JP2006088037A - Hydrogen-permeable film and its producing method - Google Patents

Hydrogen-permeable film and its producing method Download PDF

Info

Publication number
JP2006088037A
JP2006088037A JP2004276715A JP2004276715A JP2006088037A JP 2006088037 A JP2006088037 A JP 2006088037A JP 2004276715 A JP2004276715 A JP 2004276715A JP 2004276715 A JP2004276715 A JP 2004276715A JP 2006088037 A JP2006088037 A JP 2006088037A
Authority
JP
Japan
Prior art keywords
film
hydrogen
hydrogen permeable
permeable membrane
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276715A
Other languages
Japanese (ja)
Inventor
Takashi Ebisawa
孝 海老沢
Masashi Takahashi
正史 高橋
Takeshi Sasaki
剛 佐々木
Rui Akamatsu
塁 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2004276715A priority Critical patent/JP2006088037A/en
Publication of JP2006088037A publication Critical patent/JP2006088037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that the work of sealing a pinhole of a porous substrate, for example, the work of electroplating the surface of a metal porous body (the porous substrate) with Ni and Pd and shot-peening (glass bead-blasting) the Ni/Pd-electroplated porous substrate to fill up a minute crack, is troublesome. <P>SOLUTION: A hydrogen-permeable film is deposited on the porous substrate through which hydrogen gas is made to pass easily. Impurity-containing reformed gas is brought into contact with one surface of the hydrogen-permeable film to permeate hydrogen in the reformed gas and the permeated hydrogen is emitted selectively from the other surface of the hydrogen-permeable film. The hydrogen-permeable film G is deposited on the surface of the porous substrate 7 flattened by rolling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素透過膜及び水素透過膜の製造方法に関するものである。   The present invention relates to a hydrogen permeable membrane and a method for producing the hydrogen permeable membrane.

従来、都市ガス、天然ガス、石油等を一次エネルギーとするメンブレンリフォーマー方式の燃料電池では、都市ガス等を改質器及び水素精製器として機能するメンブレンリフォーマーに導き、改質ガスを生成させた後、改質ガスに含まれる水素ガスのみが水素透過膜を透過する現象を利用し、水素を精製して取り出している。   Conventionally, in a membrane reformer type fuel cell that uses city gas, natural gas, oil, etc. as primary energy, after the city gas is led to a membrane reformer that functions as a reformer and hydrogen purifier, the reformed gas is generated. The hydrogen is purified and extracted by utilizing the phenomenon that only the hydrogen gas contained in the reformed gas permeates the hydrogen permeable membrane.

このようなメンブレンリフォーマー用の水素透過膜には、改質器内の高温環境での安定性或いはCOやCO2等の不純物を含む改質ガスに対する水素透過性能の安定性の観点から、パラジウム(Pd)やPd合金からなるPd系材料が用いられている。   Such a hydrogen permeable membrane for a membrane reformer includes palladium (Pd) from the viewpoint of stability in a high temperature environment in the reformer or hydrogen permeation performance with respect to a reformed gas containing impurities such as CO and CO2. ) And Pd-based materials made of a Pd alloy are used.

しかしながら、Pdは金(Au)よりも希少な貴金属であり、非常に高価かつ入手困難な材料である。このようなPd系材料を用いて製品化されているメンブレンリフォーマーは、水素透過膜を用いない従前の改質器に比べ、装置構成は簡素化されるものの、コストの面からは必ずしも優位にはたつていない。このため、Pd系材料に代わる新たな水素透過膜の材料として、水素固溶量がPdよりも1桁程度大きいタンタル(Ta)系材料、ニオブ(Nb)系材料、バナジウム(V )系材料或いは、水素吸蔵合金(MH)系材料等が多々提案されている。これらは、従来材であるPdやPd合金と同程度或いはそれ以上の水素透過性能を有する材料となり得る。   However, Pd is a rare metal that is rarer than gold (Au), and is very expensive and difficult to obtain. Membrane reformers that have been commercialized using such Pd-based materials have a simpler device configuration than conventional reformers that do not use hydrogen permeable membranes, but are not necessarily advantageous from a cost standpoint. It ’s not good. For this reason, as a new hydrogen permeable film material replacing the Pd-based material, a tantalum (Ta) -based material, niobium (Nb) -based material, vanadium (V) -based material having a hydrogen solid solution amount approximately one digit larger than Pd, or Many hydrogen-absorbing alloy (MH) materials have been proposed. These can be materials having hydrogen permeation performance comparable to or higher than that of Pd and Pd alloys as conventional materials.

ここで、水素透過膜による水素透過機構は、図3に示すように透過膜Gの表裏両面間における水素ガスの圧力差(膜中に固溶した水素の濃度差)を駆動力として、高圧側から膜G中に水素分子H2が原子状に解離・固溶し、低圧側へ拡散・再結合して再び水素分子H2となつて放出される、というものである。   Here, as shown in FIG. 3, the hydrogen permeation mechanism by the hydrogen permeable membrane uses a pressure difference of hydrogen gas between the front and back sides of the permeable membrane G (concentration difference of hydrogen dissolved in the membrane) as a driving force, In the film G, hydrogen molecules H2 dissociate and dissolve in the form of atoms, diffuse to the low-pressure side, recombine, and are released again as hydrogen molecules H2.

高圧側に供給される改質ガス中には水素だけでなく未反応の炭化水素ガス(CH4)やCO、CO2等の不純物ガスが含まれるが、これらは原子サイズ等の制約から水素透過膜中へは固溶しない。このため、水素透過膜の低圧側からは、理論上純度100%の水素ガスのみが放出される。このような機構であるため、水素透過膜の材料としては、水素固溶度及び水素拡散係数が高いほど適しているといえ、また、水素透過膜の膜厚が薄いほど高い水素透過速度が実現できることが判る。   The reformed gas supplied to the high pressure side contains not only hydrogen but also impurity gases such as unreacted hydrocarbon gas (CH 4), CO, and CO 2, which are present in the hydrogen permeable membrane due to restrictions such as atomic size. Does not dissolve. For this reason, only hydrogen gas having a theoretical purity of 100% is released from the low pressure side of the hydrogen permeable membrane. Because of this mechanism, it can be said that the higher the hydrogen solubility and the hydrogen diffusion coefficient, the better the material for the hydrogen permeable membrane, and the lower the hydrogen permeable membrane thickness, the higher the hydrogen permeation rate. I understand that I can do it.

このような水素透過膜の製作方法としては、圧延による箔化や多孔質の支持体(基板)上への直接成膜が実施されている。特に、水素透過膜の膜厚が薄いほど高い水素透過速度が実現できることから、薄膜法により支持体へ数十μmの緻密で薄い膜を直接成膜することが有利であり、めっき法(例えば特許文献1)、真空蒸着法(例えば特許文献2)、イオンプレーティング(例えば特許文献3)、スパッタリング(例えば特許文献4)、減圧プラズマ溶射(例えば特許文献5)、CVD 法(例えば特許文献6)等の方法が試みられている。   As a method for producing such a hydrogen permeable membrane, foil formation by rolling or direct film formation on a porous support (substrate) is carried out. In particular, the thinner the hydrogen permeable film, the higher the hydrogen permeation rate can be realized. Therefore, it is advantageous to directly form a dense and thin film of several tens of μm on the support by the thin film method. Document 1), vacuum deposition (for example, Patent Document 2), ion plating (for example, Patent Document 3), sputtering (for example, Patent Document 4), low pressure plasma spraying (for example, Patent Document 5), CVD method (for example, Patent Document 6) Etc. have been tried.

一方、水素透過膜に用いる基板は、その上の水素透過膜を通過してきた水素を通過させる必要があるため、多孔質の基板が用いられている。そして、多孔質の基板として、孔の小さい高価なセラミックス基板が用いられたり、孔の大きい安価な基板の表面に微細な粒子を塗布した後に膜を付けたり(例えば特許文献7)、膜を成膜しレーザで表面を溶かして孔を埋めさらに成膜して表面を整えたり(例えば特許文献8)、膜を成膜しガラスビーズで表面をブラスト(たたく)して孔を埋めたり(例えば特許文献9)、成膜後に空いている孔の部分のみに後から成膜しなおす(例えば特許文献10)などの手法により封孔処理をすることが提案されている。   On the other hand, since the substrate used for the hydrogen permeable membrane needs to pass hydrogen that has passed through the hydrogen permeable membrane thereon, a porous substrate is used. As the porous substrate, an expensive ceramic substrate having a small hole is used, or a film is formed after applying fine particles to the surface of an inexpensive substrate having a large hole (for example, Patent Document 7). The film is melted and the surface is melted with a laser to fill the hole, and the film is further formed to prepare the surface (for example, Patent Document 8), or the film is formed and the surface is blasted with glass beads to fill the hole (for example, patent) Document 9), it has been proposed to perform a sealing treatment by a technique such as re-depositing a film afterwards only on the hole that is vacant after film formation (for example, Patent Document 10).

具体的には、特許文献7は、ニッケル多孔体(多孔質基板)の表面の空孔をニッケル粒子で覆つて焼成し、表面をなめらかにする封孔処理を行つた上にPdめっきを行うもので、ピンホールの少ないPd膜を形成することができる、としている。   Specifically, Patent Document 7 discloses a method in which pores on the surface of a nickel porous body (porous substrate) are covered with nickel particles, fired, and subjected to a sealing treatment for smoothing the surface, followed by Pd plating. Thus, a Pd film with few pinholes can be formed.

特許文献8は、金属多孔体(多孔質基板)の表面にPd系膜を減圧プラズマ溶射法により形成した後、レーザビームにより膜表面を瞬間加熱して気孔を無くすものである。   In Patent Document 8, a Pd-based film is formed on the surface of a metal porous body (porous substrate) by a low pressure plasma spraying method, and then the film surface is instantaneously heated with a laser beam to eliminate pores.

特許文献9は、金属多孔体(多孔質基板)の表面に電気Niめっき及び電気Pdめっきを行つた後、同めっき層をショットピーニング処理(ガラスビーズブラスト)し、その後、金属多孔体(多孔質基板)の裏面から真空吸引しつつ無電解Pdめっきを行うものである。これにより、電気Pdめっきに無数に存在する微細な割れを押し潰して、真空吸引を可能にする。   In Patent Document 9, electric Ni plating and electric Pd plating are performed on the surface of a metal porous body (porous substrate), and then the plated layer is shot peened (glass bead blasting). Thereafter, the metal porous body (porous) Electroless Pd plating is performed while vacuuming from the back surface of the substrate. This crushes countless fine cracks in the electric Pd plating and enables vacuum suction.

特許文献10は、多孔体(多孔質基板)の表面にPd系膜を形成した後、ピンホールを探査し、探査したピンホール部に金属を被着させ、被着させた金属がPdと合金化する温度で加熱処理してピンホールを塞ぐものである。   In Patent Document 10, after a Pd-based film is formed on the surface of a porous body (porous substrate), a pinhole is probed, a metal is deposited on the probed pinhole portion, and the deposited metal is alloyed with Pd. The pinhole is closed by heat treatment at a temperature to be changed.

