JP2006088046A - Concentration instrument and concentration method - Google Patents

Concentration instrument and concentration method Download PDF

Info

Publication number
JP2006088046A
JP2006088046A JP2004277081A JP2004277081A JP2006088046A JP 2006088046 A JP2006088046 A JP 2006088046A JP 2004277081 A JP2004277081 A JP 2004277081A JP 2004277081 A JP2004277081 A JP 2004277081A JP 2006088046 A JP2006088046 A JP 2006088046A
Authority
JP
Japan
Prior art keywords
concentration
film
container
concentrated
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277081A
Other languages
Japanese (ja)
Inventor
Akihiro Okamoto
昭弘 岡本
Manabu Fujii
学 藤井
Hiroshi Yoshioka
浩 吉岡
Yuichi Mori
森  有一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mebiol Inc
Original Assignee
Mebiol Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mebiol Inc filed Critical Mebiol Inc
Priority to JP2004277081A priority Critical patent/JP2006088046A/en
Publication of JP2006088046A publication Critical patent/JP2006088046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a method for concentrating an object to be concentrated while keeping a completely closed system. <P>SOLUTION: A concentration instrument includes at least one vessel which is used for housing the object to be concentrated containing a component to be concentrated and which has at least one of a liquid outlet and a liquid inlet, wherein at least a part of the vessel is composed of a non-porous hydrophilic film or membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶液などの濃縮用器具および濃縮方法に関する。本発明は、更に詳しくは、コラーゲン等の蛋白溶液、ヒアルロン酸等の多糖類溶液、生理活性物質溶液、高分子溶液を始めとする種々の液体の濃縮、および植物細胞・組織、動物細胞・組織など、固体と液体の混合物の濃縮に好適に使用可能な濃縮用器具および濃縮方法に関する。   The present invention relates to a concentration device such as a solution and a concentration method. More specifically, the present invention relates to the concentration of various liquids including protein solutions such as collagen, polysaccharide solutions such as hyaluronic acid, physiologically active substance solutions, polymer solutions, and plant cells / tissues, animal cells / tissues. The present invention relates to a concentration device and a concentration method that can be suitably used for concentration of a mixture of a solid and a liquid.

従来より、果汁、蛋白溶液等から水分を除去し濃縮する方法として、熱を加えることによって強制的に水分を蒸発させる方法(加熱蒸発法)、真空下に強制的に水分を蒸発させる方法(真空蒸発法)、凍結した後、真空下に氷を昇華させる方法(凍結乾燥法)、および逆浸透膜や限外濾過膜を用いた膜濃縮法等が行われてきた。   Conventional methods for removing and concentrating water from fruit juices, protein solutions, etc., forcibly evaporating water by applying heat (heating evaporation method), and forcibly evaporating water under vacuum (vacuum) Evaporation method), after freezing, a method of sublimating ice under vacuum (lyophilization method), a membrane concentration method using a reverse osmosis membrane or an ultrafiltration membrane, and the like have been performed.

これらの技術のうち、加熱蒸発法においては、熱によって成分が変質してしまう、閉鎖系でないため菌、ウィルス、異物等のコンタミネーションの危険性が高い、空気と接触し成分が酸化反応を受け易い、加熱による水の相変化を利用するためエネルギー消費量が大きい、特に微量成分の濃縮は実質的には困難である等多くの問題がある。   Among these technologies, in the heat evaporation method, components are altered by heat, and because they are not closed systems, there is a high risk of contamination such as bacteria, viruses, and foreign substances. There are many problems, such as the fact that the energy consumption is large because the phase change of water due to heating is easy, and the concentration of trace components is particularly difficult.

また、真空蒸発法においては、閉鎖系ではないため菌、ウィルス、異物等のコンタミネーションの危険性が高い、突沸を防止するために撹拌等の機械的刺激を加える必要がある、減圧による水の相変化を利用するため、エネルギー消費量が大きい等の問題がある。   In addition, since the vacuum evaporation method is not a closed system, there is a high risk of contamination with bacteria, viruses, foreign substances, etc., and it is necessary to apply mechanical stimulation such as stirring to prevent bumping. Since phase change is used, there are problems such as large energy consumption.

更に、凍結乾燥法においては、上記の方法と同様に閉鎖系でないため菌、ウィルス、異物等のコンタミネーションの危険性が高い、凍結により成分が変質してしまう危険性がある、空気と接触して成分が酸化反応を受け易い、凍結、昇華という相変化を伴うためエネルギーコストが大きい等の問題がある。   Furthermore, the freeze-drying method is not a closed system as in the above method, so there is a high risk of contamination with bacteria, viruses, foreign substances, etc., there is a risk that the components will be altered by freezing, and contact with air. Thus, there are problems such as high energy costs because the components are susceptible to oxidation reactions and are accompanied by phase changes such as freezing and sublimation.

他方、膜を利用した逆浸透膜法や限外濾過膜法に関しては加熱、凍結等による成分の変質は抑制されされ、且つ、加熱、減圧、凍結、昇華等に伴う相変換によるエネルギー消費量が少ないという大きな利点がある。しかしながら膜法についても下記に示すような問題点がある。   On the other hand, with respect to the reverse osmosis membrane method and ultrafiltration membrane method using a membrane, alteration of components due to heating, freezing, etc. is suppressed, and energy consumption due to phase conversion accompanying heating, decompression, freezing, sublimation, etc. is reduced. There is a big advantage that there are few. However, the membrane method has the following problems.

すなわち、逆浸透膜法や限外濾過膜法は、いずれも完全な閉塞系でなく菌、ウィルス、異物等のコンタミネーションの危険性がある。また膜法では加圧工程が必須であるため、膜をそのまま利用することができず中空系モジュール、管状モジュール等のモジュール化が必要でありコストがかかる。   That is, the reverse osmosis membrane method and the ultrafiltration membrane method are not completely occluded systems, and there is a risk of contamination with bacteria, viruses, foreign substances, and the like. In addition, since a pressurizing step is essential in the membrane method, the membrane cannot be used as it is, and it is necessary to make a module such as a hollow module or a tubular module, which is expensive.

更に滅菌操作、目詰まり洗浄操作等が必要で運転経費が高い等の問題がある。また、膜法は本来、膜の有する孔を用いて成分をその大きさによって分離する目的で使用されていて逆浸透膜の孔径は数Å(オングストロ−ム)〜十数Åであり、限外濾過膜の場合は数十Å〜数μmである。従ってその孔径よりも小さい成分は膜を通過してしまうために水分のみを除去する濃縮工程としては不適である。特に限外濾過法は特定の大きさ以下の成分を除去する目的で使用されていて、水分のみの除去の場合は逆浸透膜が使用されている。   Furthermore, there are problems such as high sterilization operation, clogging cleaning operation, and high operating costs. In addition, the membrane method is originally used for the purpose of separating the components according to the size using the pores of the membrane, and the pore diameter of the reverse osmosis membrane is several angstroms to several tens of angstroms. In the case of a filtration membrane, it is several tens of μm to several μm. Therefore, since components smaller than the pore diameter pass through the membrane, they are not suitable as a concentration step for removing only moisture. In particular, the ultrafiltration method is used for the purpose of removing components having a specific size or less, and a reverse osmosis membrane is used for removing only water.

しかしながら、逆浸透膜法でも水分の除去能力の高い膜を使用すると食塩等の必要成分も透過してしまうという問題がある。以上述べたように、水分を除去し濃縮するための従来法にはいくつかの重要な問題がある。特に従来法では完全な閉鎖系で濃縮することが困難であり菌、ウィルス、異物の混入の危険性があり、濃縮工程の後に滅菌あるいは殺菌工程あるいは異物除去工程を設置する必要がある。また濃縮過程で完全に空気との接触を遮断することができず、酸化反応を受け易いと同時に蛋白等で特に問題となる固液界面での変性を防止することが困難であった。   However, even in the reverse osmosis membrane method, there is a problem that if a membrane having a high water removal capability is used, necessary components such as salt are permeated. As mentioned above, there are several important problems with conventional methods for removing and concentrating moisture. In particular, in the conventional method, it is difficult to concentrate in a completely closed system and there is a risk of contamination with bacteria, viruses, and foreign matters, and it is necessary to install a sterilization or sterilization step or a foreign matter removal step after the concentration step. Further, contact with air could not be completely blocked during the concentration process, and it was difficult to prevent denaturation at the solid-liquid interface, which is particularly problematic with proteins and the like, at the same time as being susceptible to oxidation reactions.

