JP2006086006A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006086006A
JP2006086006A JP2004269215A JP2004269215A JP2006086006A JP 2006086006 A JP2006086006 A JP 2006086006A JP 2004269215 A JP2004269215 A JP 2004269215A JP 2004269215 A JP2004269215 A JP 2004269215A JP 2006086006 A JP2006086006 A JP 2006086006A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
cell system
state
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269215A
Other languages
Japanese (ja)
Inventor
Munemasa Ishikawa
統▲将▼ 石河
Hideaki Mizuno
秀昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004269215A priority Critical patent/JP2006086006A/en
Priority to PCT/IB2005/002656 priority patent/WO2006030269A2/en
Publication of JP2006086006A publication Critical patent/JP2006086006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control hydrogen gas supply pressure to a fuel cell according to a state of a fuel cell system. <P>SOLUTION: In the fuel cell system having a hydrogen pressure control valve 6 in a hydrogen gas supply passage 21, operation characteristics of the hydrogen pressure control valve 6 are changed according to the state of the fuel cell system. For example, when the state of the fuel cell system is in a foreign matter deposition state in the hydrogen gas passage 21 and the foreign matter is exhausted, the secondary side discharge pressure of the hydrogen pressure control valve 6 is made high, and in a hydrogen gas leakage state from the hydrogen gas supply passage 21, the secondary side discharge pressure of the hydrogen pressure control valve 6 is made low. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素と酸素とから電気を発生する燃料電池システムに関し、特に、燃料(水素)ガス供給系の改良に関する。   The present invention relates to a fuel cell system that generates electricity from hydrogen and oxygen, and more particularly to an improvement in a fuel (hydrogen) gas supply system.

燃料電池は燃料ガスとしての水素ガスと酸化ガスとしての空気(酸素)とを電気化学反応させ、その過程で生成する電気を外部に取り出している。燃料電池は電解質膜の両側に水素ガスが供給される燃料極(アノード)と空気が供給される空気極(カソード)とを形成したセルを所要数積層して構成される。例えば、車載に好適な高分子電解質型燃料電池(PEFC)では、電解質膜として高分子のイオン交換膜を使用している。このイオン交換膜は膜厚が数十ミクロンと薄いので破損を防止するために、燃料極側の水素圧力と空気極側の空気圧力との圧力差(極間差圧)が過大にならないようにする必要がある。   In a fuel cell, hydrogen gas as a fuel gas and air (oxygen) as an oxidizing gas are electrochemically reacted, and electricity generated in the process is taken out to the outside. A fuel cell is formed by stacking a required number of cells each having a fuel electrode (anode) supplied with hydrogen gas and an air electrode (cathode) supplied with air on both sides of an electrolyte membrane. For example, in a polymer electrolyte fuel cell (PEFC) suitable for in-vehicle use, a polymer ion exchange membrane is used as an electrolyte membrane. Since this ion exchange membrane is as thin as several tens of microns, the pressure difference between the hydrogen pressure on the fuel electrode side and the air pressure on the air electrode side (interelectrode differential pressure) should not be excessive in order to prevent damage. There is a need to.

そこで、例えば、特開2003−68334号公報記載の発明では水素循環ラインにポンプを備え、水素減圧弁から供給される水素と水素オフガスとを合流して燃料電池に供給する構成において該燃料電池への空気供給ポンプの空気圧力によって水素ガスの圧力調圧弁を駆動して燃料ガスと空気圧力との差圧を所定範囲内に保つようにしている。
特開2003−68334号公報
Therefore, for example, in the invention described in Japanese Patent Application Laid-Open No. 2003-68334, a hydrogen circulation line is provided with a pump so that hydrogen supplied from a hydrogen pressure reducing valve and hydrogen off-gas are combined and supplied to the fuel cell. The pressure regulating valve for hydrogen gas is driven by the air pressure of the air supply pump to keep the differential pressure between the fuel gas and the air pressure within a predetermined range.
JP 2003-68334 A

しかしながら、上述の構成によれば上記極間差圧は所定範囲内に維持されるものの、水素ガスの圧力調整弁の供給圧力の範囲がエアコンプレッサの吐出圧力のダイナミックレンジの大きさに影響される。また、エア圧が一方に印加されるダイヤフラムを使用した機械式調圧弁構造を利用しているために燃料電池に供給される水素ガス圧を別途独立して制御することは出来ない。   However, according to the above-described configuration, although the inter-electrode differential pressure is maintained within a predetermined range, the supply pressure range of the hydrogen gas pressure regulating valve is affected by the dynamic range of the discharge pressure of the air compressor. . Further, since a mechanical pressure regulating valve structure using a diaphragm to which air pressure is applied to one side is used, the hydrogen gas pressure supplied to the fuel cell cannot be controlled independently.

また、燃料電池の耐久性向上のためには、燃料電池への水素ガス供給圧は低いことが好ましいが、常に低いと、燃料ガス供給通路内に溜まった異物を取り除けず発電状態が不安定になる、燃料電池起動時や間欠運転復帰時の発電安定化までに時間を要する、フラッディング等が生じてセル電圧が低下する、水素漏れ検出の精度向上に一定の限界がある等の課題がある。逆に、水素ガス供給圧が常に高いと、上記耐久性の低下のみならず、水ガス漏洩時における外部への放出量が増える、フェイル時に燃料電池を損傷するおそれがある等の課題がある。   In order to improve the durability of the fuel cell, it is preferable that the hydrogen gas supply pressure to the fuel cell is low. However, if it is always low, the foreign matter accumulated in the fuel gas supply passage cannot be removed and the power generation state becomes unstable. There are problems such as that it takes time to stabilize the power generation when starting the fuel cell or returning to intermittent operation, flooding or the like occurs, the cell voltage decreases, and there is a certain limit to improving the accuracy of hydrogen leak detection. On the other hand, when the hydrogen gas supply pressure is constantly high, there are problems such as not only the above-described decrease in durability but also an increase in the amount of discharge to the outside at the time of water gas leakage and the possibility of damaging the fuel cell at the time of failure.

そこで、本発明は、燃料電池への燃料ガス供給圧を燃料電池システムの状態に応じて制御することで上記課題を解決することを目的とする。   Accordingly, an object of the present invention is to solve the above problem by controlling the fuel gas supply pressure to the fuel cell in accordance with the state of the fuel cell system.