また、一般に薄膜化した場合には膜に大きな内部応力が残留することがわかつており、プラズマCVD法で製造される膜では引張と圧縮の内部応力の膜を交互に積層することによつて膜の内部応力をキャンセルさせ、内部応力を小さくして膜を厚く成膜したときに生じる剥離等の膜の損傷を防止することが試みられている(例えば特許文献11)。
特開平5−137979公報 特開平10−297906公報 特開平11−267477公報 特開2002−126477公報 特開平5−078810公報 特開2003−135943公報 特開2000−119002公報 特開H05−078810公報 特開H05−123548公報 特開2002−119834公報 特開平11−131240公報
In general, it is known that when the film is thinned, a large internal stress remains in the film, and in the film manufactured by the plasma CVD method, the film is formed by alternately laminating films of tensile and compressive internal stress. Attempts have been made to cancel the internal stress of the film and prevent damage to the film such as peeling that occurs when the internal stress is reduced and the film is formed thick (for example, Patent Document 11).
Japanese Patent Laid-Open No. 5-137979 JP-A-10-297906 JP-A-11-267477 JP 2002-126477 A Japanese Patent Laid-Open No. 5-078810 JP 2003-135943 A JP 2000-11902 A JP H05-078810 A JP H05-123548 A JP 2002-119834 A JP-A-11-131240

水素透過膜を薄膜化する狙いは水素透過膜をできるだけ薄くし水素透過量を増大させることであり、成膜技術のポイントは不純物ガスのリークの元となる膜のピンホールをなくすことにある。   The aim of thinning the hydrogen permeable film is to make the hydrogen permeable film as thin as possible to increase the hydrogen permeation amount, and the point of the film forming technique is to eliminate pinholes in the film that cause the leak of impurity gas.

しかしながら、上記の薄膜法により作製される膜の殆どが従来より使用されているPd膜又はPd合金膜に関するものが主体であり、これまで以上の水素透過量の増大は見込めない。また、これまでの多くの報告では多孔質基板に成膜された膜にはピンホールが残存している。一方、Pd系合金の5倍〜10倍以上の透過係数を示すTaやNb、V 等の材料にあつては、真空蒸着法やイオンプレーティング法、スパッタリグ法等によつて薄膜化が試みられているが、基礎研究が殆どであり、膜の水素透過性能や耐久性を検討した例は数例のみで、特に重要な膜の内部応力や構造などに関わる詳細な考察がなされた例は存在しないのが現状である。   However, most of the films produced by the above-mentioned thin film method are mainly related to Pd films or Pd alloy films that have been used conventionally, and an increase in hydrogen permeation amount cannot be expected. In many reports so far, pinholes remain in the film formed on the porous substrate. On the other hand, for materials such as Ta, Nb, V, etc., which show a transmission coefficient 5 times to 10 times that of Pd-based alloys, attempts have been made to reduce the thickness by vacuum deposition, ion plating, sputtering rigging, etc. However, most basic research has been conducted, and only a few examples have examined the hydrogen permeation performance and durability of membranes, and there are examples in which detailed considerations concerning internal stress and structure of membranes are particularly important. The current situation is not.

ピンホールを埋める特許文献7は、ニッケル多孔体(多孔質基板)の表面の空孔をニッケル粒子で覆つて焼成し、表面をなめらかにする封孔処理を行つた上にPdめっきを行うものであり、特許文献8は、レーザビームにより膜表面を瞬間加熱して気孔を無くすものであり、特許文献10は、ピンホールを探査し、探査したピンホール部に金属を被着させ、被着させた金属がPdと合金化する温度で加熱処理してピンホールを塞ぐものであり、いずれも多孔質基板に対する封孔処理が煩雑である。また、特許文献9は、めっき層をショットピーニング処理(ガラスビーズブラスト)し、電気Pdめっきに無数に存在する微細な割れを押しつぶして、真空吸引を可能にすることで機械的処理でピンホールを塞ぎ、真空吸引を可能にして真空吸引しながらの無電解Pdめっきを可能にするものであり、結果的に水素透過膜に対する封孔処理がなされるが、ブラスト作業が煩雑であるのみならず、ブラストによつてめっき層に凹凸を生ずることを免れず、その後に行う無電解Pdめっきの層が厚くなり易い、という技術的課題が存在していた。   Patent Document 7 that fills a pinhole is a method in which pores on the surface of a nickel porous body (porous substrate) are covered with nickel particles and fired, and a sealing process is performed to smooth the surface, followed by Pd plating. Yes, Patent Document 8 is to instantaneously heat the film surface with a laser beam to eliminate pores. Patent Document 10 searches for a pinhole, and deposits and deposits a metal on the searched pinhole part. The metal is heat-treated at a temperature at which it is alloyed with Pd to close the pinhole, and in any case, the sealing treatment for the porous substrate is complicated. In addition, Patent Document 9 performs shot peening treatment (glass bead blasting) on the plating layer, crushes countless fine cracks in electric Pd plating, and enables vacuum suction to create pinholes by mechanical treatment. It closes, enables vacuum suction and enables electroless Pd plating while vacuum suction. As a result, the hydrogen-permeable membrane is sealed, but not only is the blasting operation complicated, There is a technical problem that the plating layer is unavoidably caused by blasting, and the subsequent electroless Pd plating layer tends to be thick.

本発明は、先ず、多孔質基板に簡単な機械的処理を施すことで表面の極端な凹凸を無くして平坦化させ、その後に施す無孔の透過膜層の薄肉化を実現し、水素透過量を増大させるものである。   In the present invention, first, a simple mechanical treatment is applied to the porous substrate to flatten the surface without extreme irregularities, and the non-permeable permeation membrane layer to be applied thereafter is thinned, and the hydrogen permeation amount Is to increase.

また、本発明は、高価で水素透過係数に劣るPd系材料の代替材料としてTaやNb、V 等又はその合金の薄膜、特にTa又はその合金の薄膜を水素透過膜の主材料として用いながら、水素固溶量及び固溶速度を適当に抑制させることも考慮し、十分な水素透過性能を確保しながら、成膜時の内部応力や膜構造に起因する割れの問題を回避できる優れた水素透過膜の製造方法を提案するものである。   Further, the present invention uses Ta, Nb, V or the like or its alloy thin film, particularly Ta or its alloy thin film as the main material of the hydrogen permeable film as an alternative material for the Pd-based material which is expensive and inferior in hydrogen permeability. Considering appropriately suppressing the amount and rate of hydrogen solid solution, while ensuring sufficient hydrogen permeation performance, excellent hydrogen permeation that can avoid problems caused by internal stress and film structure during film formation A method for manufacturing a film is proposed.

具体的には、多孔質基板の加工によりピンホールができにくい構造にすると共に、成膜時の圧力、温度又は成膜速度の制御により、膜の内部応力を膜が破壊しないように低減すると共に、膜の構造として水素以外のガス成分が膜の結晶粒界を通過できない程度の隙間を有するように成膜条件を制御し、最適な水素透過膜を得るものである。   Specifically, the structure of the porous substrate makes it difficult for pinholes to occur, and the internal stress of the film is reduced so that the film does not break down by controlling the pressure, temperature, or film formation speed during film formation. The film formation conditions are controlled so that a gas component other than hydrogen cannot pass through the crystal grain boundaries of the film as the film structure, and an optimal hydrogen permeable film is obtained.

請求項1の発明は、水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜において、
圧延によつて表面を平坦にした多孔質基板7の該表面上に、水素透過膜Gが形成されていることを特徴とする水素透過膜である。
請求項2の発明は、水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜において、
Ta又はTa合金を材料としてスパッタリング法によつて多孔質基板7の該表面上に成膜した単層又は複数層の水素透過膜Gを有し、
水素透過膜Gの層の内部応力の範囲が圧縮応力から引張応力にかけて±15×104 N/cm2 以内であり、かつ、1×101 Pa以下の圧力で成膜され、水素透過膜Gの結晶粒界で水素のみを通過できるように結晶粒界の隙間が小さく維持されていることを特徴とする水素透過膜である。
請求項3の発明は、水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜の製造方法において、
圧延によつて多孔質基板7の表面を平坦にし、多孔質基板7の該表面上に水素透過膜Gを形成することを特徴とする水素透過膜の製造方法である。
請求項4の発明は、水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜の製造方法において、
水素透過膜Gをスパッタリング法によつて多孔質基板7の該表面上に成膜する工程を有し、
水素透過膜Gの層の内部応力の範囲が圧縮応力から引張応力にかけて±15×104 N/cm2 以内であり、かつ、成膜時の成膜圧力を1×101 Pa以下として成膜され、水素透過膜Gの結晶粒界で水素だけを通過できるように隙間が小さく維持されていることを特徴とする水素透過膜の製造方法である。
請求項5の発明は、前記成膜する工程の前に、多孔質基板7の表面を圧延によつて平坦にする工程を有することを特徴とする請求項4の水素透過膜の製造方法である。
請求項6の発明は、前記水素透過膜Gが、Ta又はTa合金を材料としていることを特徴とする請求項3,4又は5の水素透過膜の製造方法である。
請求項7の発明は、前記内部応力の範囲が、水素透過膜Gの成膜時の成膜圧力を5×10-1Paから1×101 Paの範囲に維持することによつて達成されていることを特徴とする請求項4,5又は6の水素透過膜の製造方法である。
請求項8の発明は、前記内部応力の範囲が、水素透過膜Gの成膜時の多孔質基板7の温度を−20℃から800℃の範囲に維持することによつて達成されていることを特徴とする請求項4,5,6又は7の水素透過膜の製造方法である。
請求項9の発明は、前記内部応力の範囲が、水素透過膜Gの成膜時の成膜速度を0.0001μm /秒から0.01μm /秒の範囲に維持することによつて達成されていることを特徴とする請求項4,5,6,7又は8の水素透過膜の製造方法である。
請求項10の発明は、前記水素透過膜Gが複数層G1,G2からなり、水素透過膜Gの内部応力の低減のために圧縮応力の成膜条件と引張応力の成膜条件とを交互に与えて各層G1,G2を成膜すると共に、各層G1,G2の厚さが0.1μm から2μm の範囲に設定されていることを特徴とする請求項3,4,5,6,7,8又は9の水素透過膜の製造方法である。
According to the first aspect of the present invention, hydrogen is formed on a porous substrate through which hydrogen gas easily passes, and hydrogen in the reformed gas containing impurities in contact with one surface is permeated and selectively released from the other surface. In the permeable membrane,
The hydrogen permeable film is characterized in that a hydrogen permeable film G is formed on the surface of the porous substrate 7 whose surface is flattened by rolling.
The invention according to claim 2 is a hydrogen that is formed on a porous substrate through which hydrogen gas easily passes, allows hydrogen in the reformed gas containing impurities in contact with one surface to permeate, and selectively releases from the other surface. In the permeable membrane,
Having a single layer or multiple layers of hydrogen permeable film G formed on the surface of the porous substrate 7 by sputtering using Ta or Ta alloy as a material;
The range of internal stress of the layer of the hydrogen permeable membrane G is within ± 15 × 10 4 N / cm 2 from compressive stress to tensile stress, and is formed at a pressure of 1 × 10 1 Pa or less. The hydrogen permeable membrane is characterized in that the gap between the crystal grain boundaries is kept small so that only hydrogen can pass through the crystal grain boundaries.
According to a third aspect of the present invention, hydrogen is formed on a porous substrate through which hydrogen gas easily passes and allows hydrogen in the reformed gas containing impurities in contact with one surface to permeate and selectively release from the other surface. In the method for producing a permeable membrane,
A method for producing a hydrogen permeable membrane, characterized in that the surface of the porous substrate 7 is flattened by rolling, and the hydrogen permeable membrane G is formed on the surface of the porous substrate 7.
According to a fourth aspect of the present invention, hydrogen is formed on a porous substrate through which hydrogen gas easily passes, and hydrogen in the reformed gas containing impurities in contact with one surface is permeated and selectively released from the other surface. In the method for producing a permeable membrane,
Forming a hydrogen permeable film G on the surface of the porous substrate 7 by a sputtering method;
Deposition of the hydrogen permeable membrane G with an internal stress range of ± 15 × 10 4 N / cm 2 from compressive stress to tensile stress and a film forming pressure of 1 × 10 1 Pa or less during film formation. In the method of manufacturing a hydrogen permeable membrane, the gap is kept small so that only hydrogen can pass through the crystal grain boundary of the hydrogen permeable membrane G.
The invention according to claim 5 is the method for producing a hydrogen permeable membrane according to claim 4, further comprising the step of flattening the surface of the porous substrate 7 by rolling before the step of forming the film. .
The invention of claim 6 is the method of manufacturing a hydrogen permeable film according to claim 3, 4 or 5, wherein the hydrogen permeable film G is made of Ta or a Ta alloy.
In the invention of claim 7, the range of the internal stress is achieved by maintaining the film formation pressure when the hydrogen permeable film G is formed in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa. The method for producing a hydrogen permeable membrane according to claim 4, 5 or 6.
In the invention of claim 8, the range of the internal stress is achieved by maintaining the temperature of the porous substrate 7 at the time of forming the hydrogen permeable film G in the range of -20 ° C to 800 ° C. The method for producing a hydrogen permeable membrane according to claim 4, 5, 6, or 7.
The range of the internal stress is achieved by maintaining the film formation rate when the hydrogen permeable film G is formed in the range of 0.0001 μm / second to 0.01 μm / second. 9. The method for producing a hydrogen permeable membrane according to claim 4, 5, 6, 7 or 8.
According to a tenth aspect of the present invention, the hydrogen permeable membrane G is composed of a plurality of layers G1 and G2, and in order to reduce the internal stress of the hydrogen permeable membrane G, the film formation conditions for compressive stress and the film formation conditions for tensile stress are alternately used. The layers G1 and G2 are formed, and the thicknesses of the layers G1 and G2 are set in the range of 0.1 μm to 2 μm. Alternatively, 9 is a method for producing a hydrogen permeable membrane.