本発明の目的は、上記した従来技術の欠点を解消した濃縮用器具および濃縮方法を提供することにある。   An object of the present invention is to provide a concentrating device and a concentrating method which have solved the above-mentioned drawbacks of the prior art.

本発明の他の目的は、従来技術の欠点である完全な閉鎖系を維持した状態で濃縮することが困難である点を解消し、実質的に完全な閉塞系を維持した状態で濃縮するシステムおよび方法を提供することにある。   Another object of the present invention is to eliminate the difficulty of concentrating while maintaining a completely closed system, which is a drawback of the prior art, and to concentrate the system while maintaining a substantially completely closed system. And to provide a method.

本発明の更に他の目的は、従来技術の欠点である成分の変質の原因である加熱、凍結、空気との接触を極力回避しつつ、目的とする成分を濃縮できる濃縮用器具および濃縮方法を提供することにある。   Still another object of the present invention is to provide a concentrating device and a concentrating method capable of concentrating a target component while avoiding heating, freezing, and contact with air as much as possible, which are the causes of alteration of the component, which is a drawback of the prior art. It is to provide.

本発明の更に他の目的は、従来技術の欠点である濃縮に要する熱、減圧、凍結、昇華、加圧、撹拌といった外部動作を極力回避することができる濃縮用器具および濃縮方法を提供することにある。   Still another object of the present invention is to provide a concentration device and a concentration method capable of avoiding as much as possible external operations such as heat, pressure reduction, freezing, sublimation, pressurization, and stirring required for concentration, which are disadvantages of the prior art. It is in.

本発明者は鋭意研究の結果、水を透過せず水蒸気を透過する(即ち透湿性を有する)フィルムまたは膜を、所定の形状の容器と組み合わせて用いる事が、上記課題の解決に極めて効果的なことを見出した。   As a result of diligent research, the present inventor is extremely effective in solving the above problems by using a film or membrane that does not transmit water but transmits water vapor (that is, has moisture permeability) in combination with a container having a predetermined shape. I found out.

本発明の濃縮用器具は上記知見に基づくものであり、より詳しくは、1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含む濃縮用器具であって、該容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成されることを特徴とするものである。   The concentration device of the present invention is based on the above knowledge, and more specifically, a concentration device including at least a container having at least one doorway and containing an object to be concentrated containing a component to be concentrated. And at least one part of this container is comprised from a nonporous hydrophilic film or film | membrane, It is characterized by the above-mentioned.

本発明によれば、更に1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器と、該容器の外側に配置された、密封可能な気体不透過性を有するフィルムまたは膜とを少なくとも含む濃縮用器具であって、前記容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成されることを特徴とする濃縮用器具が提供される。   According to the present invention, there is further provided a container for containing an object to be concentrated containing one or more outlets and containing a component to be concentrated, and a sealable gas impermeability disposed outside the container. There is provided a concentrating device comprising at least a film or a membrane having at least a part of the container made of a nonporous hydrophilic film or membrane.

本発明によれば、更に1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含み、且つ該容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成される濃縮用器具を用い、前記被濃縮体を、前記親水性フィルムまたは膜に接触させることによって、被濃縮体を濃縮することを特徴とする濃縮方法が提供される。
上記した構成を有する本発明の濃縮用器具を用いた場合には、被濃縮体を本発明の濃縮用器具の一部を形成する無孔性の親水性フィルムまたは膜に接触させることによって被濃縮体中の水分が該フィルムまたは膜内に吸収される。この結果、該フィルムまたは膜の表面から該濃縮用器具の外部に蒸発(散)されることによって、被濃縮体を濃縮することができる。
According to the present invention, it further comprises at least a container for containing a substance to be concentrated containing one or more outlets and containing a component to be concentrated, and at least a part of the container is nonporous and hydrophilic. There is provided a concentration method comprising concentrating an object to be concentrated by contacting the object to be concentrated with the hydrophilic film or membrane using an apparatus for concentration composed of a film or a membrane.
When the concentration device of the present invention having the above-described configuration is used, the object to be concentrated is brought into contact with a nonporous hydrophilic film or membrane that forms part of the concentration device of the present invention. Moisture in the body is absorbed into the film or membrane. As a result, the object to be concentrated can be concentrated by being evaporated (scattered) from the surface of the film or membrane to the outside of the concentration device.

上述したように本発明によれば、本発明の濃縮用器具を用いることによって従来法のように加熱、凍結、減圧などの外部操作が必須でないため、濃縮成分の変質を有効に防止することができる。
更に、本発明の濃縮用器具においては濃縮成分の空気との接触が抑制されるために、酸化反応および固液界面による濃縮成分の変性抑制が容易である。
また、本発明の濃縮用器具を用いた場合には、実質的な閉塞系で濃縮が行われるため、従来法と比較して細菌、ウィルス、異物等のコンタミネーション防止が容易である。
更に本発明の濃縮用器具を用いることによって被濃縮体の濃縮倍率の制御が容易であり、且つ、同時に本発明の濃縮用器具そのものが濃縮体の収容容器の役割を果たすこともできる。
As described above, according to the present invention, since the external operation such as heating, freezing, and decompression is not essential as in the conventional method by using the concentration device of the present invention, it is possible to effectively prevent alteration of the concentrated components. it can.
Furthermore, in the concentration device of the present invention, since the contact of the concentrated component with air is suppressed, it is easy to suppress the denaturation of the concentrated component due to the oxidation reaction and the solid-liquid interface.
In addition, when the concentration device of the present invention is used, concentration is performed in a substantially closed system, so that contamination with bacteria, viruses, foreign substances, etc. can be easily prevented as compared with the conventional method.
Further, by using the concentrating device of the present invention, it is easy to control the concentration factor of the object to be concentrated, and at the same time, the concentrating device of the present invention itself can also serve as a container for the concentrated material.

以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。   Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.

(濃縮用器具)
本発明の濃縮用器具は、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含む。この容器は、被濃縮体等を出入させるために1個以上の出入口を有し、且つ、該容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成される。後述するような「濃縮用器具」としての濃縮効率を示す限り、本発明の濃縮用器具(ないし、その構成要素たる容器)における無孔性の親水性フィルムまたは膜の質量、体積ないしは外気に接触すべき表面積の割合は、特に制限されない。同様に「濃縮用器具」としての濃縮効率を示す限り、本発明の濃縮用器具(および該器具を構成する無孔性の親水性フィルムまたは膜)の形状、サイズ、厚さ、材質等は特に制限されない。
本発明の濃縮用器具は、実質的に上記した「容器」自体から構成されていてもよく、また、必要に応じて、他の部分(例えば、上記容器の保持、補強、被濃縮体等の出入補助の機能を有する部分)を有していてもよい。
(Equipment for concentration)
The concentration device of the present invention includes at least a container for containing an object to be concentrated containing a component to be concentrated. This container has one or more inlets and outlets for allowing the concentrator and the like to enter and exit, and at least a part of the container is composed of a nonporous hydrophilic film or membrane. As long as the efficiency of concentration as a “concentration device” as described below is shown, it contacts the mass, volume or outside air of the nonporous hydrophilic film or membrane in the concentration device of the present invention (or the container which is a component thereof). The ratio of the surface area to be used is not particularly limited. Similarly, as long as the concentration efficiency as the “concentration device” is shown, the shape, size, thickness, material, etc. of the concentration device of the present invention (and the nonporous hydrophilic film or membrane constituting the device) are particularly Not limited.
The concentration device of the present invention may be substantially composed of the above-mentioned “container” itself, and, if necessary, other parts (for example, holding of the container, reinforcement, objects to be concentrated, etc.) It may have a part having an entry / exit assist function.