上記目的を達成するために本発明の燃料電池システムは、燃料ガス源から燃料電池に燃料ガスを供給する燃料ガス供給通路と、燃料ガス供給通路に設けられ燃料ガス源からの燃料ガスの圧力を調圧して下流に排出する調圧装置と、を備える燃料電池システムにおいて、燃料電池システムの状態に応じて調圧装置の作動特性を変更する変更手段を備えることを特徴とする。
かかる構成とすることによって、燃料ガス圧力を燃料電池システムの状態に対応して制御することが可能となる。
調圧装置の作動特性の変更は、例えば、燃料電池システムの状態に関する物理量を状態検出手段で検出し、その出力に基づいて変更手段が行う。
In order to achieve the above object, a fuel cell system of the present invention includes a fuel gas supply passage for supplying fuel gas from a fuel gas source to the fuel cell, and a pressure of the fuel gas from the fuel gas source provided in the fuel gas supply passage. A fuel cell system comprising a pressure regulating device that regulates pressure and discharges downstream. The fuel cell system further comprises changing means for changing an operating characteristic of the pressure regulating device according to the state of the fuel cell system.
With this configuration, the fuel gas pressure can be controlled in accordance with the state of the fuel cell system.
The operating characteristic of the pressure regulator is changed by, for example, detecting a physical quantity related to the state of the fuel cell system by the state detecting unit and performing the changing unit based on the output.

本発明の燃料電池システムは、燃料電池システムの状態が燃料ガス供給通路における異物の堆積状態であって、異物を排出する場合、燃料電池システムの状態が燃料電池起動時または間欠運転からの復帰起動時であって、燃料電池が起動状態である場合、燃料電池システムの状態がセル電圧であって、セル電圧が所定値以下の状態である場合、および燃料電池システムの状態が燃料ガス漏れを検出する状態であって、燃料ガス漏れ検出を行う状態である場合には、調圧装置の二次側の吐出圧力を高くするように、調圧装置の作動特性を変更する。   In the fuel cell system according to the present invention, when the state of the fuel cell system is a foreign matter accumulation state in the fuel gas supply passage and the foreign matter is discharged, the state of the fuel cell system is started when the fuel cell is started or returned from intermittent operation. When the fuel cell is in the start-up state, the fuel cell system state is the cell voltage and the cell voltage is below the predetermined value, and the fuel cell system state detects the fuel gas leak When the fuel gas leak detection is performed, the operating characteristic of the pressure regulator is changed so as to increase the discharge pressure on the secondary side of the pressure regulator.

かかる構成とすることによって、通常時は低圧運転で燃料電池の耐久性を維持する一方、燃料ガス供給通路に異物が堆積して発電状態が不安定になった場合は高圧運転に切り替えて異物を燃料ガス供給系から押し出して取り除くことにより、発電状態を安定させることができる。
また、燃料電池起動時や間欠運転からの復帰起動時のように、発電の安定化までに時間を要する場合であっても、燃料電池への燃料ガス供給量を増やすことにより、早期安定化を図ることができる。
また、セル電圧が所定値以下となった場合には、セル外への生成水排出を促進することにより、セル電圧低下の一要因であるフラッディングを解消することができる。
また、燃料電池システムの燃料ガス漏れ検出を行う場合には、燃料ガス供給通路内の燃料ガス圧力を一時的に上昇させることにより、漏れ検出精度の向上を図ることができる。
By adopting such a configuration, the durability of the fuel cell is maintained in a low pressure operation during normal times, while when foreign matter accumulates in the fuel gas supply passage and the power generation state becomes unstable, the operation is switched to a high pressure operation to remove the foreign matter. By extruding and removing from the fuel gas supply system, the power generation state can be stabilized.
In addition, even when it takes time to stabilize power generation, such as when starting a fuel cell or when returning from intermittent operation, it is possible to achieve early stabilization by increasing the amount of fuel gas supplied to the fuel cell. Can be planned.
Further, when the cell voltage becomes equal to or lower than a predetermined value, flooding, which is a factor in reducing the cell voltage, can be eliminated by promoting discharge of generated water to the outside of the cell.
Further, when performing fuel gas leak detection in the fuel cell system, it is possible to improve the leak detection accuracy by temporarily increasing the fuel gas pressure in the fuel gas supply passage.

本発明の燃料電池システムは、燃料電池システムの状態が前記燃料ガス供給通路からの燃料ガス漏れ状態であって、燃料ガスが漏れ状態である場合や、燃料電池システムの状態が燃料ガス圧力であって、燃料ガス圧力が目標圧力から所定値以上乖離した状態である場合には、調圧装置の二次側の吐出圧力を低くするように調圧装置の作動特性を変更する。   In the fuel cell system of the present invention, the state of the fuel cell system is the state of fuel gas leakage from the fuel gas supply passage and the fuel gas is in the state of leakage, or the state of the fuel cell system is the fuel gas pressure. When the fuel gas pressure is deviated from the target pressure by a predetermined value or more, the operating characteristics of the pressure regulator are changed so as to reduce the discharge pressure on the secondary side of the pressure regulator.

かかる構成とすることによって、燃料ガスが漏れ状態である場合には、燃料電池入口側の燃料ガス圧力を通常運転時よりも低くし、外部へ放出される燃料ガス量を減らすことができる。
また、燃料ガス圧力が目標圧力から所定値以上乖離した場合には、燃料電池の運転領域を一定負荷以下に制限することにより、仮に調圧装置に異常が生じていたとしても、燃料電池を保護することができる。
With this configuration, when the fuel gas is leaking, the fuel gas pressure on the fuel cell inlet side can be made lower than that during normal operation, and the amount of fuel gas released to the outside can be reduced.
In addition, when the fuel gas pressure deviates from the target pressure by a predetermined value or more, the fuel cell is protected even if a malfunction occurs in the pressure regulator by limiting the operating range of the fuel cell to a certain load or less. can do.

本発明において、調圧装置は外部から加圧流体を導入することにより二次側吐出圧力を調整可能な構造とされており、変更手段は外部からの加圧流体を調圧装置に供給する加圧流体供給路と、加圧流体供給路の途中で加圧流体を供給路外に排出可能な排出弁と、排出弁の開度を燃料電池のシステム状態に応じて制御する制御手段と、を備えてなる構成としてもよい。   In the present invention, the pressure regulator has a structure capable of adjusting the secondary discharge pressure by introducing a pressurized fluid from the outside, and the changing means is a controller for supplying pressurized fluid from the outside to the pressure regulator. A pressurized fluid supply path, a discharge valve capable of discharging pressurized fluid outside the supply path in the middle of the pressurized fluid supply path, and a control means for controlling the opening degree of the discharge valve according to the system state of the fuel cell. It is good also as a structure provided.