独立請求項1及び3によれば、多孔質基板は、予め圧延を施し、表面の極端な凸部が圧潰され、平坦化される。この平坦化された基板上に水素透過膜を形成するので、水素透過膜を薄膜として、ピンホール等の通孔のない、かつ、水素透過性能に優れる高品質の水素透過膜を得ることができる。   According to the independent claims 1 and 3, the porous substrate is previously rolled, and the extreme convex portions on the surface are crushed and flattened. Since the hydrogen permeable film is formed on the flattened substrate, it is possible to obtain a high quality hydrogen permeable film having no through holes such as pinholes and excellent hydrogen permeable performance by using the hydrogen permeable film as a thin film. .

請求項2及び4によれば、スパッタリング法によつて多孔質基板の該表面上に成膜する水素透過膜の層の内部応力の範囲が、圧縮応力から引張応力にかけて±15×104 N/cm2 以内である。これにより、成膜時のガスの圧力や温度、成膜速度などのパラメータを調節することにより水素透過膜が剥離しないように内部応力を上記所定範囲に容易に低減させ易く、その結果として水素透過膜の基板からの剥離が良好に抑制される。また、成膜時の成膜圧力を1×101 Pa以下として水素透過膜が成膜され、水素透過膜の結晶粒界で水素だけを通過できるように、つまり水素ガス以外の不純物ガスが通つてしまうピンホールや結晶粒界の隙間がないように結晶粒界の隙間が小さく維持されている。 According to claims 2 and 4, the range of the internal stress of the layer of the hydrogen permeable film formed on the surface of the porous substrate by the sputtering method is ± 15 × 10 4 N / from compressive stress to tensile stress. within 2 cm. As a result, the internal stress can be easily reduced to the predetermined range so that the hydrogen permeable membrane does not peel off by adjusting parameters such as the gas pressure and temperature during film formation, and the film formation rate. Peeling of the film from the substrate is favorably suppressed. In addition, a hydrogen permeable film is formed at a film formation pressure of 1 × 10 1 Pa or less during film formation so that only hydrogen can pass through the crystal grain boundary of the hydrogen permeable film, that is, an impurity gas other than hydrogen gas passes. The gap between the crystal grain boundaries is kept small so that there are no pinholes or gaps between the crystal grain boundaries.

請求項5によれば、成膜する工程の前に、多孔質基板の表面を圧延によつて平坦にする工程を有するので、請求項1及び3に係る発明と同様の効果を奏することができる。   According to the fifth aspect, since there is a step of flattening the surface of the porous substrate by rolling before the film forming step, the same effects as the first and third aspects of the invention can be achieved. .

請求項6によれば、水素透過膜が、Ta又はTa合金を材料としているので、メンブレンリフォーマーに使用する際の想定使用温度領域である500℃前後の高温領域でも水素の平衡解離圧が高く、使用圧力下では水素化物を生成し難く、耐割れ性に優れる特性を有している。   According to claim 6, since the hydrogen permeable membrane is made of Ta or Ta alloy, the equilibrium dissociation pressure of hydrogen is high even in a high temperature region around 500 ° C. which is an assumed use temperature region when used for a membrane reformer, Under operating pressure, it is difficult to produce hydride and has excellent crack resistance.

請求項7によれば、内部応力の範囲が、水素透過膜の成膜時の成膜圧力を5×10-1Paから1×101 Paの範囲に維持することによつて達成されているので、請求項2及び4に比して更に、水素透過膜の結晶粒界で水素だけを通過できるように結晶粒界の隙間が良好に小さく維持されている。 According to claim 7, the range of the internal stress is achieved by maintaining the film formation pressure during the formation of the hydrogen permeable film in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa. Therefore, as compared with claims 2 and 4, the gap between the crystal grain boundaries is kept small enough so that only hydrogen can pass through the crystal grain boundaries of the hydrogen permeable film.

請求項8によれば、水素透過膜の成膜時の基板温度を−20℃から800℃の範囲に維持することにより、±15×104 N/cm2 以内となる内部応力の範囲で結晶粒界の隙間が小さく維持され、かつ、クラックの無い結晶構造の良好な状態が容易に達成される。 According to the eighth aspect of the present invention, by maintaining the substrate temperature in the range of −20 ° C. to 800 ° C. during the formation of the hydrogen permeable film, the crystal is within the range of internal stress within ± 15 × 10 4 N / cm 2. A good state of a crystal structure in which the gap between the grain boundaries is kept small and there is no crack is easily achieved.

請求項9によれば、水素透過膜の成膜時の成膜速度を0.0001μm /秒から0.01μm /秒の範囲に遅く維持することにより、水素透過膜内に発生する欠陥の量を低減させ、±15×104 N/cm2 以内となる内部応力の範囲で結晶粒界の隙間が小さく維持され、かつ、クラックの無い結晶構造の良好な状態が容易に達成される。 According to the ninth aspect, the amount of defects generated in the hydrogen permeable membrane can be reduced by maintaining the film formation rate during the formation of the hydrogen permeable membrane in the range of 0.0001 μm / second to 0.01 μm / second. The gap between the crystal grain boundaries is kept small within the range of the internal stress within ± 15 × 10 4 N / cm 2 , and a good state of the crystal structure without cracks is easily achieved.

請求項10によれば、水素透過膜が複数層からなり、水素透過膜の内部応力の低減のために圧縮応力の成膜条件と引張応力の成膜条件とを交互に与えて成膜すると共に、各層の厚さが0.1μm から2μm の範囲に設定されている。これにより、積層回数が多くなり成膜に時間を要することを回避しながら、内部応力をキャンセルできる最大厚さである膜厚:5μm 未満の2μm を上限として、内部応力を良好に相殺させることができる。   According to the tenth aspect, the hydrogen permeable film is composed of a plurality of layers, and the film is formed by alternately applying the film forming condition of the compressive stress and the film forming condition of the tensile stress in order to reduce the internal stress of the hydrogen permeable film. The thickness of each layer is set in the range of 0.1 μm to 2 μm. This makes it possible to satisfactorily offset the internal stress, with the upper limit being 2 μm, which is the maximum thickness capable of canceling the internal stress, and the thickness being less than 5 μm, while avoiding an increase in the number of laminations and the time required for film formation. it can.

図1〜図13は、本発明に係る水素透過膜の製造方法の1実施の形態を示す。水素透過膜組立体Mは、図1に示すように強度部材としての多孔質の基板7と、基板7の一側表面上に成膜した水素透過膜Gとを有する。この水素透過膜Gは、メンブレンリフォーマーに組み込まれ、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から水素を選択的に放出させる。   1 to 13 show an embodiment of a method for producing a hydrogen permeable membrane according to the present invention. As shown in FIG. 1, the hydrogen permeable membrane assembly M includes a porous substrate 7 as a strength member and a hydrogen permeable membrane G formed on one surface of the substrate 7. This hydrogen permeable membrane G is incorporated in a membrane reformer, allows hydrogen in the reformed gas containing impurities in contact with the one side surface to permeate, and selectively releases hydrogen from the other side surface.

水素透過膜Gは、Pd及びPd合金(Pd系材料)でもよいが、好ましくは単位体積当たりの水素固溶量がPdよりも大きいPd及びPd合金(Pd系材料)以外の金属元素(非Pd系材料)からなる均一厚さの例えば板状体である。具体的には、水素透過膜Gは、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、水素吸蔵合金(MH)等のPd系材料に対する代替材料が好ましく、特にTa又はTa合金からなるTa系材料が好ましい。   The hydrogen permeable membrane G may be Pd and a Pd alloy (Pd-based material), but preferably a metal element (non-Pd) other than Pd and a Pd alloy (Pd-based material) whose hydrogen solid solution amount per unit volume is larger than Pd. For example, a plate-like body having a uniform thickness. Specifically, the hydrogen permeable membrane G is preferably an alternative material to a Pd-based material such as tantalum (Ta), niobium (Nb), vanadium (V), hydrogen storage alloy (MH), and is particularly made of Ta or Ta alloy. Ta-based materials are preferred.

多孔質の基板7は、予め圧延を施し、平坦化させた。このような機械的処理を施すことで表面の極端な凸部が圧潰され、平坦化される。基板7が金属製(例えばステンレス鋼製)であれば、表面の凸部が弾性変形し、また、セラミックなどの脆性材料製であれば、表面の凸部が塑性変形し、平坦化され、付近の大きな孔を閉塞するようになる。なお、この多孔質基板7には、薄膜Gを予め形成したものを含む。   The porous substrate 7 was previously rolled and flattened. By applying such a mechanical treatment, the extreme convex portions on the surface are crushed and flattened. If the substrate 7 is made of metal (for example, made of stainless steel), the convex portion on the surface is elastically deformed. If the substrate 7 is made of a brittle material such as ceramic, the convex portion on the surface is plastically deformed and flattened. The large holes of the come to close. The porous substrate 7 includes a thin film G previously formed.

多孔質基板7を圧延して平坦にした理由についてスパッタリングとの関係で詳述する。多孔質基板は製造上の理由から表面に大きな凹凸を持つが、この凹凸が特にスパッタリング時の膜原子の回り込みを悪くして、孔を埋められなくすることが分かり、この多孔質基板の凹凸を可及的に無くし表面を平坦化した場合に、孔の埋まり具合が極端に改善することを見いだしたからである。   The reason why the porous substrate 7 is rolled and flattened will be described in detail in relation to sputtering. Porous substrates have large irregularities on the surface for manufacturing reasons, but it is found that these irregularities make the film atoms wrap around especially during sputtering, making it impossible to fill the pores. This is because when the surface is flattened as much as possible, it has been found that the degree of hole filling is extremely improved.