(透湿性を有するフィルムまたは膜)
水を透過せず、水蒸気を透過する透湿性を有するフィルムには、(1)多孔性を有するタイプと(2)無孔性のタイプの2種類が知られている。前者の多孔性のタイプとして微孔を多数、付与した疎水性高分子フィルムがあるが、このタイプの場合、水蒸気は微孔を透過し、疎水性であるため水の大きな表面張力によって液体の水は該微孔の中には侵入できず、該フィルムは水を透過しない。一方、後者の無孔性タイプの場合はフィルムが親水性を有しているため水がフィルムの中に移行し、該フィルムの表面から水が蒸発(散)するという浸透蒸発(散)現象によって水を透過せず、水蒸気のみを透過するという性質が発現される。
(Film or film having moisture permeability)
There are two known moisture permeable films that do not transmit water but transmit water vapor: (1) a porous type and (2) a non-porous type. As the former porous type, there is a hydrophobic polymer film provided with a large number of micropores. In this type, water vapor permeates through the micropores and is hydrophobic. Cannot penetrate into the micropores and the film does not penetrate water. On the other hand, in the case of the latter non-porous type, since the film has hydrophilicity, water migrates into the film, and the water evaporates (scatters) from the surface of the film. The property that it does not permeate water and permeates only water vapor is manifested.

(好適な無孔性の親水性フィルムまたは膜)
本発明において好適に使用可能な「無孔性の親水性フィルムまたは膜」は、上記した「浸透蒸発(散)」現象を示すフィルムまたは膜である(なお、本発明者らの検討によれば、親水性でないフィルムまたは膜は、「浸透蒸発(散)」現象を示さない)。
より具体的には、本発明において好適に使用可能な「無孔性の親水性フィルムまたは膜」は、水と接触している際に該フィルムまたは膜が示す蒸散速度をRc(g/m2・24hrs)とし、水と非接触の際に該フィルムまたは膜が示す蒸散速度をRn(g/m2・24hrs)とした場合に、これらの比Rr=Rc/Rnの値が、1.5以上であることが好ましい。この比Rr=Rc/Rnの値は、更には2以上であることが好ましく、とりわけ3以上(特に4以上)であることが好ましい。このようなRcおよびRnの値は、後述する実施例1の条件下で好適に測定することができる。
(Preferable non-porous hydrophilic film or membrane)
The “non-porous hydrophilic film or membrane” that can be suitably used in the present invention is a film or membrane exhibiting the above-mentioned “osmotic evaporation (scattering)” phenomenon (in addition, according to the study by the present inventors). Non-hydrophilic films or membranes do not show the “osmotic evaporation” phenomenon).
More specifically, the “nonporous hydrophilic film or membrane” that can be suitably used in the present invention has a transpiration rate exhibited by the film or membrane when in contact with water as Rc (g / m 2). 24hrs), and when the transpiration rate of the film or membrane when not in contact with water is Rn (g / m 2 · 24hrs), the value of these ratios Rr = Rc / Rn is 1.5 The above is preferable. The value of this ratio Rr = Rc / Rn is further preferably 2 or more, and particularly preferably 3 or more (particularly 4 or more). Such values of Rc and Rn can be suitably measured under the conditions of Example 1 described later.

実施例1に無孔性の親水性フィルムと微孔性の疎水性フィルム表面からの水の蒸散速度(g/m2・24hrs)を示すが、微孔性の疎水性フィルムの場合には該フィルムが水に直接、接触していても非接触の状態でも蒸散速度はほぼ同等(約730g/m2・24hrs)であったのに対して、無孔性の親水性フィルムの場合には水と非接触の状態では約380g/m2・24hrsであるのに対して水と直接、接触した場合には約2,200g/m2・24hrsと大巾に向上する。すなわち、浸透蒸散という現象は無孔性タイプの親水性フィルムが水と直接、接触した場合にのみ発現する。 Example 1 shows the transpiration rate (g / m 2 · 24 hrs) of water from the surface of a nonporous hydrophilic film and a microporous hydrophobic film. In the case of a microporous hydrophobic film, The transpiration rate was almost the same (approximately 730 g / m 2 · 24 hrs) whether the film was in direct contact with water or not, whereas in the case of a nonporous hydrophilic film, the water was In a non-contact state, it is about 380 g / m 2 · 24 hrs, but when it comes into direct contact with water, it is greatly improved to about 2,200 g / m 2 · 24 hrs. That is, the phenomenon of osmotic transpiration appears only when a nonporous hydrophilic film is in direct contact with water.

本発明の目的を達成するためには、(2)無孔性タイプのフィルムまたは膜が適している。(1)の微孔性を有する疎水性フィルムが本発明の目的の達成に不適である理由として、1)実施例1に記したように微孔性の疎水性フィルムの場合には該フィルム面が直接、水に接触したとしても水の蒸散速度が水に直接、接触した時の無孔性の親水性フィルムの場合の浸透蒸散性と比較して著しく低いことと、2)本発明の濃縮対象の成分として蛋白のような両親媒性を有する系や親水性成分と疎水性成分との混合系に於いて該成分が微孔表面に吸着し水に対する濡れ性が高まり、微孔中に水が浸入し、水自身が膜を透過してしまうという大きな問題があげられる。   In order to achieve the object of the present invention, (2) a non-porous type film or membrane is suitable. The reason why the hydrophobic film having microporosity of (1) is unsuitable for achieving the object of the present invention is as follows. 1) In the case of a microporous hydrophobic film as described in Example 1, the film surface Even if it is in direct contact with water, the transpiration rate of water is significantly lower than the osmotic transpiration of a nonporous hydrophilic film when in direct contact with water, and 2) the concentration of the present invention. In an amphiphilic system such as protein as a target component or a mixed system of a hydrophilic component and a hydrophobic component, the component is adsorbed on the surface of the micropore and the wettability to water is increased. The problem is that water penetrates and water itself permeates the membrane.

(無孔性タイプのフィルム)
無孔性タイプのフィルムの材質としてはポリビニールアルコール(PVA)、セロファン、酢酸セルロース、硝酸セルロース、エチルセルロース、親水性ポリエステル等が使用可能である。上記フィルムの厚さも特に制限されないが通常は500μm以下、更には300〜5μm程度、特に200〜30μm程度であることが好ましい。
(システム化)
濃縮すべき成分を収納する容器は、その少なくとも一部が、上記した浸透蒸発(散)性を有する無孔性の親水性フィルムまたは膜によって形成される。実施例1に記載したように該無孔性の親水性フィルム表面からの水の蒸散速度が直接、水と接触した場合には非接触と比較して、最大で約6倍にまで向上するために、容器の形状としては濃縮成分と該フィルムまたは膜の接触面積が最大になるような形状が好ましい。
(Nonporous type film)
Polyvinyl alcohol (PVA), cellophane, cellulose acetate, cellulose nitrate, ethyl cellulose, hydrophilic polyester, etc. can be used as the material of the nonporous type film. The thickness of the film is not particularly limited, but is usually 500 μm or less, more preferably about 300 to 5 μm, and particularly preferably about 200 to 30 μm.
(Systematization)
At least a part of the container for storing the component to be concentrated is formed by the non-porous hydrophilic film or membrane having the above-described pervaporation (scattering) property. As described in Example 1, the transpiration rate of water from the surface of the nonporous hydrophilic film is directly increased to about 6 times when it is in contact with water as compared with non-contact. Furthermore, the shape of the container is preferably such that the contact area between the concentrated component and the film or membrane is maximized.

