carbonization firing treatment.

その結果、(a)および(b)のものは、いずれも、搦合いポーラス状の綿状で得られた。つぎに、これら(a)〜(e)の5試料を800℃に保持して、水蒸気賦活処理を40分間行った後に、常温まで冷却して炉から取り出し、(a)〜(e)の各試料の反応性を比較するために、メチレンブルーの吸着価を試験した。その結果を表3に示す。   As a result, both (a) and (b) were obtained in a mated porous cotton form. Next, after 5 samples of (a) to (e) are held at 800 ° C. and subjected to the steam activation treatment for 40 minutes, the samples are cooled to room temperature and taken out from the furnace, and each of (a) to (e) is performed. In order to compare the reactivity of the samples, the adsorption value of methylene blue was tested. The results are shown in Table 3.

Figure 2006089373
Figure 2006089373

表3に示した結果から、炭化物の吸着能は、原料の材質よりもその形態が非常に重要であることが分る。したがって、本発明に係る面発熱材を構成する賦形炭化物の表面反応性は、従来品には見られない高度なものである。   From the results shown in Table 3, it can be seen that the form of the adsorption capacity of the carbide is much more important than the material of the raw material. Therefore, the surface reactivity of the shaped carbide constituting the surface heating material according to the present invention is a high level not found in conventional products.

Claims (7)

単繊維の結合物から成る賦形炭化物によって構成された面発熱材を製造する方法において、
捩転、波状、捲縮の形態を備えたセルローズ系単繊維の搦合結合体から成るポーラス構造の原料を用意し、
上記原料を、バインダを加えることなく、その形状のままで非酸化性雰囲気で加熱して炭化焼成処理し、この処理で発生する炭化収縮作用により上記単繊維相互間の搦合結合を強化させてその組織を安定強固にすることを特徴とする面発熱材の製造法。
In a method for producing a surface heating material constituted by a shaped carbide composed of a combination of single fibers,
Prepare a raw material of a porous structure consisting of a combined composite of cellulose single fibers with twisted, wavy, crimped forms,
Without adding a binder, the raw material is heated in a non-oxidizing atmosphere as it is in a non-oxidizing atmosphere, and subjected to carbonization firing treatment. By the carbonization shrinkage generated by this treatment, the combined bond between the single fibers is strengthened. A method for producing a surface heating material, characterized by stabilizing and strengthening the structure.
上記セルローズ系単繊維が木綿繊維であることを特徴とする請求項1に記載の面発熱材の製造法。   The method for producing a surface heating material according to claim 1, wherein the cellulose single fiber is a cotton fiber. 上記ポーラス構造の原料がルーズファイバー、ラップ、スライバ、ロービングから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の面発熱材の製造法。   The method for producing a surface heating material according to claim 1 or 2, wherein the material of the porous structure is at least one selected from loose fiber, wrap, sliver, and roving. 上記セルローズ系単繊維の繊維幅が0.01〜0.08mmであることを特徴とする請求項1、2または3に記載の面発熱材の製造法。   The method for producing a surface heating material according to claim 1, 2 or 3, wherein the cellulose single fiber has a fiber width of 0.01 to 0.08 mm. 上記賦形炭化物のカサ比重が0.02以上であることを特徴とする請求項1〜4のうちのいずれか1項に記載の面発熱材の製造法。   The method for producing a surface heating material according to any one of claims 1 to 4, wherein a bulk specific gravity of the shaped carbide is 0.02 or more. 上記賦形炭化物のカサ比重が0.025以下であることを特徴とする請求項1〜5のうちのいずれか1項に記載の面発熱材の製造法。   The method for producing a surface heating material according to any one of claims 1 to 5, wherein a bulk specific gravity of the shaped carbide is 0.025 or less. 上記賦形炭化物の重量が上記ポーラス構造の原料の33〜45%であることを特徴とする請求項1〜6のうちのいずれか1項に記載の面発熱材の製造法。   The method for producing a surface heating material according to any one of claims 1 to 6, wherein the weight of the shaped carbide is 33 to 45% of the raw material of the porous structure.
JP2005287155A 2005-09-30 2005-09-30 Method for producing surface heating material Pending JP2006089373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287155A JP2006089373A (en) 2005-09-30 2005-09-30 Method for producing surface heating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287155A JP2006089373A (en) 2005-09-30 2005-09-30 Method for producing surface heating material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27823694A Division JP3738854B2 (en) 1994-05-10 1994-10-05 Process for producing shaped carbides composed of single fiber conjugates

Publications (1)

Publication Number Publication Date
JP2006089373A true JP2006089373A (en) 2006-04-06

Family

ID=36230691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287155A Pending JP2006089373A (en) 2005-09-30 2005-09-30 Method for producing surface heating material

Country Status (1)

Country Link
JP (1) JP2006089373A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Super‐strong, super‐stiff macrofibers with aligned, long bacterial cellulose nanofibers
Reddy et al. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks
Nam et al. Green composites. I. Physical properties of ramie fibers for environment-friendly green composites
JP3972674B2 (en) Carbon fiber manufacturing method and carbon fiber reinforced resin composition
Zhang et al. Investigations on the structure and properties of palm leaf sheath fiber
CN108517688B (en) Production process of RGO/Ag layer-by-layer assembled cellulose conductive yarn
Lin et al. Advanced functional materials based on bamboo cellulose fibers with different crystal structures
JPH01503468A (en) Carbonaceous fiber reinforced polymer composite
JP4392432B2 (en) Method for producing carbonized fabric
KR20070116012A (en) Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same
Chen et al. Windmill palm fiber/polyvinyl alcohol coated nonwoven mats with sound absorption characteristics
Satyanarayana et al. Materials science of some lignocellulosic fibers
JP3738854B2 (en) Process for producing shaped carbides composed of single fiber conjugates
JP4328322B2 (en) Manufacturing method of electrode material
JP4355343B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JP2006089373A (en) Method for producing surface heating material
JP2006056777A (en) Method for producing excipient carbonized material
JP4392433B2 (en) Method for producing carbonized fabric
JP2002266217A (en) Carbon fiber nonwoven fabric and method for producing the same
JP4355344B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JP4936478B2 (en) Carbonized fabric manufacturing method and carbonized fabric
JPH044040A (en) Molded adsorbent and its production
CN101578406A (en) Method for production of carbonized cloth, and carbonized cloth produced thereby
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
Kundu et al. Physical characteristics of khimp fibre

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111