ここで、多孔質基板7を平坦にする方法として、孔の小さい高価なセラミックス基板を用いたり、孔の大きい安価な基板7の表面に微細な粒子を塗布した後に膜を付けしたり、膜を成膜しレーザで表面を溶かして孔を埋めさらに成膜して表面を整えたり、膜を成膜しガラスビーズで表面をブラスト(たたく)して孔を埋めたり、成膜後に空いている孔の部分のみに後から成膜し直す等の手法が考えられているが、何れも高価であつたり手間の掛かる手法であるためコストアップに繋がつてしまう。   Here, as a method for flattening the porous substrate 7, an expensive ceramic substrate having a small hole is used, a film is attached after applying fine particles to the surface of the inexpensive substrate 7 having a large hole, Holes that are formed and melted with a laser to fill the hole, and then further formed to prepare the surface, or a film is formed and the surface is blasted with glass beads to fill the hole. Although methods such as re-depositing the film later on only this part have been considered, all of these methods are expensive and time-consuming methods, leading to an increase in cost.

そこで、本発明者等は、単に一対のロールの隙間を1度通すだけの安価な圧延法に着目し、試験を重ねた結果、多孔質基板7としてガス透過性を損なうことなく、容易に平坦化できると共に多孔質基板7の孔の径も小さくなることを確認した。但し、圧延の量によつては孔が潰れ過ぎて多孔質基板7のガス透過性に影響を及ぼすことがあるため、多孔質基板7の材質や構造に応じて最適な条件を見いだすことが望ましい。   Therefore, the inventors of the present invention focused on an inexpensive rolling method in which a gap between a pair of rolls is simply passed once, and as a result of repeated tests, the porous substrate 7 was easily flattened without impairing gas permeability. It was confirmed that the diameter of the pores of the porous substrate 7 was also reduced. However, depending on the amount of rolling, the pores may be crushed so that the gas permeability of the porous substrate 7 may be affected. Therefore, it is desirable to find optimum conditions depending on the material and structure of the porous substrate 7. .

この適当な圧延を施した基板7の一側表面に、スパッタリングからなる成膜手段によつて水素透過膜Gを薄膜をなすように単層又は複数層に形成した。水素透過膜Gの一側表面は、図3に示す炭化水素ガス(CH4)やCO、CO2等の不純物ガスを含む改質ガスが供給される高圧側に接することになる面である。基板7の一側表面は平坦化されているので、不純物ガスのリークの元となるピンホールのない水素透過膜Gが容易に形成され、かつ、内部応力の小さな薄い水素透過膜Gによつて水素透過膜Gの結晶粒界で水素だけを通過できるように、結晶粒界の隙間が小さい所定隙間で維持されている。   On one side surface of the substrate 7 subjected to the appropriate rolling, the hydrogen permeable film G was formed in a single layer or a plurality of layers so as to form a thin film by a film forming means comprising sputtering. One side surface of the hydrogen permeable membrane G is a surface that comes into contact with a high pressure side to which a reformed gas containing an impurity gas such as hydrocarbon gas (CH 4), CO, and CO 2 shown in FIG. 3 is supplied. Since one side surface of the substrate 7 is flattened, a hydrogen permeable film G without a pinhole that causes an impurity gas leak is easily formed, and the thin hydrogen permeable film G having a small internal stress is used. In order to allow only hydrogen to pass through the crystal grain boundary of the hydrogen permeable membrane G, the crystal grain boundary gap is maintained at a predetermined gap.

この水素透過膜組立体Mをメンブレンリフォーマーに組み込み、水素透過膜Gを形成した一側表面を高圧側として、COやCO2等の不純物を含む改質ガスを導入すれば、表裏両面間における水素ガスの圧力差を駆動力として、改質ガスに含まれる水素ガスのみが水素透過膜G及び基板7を透過し、水素を精製して取り出すことができる。   When this hydrogen permeable membrane assembly M is incorporated into a membrane reformer and the reformed gas containing impurities such as CO and CO2 is introduced with the one side surface on which the hydrogen permeable membrane G is formed as the high pressure side, the hydrogen gas between both sides Only the hydrogen gas contained in the reformed gas permeates through the hydrogen permeable membrane G and the substrate 7, and the hydrogen can be purified and extracted.

成膜手法として用いたスパッタリング法の概略について図2を参照して説明する。スパッタリング装置は一般的に、チャンバー1に真空排気のためのポンプ2、3とスパッタリングのためのプラズマを発生する電源4及びプラズマ源となるガスの取り入れ口9を有し、さらに膜の原料となるターゲット5及びその上に水素透過膜Gを成膜するための基板7が配置される。基板7は支持体6に支持されている。また、場合により基板7を加熱するための機構8や基板7の回転や上下高さを調整するための機構10が付加される。基板7の温度は加熱機構8への電力供給量によつて調節され、成膜速度は電源4への電力供給量及びターゲット5と基板7との距離によつて調節する。基板7に対する成膜方向は装置の基板7やターゲット5位置の配置によるが、上下左右や斜め方向など目的により様々な方向に調整ができ、成膜圧力(ガス圧力)はガスの取り入れ口9からのガスの流量や真空排気ポンプ2の直前に配置されるバルブの開閉度等で調節できる。   An outline of the sputtering method used as the film forming method will be described with reference to FIG. Generally, a sputtering apparatus has pumps 2 and 3 for evacuation, a power source 4 for generating plasma for sputtering, and a gas inlet 9 serving as a plasma source in a chamber 1, and further serves as a film raw material. A target 5 and a substrate 7 for forming a hydrogen permeable film G thereon are arranged. The substrate 7 is supported by the support 6. Further, in some cases, a mechanism 8 for heating the substrate 7 and a mechanism 10 for adjusting the rotation and vertical height of the substrate 7 are added. The temperature of the substrate 7 is adjusted by the amount of power supplied to the heating mechanism 8, and the film forming speed is adjusted by the amount of power supplied to the power source 4 and the distance between the target 5 and the substrate 7. The film forming direction with respect to the substrate 7 depends on the position of the substrate 7 and the target 5 in the apparatus, but can be adjusted in various directions such as up / down / left / right and oblique directions, and the film forming pressure (gas pressure) can be adjusted from the gas inlet 9. It can be adjusted by the flow rate of the gas and the degree of opening and closing of the valve disposed immediately before the vacuum pump 2.

成膜手段としてスパッタリング法を選択した理由は、スパッタリング法では基本的にどんな材料でも容易に薄膜化できる点にある。また、ターゲット5は通常円盤状に加工された純金属或いは合金を3個ないし4個の電極に配置して複雑な合金系でも同時にスパッタリングしながら混合し、いろいろな合金を作ることができるだけでなく、粉末でも良いしターゲット5上に膜にしたい材料のチップを配置して成膜しても良い。即ち、多くの可能性を試みることができるからである。また、形成される膜の性質を成膜時のガス圧力や温度、成膜速度、基板7とターゲット5との距離、基板7の回転、基板7へのバイアス電圧印加などにより容易に変えることができる点も、スパッタリング法の有利な点である。但し、成膜手段としては、スパッタリング法に代えて、基本的に同じ効果が現れる成膜法の採用が可能であり、特にスパッタリング法に限定するものではない。   The reason for selecting the sputtering method as the film forming means is that basically any material can be easily formed into a thin film by the sputtering method. In addition, the target 5 is not only able to form a pure metal or alloy processed into a disk shape on three or four electrodes and mix even by complex sputtering while simultaneously sputtering to make various alloys. Alternatively, a powder may be used, or a film of a material to be formed on the target 5 may be disposed. That is, many possibilities can be tried. Further, the properties of the film to be formed can be easily changed by gas pressure and temperature at the time of film formation, film formation speed, distance between the substrate 7 and the target 5, rotation of the substrate 7, application of a bias voltage to the substrate 7, and the like. This is also an advantage of the sputtering method. However, as the film forming means, it is possible to adopt a film forming method that basically exhibits the same effect, instead of the sputtering method, and is not particularly limited to the sputtering method.

合金系としてTa及びその合金系を非Pd系材料の中から選択する理由は、Ta又はTa合金はNbやV 系材料に比べ、メンブレンリフォーマーに使用する際の想定使用温度領域である500℃前後の高温領域でも水素の平衡解離圧が高く、使用圧力下では水素化物を生成し難い特性を持つているからである。これに対して、Nb系は平衡解離圧が低いため500℃前後でも水素化物を生成し割れ易い。V はTaよりも平衡解離圧が高く300℃以下まで水素化物を生成しないが、500℃前後の温度域では触媒層として設けたPd或いはPd合金との拡散が進み易いと言う欠点があるからである。また、Ta合金とした場合にTaへ添加する材料としては、Taと固溶体を作る領域を持ち、水素との反応の生成熱が正で平衡解離圧を上げる作用をすると共に、水素の固溶量を抑える働きをするFe、Cr、Ni、Mo、W 、Au、Pt又はRuが望ましい。但し、NbやV 又はそれらの合金系であつても薄膜の製造方法や製造条件、成分調整、使用条件の変更、水素溶解量の制御等によつてはこのような欠点を解決できる可能性があるため、特にTa又はTa合金に限定するものではない。   The reason for selecting Ta and its alloy system from non-Pd materials as the alloy system is that Ta or Ta alloy is around 500 ° C, which is the assumed operating temperature range when used for membrane reformers compared to Nb and V-based materials This is because the equilibrium dissociation pressure of hydrogen is high even in the high temperature region, and it has the property that hydride is hardly generated under the working pressure. On the other hand, since the Nb system has a low equilibrium dissociation pressure, hydride is easily generated even at around 500 ° C. and is easily cracked. V has an equilibrium dissociation pressure higher than that of Ta and does not generate hydride up to 300 ° C or less. However, V has a drawback that diffusion with Pd or Pd alloy provided as a catalyst layer easily proceeds in the temperature range of around 500 ° C. is there. In addition, when Ta alloy is used, the material to be added to Ta has a region that forms a solid solution with Ta, and the reaction heat with hydrogen is positive and the action of raising the equilibrium dissociation pressure is increased. Fe, Cr, Ni, Mo, W 2, Au, Pt, or Ru is preferable because it works to suppress the above. However, even in the case of Nb, V or their alloys, there is a possibility that such disadvantages can be solved by the thin film production method, production conditions, component adjustment, change of use conditions, control of hydrogen dissolution amount, etc. Therefore, it is not particularly limited to Ta or Ta alloy.

ところで、前記スパッタリング法に限らず、薄膜化した場合には膜に内部応力が残留する。その主な原因は成膜の方法や条件にもよるが、成膜時に膜の内部に発生する内部欠陥や膜の結晶成長方位・成長様式、基板と膜材料の熱膨張差等が関与すると言われている。スパッタリング法により製造される薄膜も例外ではないが、スパッタリング法では成膜時のガスの圧力や温度、成膜速度などのパラメータを調節することにより膜が剥離しないように内部応力を容易に低減できる可能性がある。   By the way, not only the said sputtering method but internal stress remains in a film | membrane when it thins. The main cause depends on the method and conditions of film formation, but it is said that internal defects that occur inside the film during film formation, the crystal growth orientation and growth mode of the film, and the difference in thermal expansion between the substrate and film material are involved. It has been broken. Thin films produced by sputtering are no exception, but sputtering can easily reduce internal stress so that the film does not peel off by adjusting parameters such as gas pressure, temperature, and deposition rate during deposition. there is a possibility.