上記容器においては、通常は、濃縮成分の導入口および導出口が設置されている。但し、導入口と導出口が同一であっても良い。該システムの特徴は成分を濃縮する機能と同時に濃縮処理した成分を収納し且つ該濃縮倍率を維持した状態で保存する機能の両者を有していることである。システムの態様を図1に示すがこれに制限されるものではない。   In the container, usually, an inlet and outlet for concentrated components are installed. However, the inlet and the outlet may be the same. A feature of the system is that it has both a function of concentrating the components and a function of storing the concentrated components and storing them while maintaining the concentration ratio. An embodiment of the system is shown in FIG. 1, but is not limited thereto.

(被濃縮体)
本発明の濃縮容器ないし濃縮方法により濃縮可能な対象である限り、本発明の適用対象たる被濃縮体は特に制限されない。本発明の容器に対する出入操作が容易な点からは、該被濃縮体は、室温(25℃)において、ある程度の流動性を有することが好ましいが、これに限定されない(すなわち、殆ど固体に近い程度のものでも、本発明は適用可能な場合がある)。
(Concentrate)
As long as it is an object that can be concentrated by the concentration container or concentration method of the present invention, the substance to be concentrated is not particularly limited. From the viewpoint of easy entry / exit operation with respect to the container of the present invention, it is preferable that the material to be concentrated has a certain degree of fluidity at room temperature (25 ° C.), but is not limited to this (that is, almost nearly solid) In some cases, the present invention may be applicable).

より具体的には、本発明における被濃縮体は、後述する実施例6の条件下(ただし、温度約25℃、相対湿度約50%とする)で、測定開始から48時間後の濃縮倍率が、1.2以上を示すものが好ましい。この濃縮倍率は、更には1.3以上(特に1.4以上)を示すものが好ましい。   More specifically, the concentrate in the present invention has a concentration factor 48 hours after the start of measurement under the conditions of Example 6 described later (however, the temperature is about 25 ° C. and the relative humidity is about 50%). And those showing 1.2 or more are preferred. The concentration ratio is preferably 1.3 or more (particularly 1.4 or more).

(濃縮方法)
例えば、濃縮すべき成分を含む溶液(あるいは固体と液体の混合物等の被濃縮体)を上記した、一部が無孔性の親水性フィルムから構成される容器の導入口から容器内に導入する。この際、該容器内に空気が混入することを極力、防止する。該被濃縮体が滅菌あるいは殺菌されている場合には容器内への該被濃縮体の充填は、無菌的に行なわれることが極めて好ましい。
(Concentration method)
For example, a solution containing a component to be concentrated (or an object to be concentrated such as a mixture of a solid and a liquid) is introduced into the container from the inlet of the container partially composed of a nonporous hydrophilic film. . At this time, the mixing of air into the container is prevented as much as possible. When the concentrate is sterilized or sterilized, the filling of the concentrate into the container is extremely preferably performed aseptically.

該被濃縮体によって該容器が充填された後に該導入口が密封される。該被濃縮体が該容器を構成する無孔性の親水性フィルムまたは膜に接触し、該溶液中の水および低分子量物質(電解質、糖、アミノ酸等)が該フィルムまたは膜中に吸収され、水分のみが浸透蒸発(散)によって容器外に放出される。この過程で被濃縮体から水分が除去され、被濃縮体成分が、実質的に何ら失われることなく濃縮される。本濃縮過程は加熱、加圧、減圧等の外部動作の必要がなく、それによる濃縮成分の変性、失活といった問題が生じないことが特徴である。   The inlet is sealed after the container is filled with the concentrator. The condensate comes into contact with the nonporous hydrophilic film or membrane constituting the container, and water and low molecular weight substances (electrolyte, sugar, amino acid, etc.) in the solution are absorbed into the film or membrane, Only moisture is released out of the container by osmotic evaporation. In this process, moisture is removed from the concentrate, and the concentrate components are concentrated without any substantial loss. This concentration process is characterized by the fact that there is no need for external operations such as heating, pressurization, decompression, etc., and that there is no problem of denaturation or deactivation of the concentrated components.

また、この濃縮過程では該被濃縮成分は該フィルムまたは膜によって空気との直接接触が阻止されるため、従来法のように濃縮成分が空気と接触した結果、生ずる変性、失活あるいは酸化反応等を受けることがない。更に本濃縮過程は完全な閉塞系で実施されるため外部からの細菌、ウィルス、異物等のコンタミネーションが有効に阻止できる。   Further, in this concentration process, the concentrated component is prevented from coming into direct contact with air by the film or membrane, so that the concentrated component comes into contact with air as in the conventional method, resulting in denaturation, deactivation or oxidation reaction, etc. Not receive. Furthermore, since this concentration process is carried out in a completely closed system, it is possible to effectively prevent external contamination with bacteria, viruses, foreign substances and the like.

後述する実施例7に本発明のフィルムまたは膜のヘモグロビンの透過性を示すが、ヘモグロビンは不透過であった。ヘモグロビンの大きさは約100 Åである(例えば、ニューバイオセパレーション 第2巻 応用編 P80 (株)シーエムシー発行、1988)。   Example 7 to be described later shows hemoglobin permeability of the film or membrane of the present invention, but hemoglobin was impermeable. The size of hemoglobin is about 100 mm (for example, New Bio-Separation Vol. 2 Application P80, issued by CMC, 1988).

したがって本発明のフィルムまたは膜の透過性の限界は、100Å以下であるものと考えられる。一方、ウィルスの大きさは数百Å、細菌の大きさは数千Å〜数μmであり((例えば、ニューバイオセパレーション 第2巻 応用編 P80 (株)シーエムシー発行、1988)、本発明のフィルムまたは膜を通過することができない。したがって本濃縮過程あるいは保存過程に於いて容器外部から細菌、ウィルス、異物の混入の危険性は全くないものと考えられる。   Therefore, it is considered that the permeability limit of the film or membrane of the present invention is 100 mm or less. On the other hand, the size of the virus is several hundred Å and the size of the bacteria is several thousand Å to several μm (for example, New Bioseparation Vol. 2 Application P80, published by CMC Co., 1988). Therefore, it is considered that there is no risk of contamination with bacteria, viruses, or foreign substances from outside the container during the concentration process or storage process.

(ヘモグロビン不透過性)
本発明の濃縮用器具は、ヘモグロビン不透過性を有することが好ましい。このヘモグロビン不透過性は、後述する実施例7の条件下で、ビーカー内のリン酸緩衝液中のヘモグロビンが、分光光度計(日立製、U−2001)による吸収波長409nm吸光度測定において定量限界以下(OD:0.01以下)であることを言う。
(ミオグロビン濃縮率・回収性)
本発明の濃縮用器具は、後述する実施例8の条件下(ただし、温度約25℃、相対湿度約50%)で、5時間放置後にミオグロビン濃縮率が1.2以上を示すことが好ましい。このミオグロビン濃縮率は、更には1.5以上(特に2.0以上)であることが好ましい。
同様に、本発明の濃縮用器具は、後述する実施例8の条件下(ただし、温度約25℃、相対湿度約50%)で、5時間放置後にミオグロビンの回収率が80%以上を示すことが好ましい。このミオグロビン回収率は、更には90%以上(特に95%以上)であることが好ましい。
(Hemoglobin impermeability)
The concentration device of the present invention preferably has hemoglobin impermeability. This hemoglobin impermeability is below the limit of quantification when the hemoglobin in the phosphate buffer in the beaker is measured at an absorption wavelength of 409 nm using a spectrophotometer (Hitachi, U-2001) under the conditions of Example 7 described later. (OD: 0.01 or less).
(Myoglobin concentration rate / recoverability)
The concentration device of the present invention preferably exhibits a myoglobin concentration ratio of 1.2 or more after standing for 5 hours under the conditions of Example 8 described later (however, the temperature is about 25 ° C. and the relative humidity is about 50%). This myoglobin concentration rate is preferably 1.5 or more (particularly 2.0 or more).
Similarly, the concentration device of the present invention exhibits a myoglobin recovery rate of 80% or more after standing for 5 hours under the conditions of Example 8 described later (however, the temperature is about 25 ° C. and the relative humidity is about 50%). Is preferred. The myoglobin recovery rate is preferably 90% or more (particularly 95% or more).