かかる構成では、外部から調圧装置に供給される加圧流体の加圧流体供給路途中での排出量を増減させることにより、調圧装置の二次側吐出圧力を調整することが可能になる。このため、加圧流体の供給元圧力に制約されない二次側吐出圧力の制御が可能となる。   In such a configuration, it is possible to adjust the secondary-side discharge pressure of the pressure regulating device by increasing or decreasing the discharge amount of the pressurized fluid supplied from the outside to the pressure regulating device in the middle of the pressurized fluid supply path. . For this reason, it is possible to control the secondary discharge pressure that is not limited by the supply source pressure of the pressurized fluid.

本発明によれば、燃料ガス圧力を燃料電池システムの状態に応じて制御することが可能となる。特に、不安定な発電状態からの復帰、燃料電池起動時や間欠運転からの復帰起動時における発電の早期安定化、燃料ガス漏れ検出の精度向上、燃料ガス漏洩時における外部への放出量低減、フェイル発生後の燃料電池保護が可能となる。   According to the present invention, the fuel gas pressure can be controlled according to the state of the fuel cell system. In particular, recovery from an unstable power generation state, early stabilization of power generation at the time of fuel cell start-up or return start from intermittent operation, improved accuracy of fuel gas leak detection, reduction of the amount released to the outside at the time of fuel gas leak, The fuel cell can be protected after the failure occurs.

以下、本発明の実施の形態について図面を参照しつつ説明する。
図1は、本発明の一実施形態による燃料電池システムの基本構成を概略的に説明するブロック図である。同図において、酸化ガスとしての空気は空気供給路11を介して燃料電池1の空気供給口に供給される。空気供給路11にはエアコンプレッサ3、エアフィルタ2、および加湿器(図示省略)が設けられており、エアフィルタ2を経た空気は適当な圧力に加圧され、燃料電池セルの電解質膜に必要な水分が補充される。
燃料電池1から排出される空気オフガスは、排気路12を経て外部に放出される。排気路12には、供給空気の圧力(エア圧力)を調整する調圧器としての圧力調整弁(図示省略)が設けられており、燃料電池1へのエア圧力が所定値に保たれる。エア圧力の設定は、制御用コンピュータシステムによって構成された制御部(制御手段)50によって、エアコンプレッサ3及び圧力調整弁を調整することにより行われる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram schematically illustrating a basic configuration of a fuel cell system according to an embodiment of the present invention. In the figure, air as an oxidizing gas is supplied to an air supply port of the fuel cell 1 through an air supply path 11. An air compressor 3, an air filter 2, and a humidifier (not shown) are provided in the air supply path 11, and the air passing through the air filter 2 is pressurized to an appropriate pressure and is necessary for the electrolyte membrane of the fuel cell. Water is replenished.
The air off gas discharged from the fuel cell 1 is discharged to the outside through the exhaust path 12. The exhaust passage 12 is provided with a pressure adjustment valve (not shown) as a pressure regulator for adjusting the pressure of the supply air (air pressure), and the air pressure to the fuel cell 1 is maintained at a predetermined value. The setting of the air pressure is performed by adjusting the air compressor 3 and the pressure regulating valve by a control unit (control means) 50 configured by a control computer system.

燃料ガスとしての水素ガスは、不図示の水素供給源(燃料ガス源)から水素ガス供給路(燃料ガス供給通路)21を介して燃料電池1の水素供給口に供給される。水素供給源は、例えば、高圧水素タンク、水素吸蔵合金を用いたタンク、メタノール燃料改質器等が該当し、圧力調整弁、ポンプなどを含む。水素ガス供給路21には、水素供給源からの水素ガスの圧力を減圧(調圧)して下流に排出する水素調圧弁(調圧装置)6が設けられている。
燃料電池1で消費されなかった水素ガス(燃料ガス)は、水素オフガスとして水素循環路22に排出される。水素循環路22には水素ポンプ5が設けられており、水素ポンプ5で加圧された水素オフガスは、水素調圧弁6よりも下流側の水素ガス供給路21に戻されて水素ガスと合流し、燃料電池1で再利用される。水素ポンプ5は、制御部50によって動作が制御される。
Hydrogen gas as fuel gas is supplied from a hydrogen supply source (fuel gas source) (not shown) to a hydrogen supply port of the fuel cell 1 through a hydrogen gas supply path (fuel gas supply path) 21. Examples of the hydrogen supply source include a high-pressure hydrogen tank, a tank using a hydrogen storage alloy, a methanol fuel reformer, and the like, and includes a pressure regulating valve, a pump, and the like. The hydrogen gas supply path 21 is provided with a hydrogen pressure regulating valve (pressure regulating device) 6 that depressurizes (regulates) the pressure of the hydrogen gas from the hydrogen supply source and discharges it downstream.
Hydrogen gas (fuel gas) not consumed by the fuel cell 1 is discharged to the hydrogen circulation path 22 as hydrogen off-gas. The hydrogen circulation path 22 is provided with a hydrogen pump 5, and the hydrogen off-gas pressurized by the hydrogen pump 5 is returned to the hydrogen gas supply path 21 on the downstream side of the hydrogen pressure regulating valve 6 and merged with the hydrogen gas. The fuel cell 1 is reused. The operation of the hydrogen pump 5 is controlled by the control unit 50.

水素調圧弁6は、例えば、バネで付勢されるダイヤフラムを用いた機械式の調圧弁であり、このダイヤフラムには、空気供給路11から分岐した空気圧伝搬路(加圧流体供給路)31を介して、燃料電池1へのエア圧力を圧力源とする圧力が印加される。
ダイヤフラムは、該印加圧力及びバネの圧力と燃料電池1入口の供給水素圧力との差圧に応じて変位し、水素ガス供給路21上の水素調圧弁6の弁開度(開弁率)を設定する。それにより、水素調圧弁6の二次側吐出圧力が変動するので、燃料電池1の入口の供給水素圧力も水素調圧弁6への印加圧力によって所定の圧力範囲となるように調整される。
このように、水素調圧弁6は、エアコンプレッサ3からの供給エア(加圧流体)を導入することにより二次側吐出圧力を調整可能な構造になっている。
The hydrogen pressure regulating valve 6 is, for example, a mechanical pressure regulating valve using a diaphragm biased by a spring, and an air pressure propagation path (pressurized fluid supply path) 31 branched from the air supply path 11 is connected to the diaphragm. Thus, a pressure using the air pressure to the fuel cell 1 as a pressure source is applied.
The diaphragm is displaced according to the differential pressure between the applied pressure and the pressure of the spring and the supply hydrogen pressure at the inlet of the fuel cell 1, and the valve opening degree (opening rate) of the hydrogen pressure regulating valve 6 on the hydrogen gas supply path 21 is changed. Set. As a result, the secondary discharge pressure of the hydrogen pressure regulating valve 6 varies, so that the supply hydrogen pressure at the inlet of the fuel cell 1 is also adjusted to be within a predetermined pressure range by the pressure applied to the hydrogen pressure regulating valve 6.
Thus, the hydrogen pressure regulating valve 6 has a structure capable of adjusting the secondary side discharge pressure by introducing the supply air (pressurized fluid) from the air compressor 3.

空気圧伝搬路31には、その上流側から順にオリフィス4と脈動防止のためのバッファタンク8が設けられており、バッファタンク8と水素調圧弁6の間からは排気路32が分岐している。この排気路32には、水素調圧弁6へのエア圧力を減圧する排気弁(排出弁)7が設けられており、排気弁7の開弁率は、制御部50によって全閉〜全開まで連続的あるいは複数段階に調整される。
排気弁7が全閉状態(開弁率=0)であるときは、エアコンプレッサ3によるエア圧力が略そのまま水素調圧弁6に印加圧力として印加される。排気弁7が全開状態(開弁率=100%)であるときは、エアコンプレッサ3による供給エアが排気路32から略そのまま排気され、エア圧力は水素調圧弁6に印加されない。つまり、燃料電池1へのエア圧力と供給水素圧力とは無関係(独立)となる。両者の間の開弁率では、エアコンプレッサ3によるエア圧力を圧力源とし、排気弁7の開弁率を適宜に設定して所望の印加圧力を得る。これを水素調圧弁6のダイヤフラムに印加圧力として供給する。
以上のとおり、本実施の形態においては、エアコンプレッサ3からの供給エアを水素調圧弁6に供給する空気圧伝搬路31と、空気圧伝搬路31の途中で供給エアを伝搬路外に排気可能な排気弁7と、排気弁7の開度を燃料電池1のシステム状態に応じて制御する制御部50とを備えて本発明の変更手段が構成されている。
In the air pressure propagation path 31, an orifice 4 and a buffer tank 8 for preventing pulsation are provided in order from the upstream side, and an exhaust path 32 branches from between the buffer tank 8 and the hydrogen pressure regulating valve 6. The exhaust path 32 is provided with an exhaust valve (exhaust valve) 7 for reducing the air pressure to the hydrogen pressure regulating valve 6, and the valve opening rate of the exhaust valve 7 is continuously from fully closed to fully opened by the control unit 50. Or adjusted in multiple stages.
When the exhaust valve 7 is in the fully closed state (opening rate = 0), the air pressure by the air compressor 3 is applied as it is to the hydrogen pressure regulating valve 6 as it is. When the exhaust valve 7 is in a fully opened state (opening rate = 100%), the supply air from the air compressor 3 is exhausted from the exhaust passage 32 almost as it is, and the air pressure is not applied to the hydrogen pressure regulating valve 6. That is, the air pressure to the fuel cell 1 and the supply hydrogen pressure are irrelevant (independent). With respect to the valve opening ratio between the two, the air pressure by the air compressor 3 is used as a pressure source, and the valve opening ratio of the exhaust valve 7 is appropriately set to obtain a desired applied pressure. This is supplied as an applied pressure to the diaphragm of the hydrogen pressure regulating valve 6.
As described above, in the present embodiment, the air pressure propagation path 31 that supplies the supply air from the air compressor 3 to the hydrogen pressure regulating valve 6, and the exhaust that can exhaust the supply air outside the propagation path in the middle of the air pressure propagation path 31. The change means of this invention is comprised including the valve 7 and the control part 50 which controls the opening degree of the exhaust valve 7 according to the system state of the fuel cell 1.

次に、排気弁7の開閉動作と、それに連動して変化する水素調圧弁6に印加されるエア圧力との関係について、図2および図3を参照しながら説明する。
図2に示すように、排気弁7の開弁率を下げると(昇圧時)、空気供給路11から空気圧伝搬路31側に分配されたエアコンプレッサ3からの空気Aは、排気路32側で排気されるよりも多く水素調圧弁6側に流れるので、水素調圧弁6への印加圧力は高くなる。したがって、水素調圧弁6の二次側の吐出圧力が高くなり、燃料電池1入口の供給水素圧力も高くなる。
Next, the relationship between the opening / closing operation of the exhaust valve 7 and the air pressure applied to the hydrogen pressure regulating valve 6 that changes in conjunction therewith will be described with reference to FIGS.
As shown in FIG. 2, when the valve opening rate of the exhaust valve 7 is lowered (at the time of pressure increase), the air A from the air compressor 3 distributed from the air supply path 11 to the air pressure propagation path 31 side is on the exhaust path 32 side. Since it flows to the hydrogen pressure regulating valve 6 side more than being exhausted, the pressure applied to the hydrogen pressure regulating valve 6 increases. Accordingly, the discharge pressure on the secondary side of the hydrogen pressure regulating valve 6 increases, and the supply hydrogen pressure at the inlet of the fuel cell 1 also increases.

これに対し、図3に示すように、排気弁7の開弁率を上げると(降圧時)、空気供給路11から空気圧伝搬路31側に分配されたエアコンプレッサ3からの空気Aは、排気路32側により多く流れて排気されるので、水素調圧弁6への印加圧力は低くなる。したがって、水素調圧弁6の二次側の吐出圧力が低くなり、燃料電池1入口の供給水素圧力も低くなる。
このように、圧力供給源としてのエア圧力を排気弁7によって減圧調整して水素調圧弁6に印加圧力として供給することにより、図4の目標圧力マップに示すように、燃料電池1の入口側に供給される水素圧力をエア圧力に連動させることなく、言い換えれば、エア供給元であるエアコンプレッサ3の供給圧力に制約されることなく、所定のレンジで所望値に調整することができる。
On the other hand, as shown in FIG. 3, when the valve opening rate of the exhaust valve 7 is increased (when the pressure is lowered), the air A from the air compressor 3 distributed from the air supply path 11 to the air pressure propagation path 31 side is exhausted. Since the exhaust gas flows and exhausts more on the path 32 side, the pressure applied to the hydrogen pressure regulating valve 6 becomes lower. Therefore, the discharge pressure on the secondary side of the hydrogen pressure regulating valve 6 is lowered, and the supply hydrogen pressure at the inlet of the fuel cell 1 is also lowered.
In this way, the air pressure as the pressure supply source is adjusted to be reduced by the exhaust valve 7 and supplied to the hydrogen pressure regulating valve 6 as an applied pressure, so that the inlet side of the fuel cell 1 as shown in the target pressure map of FIG. The hydrogen pressure supplied to the air compressor can be adjusted to a desired value within a predetermined range without being linked to the air pressure, in other words, without being restricted by the supply pressure of the air compressor 3 that is the air supply source.

この図4について補足すると、この燃料電池システムでは、水素調圧弁6がその構造上本来的に備えている機械的な作動特性Xから、該作動特性Xにエアコンプレッサ3によるエア圧力分(矢線)を加えた作動特性Yまでの領域内で、燃料電池1入口の目標供給水素圧力を制御することができる。
かかる制御は、通常運転時、水素ガス供給路21内への異物混入時、および燃料電池1や水素ガス供給路21等の水素流路から水素ガスが漏洩した場合のようなフェイル時における燃料電池1の入口の目標供給水素圧力を予めマップ(図4の異物混入時特性及びフェイル時特性参照)に設定しておき、かかる目標供給水素圧力となるような水素調圧弁6への印加エア圧力を得るべく、排気弁7をデューティ制御することで実現される。
Supplementing this FIG. 4, in this fuel cell system, from the mechanical operating characteristic X inherently provided in the structure of the hydrogen pressure regulating valve 6, the operating characteristic X is added to the air pressure component (arrow line) by the air compressor 3. The target supply hydrogen pressure at the inlet of the fuel cell 1 can be controlled within the range up to the operation characteristic Y with the addition of).
Such control is performed during normal operation, when a foreign substance is mixed into the hydrogen gas supply path 21, and when the fuel cell is in failure such as when hydrogen gas leaks from a hydrogen flow path such as the fuel cell 1 or the hydrogen gas supply path 21. The target supply hydrogen pressure at the inlet 1 is set in advance in a map (see the foreign matter mixing characteristics and failure characteristics in FIG. 4), and the applied air pressure to the hydrogen pressure regulating valve 6 is set to such a target supply hydrogen pressure. In order to obtain it, it implement | achieves by carrying out duty control of the exhaust valve 7. FIG.

次に、図5のフローチャートを参照しながら、制御部50による一制御動作を説明する。この制御動作は、制御プログラムにおいて所定周期あるいは特定イベントの発生で生ずる割り込みによって実行され、まずステップS1において、水素ガス供給路21内に異物混入があるかどうかが判定される。この判定は、例えば水素ガス供給路21の適所に設置された圧力センサ(状態検出手段)の出力値に基づき行われる。
水素ガス供給路21内に異物混入があると判定された場合(ステップS1;YES)には、ステップ3に進み、図4に示す目標圧力マップの中から異物混入時の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を設定する。他方、異物混入がないと判定された場合(ステップS1;NO)には、ステップ10に進み、通常時の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を設定する。
Next, one control operation by the control unit 50 will be described with reference to the flowchart of FIG. This control operation is executed by an interruption that occurs when a predetermined event or a specific event occurs in the control program. First, in step S1, it is determined whether foreign matter is mixed in the hydrogen gas supply path 21 or not. This determination is made based on, for example, the output value of a pressure sensor (state detection means) installed at an appropriate place in the hydrogen gas supply path 21.
When it is determined that foreign matter is mixed in the hydrogen gas supply path 21 (step S1; YES), the process proceeds to step 3, and the target pressure map at the time of foreign matter is referred to from the target pressure map shown in FIG. The target supply hydrogen pressure at the fuel cell 1 inlet is set. On the other hand, if it is determined that there is no foreign matter mixed (step S1; NO), the process proceeds to step 10, where the target supply hydrogen pressure at the inlet of the fuel cell 1 is set with reference to the normal target pressure map.

以上のようにして燃料電池1入口の目標供給水素圧力を設定したら、ステップ5に進み、目標供給水素圧力となるような水素調圧弁6への印加エア圧力を得るべく、排気弁7をデューティ制御し、水素調圧弁6を制御する。
つまり、水素ガス供給路21内に異物混入がある場合には、図4に示すように、水素調圧弁二次側の吐出圧力が通常時よりも高くなるように水素調圧弁6の作動特性を変更し、水素ガス供給路21内での水素ガスの流れを良くすることにより、堆積している異物を水素流路から押し出して取り除くことができるので、異物混入による不安定な発電状態を早期に安定化させることができる。
When the target supply hydrogen pressure at the inlet of the fuel cell 1 is set as described above, the process proceeds to step 5 and the exhaust valve 7 is duty-controlled to obtain the applied air pressure to the hydrogen pressure regulating valve 6 so as to be the target supply hydrogen pressure. Then, the hydrogen pressure regulating valve 6 is controlled.
That is, when foreign matter is mixed in the hydrogen gas supply passage 21, the operating characteristics of the hydrogen pressure regulating valve 6 are set so that the discharge pressure on the secondary side of the hydrogen pressure regulating valve becomes higher than normal as shown in FIG. By changing and improving the flow of hydrogen gas in the hydrogen gas supply path 21, accumulated foreign matter can be pushed out and removed from the hydrogen flow path, so that an unstable power generation state due to foreign matter contamination can be eliminated at an early stage. Can be stabilized.

本発明の燃料電池システムにおいては、図5のステップ1で実行される異物混入判定に代えて、以下の判定を行ってもよい。
[第1のフェイル判定]
水素ガス供給路21等水素流路からの水素漏れの有無によりフェイル判定を行う。そして、フェイル(水素漏れ有り)と判定されたときに実行されるステップ3においては、図4に示す目標圧力アップからフェイル時の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を通常時よりも低く設定する。
これにより、水素調圧弁6の二次側吐出圧力が通常時よりも低くなるように水素調圧弁6の作動特性が変更されるので、水素流路からの水素漏れを検知した場合には、外部に放出される水素ガス量を低減することができる。
In the fuel cell system of the present invention, the following determination may be performed instead of the foreign object contamination determination performed in step 1 of FIG.
[First fail judgment]
Fail determination is performed based on the presence or absence of hydrogen leakage from a hydrogen flow path such as the hydrogen gas supply path 21. Then, in step 3 that is executed when it is determined that a failure (hydrogen leakage exists), the target supply hydrogen pressure at the inlet of the fuel cell 1 is determined by referring to the target pressure map at the time of failure from the target pressure increase shown in FIG. Set lower than normal.
As a result, the operating characteristics of the hydrogen pressure regulating valve 6 are changed so that the secondary side discharge pressure of the hydrogen pressure regulating valve 6 is lower than normal. Therefore, when hydrogen leakage from the hydrogen flow path is detected, The amount of hydrogen gas released into the gas can be reduced.

かかる燃料電池システムの水素漏れ検出を行う場合には、それに先だって、水素調圧弁6の二次側の吐出圧力を高くするように変更しておいてもよい。例えば図6に示すような水素漏れ検出用の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を所定区間内(図6中の破線部分参照)において通常時よりも高く設定する。
これにより、水素調圧弁6の二次側吐出圧力が通常時よりも高くなるように水素調圧弁6の作動特性が変更されるので、水素流路からの水素漏れ検出を行う際には、水素圧力を一時的に上昇させることにより、漏れ検出精度の向上を図ることができる。
When performing hydrogen leak detection in such a fuel cell system, prior to that, the discharge pressure on the secondary side of the hydrogen pressure regulating valve 6 may be increased. For example, referring to a target pressure map for hydrogen leak detection as shown in FIG. 6, the target supply hydrogen pressure at the inlet of the fuel cell 1 is set to be higher than normal in a predetermined section (see the broken line portion in FIG. 6).
As a result, the operating characteristics of the hydrogen pressure regulating valve 6 are changed so that the secondary side discharge pressure of the hydrogen pressure regulating valve 6 becomes higher than normal. Therefore, when hydrogen leakage is detected from the hydrogen flow path, By increasing the pressure temporarily, it is possible to improve the leak detection accuracy.

[第2のフェイル判定]
水素ガス供給路21等の水素流路の水素圧力からフェイル判定を行う。具体的には、図7に示すように、水素ガス供給路21の適所に配置された圧力センサによる実測値(図7中に示す破線部分)が、目標値(同実線部分)から所定値以上乖離した場合に、フェイルと判定する。そして、フェイルと判定されたときに実行されるステップ3においては、例えば上述した図4に示すフェイル時の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を通常時よりも低く設定する。
この場合にも、水素調圧弁6の二次側吐出圧力を通常時よりも低くするように水素調圧弁6の作動特性が変更されるので、水素調圧弁6に異常を来たしているおそれのある場合には、燃料電池1の運転領域が一定負荷以下に制限され、燃料電池1を保護することができる。
[Second fail judgment]
Fail determination is performed from the hydrogen pressure in the hydrogen flow path such as the hydrogen gas supply path 21. Specifically, as shown in FIG. 7, an actual measurement value (broken line portion shown in FIG. 7) by a pressure sensor arranged at an appropriate position in the hydrogen gas supply path 21 is equal to or greater than a predetermined value from the target value (solid line portion). If there is a divergence, it is determined as a failure. Then, in step 3 that is executed when it is determined as a failure, for example, the target pressure map at the time of failure shown in FIG. To do.
Also in this case, since the operation characteristic of the hydrogen pressure regulating valve 6 is changed so that the secondary side discharge pressure of the hydrogen pressure regulating valve 6 is lower than usual, there is a possibility that the hydrogen pressure regulating valve 6 is abnormal. In this case, the operating range of the fuel cell 1 is limited to a certain load or less, and the fuel cell 1 can be protected.

[セル電圧判定]
燃料電池1のセル電圧モニター値が所定値まで低下しているかどうかを判定する。そして、その判定結果が「YES;所定値まで低下」であるときに実行されるステップ3においては、例えば図4に示すのと同様の目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を通常時よりも高く設定する。
これにより、水素調圧弁6の二次側吐出圧力が通常時よりも高くなるように水素調圧弁6の作動特性が変更されるので、フラッディングが生じているおそれのある場合には、それを解消してセル電圧低下を防止することができる。
[Cell voltage judgment]
It is determined whether or not the cell voltage monitor value of the fuel cell 1 has decreased to a predetermined value. Then, in step 3 that is executed when the determination result is “YES; reduced to a predetermined value”, for example, a target pressure map similar to that shown in FIG. Set the pressure higher than normal.
As a result, the operation characteristics of the hydrogen pressure regulating valve 6 are changed so that the secondary side discharge pressure of the hydrogen pressure regulating valve 6 becomes higher than normal, and therefore, when there is a possibility of flooding, it is eliminated. Thus, the cell voltage drop can be prevented.

[起動判定または間欠運転復帰判定]
燃料電池システムの現在のシステム状態が燃料電池1の起動時であるか、あるいは間欠運転からの復帰時であるかを判定する。そして、その判定結果が「YES;起動時あるいは間欠運転からの復帰時」であるときに実行されるステップ3においては、例えば図4に示すのと同様な目標圧力マップを参照し、燃料電池1入口の目標供給水素圧力を通常時よりも高く設定する。
これにより、水素調圧弁6の二次側吐出圧力が通常時よりも高くなるように水素調圧弁6の作動特性が変更されるので、燃料電池1の起動時あるいは間欠運転からの復帰起動時における起動性が向上する。
[Startup judgment or intermittent operation return judgment]
It is determined whether the current system state of the fuel cell system is when the fuel cell 1 is activated or when the fuel cell system is returned from intermittent operation. Then, in step 3 executed when the determination result is “YES; when starting or returning from intermittent operation”, for example, the fuel cell 1 is referred to by referring to a target pressure map similar to that shown in FIG. The target supply hydrogen pressure at the inlet is set higher than normal.
As a result, the operating characteristics of the hydrogen pressure regulating valve 6 are changed so that the secondary side discharge pressure of the hydrogen pressure regulating valve 6 becomes higher than normal. Therefore, at the time of starting the fuel cell 1 or returning from the intermittent operation Startability is improved.

かかる起動性の更なる向上を図るために、図8に示すように、空気圧伝搬路31におけるバッファタンク8の上流側に逆止弁41を設けてもよい。図9は、この場合の燃料電池1入口の供給水素圧力及びバッファタンク8の下流の圧力変化を示すグラフである。
このように構成することにより、燃料電池1の起動時あるいは間欠運転からの復帰起動時のようにエアコンプレッサ3の圧力が低い場合でも、燃料電池1の運転停止前あるいは間欠運転開始前の空気圧伝搬路31内における圧力がバッファタンク8とその下流側に蓄圧されている。
よって、燃料電池1の起動時あるいは間欠復帰起動時であっても、図9の一点鎖線で示すように水素調圧弁6への初期印加圧力が確保されることになるので、同図の破線で示す逆止弁41がない場合に比して、燃料電池1入口の供給水素圧力の起ち上がりが早くなり、起動性の更なる向上を実現することができる。
In order to further improve the startability, a check valve 41 may be provided on the upstream side of the buffer tank 8 in the pneumatic propagation path 31 as shown in FIG. FIG. 9 is a graph showing the supply hydrogen pressure at the inlet of the fuel cell 1 and the pressure change downstream of the buffer tank 8 in this case.
With this configuration, even when the pressure of the air compressor 3 is low, such as when the fuel cell 1 is started or when returning from the intermittent operation, the air pressure propagation before the fuel cell 1 is stopped or before the intermittent operation is started. The pressure in the passage 31 is accumulated in the buffer tank 8 and the downstream side thereof.
Therefore, even when the fuel cell 1 is started or intermittently restarted, the initial applied pressure to the hydrogen pressure regulating valve 6 is secured as shown by the one-dot chain line in FIG. Compared to the case where there is no check valve 41 shown, the rising of the supply hydrogen pressure at the inlet of the fuel cell 1 is quickened, and further improvement in startability can be realized.

なお、上記実施形態の構成では、燃料電池1への供給エア圧力を圧力源とし、これを水素調圧弁6のダイヤフラムの駆動圧力として使用しているが、供給エア圧力によって圧力伝搬媒体(例えば、窒素ガス等の不活性ガスや液体)を加圧あるいは減圧し、これを水素調圧弁6のダイヤフラムに印加する構成としても良い。不活性ガス(圧力伝搬媒体)を介してエア圧を水素調圧弁6のダイヤフラムに伝搬することによって、水素調圧弁6の酸化(劣化)を抑制し、水素調圧弁6の長寿命化あるいは信頼性向上を図ることが可能となる。   In the configuration of the above embodiment, the supply air pressure to the fuel cell 1 is used as a pressure source, and this is used as the driving pressure of the diaphragm of the hydrogen pressure regulating valve 6, but the pressure propagation medium (for example, An inert gas such as nitrogen gas or a liquid) may be pressurized or depressurized and applied to the diaphragm of the hydrogen pressure regulating valve 6. By propagating the air pressure to the diaphragm of the hydrogen pressure regulating valve 6 through an inert gas (pressure propagation medium), the oxidation (deterioration) of the hydrogen pressure regulating valve 6 is suppressed, and the life of the hydrogen pressure regulating valve 6 is extended or is reliable. Improvement can be achieved.

調圧装置の作動特性を変更するための構成は、要するに所定圧に加圧された流体を途中で減圧して調圧装置に導入する構成であれば、上記請求項9や上記実施形態の構成に限定されない。例えば、燃料電池システムの状態に応じてポンプの作動状態(回転数制御により吐出圧を増減)を変更するだけでもよい。
また、加圧流体を調圧装置に導入しないで作動特性を変更してもよい。例えば、調圧装置(レギュレータ)の大気室に加圧流体を導入する代わりに、ダイヤフラムを電動アクチュエータによって直接的または間接的に移動させてもよい。
The configuration for changing the operating characteristic of the pressure regulator is basically the configuration of the above-described claim 9 or the embodiment as long as the fluid pressurized to a predetermined pressure is reduced in the middle and introduced into the pressure regulator. It is not limited to. For example, the operating state of the pump (increase or decrease the discharge pressure by controlling the rotational speed) may be changed according to the state of the fuel cell system.
Further, the operating characteristics may be changed without introducing the pressurized fluid into the pressure regulator. For example, instead of introducing a pressurized fluid into the atmospheric chamber of the pressure regulator (regulator), the diaphragm may be moved directly or indirectly by an electric actuator.

本発明の一実施形態に係る燃料電池システムの基本構成を示すブロック図である。1 is a block diagram showing a basic configuration of a fuel cell system according to an embodiment of the present invention. 排気弁の開弁率(小)に応じて水素調圧弁の作動特性が変更されることを説明する説明図である。It is explanatory drawing explaining that the operating characteristic of a hydrogen pressure regulation valve is changed according to the valve opening rate (small) of an exhaust valve. 排気弁の開弁率(大)に応じて水素調圧弁の作動特性が変更されることを説明する説明図である。It is explanatory drawing explaining that the operating characteristic of a hydrogen pressure regulation valve is changed according to the valve opening rate (large) of an exhaust valve. 燃料電池の運転状態と目標供給水素圧力との関係を示すマップである。It is a map which shows the relationship between the driving | running state of a fuel cell, and a target supply hydrogen pressure. 水素調圧弁の作動特性を如何にして変更するかを説明するフローチャートである。It is a flowchart explaining how to change the operating characteristic of the hydrogen pressure regulating valve. 水素漏れ検出時の目標供給水素圧力を設定するためのマップである。It is a map for setting the target supply hydrogen pressure at the time of hydrogen leak detection. 水素圧力の実測値と目標値との差から如何にしてフェイル判定を行うかを説明する説明図である。It is explanatory drawing explaining how a failure determination is performed from the difference of the measured value of hydrogen pressure, and a target value. 空気圧伝搬路に逆止弁を追加した燃料電池システムの基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the fuel cell system which added the check valve to the pneumatic propagation path. 図8の構成によって燃料電池の起動性が向上することを説明する説明図である。FIG. 9 is an explanatory diagram for explaining that the startability of the fuel cell is improved by the configuration of FIG. 8.

符号の説明Explanation of symbols

1 燃料電池、6 水素調圧弁(調圧装置)、7 排気弁(排出弁、変更手段の一部)、21 水素ガス供給通路(燃料ガス供給通路)、31 圧力伝搬路(加圧流体供給路、変更手段の一部)、50 制御部(制御手段、変更手段の一部) DESCRIPTION OF SYMBOLS 1 Fuel cell, 6 Hydrogen pressure regulation valve (pressure regulator), 7 Exhaust valve (discharge valve, a part of change means), 21 Hydrogen gas supply path (fuel gas supply path), 31 Pressure propagation path (Pressurized fluid supply path) , Part of changing means), 50 control unit (control means, part of changing means)

Claims (9)

燃料ガス源から燃料電池に燃料ガスを供給する燃料ガス供給通路と、
燃料ガス供給通路に設けられ燃料ガス源からの燃料ガスの圧力を調圧して下流に排出する調圧装置と、を備える燃料電池システムにおいて、
燃料電池システムの状態に応じて調圧装置の作動特性を変更する変更手段を備えることを特徴とする燃料電池システム。
A fuel gas supply passage for supplying fuel gas from the fuel gas source to the fuel cell;
A pressure regulator that regulates the pressure of the fuel gas from the fuel gas source and discharges it downstream, provided in the fuel gas supply passage,
A fuel cell system comprising changing means for changing an operating characteristic of the pressure regulator according to a state of the fuel cell system.
燃料電池システムの状態に関する物理量を検出する状態検出手段を備え、
変更手段は状態検出手段の出力に基づいて調圧装置の作動特性を変更することを特徴とする請求項1に記載の燃料電池システム。
Comprising a state detecting means for detecting a physical quantity relating to the state of the fuel cell system;
2. The fuel cell system according to claim 1, wherein the changing means changes the operating characteristic of the pressure regulator based on the output of the state detecting means.
燃料電池システムの状態が燃料ガス供給通路における異物の堆積状態であって、異物を排出する場合に、変更手段は調圧装置の二次側の吐出圧力を高くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the state of the fuel cell system is a foreign matter accumulation state in the fuel gas supply passage and the foreign matter is discharged, the changing means changes so as to increase the discharge pressure on the secondary side of the pressure regulator. The fuel cell system according to claim 1 or 2. 燃料電池システムの状態が燃料電池起動時または間欠運転からの復帰起動時であって、燃料電池が起動状態である場合に、変更手段は調圧装置の二次側の吐出圧力を高くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the state of the fuel cell system is when the fuel cell is started or when returning from intermittent operation is started and the fuel cell is in the activated state, the changing means increases the discharge pressure on the secondary side of the pressure regulator. The fuel cell system according to claim 1, wherein the fuel cell system is changed. 燃料電池システムの状態が前記燃料ガス供給通路からの燃料ガス漏れ状態であって、燃料ガスが漏れ状態である場合に、変更手段は調圧装置の二次側の吐出圧力を低くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the state of the fuel cell system is a fuel gas leakage state from the fuel gas supply passage and the fuel gas is in a leakage state, the changing means is changed to lower the discharge pressure on the secondary side of the pressure regulator. The fuel cell system according to claim 1, wherein: 燃料電池システムの状態がセル電圧であって、セル電圧が所定値以下の状態である場合に、変更手段は調圧装置の二次側の吐出圧力を高くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the state of the fuel cell system is a cell voltage and the cell voltage is equal to or lower than a predetermined value, the changing means changes the discharge pressure on the secondary side of the pressure regulator to be higher. The fuel cell system according to claim 1 or 2. 燃料電池システムの状態が燃料ガス圧力であって、燃料ガス圧力が目標圧力から所定値以上乖離した状態である場合に、変更手段は調圧装置の二次側の吐出圧力を低くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the fuel cell system is in the state of fuel gas pressure and the fuel gas pressure deviates from the target pressure by a predetermined value or more, the changing means is changed to lower the discharge pressure on the secondary side of the pressure regulator. The fuel cell system according to claim 1, wherein: 燃料電池システムの状態が燃料ガス漏れを検出する状態であって、燃料ガス漏れ検出を行う状態である場合に、変更手段は調圧装置の二次側の吐出圧力を高くするように変更することを特徴とする請求項1または2に記載の燃料電池システム。   When the state of the fuel cell system is a state of detecting a fuel gas leak and a state of detecting a fuel gas leak, the changing means should be changed to increase the discharge pressure on the secondary side of the pressure regulator. The fuel cell system according to claim 1, wherein: 調圧装置は外部から加圧流体を導入することにより二次側吐出圧力を調整可能な構造とされており、変更手段は外部からの加圧流体を調圧装置に供給する加圧流体供給路と、加圧流体供給路の途中で加圧流体を供給路外に排出可能な排出弁と、排出弁の開度を燃料電池のシステム状態に応じて制御する制御手段と、を備えてなることを特徴とする請求項1から8のいずれかに記載の燃料電池システム。   The pressure regulator has a structure capable of adjusting the secondary discharge pressure by introducing pressurized fluid from the outside, and the changing means is a pressurized fluid supply path for supplying pressurized fluid from the outside to the pressure regulator And a discharge valve capable of discharging the pressurized fluid outside the supply path in the middle of the pressurized fluid supply path, and a control means for controlling the opening degree of the discharge valve in accordance with the system state of the fuel cell. The fuel cell system according to claim 1, wherein:
JP2004269215A 2004-09-16 2004-09-16 Fuel cell system Pending JP2006086006A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004269215A JP2006086006A (en) 2004-09-16 2004-09-16 Fuel cell system
PCT/IB2005/002656 WO2006030269A2 (en) 2004-09-16 2005-09-08 Fuell cell system with pressure regulated fuel supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269215A JP2006086006A (en) 2004-09-16 2004-09-16 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006086006A true JP2006086006A (en) 2006-03-30

Family

ID=35744734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269215A Pending JP2006086006A (en) 2004-09-16 2004-09-16 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2006086006A (en)
WO (1) WO2006030269A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047418A (en) * 2006-08-16 2008-02-28 Nissan Motor Co Ltd Air supply system of fuel battery
US10062916B2 (en) 2014-12-09 2018-08-28 Hyundai Motor Company Control method and system of fuel cell system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407132B2 (en) * 2007-10-15 2014-02-05 日産自動車株式会社 Start-up control device and start-up control method for fuel cell system
DE102009026590A1 (en) * 2009-05-29 2010-12-02 Robert Bosch Gmbh Detecting the leaving of an operating range of a fuel cell system and initiating the necessary steps

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0171207B1 (en) * 1994-11-11 1999-03-30 와다 아키히로 Fuel cell
US6096449A (en) * 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
JP3636068B2 (en) * 2000-02-16 2005-04-06 日産自動車株式会社 Fuel cell control device
US6861167B2 (en) * 2001-07-25 2005-03-01 Ballard Power Systems Inc. Fuel cell resuscitation method and apparatus
JP4209611B2 (en) * 2001-12-05 2009-01-14 日産自動車株式会社 Control device for fuel cell system
CA2507053A1 (en) * 2002-11-27 2004-06-10 Hydrogenics Corporation Method of operating a fuel cell power system to deliver constant power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047418A (en) * 2006-08-16 2008-02-28 Nissan Motor Co Ltd Air supply system of fuel battery
US10062916B2 (en) 2014-12-09 2018-08-28 Hyundai Motor Company Control method and system of fuel cell system

Also Published As

Publication number Publication date
WO2006030269A3 (en) 2006-04-20
WO2006030269A2 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4852917B2 (en) Fuel cell system
JP4507584B2 (en) Fuel cell system
JP4993241B2 (en) Fuel cell system
US9450257B2 (en) Fuel cell system and its control method
JP5596758B2 (en) Fuel cell system and control method thereof
KR20050010955A (en) Fuel cell system and related method
JP2005203143A (en) Fuel cell system
JP2009054553A (en) Fuel cell system and its control method
WO2010026819A1 (en) Fuel cell system and fuel cell system control method
JP2008269841A (en) Fuel cell system
JP5186794B2 (en) Fuel cell system and gas pressure adjustment method in fuel cell system
JP5168828B2 (en) Fuel cell system
JP5239201B2 (en) Fuel cell system and impurity discharge method in fuel cell system
JP5224080B2 (en) Fuel cell system and off-gas purge method
JP2007157587A (en) Fuel cell system
WO2013180080A1 (en) Fuel cell system and control method for fuel cell system
JP2006086006A (en) Fuel cell system
JP2013182690A (en) Fuel cell system
JP2009076247A (en) Fuel cell system and its control method
JP2013182688A (en) Fuel cell system
JP2008165994A (en) Control device of fuel cell system, and fuel cell system
JP5410766B2 (en) Fuel cell system and cathode pressure control method for fuel cell system
JP4941641B2 (en) Fuel cell system
JP2006286482A (en) Fuel cell system
JP4627486B2 (en) Fuel cell system and fuel cell control method