そこで、水素透過膜の薄膜化において、水素透過性能や膜の耐久性に影響がある内部応力に着目し、その低減や膜の安定成膜条件の探索を試みた。ここで、内部応力が水素透過性に影響する理由は、内部応力の原因が膜内部の欠陥や基板と膜の熱膨張差に起因する歪みによるものであり、欠陥は水素原子のトラップ因子として働き水素の移動量を減らし、また歪みは水素が拡散するための原子間の隙間を歪め水素を通りにくくしてしまうからである。また、内部応力が耐久性に影響する理由は、膜に内部応力があるとその大きさにより膜が基板7から剥離しやすくなるが、水素が膜G内に固溶される際に水素透過膜G自体は体積膨張を起こし大きな応力が追加されることになるため、大きな内部応力をもともと持つていると、より剥離しやすくなり耐久性が失われることになるからである。   Therefore, in reducing the thickness of the hydrogen permeable membrane, attention was focused on internal stress that affects the hydrogen permeation performance and the durability of the membrane, and attempts were made to reduce it and search for stable film formation conditions. Here, the reason why the internal stress affects the hydrogen permeability is that the internal stress is caused by a defect inside the film or a strain caused by a difference in thermal expansion between the substrate and the film, and the defect acts as a trapping factor for hydrogen atoms. This is because the amount of movement of hydrogen is reduced, and the strain distorts the gaps between atoms for hydrogen diffusion and makes it difficult for hydrogen to pass. The reason why the internal stress affects the durability is that when the film has an internal stress, the film easily peels off from the substrate 7 due to the magnitude of the internal stress, but when the hydrogen is dissolved in the film G, the hydrogen permeable film This is because G itself undergoes volume expansion and a large stress is added. Therefore, if G originally has a large internal stress, it becomes easier to peel off and the durability is lost.

本発明者等による調査の結果、Ta及びTa系合金膜において、製造された水素透過膜Gの全体としての内部応力の範囲が圧縮応力から引張応力にかけてともに絶対値で15×104 N/cm2 以内であれば基板7からの剥離が起こらないことを見いだした。また、剥離が起こらない成膜条件であつても、成膜圧力が高い場合は膜の結晶粒の間が大きく開いてしまうと共に、ピンホールの発生も起こりやすくなり、水素ガス以外の不純物ガスも通してしまうからである。このような剥離の原因となる大きな内部応力の発生や水素ガス以外の不純物ガスが通つてしまうピンホールや結晶粒界の隙間がないような膜ができる圧力条件が5×10-1Paから1×101 Paの範囲であつた。この理由により、水素透過膜の内部応力の範囲が圧縮応力から引張応力にかけてともに15×104 N/cm2 以内であり、かつ、膜の結晶粒界で水素だけを通過できるように隙間が小さい状態で維持されていることが必要である。 As a result of investigations by the present inventors, in the Ta and Ta-based alloy films, the range of the internal stress of the manufactured hydrogen permeable film G is 15 × 10 4 N / cm in absolute value from compressive stress to tensile stress. It was found that if it was within 2 , peeling from the substrate 7 did not occur. Even under film formation conditions where peeling does not occur, when the film formation pressure is high, the crystal grains of the film are greatly opened and pinholes are likely to occur, and impurity gases other than hydrogen gas are also generated. Because it will pass. The pressure condition for forming such a film that does not have pinholes or crystal grain boundary gaps through which large internal stresses that cause such delamination, impurity gases other than hydrogen gas pass, is 1 to 5 × 10 −1 Pa. It was in the range of × 10 1 Pa. For this reason, the internal stress range of the hydrogen permeable membrane is within 15 × 10 4 N / cm 2 from compressive stress to tensile stress, and the gap is small so that only hydrogen can pass through the crystal grain boundary of the membrane. It must be maintained in a state.

従つて、水素透過膜Gの層の内部応力の範囲が圧縮応力から引張応力にかけて±15×104 N/cm2 以内であり、かつ、1×101 Pa以下の圧力で成膜され、水素透過膜の結晶粒界で水素のみを通過できるように隙間が小さい所定隙間で維持されていることが望ましい。また、成膜時の成膜圧力を1×101 Pa以下として水素透過膜を成膜させれば、水素透過膜の結晶粒界で水素だけを通過できるように、つまり水素ガス以外の不純物ガスが通つてしまうピンホールや結晶粒界の隙間がないように結晶粒界の隙間が小さく維持される。そして、水素透過膜の成膜時の成膜圧力を5×10-1Paから1×101 Paの範囲に維持することにより、更に、水素透過膜の結晶粒界で水素だけを通過できるように結晶粒界の隙間が良好に小さく維持させることができる。 Accordingly, the range of internal stress of the layer of the hydrogen permeable membrane G is within ± 15 × 10 4 N / cm 2 from compressive stress to tensile stress, and is formed at a pressure of 1 × 10 1 Pa or less. It is desirable that the gap be maintained at a small gap so that only hydrogen can pass through the crystal grain boundaries of the permeable membrane. Further, if the hydrogen permeable film is formed at a film formation pressure of 1 × 10 1 Pa or less, only hydrogen can pass through the crystal grain boundary of the hydrogen permeable film, that is, an impurity gas other than hydrogen gas. The gaps between the crystal grain boundaries are kept small so that there are no pinholes or gaps between the crystal grain boundaries that pass through. Further, by maintaining the film formation pressure during the formation of the hydrogen permeable film in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa, it is possible to pass only hydrogen at the crystal grain boundary of the hydrogen permeable film. In addition, the gap between the crystal grain boundaries can be kept small.

これについて、図8に示す実験結果を参照して説明する。
図8に示すように成膜圧力が5×10-1Paから1×101 Paの範囲で成膜したTa膜Gの内部応力は±15×104 N/cm2 以内であり、膜全体の観察の結果、膜Gの剥離は見られなかつた。
This will be described with reference to the experimental results shown in FIG.
As shown in FIG. 8, the internal stress of the Ta film G formed at a film forming pressure in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa is within ± 15 × 10 4 N / cm 2 , and the entire film As a result of observation, peeling of the film G was not observed.

この±15×104 N/cm2 以内となる内部応力の範囲は、水素透過膜の成膜時の基板温度を−20℃から800℃の範囲に維持することによつて良好に達成される。 This range of internal stress within ± 15 × 10 4 N / cm 2 is satisfactorily achieved by maintaining the substrate temperature in the range of −20 ° C. to 800 ° C. during the formation of the hydrogen permeable film. .

すなわち、どのような成膜方法を用いても熱伝導に優れた基板7を用い強制的に冷却する等の制御をしていなければ、成膜中に時間の経過とともに基板7の温度が所定温度まで上昇し、時間とともに膜の構造なども変化して内部応力の発生原因となるが、一般に内部応力は成膜時の基板温度を高くすると低減される傾向がある。これは、一般に基板温度の上昇により、膜材料と基板材料の熱膨張率の違いによる熱膨張量の差が低減されるからである。但し、温度が高すぎる場合は逆に熱膨張量の大きさの違いから、内部応力が大きくなりすぎ剥離してしまうこともある。また、温度が低い場合にはTa膜は脆化しもろくなる。   In other words, if the film 7 is not controlled to be forcedly cooled using the substrate 7 having excellent heat conduction regardless of the film formation method, the temperature of the substrate 7 is increased to a predetermined temperature as time passes. However, the internal stress tends to be reduced when the substrate temperature at the time of film formation is increased. This is because the difference in thermal expansion due to the difference in thermal expansion coefficient between the film material and the substrate material is generally reduced as the substrate temperature rises. However, if the temperature is too high, the internal stress may be excessively increased due to the difference in the amount of thermal expansion. When the temperature is low, the Ta film becomes brittle and brittle.

従つて、基板温度には最適値があり、Ta又はTa合金を膜材料とする場合では、水素透過膜の成膜時の基板7の温度を−20℃から800℃の範囲に維持することが最適である。   Therefore, there is an optimum value for the substrate temperature, and when the film material is Ta or Ta alloy, the temperature of the substrate 7 at the time of forming the hydrogen permeable film can be maintained in the range of -20 ° C to 800 ° C. Is optimal.

更に、±15×104 N/cm2 以内となる内部応力の範囲は、水素透過膜Gの成膜時の成膜速度を、0.0001μm /秒から0.01μm /秒の範囲に維持することによつて良好に達成される。 Further, the range of the internal stress within ± 15 × 10 4 N / cm 2 maintains the film formation rate during the formation of the hydrogen permeable film G within the range of 0.0001 μm / second to 0.01 μm / second. Can be achieved well.

すなわち、薄膜の成長速度により膜G内に発生する欠陥の量が異なり、これによつて内部応力が変化する。そして、成膜速度が遅い場合には内部応力も小さくなるが工業的には成り立たなくなるので、0.0001μm /秒以上が必要であり、成膜速度が早い場合には内部応力が大きくなり剥離が起こるため、上限を0.01μm /秒とした。つまり、成膜速度が低い場合には、成膜中に膜に衝突する原子の数が少なく、衝突により発生する熱エネルギーや単位体積当たりの欠陥密度が少ないため、比較的良質な膜ができるが、成膜速度が高い場合には、成膜中に膜に衝突する原子の数が多くなり、衝突により発生する熱エネルギーや単位体積当たりの欠陥密度が高くなるため、基板7との熱膨張差や欠陥量の影響も大きくなつて内部応力が高まり剥離が起こつてしまう。   That is, the amount of defects generated in the film G varies depending on the growth rate of the thin film, and the internal stress changes accordingly. When the film formation rate is slow, the internal stress becomes small, but it cannot be industrially realized. Therefore, 0.0001 μm / second or more is necessary, and when the film formation rate is high, the internal stress increases and peeling occurs. Because of this, the upper limit was set to 0.01 μm / second. In other words, when the film formation rate is low, the number of atoms that collide with the film during film formation is small, and the thermal energy generated by the collision and the defect density per unit volume are small. When the film formation rate is high, the number of atoms that collide with the film during film formation increases, and the thermal energy generated by the collision and the defect density per unit volume increase. As the influence of the amount of defects increases, the internal stress increases and peeling occurs.

一方、水素透過膜Gとして使用する場合、水素の固溶によりTa膜の体積膨張が起こるため、膜Gに既に内部応力があり基板7とTa膜Gとの間に力が加わつている場合はどうしても剥離しやすくなり、十分な耐久性が確保できなくなる場合があるため、膜Gの内部応力は極力少ない方が好ましい。   On the other hand, when used as the hydrogen permeable film G, the volume expansion of the Ta film occurs due to the solid solution of hydrogen, and therefore, when the film G already has internal stress and a force is applied between the substrate 7 and the Ta film G. Since peeling easily occurs and sufficient durability may not be ensured, it is preferable that the internal stress of the film G is as small as possible.