(濃縮効率)
一方、本発明の濃縮過程に於いて濃縮効率を高めるためには、浸透蒸発(散)性を向上させることが好ましい。例えば、1)本発明のフィルムまたは膜の吸水性を高める、即ち含水率を高めること、2)実施例2に示すように、該フィルムまたは膜の厚さを薄くすること、3)被濃縮体の容量(v)に対してフィルムとの接触面積(s)を大きくすること、即ちs/vが大きくなるように容器形状を設計すること、4)容器の周囲条件、例えば低湿度化、加温、減圧、フィルム面での空気流速等を制御すること等である。
(Concentration efficiency)
On the other hand, in order to increase the concentration efficiency in the concentration process of the present invention, it is preferable to improve the permeation evaporation (scattering). For example, 1) increase the water absorption of the film or membrane of the present invention, that is, increase the water content, 2) reduce the thickness of the film or membrane as shown in Example 2, and 3) the object to be concentrated. Increase the contact area (s) with the film with respect to the volume (v) of the container, that is, design the container shape so that s / v increases. For example, temperature, reduced pressure, air flow rate on the film surface, and the like are controlled.

特に濃縮成分の変質を防止しながら濃縮過程の効率を高めるためには上記s/vが最大になるような容器を用いて、加熱することなく室温以下で容器の外部条件としての湿度を低下させ、且つ空気流速を高める等の方法が最適である。   In particular, in order to increase the efficiency of the concentration process while preventing deterioration of the concentrated components, a container that maximizes the s / v is used, and the humidity as an external condition of the container is reduced below room temperature without heating. In addition, a method such as increasing the air flow rate is optimal.

一方、本濃縮法の他の特徴は、所定の濃縮率が達成された時に該容器を、必要に応じて、気体バリアー性を有するフィルムまたは膜を構成要素として含む第2の容器(該第2の容器の実質的に全体が、気体バリアー性を有するフィルムまたは膜から構成される場合を含む)内に封入してもよい。
このように、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含む、本発明の濃縮用器具の外側に、更に気体バリアー性を有するフィルムまたは膜でカバーないしシール(密封)する態様においては、被濃縮体の更なる浸透蒸発(散)を抑制しつつ(すなわち、濃縮率を所定の値に固定しつつ)、保存が可能であるという利点がある(図2)。
On the other hand, another feature of the present concentration method is that, when a predetermined concentration rate is achieved, the container is included in a second container (the second container including a film or a film having a gas barrier property as a constituent element if necessary). The container may be encapsulated in substantially the whole of a container or a film or a film having a gas barrier property.
As described above, the film is further covered or sealed (sealed) with a film or a film having a gas barrier property on the outside of the concentration apparatus of the present invention, which includes at least a container for containing a substance to be concentrated. In this embodiment, there is an advantage that storage can be performed while suppressing further osmotic evaporation (dispersion) of the object to be concentrated (that is, while fixing the concentration rate to a predetermined value) (FIG. 2).

換言すれば、このような態様によれば、被濃縮体の濃縮過程の過度の進行を防止するこおとにより、被濃縮体を所望の濃縮倍率に濃縮し、且つ該濃縮倍率を維持することができる。
(気体バリアー性を有するフィルムまたは膜)
気体バリアー性を有するフィルムまたは膜の材質は、特に制限されない。気体バリアー性の点からは、ポリ塩化ビニリデン、ポリ塩化ビニール、ナイロン、ポリエステル、ポリエチレン、ポリプロピレン等を好適に用いることができる。
In other words, according to such an embodiment, by concentrating the concentrate to a desired concentration ratio and maintaining the concentration ratio by preventing excessive progress of the concentration process of the concentrate. Can do.
(Film or film having gas barrier properties)
The material of the film or film having gas barrier properties is not particularly limited. From the viewpoint of gas barrier properties, polyvinylidene chloride, polyvinyl chloride, nylon, polyester, polyethylene, polypropylene and the like can be suitably used.

本濃縮法の実用的なメリットの1つとして、下記の事例があげられる。オートクレーブ滅菌、EOガス滅菌、放射線滅菌等が適用できない蛋白質、多糖類、生理活性物質等の滅菌は、通常濾過滅菌が行なわれている。コラーゲン等の蛋白質、ヒアルロン酸等の多糖類は高分子量体であり、低濃度でも非常に高い粘度を有していて、濾過滅菌が困難である。本発明の濃縮法を用いると上記の高い粘度を有する溶液に水を添加し溶液粘度を低下させることによって濾過滅菌が容易になり且つ濾過滅菌後、無菌的に本発明の濃縮用容器に充填し滅菌状態を維持しながら所定の濃度に濃縮し保存することが可能になる。   One of the practical merits of this concentration method is as follows. For sterilization of proteins, polysaccharides, physiologically active substances and the like to which autoclave sterilization, EO gas sterilization, radiation sterilization and the like cannot be applied, filtration sterilization is usually performed. Proteins such as collagen and polysaccharides such as hyaluronic acid are high molecular weight substances and have a very high viscosity even at low concentrations and are difficult to sterilize by filtration. When the concentration method of the present invention is used, filter sterilization is facilitated by adding water to the above-mentioned solution having a high viscosity to reduce the solution viscosity. After filter sterilization, the solution is aseptically filled into the concentration container of the present invention. It becomes possible to concentrate and store at a predetermined concentration while maintaining the sterilized state.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
無孔性の親水性フィルムおよび微孔性の疎水性フィルムについて、浸透蒸散性試験を行った。無孔性の親水性フィルムとして、ポリビニールアルコール(PVA)フィルム(アイセロ化学(株)製、フィルム厚さ40μm)および親水性ポリエステルフィルム(デュポン社製、フィルム厚さ40μm)を使用した。多孔性の疎水性フィルムとして、微孔性ポリプロピレンフィルム((株)トクヤマ製、厚さ35μm)を使用した。
各種フィルム表面からの水の蒸散速度の測定は以下の方法で行った。メタクリル樹脂製コップ(上面の径9.5cm、底面の径7cm、高さ9cm)に水道水100mLを入れ、前記フィルム(20cm×20cm)をコップの上面に張り、輪ゴムで固定した。各フィルムにつき2個ずつ用意し、一方はコップの口を上向きに台に乗せ、もう一方はコップの口を下向きにし、フィルム面と台の間に空隙が出来るように浮かせた。前者の場合はコップの中の空気とフィルムが接触し、後者の場合はコップの中の水とフィルムが直接接触する。フィルムが張られたコップは温度24℃、湿度61%の室内に置き、コップ重量の経時変化を測定し、水の蒸散速度に換算し、表1に結果を示す。
表1から、無孔性の親水性フィルムの場合、フィルムが空気と接触しているケースの378〜395g/m2・24hrsに対しフィルムが水に直接接触したケースの2050〜2321g/m2・24hrsと6倍程度水分の透過が大きい。一方、微孔性の疎水性フィルムの場合、フィルムが空気と接触しているケースの729g/m2・24hrsに対しフィルムが水に直接接触したケースの734g/m2・24hrsと変化が無い。無孔性の親水性フィルムが水分と直接接触することで、より多くの水分がフィルムを透過することが示される。
Example 1
An osmotic transpiration test was performed on the nonporous hydrophilic film and the microporous hydrophobic film. As the nonporous hydrophilic film, a polyvinyl alcohol (PVA) film (manufactured by Aicello Chemical Co., Ltd., film thickness 40 μm) and a hydrophilic polyester film (manufactured by DuPont, film thickness 40 μm) were used. As the porous hydrophobic film, a microporous polypropylene film (manufactured by Tokuyama Corporation, thickness 35 μm) was used.
Measurement of the transpiration rate of water from various film surfaces was performed by the following method. 100 mL of tap water was placed in a methacrylic resin cup (top diameter 9.5 cm, bottom diameter 7 cm, height 9 cm), and the film (20 cm × 20 cm) was stretched on the top of the cup and fixed with a rubber band. Two pieces were prepared for each film, one with the cup's mouth facing up on the table, and the other with the cup's mouth facing down, so that there was a gap between the film surface and the table. In the former case, the air in the cup is in contact with the film, and in the latter case, the water in the cup is in direct contact with the film. The cup with the film stretched was placed in a room at a temperature of 24 ° C. and a humidity of 61%, the change in the cup weight with time was measured, converted into the water evaporation rate, and the results are shown in Table 1.
From Table 1, when the nonporous hydrophilic film, the film is 2050~2321g / m 2 · cases the film to 378~395g / m 2 · 24hrs case in contact with the air is in direct contact with the water Water permeation is about 6 times as large as 24 hrs. On the other hand, if the microporous hydrophobic film, there is no change 734g / m 2 · 24hrs of direct contact with the case of water film to 729g / m 2 · 24hrs case where the film is in contact with air. It is shown that more water permeates through the film when the nonporous hydrophilic film is in direct contact with the water.

Figure 2006088046
Figure 2006088046

実施例2
実施例1で用いた無孔性の親水性フィルムであるポリビニールアルコール(PVA)フィルム(アイセロ化学(株)製)の厚さが25μm、40μm、65μmのものの水の浸透蒸散性を実施例1と全く同様の方法で測定し、表2に示す。
表2からわかるようにフィルム面が空気接触および水接触の場合のいずれも膜厚の増加と共に水の浸透蒸散性が低下することがわかったが、その低下は大きなものではなかった。
Example 2
Example 1 shows osmotic transpiration of water having a thickness of 25 μm, 40 μm, and 65 μm of a polyvinyl alcohol (PVA) film (manufactured by Aicello Chemical Co., Ltd.), which is a nonporous hydrophilic film used in Example 1. And measured in the same manner as shown in Table 2.
As can be seen from Table 2, the osmotic transpiration of water decreased with increasing film thickness in both cases where the film surface was in contact with air and in water, but the decrease was not significant.

Figure 2006088046
Figure 2006088046

実施例3
市販メビオール(登録商標)ジェル(製造元:メビオール(株)、発売元:(株)池田理化、MB−10、凍結乾燥品、滅菌済)0.67gを16.7gの蒸留水に溶解し、4wt%のメビオール(登録商標)ジェル水溶液を作製した。
本発明の濃縮用容器として、実施例1で使用したポリビニールアルコール(PVA)フィルム(アイセロ化学(株)製、フィルム厚さ40μm)をヒートシールすることによって12cm×9cmの袋(注入口付き容器)を作製した。該メビオール(登録商標)ジェル水溶液を該容器中に空気が混入することなく注入し密封した。比較実験として上記した容器と同様の容器に蒸留水17.5gを同様に密封した。
Example 3
Commercially available Meviol (registered trademark) gel (manufacturer: Meviol Co., Ltd., distributor: Ikeda Rika, MB-10, freeze-dried product, sterilized) 0.67 g was dissolved in 16.7 g of distilled water, % Meviol® gel aqueous solution was prepared.
As a container for concentration of the present invention, a polyvinyl alcohol (PVA) film (produced by Aicello Chemical Co., Ltd., film thickness 40 μm) used in Example 1 is heat-sealed to form a 12 cm × 9 cm bag (a container with an inlet) ) Was produced. The aqueous meviol® gel solution was poured into the container without being mixed with air and sealed. As a comparative experiment, 17.5 g of distilled water was similarly sealed in a container similar to the container described above.

該充填容器を凹凸のある板上に乗せ、室内(温度20℃〜30℃、相対湿度、約50%)に設置し、経時的に該容器中の濃縮成分溶液の重量を測定した。ここに、濃縮成分溶液(被濃縮体)の重量は、精密な秤((株)島津製作所製、商品名:上皿天秤BL−620S)を用いて行った。被濃縮体から実質的に水分のみが蒸散により除去されるため、濃縮操作直前の被濃縮体の重量W1と、所定時間の濃縮操作後における被濃縮体の重量W2との比から、濃縮倍率=W1/W2として求めることができる。
得られた結果(メビオール(登録商標)ジェル水溶液の濃縮倍率の経時変化)を、表3および図3に示す。表3からわかるように蒸留水のみの場合はほぼ1日で完全に蒸散してしまった。また、メビオール(登録商標)ジェル溶液の場合には15時間で約4倍濃縮、1日で約13倍濃縮されることがわかった。
The filled container was placed on an uneven plate, placed indoors (temperature 20 ° C. to 30 ° C., relative humidity, about 50%), and the weight of the concentrated component solution in the container was measured over time. Here, the weight of the concentrated component solution (concentrated material) was measured using a precision scale (manufactured by Shimadzu Corporation, trade name: upper plate balance BL-620S). Since substantially only water is removed from the concentrate by transpiration, the concentration factor = the ratio of the weight W1 of the concentrate immediately before the concentration operation and the weight W2 of the concentrate after the concentration operation for a predetermined time. It can be calculated as W1 / W2.
The obtained results (change over time in the concentration ratio of Meviol® gel aqueous solution) are shown in Table 3 and FIG. As can be seen from Table 3, in the case of distilled water alone, transpiration was completely completed in about one day. In addition, in the case of Meviol (registered trademark) gel solution, it was found that it was concentrated about 4 times in 15 hours and about 13 times concentrated in one day.

Figure 2006088046
Figure 2006088046

実施例4
実施例1で用いたPVAフィルムを用いてヒートシールすることによって12cm×18cmの袋(注入口付き容器)を作製した。
該容器中に牛乳(森永乳業(株) 4.5ミルク、無脂乳固形分9.0%、乳脂成分4.5%)、約100mLおよび豆乳((株)紀文食品、大豆固形分8%以上)、約100mLをそれぞれ注入し、混入した空気を除去し密封した。密封した該容器を実施例3と同様の室内(温度20℃〜30℃、相対湿度、約50%)に設置し、経時的に該容器中の牛乳および豆乳の重量をそれぞれ測定した。この重量測定は、実施例4と同様に行った。
Example 4
By heat-sealing using the PVA film used in Example 1, a 12 cm × 18 cm bag (a container with an inlet) was produced.
Milk (Morinaga Milk Co., Ltd. 4.5 milk, nonfat milk solid content 9.0%, milk fat component 4.5%), about 100 mL and soy milk (Kibun Foods Co., Ltd., soybean solid content 8%) in the container About 100 mL of each was injected, and the mixed air was removed and sealed. The sealed container was placed in the same room as in Example 3 (temperature 20 ° C. to 30 ° C., relative humidity, about 50%), and the weight of milk and soy milk in the container was measured over time. This weight measurement was performed in the same manner as in Example 4.

表4および図4に牛乳および豆乳の濃縮倍率の経時変化を示す。また、上記の牛乳および豆乳の濃縮過程の途中(32時間濃縮し濃縮倍率がそれぞれ5.6倍および6.7倍)で該容器を食品包装用ラップフィルム(Saran Wrap(登録商標)、ポリ塩化ビニリデン製、旭化成(株)製)で完全に密封した。該ラップフィルムで密封した後の牛乳および豆乳の重量を経時的に測定した結果、濃縮倍率がそれぞれ5.6倍および6.7倍で不変であり、濃縮過程を終了させることができた。   Table 4 and FIG. 4 show changes with time in the concentration ratio of milk and soy milk. In the middle of the above milk and soy milk concentration process (concentration for 5.6 hours and 6.7 times when concentrated for 32 hours, respectively), the container is wrapped with a wrap film for food packaging (Saran Wrap (registered trademark), polychlorinated). It was completely sealed with vinylidene, manufactured by Asahi Kasei Corporation. As a result of measuring the weights of milk and soy milk after sealing with the wrap film over time, the concentration ratio was 5.6 times and 6.7 times, respectively, and the concentration process could be terminated.