しかし、Ta膜Gの場合、成膜条件によつて引張応力又は圧縮応力の内部応力が発生し、しかも成膜圧力に対して大きな引張応力からある圧力で急激に逆の大きな圧縮応力へと変化してしまうため、膜Gの内部応力が生じ無い条件で成膜することは非常に困難である。薄膜の内部応力は、薄い場合に大きな内部応力を示す一部物質は例外として、一般的には膜厚が薄い程小さくなると言われているが、水素透過膜Gの場合には基板7も水素を通す必要があるため必然的に多孔質の基板7しか使えず、膜Gを薄くして内部応力を抑えただけでは多孔質基板7の孔を埋めることができないため、膜Gには必ず数μm以上の厚さが必要になる。そして、膜Gが単層の膜であれば、膜が数μm以上の厚さになると内部応力も大きくなつてしまう。   However, in the case of the Ta film G, an internal stress such as a tensile stress or a compressive stress is generated depending on the film forming conditions, and a large tensile stress with respect to the film forming pressure is suddenly changed to a large compressive stress at a certain pressure. For this reason, it is very difficult to form a film under the condition that the internal stress of the film G does not occur. The internal stress of a thin film is generally said to be smaller as the film thickness is thinner, with the exception of some substances that show a larger internal stress when it is thin. Since it is necessary to pass only the porous substrate 7, it is inevitably possible to fill the pores of the porous substrate 7 only by reducing the internal stress by thinning the film G. A thickness of μm or more is required. And if the film | membrane G is a single layer film | membrane, when a film | membrane will be several micrometers or more in thickness, internal stress will also become large.

これに対し、薄膜では引張応力と圧縮応力の内部応力を交互に繰り返し成膜することによつて、応力をキャンセルして内部応力を低減できる。但し、膜Gの材質によつて内部応力の大きさは変わり、また引張応力と圧縮応力の内部応力の膜G1,G2を交互に積層することによつて内部応力を低減する際は、その厚さによつて効果が異なる。   On the other hand, in the thin film, by repeatedly forming the internal stress of the tensile stress and the compressive stress alternately, the stress can be canceled and the internal stress can be reduced. However, the magnitude of the internal stress varies depending on the material of the film G, and when the internal stress is reduced by alternately laminating the films G1, G2 of the internal stress of the tensile stress and the compressive stress, The effect varies depending on the situation.

本発明者等による調査では、Ta又はTa合金からなるTa系材料からなる膜Gの場合、圧縮応力の成膜条件と同等の引張応力の成膜条件で交互に成膜する手法を用いた場合の各1層当たりの膜の厚さは、0.1μm から2μm の範囲が有効であることが分かつた。   In the investigation by the present inventors, in the case of a film G made of Ta-based material made of Ta or Ta alloy, a method of alternately forming films under a tensile stress film forming condition equivalent to a compressive stress film forming condition is used. It has been found that the effective thickness of each layer is 0.1 μm to 2 μm.

その理由は、先ず膜厚が0.1μm より薄い場合は、積層回数が多くなり成膜に時間が掛かつてしまい工業的に成り立たなくなる。そして、積層により内部応力をキャンセルできる厚さは膜厚が5μm までであつた。膜Gの膜厚が5μm より厚い場合は逆の応力の膜を積層しても膜の応力をキャンセルする前に剥離などが起こるようになる。従つて、水素透過膜はできるだけ薄い方が良いことや多層にすることを考慮し膜厚の上限を2μm 以下として応力を相殺させることが好ましいが、膜厚を厚くしなければならないような場合は5μm までは成膜が可能である。   The reason for this is that when the film thickness is thinner than 0.1 μm, the number of laminations increases, and it takes time to form the film, which is not industrially feasible. The thickness by which internal stress can be canceled by the lamination was up to 5 μm. When the film G is thicker than 5 μm, even if films having opposite stresses are stacked, peeling or the like occurs before canceling the film stress. Therefore, it is preferable to offset the stress by setting the upper limit of the film thickness to 2 μm or less, considering that the hydrogen permeable film should be as thin as possible and having multiple layers. However, if the film thickness must be increased, Film formation is possible up to 5 μm.

従つて、水素透過膜Gが複数層G1,G2からなる場合には、水素透過膜Gの内部応力の低減のために圧縮応力の成膜条件と引張応力の成膜条件とを交互に与えて成膜すると共に、各層G1,G2の厚さが0.1μm から2μm の範囲に設定されていることが望ましい。   Therefore, when the hydrogen permeable film G is composed of a plurality of layers G1 and G2, in order to reduce the internal stress of the hydrogen permeable film G, the film formation conditions for compressive stress and the film formation conditions for tensile stress are applied alternately. It is desirable that the thickness of each layer G1, G2 is set in the range of 0.1 μm to 2 μm while the film is formed.

本発明によれば、スパッタリング法により製造されるTa及びTa系合金の水素透過膜Gにおいて、成膜時の圧力や温度、成膜速度によつて内部応力や結晶構造の制御を行うことができ、内部応力による破壊やピンホール発生を防止するとともに、膜Gに内部応力がある成膜条件でもその応力と逆の応力条件での成膜を繰り返すことで、内部応力を低減した水素透過膜Gを作成することができる。よつて、PdやPd系合金に替わる高性能な水素透過膜Gを提供することが可能になる。   According to the present invention, in a hydrogen permeable film G of Ta and Ta-based alloy produced by sputtering, internal stress and crystal structure can be controlled by the pressure, temperature, and film formation speed during film formation. The hydrogen permeable membrane G with reduced internal stress by preventing the internal stress from breaking and generating pinholes and repeating the film formation under the stress condition opposite to the stress even under the film G having the internal stress. Can be created. Therefore, it is possible to provide a high-performance hydrogen permeable membrane G that replaces Pd and Pd-based alloys.

(実施例1)
図6(4百倍の顕微鏡写真)に示す圧延した多孔質基板7の一側表面上に図2に示すスパッタ装置を用い室温にて、成膜圧力(ガス圧力)が5×10-1Paから1×101 Paの範囲としてTa膜Gの成膜を行い、膜Gの剥離状況及び膜Gの表面状態を調査した。基板7上の水素透過膜Gを走査電子顕微鏡(SEM)により2千倍でその表面を観察した結果を図7に示す。同図から判るように、上記成膜条件の範囲で成膜した膜Gの表面は緻密であり、孔や結晶粒界に大きな隙間は見られなかつた。また、図8に示すように成膜圧力が5×10-1Paから1×101 Paの範囲で成膜したTa膜の内部応力は±15×104 N/cm2 以内であり、膜の剥離は見られなかつた。図9は、水素透過膜G側から見た水素透過膜組立体Mの全体観察写真である。一方、走査電子顕微鏡(SEM)により5万倍で膜の表面を観察した結果、上記成膜条件の範囲で成膜した膜の表面は図11のように緻密であり粒界に大きな隙間は見られなかつた。さらに、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行い、メンブレンリフォーマーの使用においてもHeのリークが全く無いことを確認している。従つて、メンブレンリフォーマーの使用において不純ガスの通過は防止できる。
Example 1
On the one side surface of the rolled porous substrate 7 shown in FIG. 6 (microphotograph at 4 × magnification), the film forming pressure (gas pressure) is 5 × 10 −1 Pa at room temperature using the sputtering apparatus shown in FIG. The Ta film G was formed in the range of 1 × 10 1 Pa, and the peeling state of the film G and the surface state of the film G were investigated. FIG. 7 shows the result of observing the surface of the hydrogen permeable film G on the substrate 7 at a magnification of 2,000 with a scanning electron microscope (SEM). As can be seen from the figure, the surface of the film G formed within the range of the film forming conditions was dense, and no large gaps were observed in the holes and crystal grain boundaries. Further, as shown in FIG. 8, the internal stress of the Ta film formed in the film forming pressure range of 5 × 10 −1 Pa to 1 × 10 1 Pa is within ± 15 × 10 4 N / cm 2. No peeling was observed. FIG. 9 is an overall observation photograph of the hydrogen permeable membrane assembly M viewed from the hydrogen permeable membrane G side. On the other hand, as a result of observing the surface of the film at a magnification of 50,000 times with a scanning electron microscope (SEM), the surface of the film formed in the range of the above film forming conditions was dense as shown in FIG. It was not done. Furthermore, the He leak test of the film G is performed at room temperature using the leak test apparatus shown in FIG. 13, and it is confirmed that there is no He leak even when the membrane reformer is used. Therefore, it is possible to prevent the passage of impure gas when using the membrane reformer.

このリーク試験装置は、一対のHe導入用配管20,21の間にOリング22,23を介して基板7付き水素透過膜G(水素透過膜組立体M)を気密に挟み、水素透過膜G側のHe導入用配管20からHeガスを所定圧で供給し、基板7側のHe導入用配管20から通過・流出するHeガスをHeリークディテクター24に導いて検出するものである。   In this leak test apparatus, a hydrogen permeable membrane G with a substrate 7 (hydrogen permeable membrane assembly M) is hermetically sandwiched between a pair of He introduction pipes 20 and 21 via O-rings 22 and 23, and the hydrogen permeable membrane G He gas is supplied at a predetermined pressure from the He introduction pipe 20 on the side, and the He gas passing and flowing out from the He introduction pipe 20 on the substrate 7 side is guided to the He leak detector 24 for detection.

(比較例1)
図4(4百倍の顕微鏡写真)に示す圧延していない凹凸面の多孔質基板上にスパッタ装置を用いて室温にて、成膜圧力が5×10-1Paから1×101 Paの範囲でTa膜の成膜を行い、膜の剥離状況及び膜の表面状態を調査した。走査電子顕微鏡(SEM)により2千倍で膜の表面を観察したところ、図5に示すように、表面には大きな凹凸があり、膜には多くの埋まつていない孔が見られた。また、図13に示すリーク試験装置を用いて室温で膜のHeリーク試験を行つた結果、リークがあることが確認できた。
(Comparative Example 1)
The film forming pressure is in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa at room temperature using a sputtering apparatus on a porous substrate having an uneven surface that is not rolled as shown in FIG. Then, a Ta film was formed, and the peeling state of the film and the surface state of the film were investigated. When the surface of the film was observed at a magnification of 2,000 with a scanning electron microscope (SEM), as shown in FIG. 5, the surface had large irregularities, and many unfilled holes were observed in the film. Further, as a result of conducting a He leak test of the film at room temperature using the leak test apparatus shown in FIG. 13, it was confirmed that there was a leak.

(比較例2)
実施例1の圧延した多孔質基板7上にスパッタ装置を用い室温にて、成膜圧力が4×10-1Pa以下でTa膜の成膜を行い、膜の内部応力と膜Gの剥離状況及び膜の表面状態を調査した。成膜圧力が4×10-1Pa以下で成膜したTa膜は、図11のSEMによる5万倍での観察結果のように膜表面は緻密であり結晶粒界に大きな隙間は見られなかつたが、図8に示すように内部応力(絶対値)は約15×104 N/cm2 を超え、また、図10に示すものと同様の膜全体の観察の結果、膜の部分的剥離や全体的な剥離が見られ、Heリーク試験を行うことができなかつた。
(Comparative Example 2)
A Ta film was formed on the rolled porous substrate 7 of Example 1 at room temperature using a sputtering apparatus at a film forming pressure of 4 × 10 −1 Pa or less. And the surface condition of the membrane was investigated. The Ta film formed at a film forming pressure of 4 × 10 −1 Pa or less has a dense film surface and no large gap at the crystal grain boundary as shown in the observation result by SEM in FIG. However, as shown in FIG. 8, the internal stress (absolute value) exceeds about 15 × 10 4 N / cm 2 , and as a result of observation of the entire film similar to that shown in FIG. As a result, the He leak test could not be performed.