Figure 2006088046
Figure 2006088046

実施例5
実施例1で用いたPVAフィルムを用いてヒートシールすることによって12cm×18cmの袋(注入口付き容器)を作製した。フードプロセッサーによりみかん(大分きつき産)およびプルーン(長野県産)の皮と種子を除いた果肉を砕き、トレハロース((株)林原製トレハオース)をそれぞれ21.3%および21.0%になるように添加しよく撹拌し均一に混合しそれぞれ154.6gおよび133.3gの濃縮用成分を作製した。これら成分を該容器にそれぞれ注入し、空気を除去し密封した。
密封した該容器を実施例3と同様の室内(温度20℃〜30℃、相対湿度、約50%)に設置し経時的に該容器中の濃縮用成分の重量をそれぞれ測定した。この重量測定は、実施例4と同様に行った。
Example 5
By heat-sealing using the PVA film used in Example 1, a 12 cm × 18 cm bag (a container with an inlet) was produced. Use a food processor to crush the pulp except the peels and seeds of tangerines (Oita Kitsuki) and prunes (Nagano Prefecture), so that trehalose (Trehaose from Hayashibara Co., Ltd.) becomes 21.3% and 21.0%, respectively. The mixture was stirred well and mixed uniformly to prepare 154.6 g and 133.3 g of concentration components, respectively. Each of these components was poured into the container to remove air and seal.
The sealed container was placed in the same room as in Example 3 (temperature 20 ° C. to 30 ° C., relative humidity, about 50%), and the weight of the concentration component in the container was measured over time. This weight measurement was performed in the same manner as in Example 4.

表5および図5にみかんおよびプルーンの濃縮倍率の経時変化を示す。飽和濃縮倍率はみかんで約2.3倍、プルーンで約2.5倍であった。   Table 5 and FIG. 5 show changes with time in the concentration ratios of oranges and prunes. The saturation concentration ratio was about 2.3 times for oranges and about 2.5 times for prune.

Figure 2006088046
Figure 2006088046

実施例6
実施例1で用いたPVAフィルムを用いてヒートシールすることによって12cm×18cm袋(注入口付き容器)を作製した。該容器中に玉子1個(鶏卵の殻を除いた中身)55.1g、玉子の黄身18.5g、森永ラクトフェリン(森永乳業(株))70g、とろけるチーズ58.4gをそれぞれ注入し、混入した空気を除去し密封した。密封した該容器を温度22〜30℃、相対湿度、約60%の環境に設置し、経時的に該容器中の内容物の重量をそれぞれ測定した。この重量測定は、実施例4と同様に行った。
表6に玉子、玉子の黄身、ラクトフェリンおよびとろけるチーズの濃縮倍率の経時変化を示す。24時間で1.6〜2.9倍に濃縮され、内容物の表面に皮を張ることもなく、また、外観も初期の状態を保ち濃縮された。
Example 6
A 12 cm × 18 cm bag (a container with an inlet) was produced by heat sealing using the PVA film used in Example 1. 15.1 eggs (the content excluding the eggshell), 18.5 g of egg yolk, 70 g of Morinaga lactoferrin (Morinaga Milk Industry Co., Ltd.), and 58.4 g of melted cheese were mixed and mixed in the container. Air was removed and sealed. The sealed container was placed in an environment at a temperature of 22 to 30 ° C., a relative humidity and about 60%, and the weight of the contents in the container was measured over time. This weight measurement was performed in the same manner as in Example 4.
Table 6 shows changes over time in the concentration ratios of egg, egg yolk, lactoferrin, and melted cheese. The content was concentrated 1.6 to 2.9 times in 24 hours, and the surface of the contents was not covered, and the appearance was also kept in its initial state and concentrated.

Figure 2006088046
Figure 2006088046

実施例7
実施例1で用いたPVAフィルムを用いてヒートシールすることによって3cm×3cmの袋(注入口付き容器)を作製し、ヘモグロビン(和光純薬製)を0.9wt%の濃度でリン酸緩衝液(1/15M、pH7)に溶解した水溶液1mLを該袋内に注入しヒートシールによって密封した。
300mLのリン酸緩衝液(1/15M、pH7)を入れた500mLのガラス製ビーカーに、上記のヘモグロビン水溶液を封入した袋を投入し、室温(約25℃)で30分間撹拌(磁気スターラ;直径が約5mm、長さが約40mmの磁気回転子の回転数が約40rpm)した。
Example 7
A 3 cm × 3 cm bag (a container with an inlet) was prepared by heat-sealing using the PVA film used in Example 1, and hemoglobin (manufactured by Wako Pure Chemical Industries) was phosphate buffered at a concentration of 0.9 wt%. 1 mL of an aqueous solution dissolved in (1/15 M, pH 7) was poured into the bag and sealed by heat sealing.
Into a 500 mL glass beaker containing 300 mL of phosphate buffer (1/15 M, pH 7), the bag containing the above-mentioned hemoglobin aqueous solution is placed and stirred at room temperature (about 25 ° C.) for 30 minutes (magnetic stirrer; diameter The rotational speed of a magnetic rotor having a length of about 5 mm and a length of about 40 mm was about 40 rpm).

ビーカーから3mLのリン酸緩衝液を採取して分光光度計(日立製、U−2001)により吸収波長409nmの吸光度を測定しヘモグロビンの透過量を求めようとしたが、吸光度は定量限界以下(OD:0.01以下)であった。この実験結果から、該PVAフィルムはヘモグロビンを透過させないことがわかった。   A 3 mL phosphate buffer solution was collected from a beaker and the absorbance at an absorption wavelength of 409 nm was measured with a spectrophotometer (Hitachi, U-2001) to determine the amount of hemoglobin permeation. : 0.01 or less). From this experimental result, it was found that the PVA film does not transmit hemoglobin.

比較例1
実施例7のPVAフィルムの替わりに孔径0.22μmのナイロンメンブレンフィルター(ミリポア製)を用いて実施例4と同様の実験を行なったところ、封入したヘモグロビンの50%以上が3分間で透過してしまうことが吸光度測定の結果から確認された。
Comparative Example 1
An experiment similar to that of Example 4 was performed using a nylon membrane filter (manufactured by Millipore) having a pore diameter of 0.22 μm instead of the PVA film of Example 7. As a result, 50% or more of the encapsulated hemoglobin permeated in 3 minutes. It was confirmed from the result of the absorbance measurement.

実施例8
ミオグロビン(和光純薬製)を0.9wt%の濃度で蒸留水に溶解した。この水溶液を採取してリン酸緩衝液(1/15M、pH)で300倍に希釈して分光光度計(日立製、U−2001)によりUVスペクトル(300nm〜600nm)を測定した。本発明の濃縮用容器としてポリビニールアルコール(PVA)フィルム(アイセロ化学(株)製、フィルム厚さ40μm)をヒートシールすることによって12cm×9cmの袋(注入口付き容器)を作製し、上記0.9wt%ミオグロビン水溶液17.5gを該容器中に空気が混入することなく注入し密封した。
該充填容器を凹凸のある板上に乗せ、室内(温度20℃〜30℃、相対湿度、約50%)に設置し5時間放置した。5時間放置後に重量を測定したところ、ミオグロビン水溶液が8.7gに減量していた(すなわち、濃縮倍率で、17.5/8.7=約2.01)。
Example 8
Myoglobin (manufactured by Wako Pure Chemical Industries) was dissolved in distilled water at a concentration of 0.9 wt%. This aqueous solution was collected, diluted 300-fold with a phosphate buffer (1/15 M, pH), and UV spectrum (300 nm to 600 nm) was measured with a spectrophotometer (Hitachi, U-2001). As a container for concentration according to the present invention, a polyvinyl alcohol (PVA) film (manufactured by Aicello Chemical Co., Ltd., film thickness 40 μm) is heat-sealed to produce a 12 cm × 9 cm bag (a container with an inlet). 17.5 g of a 9 wt% myoglobin aqueous solution was injected into the container without being mixed with air and sealed.
The filled container was placed on an uneven plate, placed indoors (temperature 20 ° C. to 30 ° C., relative humidity, about 50%) and left for 5 hours. When the weight was measured after standing for 5 hours, the myoglobin aqueous solution was reduced to 8.7 g (that is, the concentration factor was 17.5 / 8.7 = about 2.01).

この濃縮液を1mL採取してリン酸緩衝液(1/15M、pH7)で603倍(300×17.5/8.7)に希釈してUVスペクトル(300nm〜600nm)を測定したところ、0.9wt%ミオグロビン水溶液を300倍に希釈して測定したUVスペクトルと極大吸収波長は完全に一致し、本発明の濃縮用容器によるタンパク質の濃縮ではタンパク質を変性させなかった。また、吸光度は初期溶液の吸光度より5%低く一部フィルムへの吸着等で回収できなかったが、濃縮したタンパク質を95%程度回収できることが示された。   1 mL of this concentrated solution was sampled and diluted 603 times (300 × 17.5 / 8.7) with a phosphate buffer (1/15 M, pH 7), and the UV spectrum (300 nm to 600 nm) was measured. The maximum absorption wavelength and the UV spectrum measured by diluting a 9 wt% myoglobin aqueous solution 300-fold completely coincided, and the protein was not denatured by the concentration of the protein using the concentration container of the present invention. Further, the absorbance was 5% lower than the absorbance of the initial solution, and it was not able to be recovered by adsorption to a part of the film, but it was shown that about 95% of the concentrated protein could be recovered.

本発明の濃縮用器具の基本的な態様の例を示す模式斜視図である。It is a model perspective view which shows the example of the basic aspect of the instrument for concentration of this invention. 本発明の濃縮用器具において、濃縮倍率を制御する本システムの基本的な態様を示す模式図である。In the concentration instrument of this invention, it is a schematic diagram which shows the basic aspect of this system which controls concentration magnification. 実施例3で得られた、ジェル水溶液の濃縮倍率の経時変化を示すグラフである。6 is a graph showing the change over time in the concentration ratio of an aqueous gel solution obtained in Example 3. 実施例4で得られた、牛乳および豆乳の濃縮倍率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the concentration ratio of the milk and the soymilk obtained in Example 4. 実施例5で得られた、みかんおよびプルーンの濃縮倍率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the concentration ratio of the mandarin orange and prunes obtained in Example 5.

Claims (4)

1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含む濃縮用器具であって、
該容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成されることを特徴とする濃縮用器具。
A concentrating device comprising at least a container for containing an object to be concentrated containing a component to be concentrated, having one or more inlets and outlets,
An apparatus for concentration, wherein at least a part of the container is composed of a nonporous hydrophilic film or membrane.
1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器と、
該容器の外側に配置された、密封可能な気体不透過性を有するフィルムまたは膜とを少なくとも含む濃縮用器具であって、
前記容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成されることを特徴とする濃縮用器具。
A container for containing a substance to be concentrated containing a component to be concentrated, having one or more inlets and outlets;
A concentrating device comprising at least a sealable gas-impermeable film or membrane disposed on the outside of the container,
At least a part of the container is composed of a nonporous hydrophilic film or membrane.
1個以上の出入口を有する、濃縮すべき成分を含有する被濃縮体を収容するための容器を少なくとも含み、且つ該容器の少なくとも一部が、無孔性の親水性フィルムまたは膜から構成される濃縮用器具を用い、
前記被濃縮体を、前記親水性フィルムまたは膜に接触させることによって、被濃縮体を濃縮することを特徴とする濃縮方法。
At least a container for containing an object to be concentrated containing a component to be concentrated, having at least one entrance, and at least a part of the container is made of a nonporous hydrophilic film or membrane Using a concentration device,
A concentration method comprising: concentrating a substance to be concentrated by bringing the substance to be concentrated into contact with the hydrophilic film or membrane.
前記濃縮によって被濃縮体を所望の濃縮倍率に濃縮した後に、気体不透過性を有するフィルムまたは膜によって、前記濃縮用器具を密封する請求項3に記載の濃縮方法。   The concentration method according to claim 3, wherein after the concentration is concentrated to a desired concentration ratio, the concentration device is sealed with a gas-impermeable film or membrane.
JP2004277081A 2004-09-24 2004-09-24 Concentration instrument and concentration method Pending JP2006088046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277081A JP2006088046A (en) 2004-09-24 2004-09-24 Concentration instrument and concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277081A JP2006088046A (en) 2004-09-24 2004-09-24 Concentration instrument and concentration method

Publications (1)

Publication Number Publication Date
JP2006088046A true JP2006088046A (en) 2006-04-06

Family

ID=36229523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277081A Pending JP2006088046A (en) 2004-09-24 2004-09-24 Concentration instrument and concentration method

Country Status (1)

Country Link
JP (1) JP2006088046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108535A1 (en) * 2011-02-11 2012-08-16 日清食品ホールディングス株式会社 Alcohol concentration method
JP5344507B1 (en) * 2012-08-08 2013-11-20 日清食品ホールディングス株式会社 Liquid seasoning concentration method.
WO2018124184A1 (en) * 2016-12-28 2018-07-05 東洋アルミエコープロダクツ株式会社 Concentrated water-containing liquid manufacturing method, module, and concentrator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108535A1 (en) * 2011-02-11 2012-08-16 日清食品ホールディングス株式会社 Alcohol concentration method
JP5113304B2 (en) * 2011-02-11 2013-01-09 日清食品ホールディングス株式会社 Alcohol concentration method
CN103458999A (en) * 2011-02-11 2013-12-18 日清食品控股株式会社 Alcohol concentration method
US8785700B2 (en) 2011-02-11 2014-07-22 Nissin Foods Holdings Co., Ltd. Alcohol concentration method
JP5344507B1 (en) * 2012-08-08 2013-11-20 日清食品ホールディングス株式会社 Liquid seasoning concentration method.
WO2018124184A1 (en) * 2016-12-28 2018-07-05 東洋アルミエコープロダクツ株式会社 Concentrated water-containing liquid manufacturing method, module, and concentrator
JPWO2018124184A1 (en) * 2016-12-28 2019-10-31 東洋アルミエコープロダクツ株式会社 Concentrated hydrous liquid production method, module, and concentration apparatus

Similar Documents

Publication Publication Date Title
JP4260877B2 (en) Virus inactivation method
AU2005249530B2 (en) Preservation by vaporization
US5382365A (en) Process for at least partial dehydration of an aqueous composition and devices for implementing the process
EP1931386A2 (en) Stabilized products, process and devices for preparing same
JPH0229256A (en) Freezing dry of biological and chemical substance
CA2983050C (en) Method for sterilizing a chromatography material and subsequently sterilized chromatography material
JP7223599B2 (en) Raw material concentration system
JP2006088046A (en) Concentration instrument and concentration method
EP3204019A2 (en) Method for preparing universal plasma
JPH0636730B2 (en) Aseptic juice beverage manufacturing method
JP6149125B2 (en) Separation membrane for blood treatment and blood treatment device comprising the same
FR2692441A1 (en) Process for producing sterile milk by dynamic microfiltration.
JPWO2020241795A1 (en) Raw material liquid concentration system
JP3166400U (en) Concentrator
EP0360612B1 (en) Water purifying system
JP3918784B2 (en) Storage pack and storage method for selectively permeable separation membrane
JP2008194570A (en) Continuous condensing system and condensing method
JPH0310343B2 (en)
EP4061142A1 (en) System and method for filtering beverages
Drioli et al. Advances in membrane-based concentration in the food and beverage industries: Direct osmosis and membrane contactors
RU2036846C1 (en) Method of obtaining nontoxic solution free of microorganisms
JPS62201562A (en) Method for concentrating liquid food
JPS6297606A (en) Method and vessel for concentrating aqueous solution of polymer
JP2769210B2 (en) Protein purification method
CN116981366A (en) Method and apparatus for preserving flavor of food and shelf-stable food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A521 Written amendment

Effective date: 20080519

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20080519

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20090904

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126