(比較例3)
実施例1の圧延した多孔質基板7上にスパッタ装置を用い室温にて、成膜圧力が1×101 Paから5×101 Paの範囲でTa膜Gの成膜を行い、膜の内部応力と膜の剥離状況及び膜の表面状態を調査した。図8に示すように成膜圧力が1×101 Pa超から5×101 Paの範囲で成膜したTa膜Gは、内部応力(絶対値)が約2×104 N/cm2 から約0.3×104 N/cm2 と小さく良好な値を示し、図9に示すものと同様の膜Gの全体の表面観察からは剥離は見られなかつた。しかし、図12に示すように膜Gの表面の5万倍でのSEM観察では、結晶粒界に大きな隙間が見られ、水素以外のガスが通り抜けできる可能性があることが分かつた。さらに、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行つた結果、大きなリークが確認された。
(Comparative Example 3)
A Ta film G was formed on the rolled porous substrate 7 of Example 1 at room temperature using a sputtering apparatus at a film formation pressure in the range of 1 × 10 1 Pa to 5 × 10 1 Pa. The stress, film peeling condition and film surface condition were investigated. As shown in FIG. 8, the Ta film G formed at a film forming pressure in the range of more than 1 × 10 1 Pa to 5 × 10 1 Pa has an internal stress (absolute value) of about 2 × 10 4 N / cm 2. A small and good value of about 0.3 × 10 4 N / cm 2 was observed, and no peeling was observed from the entire surface observation of the film G similar to that shown in FIG. However, as shown in FIG. 12, in SEM observation at a magnification of 50,000 times the surface of the film G, it was found that a large gap was observed at the crystal grain boundary, and gas other than hydrogen could pass through. Furthermore, as a result of conducting a He leak test of the film G at room temperature using the leak test apparatus shown in FIG. 13, a large leak was confirmed.

(実施例2)
実施例1の圧延した多孔質基板7上にスパッタ装置を用い成膜時の基板7の温度を800℃とし、成膜圧力を5×10-1PaとしてTa膜Gの成膜を行い、膜Gの内部応力と膜Gの剥離状況及び膜の表面状態を調査した。この結果、膜Gの内部応力は約−15×104 N/cm2 となり、図9に示すものと同様の膜Gの全体観察写真からは膜Gの剥離は見られなかつた。一方、SEMにより5万倍で膜Gの表面を観察した結果、膜Gの表面は図11のように緻密であり結晶粒界に大きな隙間は見られなかつた。また、図13に示すリーク試験装置を用いて室温で膜のHeリーク試験を行つた結果、リークが無いことが確認できた。
(Example 2)
A Ta film G is formed on the rolled porous substrate 7 of Example 1 using a sputtering apparatus, the temperature of the substrate 7 during film formation is set to 800 ° C., and the film formation pressure is set to 5 × 10 −1 Pa. The internal stress of G, the peeling state of the film G, and the surface state of the film were investigated. As a result, the internal stress of the film G was about −15 × 10 4 N / cm 2 , and no peeling of the film G was observed from the same overall observation photograph of the film G as shown in FIG. On the other hand, as a result of observing the surface of the film G by SEM at a magnification of 50,000 times, the surface of the film G was dense as shown in FIG. 11, and no large gap was observed at the crystal grain boundary. Moreover, as a result of conducting a He leak test of the film at room temperature using the leak test apparatus shown in FIG. 13, it was confirmed that there was no leak.

(比較例4)
実施例1の圧延した多孔質基板7上にスパッタ装置を用い成膜時の基板温度を900℃とし、成膜圧力を5×10-1PaとしてTa膜の成膜を行い、膜の内部応力と膜の剥離状況及び膜の表面状態を調査した。この結果、膜の内部応力は約13×104 N/cm2 となり、図9に示すものと同様の膜の全体観察写真からは膜の剥離は見られなかつた。一方、SEMにより5万倍で膜の表面を観察した結果、膜の表面は図11と同様に緻密であり粒界に大きな隙間は見られなかつたが、部分的にクラックが生じていた。また、図13に示すリーク試験装置を用いて室温で膜のHeリーク試験を行つた結果、Heのリークが発生した。
(Comparative Example 4)
A Ta film was formed on the rolled porous substrate 7 of Example 1 using a sputtering apparatus at a substrate temperature of 900 ° C. and a film forming pressure of 5 × 10 −1 Pa. The film peeling condition and the film surface condition were investigated. As a result, the internal stress of the film was about 13 × 10 4 N / cm 2 , and the film was not peeled from the entire observation photograph of the film similar to that shown in FIG. On the other hand, as a result of observing the surface of the film at 50,000 times with SEM, the surface of the film was dense as in FIG. 11, and no large gap was seen at the grain boundary, but cracks were partially generated. Further, as a result of conducting a He leak test of the film at room temperature using the leak test apparatus shown in FIG. 13, a He leak occurred.

(比較例5)
実施例1の圧延した多孔質基板上にスパッタ装置を用い成膜時の基板温度を−40℃とし、成膜圧力を5×10-1PaとしてTa膜Gの成膜を行い、膜Gの内部応力と膜Gの剥離状況及び膜Gの表面状態を調査した。この結果、膜の内部応力は約7×104 N/cm2 となり、図9に示すものと同様の膜の全体観察写真からは膜の剥離は見られなかつた。一方、SEMにより5万倍で膜Gの表面を観察した結果、膜Gの表面は図11のように緻密であり粒界に大きな隙間は見られなかつたが、部分的にクラックが生じていた。クラックの原因はTaの膜Gの低温における脆化のためと思われる。また、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行つた結果、Heのリークが発生した。
(Comparative Example 5)
The Ta film G was formed on the rolled porous substrate of Example 1 using the sputtering apparatus, the substrate temperature during film formation was −40 ° C., the film formation pressure was 5 × 10 −1 Pa, and the film G The internal stress, the peeling state of the film G, and the surface state of the film G were investigated. As a result, the internal stress of the film was about 7 × 10 4 N / cm 2 , and the film was not peeled from the entire observation photograph of the film similar to that shown in FIG. On the other hand, as a result of observing the surface of the film G by SEM at a magnification of 50,000 times, the surface of the film G was dense as shown in FIG. 11 and no large gap was seen at the grain boundary, but a crack was partially generated. . The cause of the crack seems to be due to embrittlement of the Ta film G at a low temperature. Further, as a result of conducting a He leak test of the film G at room temperature using the leak test apparatus shown in FIG. 13, a leak of He occurred.

(実施例3)
実施例1の圧延した多孔質基板7上にスパッタ装置を用い、室温にて成膜圧力5×10-1Pa、成膜速度0.01μm /秒としてTa膜Gの成膜を行い、膜Gの内部応力と膜Gの剥離状況及び膜の表面状態を調査した。その結果、膜Gの内部応力は約−14.5×104 N/cm2 となり、図9に示すものと同様の膜の全体観察写真からは膜Gの剥離は見られなかつた。一方、SEMにより5万倍で膜Gの表面を観察した結果、膜Gの表面は図11のように緻密であり結晶粒界に大きな隙間は見られなかつた。また、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行つた結果、リークが無いことが確認できた。
(Example 3)
A Ta film G was formed on the rolled porous substrate 7 of Example 1 at room temperature with a film forming pressure of 5 × 10 −1 Pa and a film forming rate of 0.01 μm / second. The internal stress, the peeling state of the film G, and the surface state of the film were investigated. As a result, the internal stress of the film G was about -14.5 × 10 4 N / cm 2 , and no peeling of the film G was observed from the whole film observation photograph similar to that shown in FIG. On the other hand, as a result of observing the surface of the film G by SEM at a magnification of 50,000 times, the surface of the film G was dense as shown in FIG. 11, and no large gap was observed at the crystal grain boundary. Moreover, as a result of conducting a He leak test of the film G at room temperature using the leak test apparatus shown in FIG. 13, it was confirmed that there was no leak.

(比較例6)
実施例1の圧延した多孔質基板上にスパッタ装置を用い、室温にて成膜圧力5×10-1Pa、成膜速度0.02μm /秒でTa膜の成膜を行い、膜の内部応力と膜の剥離状況及び膜の表面状態を調査した。その結果、膜の内部応力は約23×104 N/cm2 となり、膜の全体観察からは膜の剥離が起こり、Heリーク試験はできなかつた。図10に膜の全体観察写真を示す。
(Comparative Example 6)
A Ta film was formed on the rolled porous substrate of Example 1 at room temperature at a film forming pressure of 5 × 10 −1 Pa and a film forming speed of 0.02 μm / sec. The film peeling condition and the film surface condition were investigated. As a result, the internal stress of the film was about 23 × 10 4 N / cm 2 , and the film was peeled from the entire observation of the film, and the He leak test could not be performed. FIG. 10 shows an overall observation photograph of the film.

(実施例4)
実施例1の圧延した多孔質基板7上に、スパッタ装置を用い、室温にて成膜圧力2×100 Paと3×100 Paで各1μm の厚さでTa膜Gの成膜を交互に行い、全体で20μmの厚さとして膜Gの内部応力と膜Gの剥離状況及び膜Gの表面状態を調査した。この結果、膜Gの内部応力は引張応力側に約1.4×104 N/cm2 となり、図9に示すものと同様の膜の全体観察写真からは膜Gの剥離は見られなかつた。一方、SEMにより5万倍で膜Gの表面を観察した結果、膜Gの表面は図11のように緻密であり結晶粒界に大きな隙間は見られなかつた。また、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行つた結果、リークが無いことが確認できた。
Example 4
On the rolled porous substrate 7 of Example 1, using a sputtering apparatus, Ta films G were alternately formed at a room temperature of 2 × 10 0 Pa and 3 × 10 0 Pa at a thickness of 1 μm each. The internal stress of the film G, the peeling state of the film G, and the surface state of the film G were investigated with a total thickness of 20 μm. As a result, the internal stress of the film G was about 1.4 × 10 4 N / cm 2 on the tensile stress side, and no peeling of the film G was observed from the same overall observation photograph of the film as shown in FIG. . On the other hand, as a result of observing the surface of the film G by SEM at a magnification of 50,000 times, the surface of the film G was dense as shown in FIG. 11, and no large gap was observed at the crystal grain boundary. Moreover, as a result of conducting a He leak test of the film G at room temperature using the leak test apparatus shown in FIG. 13, it was confirmed that there was no leak.

(参考例)
実施例1の圧延した多孔質基板上にスパッタ装置を用い、室温にて成膜圧力2×100 Paと3×100 Paで各5μmの厚さでTa膜Gの成膜を交互に行い、全体で20μmの厚さとして膜Gの内部応力と膜Gの剥離状況及び膜Gの表面状態を調査した。この結果、膜Gの内部応力は引張応力側に約10×104 N/cm2 となり、図9に示すものと同様の膜の全体観察写真からは膜Gの剥離は見られなかつた。一方、SEMにより5万倍で膜Gの表面を観察した結果、膜Gの表面は図11のように緻密であり結晶粒界に大きな隙間は見られなかつた。また、図13に示すリーク試験装置を用いて室温で膜GのHeリーク試験を行つた結果、リークが無いことが確認できた。
(Reference example)
Using a sputtering apparatus on the rolled porous substrate of Example 1, Ta films G were alternately formed at a film forming pressure of 2 × 10 0 Pa and 3 × 10 0 Pa at a thickness of 5 μm at room temperature. Then, the internal stress of the film G, the peeling state of the film G, and the surface state of the film G were investigated with a total thickness of 20 μm. As a result, the internal stress of the film G was about 10 × 10 4 N / cm 2 on the tensile stress side, and peeling of the film G was not observed from the same overall observation photograph of the film as shown in FIG. On the other hand, as a result of observing the surface of the film G by SEM at a magnification of 50,000 times, the surface of the film G was dense as shown in FIG. 11, and no large gap was observed at the crystal grain boundary. Moreover, as a result of conducting a He leak test of the film G at room temperature using the leak test apparatus shown in FIG. 13, it was confirmed that there was no leak.

(比較例7)
実施例1の圧延した多孔質基板上にスパッタ装置を用い、室温にて成膜圧力2×100 Paと3×100 Paで各10μm の厚さでTa膜の成膜を交互に行い、全体で20μmの厚さとして膜の内部応力と膜の剥離状況及び膜の表面状態を調査した。この結果、2層目に成膜した膜が部分的に剥離した。
(Comparative Example 7)
Using a sputtering apparatus on the rolled porous substrate of Example 1, Ta films were alternately formed at a room temperature of 2 × 10 0 Pa and 3 × 10 0 Pa at a thickness of 10 μm, The internal stress of the film, the state of peeling of the film and the surface state of the film were investigated with a total thickness of 20 μm. As a result, the film formed as the second layer was partially peeled off.

多孔質基板とその上に成膜される水素透過膜の構造を示す概略図Schematic showing the structure of the porous substrate and the hydrogen permeable membrane formed on it スパッタリング装置の概略を示す図The figure which shows the outline of sputtering equipment 水素透過膜による水素透過機構の説明図Explanatory drawing of hydrogen permeation mechanism by hydrogen permeable membrane 未処理の多孔質基板の凹凸の様子を示す写真Photograph showing the irregularities of an untreated porous substrate 凹凸のある未処理の多孔質基板上に成膜された膜の様子を示す顕微鏡写真Photomicrograph showing the state of a film formed on an untreated porous substrate with irregularities 圧延処理後の多孔質基板の凹凸の様子を示す写真Photograph showing the irregularities of the porous substrate after rolling 圧延後の多孔質基板上に成膜された水素透過膜の表面を示す顕微鏡写真Photomicrograph showing the surface of a hydrogen permeable membrane formed on a rolled porous substrate 成膜時のガス圧力とTa膜の内部応力との関係を示す図Diagram showing the relationship between gas pressure during film formation and internal stress of Ta film 成膜後に剥離のない様子を示す水素透過膜の全体観察写真Whole observation photograph of hydrogen permeable membrane showing no peeling after film formation 成膜後に剥離が起こつた様子を示す水素透過膜の全体観察写真Photo of the entire hydrogen permeable membrane showing peeling after film formation 結晶粒界に隙間がない水素透過膜の表面を示すSEM写真SEM photograph showing the surface of a hydrogen permeable membrane with no gaps in crystal grain boundaries 結晶粒界に大きな隙間がある水素透過膜の表面を示すSEM写真SEM photograph showing the surface of a hydrogen permeable membrane with large gaps in the grain boundaries Heリーク試験を行うための装置の概略を示す図The figure which shows the outline of the apparatus for performing a He leak test

符号の説明Explanation of symbols

1:チャンバー、7:多孔質基板、G:水素透過膜、G1,G2:層、M:水素透過膜組立体。   1: chamber, 7: porous substrate, G: hydrogen permeable membrane, G1, G2: layer, M: hydrogen permeable membrane assembly.

Claims (10)

水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜において、
圧延によつて表面を平坦にした多孔質基板(7)の該表面上に、水素透過膜(G)が形成されていることを特徴とする水素透過膜。
In a hydrogen permeable membrane that is formed on a porous substrate through which hydrogen gas easily passes, allows hydrogen in the reformed gas containing impurities in contact with one surface, and selectively releases from the other surface,
A hydrogen permeable membrane (G) formed on the surface of a porous substrate (7) whose surface is flattened by rolling.
水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜において、
Ta又はTa合金を材料としてスパッタリング法によつて多孔質基板(7)の該表面上に成膜した単層又は複数層の水素透過膜(G)を有し、
水素透過膜(G)の層の内部応力の範囲が圧縮応力から引張応力にかけて±15×104 N/cm2 以内であり、かつ、1×101 Pa以下の圧力で成膜され、水素透過膜(G)の結晶粒界で水素のみを通過できるように結晶粒界の隙間が小さく維持されていることを特徴とする水素透過膜。
In a hydrogen permeable membrane that is formed on a porous substrate through which hydrogen gas easily passes, allows hydrogen in the reformed gas containing impurities in contact with one surface, and selectively releases from the other surface,
Having a single layer or multiple layers of hydrogen permeable membrane (G) formed on the surface of the porous substrate (7) by sputtering using Ta or Ta alloy as a material;
The range of internal stress of the layer of the hydrogen permeable membrane (G) is within ± 15 × 10 4 N / cm 2 from compressive stress to tensile stress, and is formed at a pressure of 1 × 10 1 Pa or less, and hydrogen permeation A hydrogen permeable membrane characterized in that a gap between crystal grain boundaries is kept small so that only hydrogen can pass through the crystal grain boundaries of the film (G).
水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜の製造方法において、
圧延によつて多孔質基板(7)の表面を平坦にし、多孔質基板(7)の該表面上に水素透過膜(G)を形成することを特徴とする水素透過膜の製造方法。
In a method for producing a hydrogen permeable membrane that is formed on a porous substrate through which hydrogen gas easily passes and allows hydrogen in a reformed gas containing impurities in contact with one surface to permeate and selectively release from the other surface,
A method for producing a hydrogen permeable membrane, characterized in that the surface of the porous substrate (7) is flattened by rolling and a hydrogen permeable membrane (G) is formed on the surface of the porous substrate (7).
水素ガスを容易に通過させる多孔質基板上に形成され、一側表面に接する不純物を含む改質ガス中の水素を透過させ、他側表面から選択的に放出させる水素透過膜の製造方法において、
水素透過膜(G)をスパッタリング法によつて多孔質基板(7)の該表面上に成膜する工程を有し、
水素透過膜(G)の層の内部応力の範囲が圧縮応力から引張応力にかけて±15×104 N/cm2 以内であり、かつ、成膜時の成膜圧力を1×101 Pa以下として成膜され、水素透過膜(G)の結晶粒界で水素だけを通過できるように結晶粒界の隙間が小さく維持されていることを特徴とする水素透過膜の製造方法。
In a method for producing a hydrogen permeable membrane that is formed on a porous substrate through which hydrogen gas easily passes and allows hydrogen in a reformed gas containing impurities in contact with one surface to permeate and selectively release from the other surface,
Forming a hydrogen permeable film (G) on the surface of the porous substrate (7) by sputtering;
The range of internal stress of the layer of the hydrogen permeable membrane (G) is within ± 15 × 10 4 N / cm 2 from compressive stress to tensile stress, and the film formation pressure during film formation is 1 × 10 1 Pa or less. A method for producing a hydrogen permeable membrane, characterized in that a gap between the crystal grain boundaries is kept small so that only hydrogen can pass through the crystal grain boundaries of the hydrogen permeable membrane (G).
前記成膜する工程の前に、多孔質基板(7)の表面を圧延によつて平坦にする工程を有することを特徴とする請求項4の水素透過膜の製造方法。 The method for producing a hydrogen permeable membrane according to claim 4, further comprising a step of flattening the surface of the porous substrate (7) by rolling before the step of forming the film. 前記水素透過膜(G)が、Ta又はTa合金を材料としていることを特徴とする請求項3,4又は5の水素透過膜の製造方法。 The method for producing a hydrogen permeable membrane according to claim 3, 4 or 5, wherein the hydrogen permeable membrane (G) is made of Ta or a Ta alloy. 前記内部応力の範囲が、水素透過膜(G)の成膜時の成膜圧力を5×10-1Paから1×101 Paの範囲に維持することによつて達成されていることを特徴とする請求項4,5又は6の水素透過膜の製造方法。 The range of the internal stress is achieved by maintaining the film formation pressure at the time of forming the hydrogen permeable film (G) in the range of 5 × 10 −1 Pa to 1 × 10 1 Pa. The method for producing a hydrogen permeable membrane according to claim 4, 5 or 6. 前記内部応力の範囲が、水素透過膜(G)の成膜時の多孔質基板(7)の温度を−20℃から800℃の範囲に維持することによつて達成されていることを特徴とする請求項4,5,6又は7の水素透過膜の製造方法。 The range of the internal stress is achieved by maintaining the temperature of the porous substrate (7) during the formation of the hydrogen permeable membrane (G) in the range of −20 ° C. to 800 ° C. The method for producing a hydrogen permeable membrane according to claim 4, 5, 6, or 7. 前記内部応力の範囲が、水素透過膜(G)の成膜時の成膜速度を0.0001μm /秒から0.01μm /秒の範囲に維持することによつて達成されていることを特徴とする請求項4,5,6,7又は8の水素透過膜の製造方法。 The range of the internal stress is achieved by maintaining the film formation rate during the film formation of the hydrogen permeable membrane (G) in the range of 0.0001 μm / second to 0.01 μm / second. A method for producing a hydrogen permeable membrane according to claim 4, 5, 6, 7 or 8. 前記水素透過膜(G)が複数層(G1,G2)からなり、水素透過膜(G)の内部応力の低減のために圧縮応力の成膜条件と引張応力の成膜条件とを交互に与えて各層(G1,G2)を成膜すると共に、各層(G1,G2)の厚さが0.1μm から2μm の範囲に設定されていることを特徴とする請求項3,4,5,6,7,8又は9の水素透過膜の製造方法。 The hydrogen permeable membrane (G) is composed of a plurality of layers (G1, G2), and a compressive stress film forming condition and a tensile stress film forming condition are alternately applied to reduce the internal stress of the hydrogen permeable film (G). The layers (G1, G2) are formed, and the thickness of each layer (G1, G2) is set in the range of 0.1 μm to 2 μm. A method for producing a 7, 8, or 9 hydrogen permeable membrane.
JP2004276715A 2004-09-24 2004-09-24 Hydrogen-permeable film and its producing method Pending JP2006088037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276715A JP2006088037A (en) 2004-09-24 2004-09-24 Hydrogen-permeable film and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276715A JP2006088037A (en) 2004-09-24 2004-09-24 Hydrogen-permeable film and its producing method

Publications (1)

Publication Number Publication Date
JP2006088037A true JP2006088037A (en) 2006-04-06

Family

ID=36229514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276715A Pending JP2006088037A (en) 2004-09-24 2004-09-24 Hydrogen-permeable film and its producing method

Country Status (1)

Country Link
JP (1) JP2006088037A (en)

Similar Documents

Publication Publication Date Title
US7468093B2 (en) Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
EP2596851B1 (en) Separation membrane, and apparatus including the separation membrane
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
KR20090092532A (en) Metal Composite Membrane for Hydrogen Separation and Preparation Method thereof
JPH11286785A (en) Hydrogen-permeable membrane and its preparation
US9260304B2 (en) Hydrogen separation device and method for operating same
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JP3645088B2 (en) Hydrogen permeable membrane and method for producing the same
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2006088037A (en) Hydrogen-permeable film and its producing method
JP2004074070A (en) Hydrogen-permeable membrane
JP5463557B2 (en) Dual-phase hydrogen permeable alloy and method for producing the same
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
US10105657B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane
JP2004174373A (en) Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method
JP4178143B2 (en) Hydrogen separation membrane and method for producing the same
JP7388627B2 (en) Hydrogen permeation device and method for manufacturing hydrogen permeation device
JP2006272167A (en) Hydrogen permeable membrane
JP4018030B2 (en) Hydrogen permeable membrane and manufacturing method thereof
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP2005279484A (en) Hydrogen permeable membrane and its manufacturing method
Saini An investigation of the cause of leak formation in palladium composite membranes
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance