JP2006085995A - Rotary anode type x-ray tube - Google Patents

Rotary anode type x-ray tube Download PDF

Info

Publication number
JP2006085995A
JP2006085995A JP2004268796A JP2004268796A JP2006085995A JP 2006085995 A JP2006085995 A JP 2006085995A JP 2004268796 A JP2004268796 A JP 2004268796A JP 2004268796 A JP2004268796 A JP 2004268796A JP 2006085995 A JP2006085995 A JP 2006085995A
Authority
JP
Japan
Prior art keywords
rotating member
anode
rotating
rotary
rotary anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004268796A
Other languages
Japanese (ja)
Inventor
Tetsuya Yonezawa
哲也 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2004268796A priority Critical patent/JP2006085995A/en
Publication of JP2006085995A publication Critical patent/JP2006085995A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary anode type X-ray tube in which temperature rise can be suppressed and rocking at rotation can be prevented. <P>SOLUTION: A first rotation member 6 and a second rotation member 11 are combined at the far side from the rotary anode 2. The second rotation member 11 and a third rotation member 21 are combined at the near side to the rotary anode 2. The heat accumulated in the rotary anode 2 is conducted from the near side to the rotary anode 2 of the first rotation member 6 to the far side from the rotary anode 2 of the second rotation member 11, and then conducted to the near side to the rotary anode 2 of the third rotation member 21. Thereby, the conduction route from the rotary anode 2 to the third rotation member 21 becomes longer. Temperature rise at the radial bearing face 54 between the third rotation member 21 and a fixed body 51 can be suppressed and the area of the radial bearing face 54 can be made large. The centroid of the rotating mechanism 8 can be located at the near side to the rotary anode 2. Rocking of the rotary anode 2 at the time of rotation can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、陽極ターゲットが回転する回転陽極型X線管に関する。   The present invention relates to a rotary anode type X-ray tube in which an anode target rotates.

従来、この種の回転陽極型X線管としては、一部に陽極ターゲットが固定された回転体を備えており、この回転体が固定体にて回転可能に嵌合されて保持されている。これら回転体と固定体との間に液状金属潤滑すべり軸受けが設けられている。この回転体は、陽極ターゲットが結合された第1の回転部材に、すべり軸受けが設けられた第2の回転部材が同軸的に嵌合されて構成されている。そして、これら第1の回転部材および第2の回転部材が、陽極ターゲットから軸方向にみて熱伝導経路的に遠い方で結合されている折り返し構造が知られている(例えば、特許文献1参照。)。   Conventionally, this type of rotating anode X-ray tube has a rotating body partially fixed with an anode target, and the rotating body is rotatably fitted and held by the fixed body. A liquid metal lubricated sliding bearing is provided between the rotating body and the fixed body. This rotating body is configured by coaxially fitting a second rotating member provided with a slide bearing on a first rotating member to which an anode target is coupled. And the folding structure where these 1st rotation members and 2nd rotation members are couple | bonded in the direction far from the anode target in the heat conduction path | route seeing to an axial direction is known (for example, refer patent document 1). ).

そして、この回転陽極型X線管は、構造が簡素であるが、回転体のすべり軸受けの温度抑制が余り良くない。   The rotary anode X-ray tube has a simple structure, but the temperature suppression of the sliding bearing of the rotating body is not so good.

そこで、この回転陽極型X線管の改良版にあたる回転陽極型X線管としては、同軸二重折り返し構造であって、X線を放出するターゲット層が設けられた円盤状回転陽極を備えており、この円盤状回転陽極に第1回転部材が固定されている。そして、この第1回転部材を囲んで筒状の第2回転部材が設けられており、この第2回転部材は、第1回転部材の円盤状回転陽極から遠い側で第1回転部材に結合されている。   Therefore, a rotary anode X-ray tube, which is an improved version of this rotary anode X-ray tube, is provided with a disk-shaped rotary anode having a coaxial double folded structure and a target layer for emitting X-rays. The first rotating member is fixed to the disk-shaped rotating anode. A cylindrical second rotating member is provided surrounding the first rotating member, and the second rotating member is coupled to the first rotating member on the side of the first rotating member far from the disc-shaped rotating anode. ing.

また、この第2回転部材が一方の内側に位置した筒状の第3回転部材が、この第2回転部材の円盤状回転陽極に近い側で、この第2回転部材に結合されている。さらに、この第3回転部材の他方の内側に位置した筒状の第4回転部材が、第3回転部材と一部で結合されている。そして、この第4回転部材の内側に固定体が嵌合され、この固定体と第4回転部材との間に動圧式すべり軸受が設けられている。   Further, a cylindrical third rotating member in which the second rotating member is located on one inner side is coupled to the second rotating member on the side of the second rotating member close to the disc-shaped rotating anode. Furthermore, a cylindrical fourth rotating member located inside the other side of the third rotating member is partially coupled to the third rotating member. A fixed body is fitted inside the fourth rotating member, and a hydrodynamic slide bearing is provided between the fixed body and the fourth rotating member.

すなわち、この改良版にあたる回転陽極型X線管は、上記折り返し構造の回転陽極型X線管よりも陽極ターゲットからの熱伝導経路をさらに長く取ることによって、液状金属潤滑すべり軸受けの温度上昇を抑制させるとともに、第2回転部材の熱膨張によって第1の回転部材の熱膨張を相殺し、陽極側の焦点移動を低減させる構成が知られている(例えば、特許文献2参照。)。
特開平5−13030号公報(第2−4頁、図1) 特開2001−357806号公報(第2−4頁、図1)
That is, this improved version of the rotary anode X-ray tube suppresses the temperature rise of the liquid metal lubricated sliding bearing by taking a longer heat conduction path from the anode target than the folded anode X-ray tube. In addition, a configuration is known in which the thermal expansion of the first rotating member is offset by the thermal expansion of the second rotating member, and the focal shift on the anode side is reduced (see, for example, Patent Document 2).
Japanese Unexamined Patent Publication No. 5-13030 (page 2-4, FIG. 1) JP 2001-357806 A (page 2-4, FIG. 1)

しかしながら、上述の改良版にあたる回転陽極型X線管では、第1回転部材と第2回転部材との折り返し構造によって、この回転陽極型X線管の改良前の上記回転陽極型X線管よりも回転体が、陽極ターゲットから遠い側に位置してしまう。   However, in the rotary anode X-ray tube corresponding to the above-described improved version, the rotary anode X-ray tube before the improvement of the rotary anode X-ray tube is improved by the folded structure of the first rotary member and the second rotary member. The rotating body is positioned on the side far from the anode target.

また、この改良前の上記回転陽極型X線管に比べ、第4回転部材と固定体との接触面積が小さいから、これら第4回転部材と固定体との間の動圧式すべり軸受の面積が減少してしまう。したがって、これら第4回転部材と固定体との間の動圧式すべり軸受けを正常に動作させるだけの回転体への浮力が得られない可能性がある。   Further, since the contact area between the fourth rotating member and the fixed body is smaller than that of the rotating anode X-ray tube before the improvement, the area of the hydrodynamic slide bearing between the fourth rotating member and the fixed body is small. It will decrease. Therefore, there is a possibility that buoyancy to the rotating body that normally operates the dynamic pressure type sliding bearing between the fourth rotating member and the fixed body may not be obtained.

このため、この動圧式すべり軸受けでの温度上昇を効率良く抑制することが容易ではないとともに、この動圧式すべり軸受けでの軸受面積が小さいことにより陽極ターゲットが回転時に揺れてしまうおそれがあるという問題を有している。   For this reason, it is not easy to efficiently suppress the temperature rise in the dynamic pressure type sliding bearing, and the anode target may be shaken during rotation due to the small bearing area in the dynamic pressure type sliding bearing. have.

本発明は、このような点に鑑みなされたもので、温度上昇を効率良く抑制できるとともに回転揺れを防止できる回転陽極型X線管を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a rotary anode type X-ray tube capable of efficiently suppressing a temperature rise and preventing rotational shaking.

本発明は、陽極ターゲットと、この陽極ターゲットが取り付けられた第1の回転部材と、この第1の回転部材の前記陽極ターゲットが位置する側の反対側で前記第1の回転部材に接触して取り付けられ、この第1の回転部材を間隙を介して覆って設けられた略筒状の第2の回転部材と、この第2の回転部材の前記陽極ターゲットが位置する側で前記第2の回転部材に接触して取り付けられ、この第2の回転部材を間隙を介して覆って設けられた略筒状の第3の回転部材と、この第3の回転部材と前記第2の回転部材との間に回転可能に嵌合され、前記第3の回転部材との間に軸受面が設けられた略筒状の固定体とを具備したものである。   The present invention includes an anode target, a first rotating member to which the anode target is attached, and the first rotating member in contact with the first rotating member on a side opposite to the side where the anode target is located. A substantially cylindrical second rotating member that is attached and covers the first rotating member with a gap between the second rotating member and the second rotating member on the side where the anode target is located. A substantially cylindrical third rotating member mounted in contact with the member and covering the second rotating member with a gap between the third rotating member and the second rotating member; A substantially cylindrical fixed body that is rotatably fitted between the third rotating member and provided with a bearing surface between the third rotating member and the third rotating member.

そして、陽極ターゲットが取り付けられた第1の回転部材の陽極ターゲットが位置する側の反対側で略筒状の第2の回転部材が接触して取り付けられ、この第2の回転部材にて第1の回転部材が間隙を介して覆われている。また、この第2の回転部材の陽極ターゲットが位置する側で略筒状の第3の回転部材が接触して取り付けられ、この第3の回転部材にて第2の回転部材が間隙を介して覆われている。この結果、陽極ターゲットの回転に伴う温度上昇によって、この陽極ターゲットに蓄えられた熱が、第1の回転部材の陽極ターゲットが位置する側の反対側から第2の回転部材へと伝導する。さらに、この第2の回転部材へと伝導された熱が、この第2の回転部材の陽極ターゲットが位置する側から第3の回転部材へと伝導する。したがって、この陽極ターゲットからの熱伝導経路が長くなるから、この陽極ターゲットの温度上昇が効率良く抑制される。また、第3の回転部材と第2の回転部材との間に略筒状の固定体が回転可能に嵌合され、この固定体と第3の回転部材との間に軸受面が設けられていることにより、この軸受面の面積をより大きくできるから、この固定体に対する第3の回転部材の回転に伴う陽極ターゲットの回転時の揺れが防止される。   Then, the second rotating member having a substantially cylindrical shape comes into contact with and is attached to the opposite side of the first rotating member on which the anode target is attached to the side where the anode target is located. The rotating member is covered with a gap. Further, a substantially cylindrical third rotating member is attached in contact with the second rotating member on the side where the anode target is located, and the second rotating member is interposed through the gap by the third rotating member. Covered. As a result, due to the temperature rise accompanying the rotation of the anode target, the heat stored in the anode target is conducted from the opposite side of the first rotating member to the side where the anode target is located to the second rotating member. Further, the heat conducted to the second rotating member is conducted from the side of the second rotating member where the anode target is located to the third rotating member. Therefore, since the heat conduction path from the anode target becomes long, the temperature rise of the anode target is efficiently suppressed. A substantially cylindrical fixed body is rotatably fitted between the third rotating member and the second rotating member, and a bearing surface is provided between the fixed body and the third rotating member. Therefore, the area of the bearing surface can be further increased, so that the swing of the anode target during the rotation of the third rotating member relative to the fixed body can be prevented.

本発明によれば、陽極ターゲットに蓄えられた熱が、第1の回転部材の陽極ターゲットが位置する側の反対側から第2の回転部材へと伝導し、この第2の回転部材へと伝導された熱が、この第2の回転部材の陽極ターゲットが位置する側から第3の回転部材へと伝導するので、この陽極ターゲットからの熱伝導経路が長くなるから、この陽極ターゲットの温度上昇を効率良く抑制できるとともに、固定体と第3の回転部材との間に設けた軸受面の面積をより大きくできるため、この固定体に対する第3の回転部材の回転に伴う陽極ターゲットの回転時の揺れを防止できる。   According to the present invention, heat stored in the anode target is conducted from the opposite side of the first rotating member to the side where the anode target is located to the second rotating member, and is conducted to the second rotating member. The conducted heat is conducted from the side where the anode target of the second rotating member is located to the third rotating member, so that the heat conduction path from the anode target becomes longer, and therefore the temperature rise of the anode target is reduced. Since the area of the bearing surface provided between the fixed body and the third rotating member can be increased more efficiently, the swing of the anode target during rotation of the third rotating member relative to the fixed body can be increased. Can be prevented.

以下、本発明の回転陽極型X線管の一実施の形態の構成を図面を参照して説明する。   Hereinafter, the configuration of an embodiment of a rotary anode X-ray tube of the present invention will be described with reference to the drawings.

図1ないし図3において、1は回転陽極型X線管で、この回転陽極型X線管1は、同軸二重折り返し構造のX線管である。そして、この回転陽極型X線管1は、回転陽極構体としての陽極ターゲットである円盤状の回転陽極2を備えている。この回転陽極2上の一部には、陰極構体としての電子銃3からの電子ビームの照射によってX線を放出するターゲット層4が設けられている。また、この回転陽極2は、固定用ナット5によって細長円筒状の第1の回転部材6の長手方向の一端部に同軸状に固定されて取り付けられている。   1 to 3, reference numeral 1 denotes a rotary anode X-ray tube. The rotary anode X-ray tube 1 is an X-ray tube having a coaxial double folded structure. The rotary anode X-ray tube 1 includes a disc-shaped rotary anode 2 that is an anode target as a rotary anode structure. A part of the rotating anode 2 is provided with a target layer 4 that emits X-rays when irradiated with an electron beam from an electron gun 3 as a cathode structure. The rotary anode 2 is coaxially fixed to and attached to one end in the longitudinal direction of the elongated cylindrical first rotary member 6 by a fixing nut 5.

この第1の回転部材6は、回転陽極2が位置する側の反対側である長手方向に沿った他端側に向けて開口した有底円筒状に形成されている。また、この第1の回転部材6は、モリブデン製の支持シャフトとしての固定円筒シャフトである。そして、この第1の回転部材6の軸方向の回転陽極2から遠い側、すなわち回転陽極2が位置する側の反対側の他端部には、径方向に沿って外側に向けて広がった円環状の鍔部7が接合などにて機械的に接続されて結合されて取り付けられている。この鍔部7は、回転陽極2を回転可能に支持する軸受としての回転機構8に一体的に連結されている。この回転機構8は、第1の回転部材6を介して回転陽極2を周方向に向けて回転可能に支持する液体金属潤滑を用いたすべり軸受構体である。   The first rotating member 6 is formed in a bottomed cylindrical shape that opens toward the other end along the longitudinal direction, which is the opposite side to the side where the rotating anode 2 is located. The first rotating member 6 is a fixed cylindrical shaft as a support shaft made of molybdenum. A circle extending outward in the radial direction is provided on the other end of the first rotating member 6 on the side far from the rotating anode 2 in the axial direction, that is, on the side opposite to the side where the rotating anode 2 is located. An annular flange 7 is mechanically connected by joining or the like and attached. The flange portion 7 is integrally connected to a rotation mechanism 8 as a bearing that rotatably supports the rotary anode 2. The rotating mechanism 8 is a sliding bearing structure using liquid metal lubrication that supports the rotating anode 2 rotatably in the circumferential direction via the first rotating member 6.

具体的に、この回転機構8は、略円筒状の第2の回転部材11を備えている。この第2の回転部材11の軸方向の回転陽極2から遠い側、すなわち回転陽極2が位置する側の反対側の他端部で鍔部7に機械的に接続されて結合され、第1の回転部材6の同軸状に固定されて取り付けられている。したがって、この第2の回転部材11は、第1の回転部材6から第2の回転部材11への熱伝導経路をより長くするために、これら第1の回転部材6と第2の回転部材11との間に形成される所定の間隙Aの長さ寸法より小さな幅寸法の鍔部7を介して第1の回転部材6の外周面に機械的に接続されている。このとき、これら鍔部7と第2の回転部材11とは一体的に構成されており、この鍔部7の内側の部分が第1の回転部材6にろう接されて接続されている。さらに、この第1の回転部材6の外周面と第2の回転部材11の内周面とは、間隙Aを介して同心状に接続されている。   Specifically, the rotation mechanism 8 includes a second rotating member 11 having a substantially cylindrical shape. The second rotary member 11 is mechanically connected and coupled to the flange 7 at the other end of the second rotary member 11 that is far from the rotary anode 2 in the axial direction, that is, the other side opposite to the side where the rotary anode 2 is located. The rotating member 6 is fixed and attached coaxially. Therefore, the second rotating member 11 and the second rotating member 11 are arranged in order to make the heat conduction path from the first rotating member 6 to the second rotating member 11 longer. Are mechanically connected to the outer peripheral surface of the first rotating member 6 via a flange portion 7 having a width dimension smaller than the length dimension of a predetermined gap A formed therebetween. At this time, the flange portion 7 and the second rotating member 11 are integrally configured, and an inner portion of the flange portion 7 is connected to the first rotating member 6 by brazing. Further, the outer peripheral surface of the first rotating member 6 and the inner peripheral surface of the second rotating member 11 are concentrically connected via a gap A.

また、この第2の回転部材11は、鍔部7との結合部分から第1の回転部材6の外周面を間隙Aを介して覆うように囲んで、回転陽極2が位置する側の方向へと伸びている。すなわち、この第2の回転部材11は、第1の回転部材6の回転軸方向に亘って、この第1の回転部材6の外周面を同心状に覆っている。さらに、この第2の回転部材11は、第1の回転部材6の一端縁より他端側の位置までを覆っている。さらに、この第2の回転部材11は、第1の回転部材6との間を結合する鍔部7の部分を除いて、第1の回転部材6の外周面との間に間隔Aを形成させて断熱層を形成させている。   In addition, the second rotating member 11 surrounds the outer peripheral surface of the first rotating member 6 through the gap A from the coupling portion with the flange portion 7, toward the side where the rotating anode 2 is located. It is growing. That is, the second rotating member 11 concentrically covers the outer peripheral surface of the first rotating member 6 over the rotation axis direction of the first rotating member 6. Further, the second rotating member 11 covers from the one end edge of the first rotating member 6 to the position on the other end side. Further, the second rotating member 11 is formed with an interval A between the outer peripheral surface of the first rotating member 6 except for a portion of the flange portion 7 that is coupled to the first rotating member 6. The heat insulation layer is formed.

さらに、この第2の回転部材11の一端縁には、周方向に沿って径方向に向けて外側に突出した円環状の取付片部12が一体的に設けられている。そして、この取付片部12の他端面と第2の回転部材11の外周面との間には、第1の径小部としての段状の係止段部13が周方向に沿って設けられている。さらに、取付片部12の外周縁の他端側には、第2の回転部材11の外周面側および他端側に周方向に沿って切り欠かれた第2の径小部としての段状の取付段部14が設けられている。この取付段部14は、係止段部13の外周面より外側であるとともに一端側に周方向に沿って設けられている。   Furthermore, an annular mounting piece 12 that protrudes outward in the radial direction along the circumferential direction is integrally provided at one end edge of the second rotating member 11. And between the other end surface of this attachment piece part 12 and the outer peripheral surface of the 2nd rotation member 11, the step-shaped latching step part 13 as a 1st small diameter part is provided along the circumferential direction. ing. Further, on the other end side of the outer peripheral edge of the mounting piece portion 12, a step shape as a second small diameter portion cut out along the circumferential direction on the outer peripheral surface side and the other end side of the second rotating member 11. Mounting step 14 is provided. The mounting step 14 is provided outside the outer peripheral surface of the locking step 13 and at one end side along the circumferential direction.

そして、この第2の回転部材11の外側には、円筒状の第3の回転部材21が同心状に位置して取り付けられている。これら第2の回転部材11と第3の回転部材21とは、これら第2の回転部材11と第3の回転部材21の軸方向の回転陽極2に近い側、すなわち回転陽極2が位置する側である第2の回転部材11および第3の回転部材21それぞれの一端側で接合などにて機械的に接続されて結合されて取り付けられている。具体的に、この第3の回転部材21は、この第3の回転部材21の一端縁が第2の回転部材11の取付段部14に係合された状態で接合されている。   A cylindrical third rotating member 21 is concentrically attached to the outside of the second rotating member 11. The second rotating member 11 and the third rotating member 21 are the sides of the second rotating member 11 and the third rotating member 21 that are close to the rotating anode 2 in the axial direction, that is, the side where the rotating anode 2 is located. The one end of each of the second rotating member 11 and the third rotating member 21 is mechanically connected by joining or the like and attached. Specifically, the third rotating member 21 is joined in a state where one end edge of the third rotating member 21 is engaged with the mounting step 14 of the second rotating member 11.

このとき、この第3の回転部材21の一端側は、第2の回転部材11の取付段部14の径方向に沿った高さ寸法に略等しい厚さ寸法を有している。すなわち、この第3の回転部材21の一端部は、第2の回転部材11の取付段部14に取り付けられて機械的に接続された状態で、この第2の回転部材11の取付段部14の外周面と面一になるように構成されている。よって、この第3の回転部材21は、第2の回転部材11から第3の回転部材21への熱伝導経路をより長くするために、この第3の回転部材21と第2の回転部材11との間の所定の間隙Bの長さ寸法より小さな幅寸法の第2の回転部材11の取付片部12の取付段部14に係止されて機械的に接続されている。   At this time, one end side of the third rotating member 21 has a thickness dimension substantially equal to the height dimension along the radial direction of the mounting step portion 14 of the second rotating member 11. That is, one end portion of the third rotating member 21 is attached to the mounting step portion 14 of the second rotating member 11 and mechanically connected, and the mounting step portion 14 of the second rotating member 11 is connected. It is comprised so that it may become flush | level with the outer peripheral surface. Therefore, the third rotating member 21 and the second rotating member 11 are arranged in order to make the heat conduction path from the second rotating member 11 to the third rotating member 21 longer. And is mechanically connected to the mounting step 14 of the mounting piece 12 of the second rotating member 11 having a width smaller than the length of the predetermined gap B therebetween.

そして、この第3の回転部材21は、第2の回転部材11との結合部分から、この第2の回転部材11の外周面を間隙Bを介して覆うように囲んで、回転陽極2が位置する側の反対側の方向へと伸びている。よって、この第3の回転部材21の内側に第2の回転部材11が同軸状に位置している。さらに、この第3の回転部材21は、この第3の回転部材21の他端側が第2の回転部材11の他端縁よりも他端側に向けて突出している。   The third rotating member 21 surrounds the outer peripheral surface of the second rotating member 11 through the gap B from the coupling portion with the second rotating member 11 so that the rotating anode 2 is positioned. It extends in the direction opposite to the side to be used. Therefore, the second rotating member 11 is coaxially positioned inside the third rotating member 21. Further, in the third rotating member 21, the other end side of the third rotating member 21 protrudes toward the other end side from the other end edge of the second rotating member 11.

そして、これら第2の回転部材11と第3の回転部材21との間には、これら第2の回転部材11と第3の回転部材21との間の接続部分を除いて狭い間隙Bが形成されて軸受空間が形成されている。ここで、これら鍔部7、第2の回転部材11および第3の回転部材21のそれぞれは、熱伝導率の小さい合金、例えば50質量%の鉄と50質量%のニッケルとの合金によって形成されている。   A narrow gap B is formed between the second rotating member 11 and the third rotating member 21 except for the connecting portion between the second rotating member 11 and the third rotating member 21. Thus, a bearing space is formed. Here, each of the flange portion 7, the second rotating member 11, and the third rotating member 21 is formed of an alloy having a low thermal conductivity, for example, an alloy of 50% by mass of iron and 50% by mass of nickel. ing.

さらに、この第3の回転部材21の一端側および他端側それぞれの開口外縁には、径方向に沿って外側に向けて突出した係止突部22が周方向に沿って一体的に設けられている。ここで、これら係止突部22は、第2の回転部材11の取付段部14の径方向に沿った高さ寸法に略等しい厚さ寸法を有している。さらに、これら係止突部22は、第3の回転部材21の周方向に沿った円環状に形成されており、この第3の回転部材21の一端面および他端面のそれぞれと面一に形成されている。そして、これら係止突部22間に位置する第3の回転部材21の外周面には、これら係止突部22より一段低い部分である径小な円筒状の径小部23が形成されている。また、この第3の回転部材21の他端側に位置する係止突部22の内側には、この第3の回転部材21の中心軸方向に向けて同軸状に開口した開口部24が設けられている。   Further, locking protrusions 22 projecting outward along the radial direction are integrally provided along the circumferential direction at the opening outer edges of the one end side and the other end side of the third rotating member 21. ing. Here, these locking projections 22 have a thickness dimension substantially equal to the height dimension along the radial direction of the mounting step 14 of the second rotating member 11. Further, these locking projections 22 are formed in an annular shape along the circumferential direction of the third rotating member 21, and are formed flush with the one end surface and the other end surface of the third rotating member 21. Has been. A small diameter cylindrical portion 23 having a smaller diameter, which is a part lower than the locking projections 22, is formed on the outer peripheral surface of the third rotating member 21 positioned between the locking projections 22. Yes. Further, an opening 24 that is coaxially opened toward the central axis of the third rotating member 21 is provided inside the locking projection 22 located on the other end side of the third rotating member 21. It has been.

そして、この第3の回転部材21の外側には、熱放射回転部材としての略円筒状の外側回転部材31が所定の間隙Cを介して同心状に設けられている。この外側回転部材31は、第3の回転部材21の外周面の係止突部22間に取り付けられている。言い換えると、この外側回転部材31は、第3の回転部材21の係止突部22間に位置する径小部23の外周面に取り付けられている。よって、この外側回転部材31は、第3の回転部材21の係止突部22間の距離、すなわち径小部23の長さ寸法よりも小さな長さ寸法を有する円筒状に形成されている。   A substantially cylindrical outer rotating member 31 as a heat radiation rotating member is provided concentrically with a predetermined gap C outside the third rotating member 21. The outer rotating member 31 is attached between the locking projections 22 on the outer peripheral surface of the third rotating member 21. In other words, the outer rotating member 31 is attached to the outer peripheral surface of the small diameter portion 23 located between the locking projections 22 of the third rotating member 21. Therefore, the outer rotating member 31 is formed in a cylindrical shape having a length dimension smaller than the distance between the locking projections 22 of the third rotating member 21, that is, the length dimension of the small diameter portion 23.

また、この外側回転部材31は、第3の回転部材21などから伝導されてきた熱を外部へと放出させる熱輻射機能を有している。すなわち、この外側回転部材31は、熱輻射機能に優れた銅などの材料にて形成されている。さらに、この外側回転部材31と第3の回転部材21とは、回転陽極2に近い側である一端側で接合などによって機械的に接続されて結合されて接続されている。具体的に、この外側回転部材31の一端縁の内側には、接続部としての円環状の結合突部32が周方向に沿って一体的に設けられている。この結合突部32は、外側回転部材31の内周面よりも内側に向けて突出させており、第3の回転部材21と外側回転部材31との間に形成させる間隙Cの幅寸法に等しい高さ寸法を有している。   The outer rotating member 31 has a heat radiation function for releasing the heat conducted from the third rotating member 21 and the like to the outside. That is, the outer rotating member 31 is made of a material such as copper having an excellent heat radiation function. Further, the outer rotating member 31 and the third rotating member 21 are mechanically connected and connected by joining or the like on one end side that is close to the rotating anode 2. Specifically, an annular coupling protrusion 32 as a connecting portion is integrally provided along the circumferential direction inside one end edge of the outer rotating member 31. The coupling protrusion 32 protrudes inward from the inner peripheral surface of the outer rotating member 31, and is equal to the width dimension of the gap C formed between the third rotating member 21 and the outer rotating member 31. Has a height dimension.

したがって、この外側回転部材31は、第3の回転部材21から外側回転部材31への熱伝導経路をより長くするために、これら第3の回転部材21と外側回転部材31との間の間隙Cの長さ寸法より小さな幅寸法の結合突部32にて第3の回転部材21に機械的に接続されている。そして、この結合突部32は、第3の回転部材21の一端側の係止突部22の他端面から所定の間隙Dを介した他端側の位置に結合されて機械的に接続されて取り付けられている。このとき、この外側回転部材31の他端側もまた、第3の回転部材21の他端側の係止突部22の一端面から所定の間隙Eを介した一端側に収容されている。   Therefore, the outer rotating member 31 has a gap C between the third rotating member 21 and the outer rotating member 31 in order to make the heat conduction path from the third rotating member 21 to the outer rotating member 31 longer. It is mechanically connected to the third rotating member 21 by a coupling protrusion 32 having a width dimension smaller than the length dimension. The coupling protrusion 32 is coupled and mechanically connected to a position on the other end side through a predetermined gap D from the other end surface of the locking projection 22 on one end side of the third rotating member 21. It is attached. At this time, the other end side of the outer rotating member 31 is also accommodated on one end side through a predetermined gap E from one end face of the locking projection 22 on the other end side of the third rotating member 21.

すなわち、これら第3の回転部材21と外側回転部材31との間には、これら第2の回転部材11と第3の回転部材21との間の接続部分を除いて狭い間隙Cが形成されて断熱層が形成されている。このとき、この外側回転部材31は、この外側回転部材31の外周面が第3の回転部材21の係止突部22の外周面に対して面一となるように、この第3の回転部材21の外側に取り付けられている。また、第3の回転部材21の他端部の係止突部22は、この係止突部22以外の第3の回転部材21の外周面、すなわち径小部23の外径寸法より外径寸法が大きく形成されている。   That is, a narrow gap C is formed between the third rotating member 21 and the outer rotating member 31 except for the connecting portion between the second rotating member 11 and the third rotating member 21. A heat insulating layer is formed. At this time, the outer rotating member 31 has the third rotating member 31 so that the outer peripheral surface of the outer rotating member 31 is flush with the outer peripheral surface of the locking projection 22 of the third rotating member 21. It is attached to the outside of 21. Further, the locking protrusion 22 at the other end of the third rotating member 21 has an outer diameter larger than the outer diameter of the outer peripheral surface of the third rotating member 21 other than the locking protrusion 22, that is, the small diameter portion 23. The dimensions are large.

そして、この他端側の係止突部22の内側の開口部24は、略円環状のスラストリング41にて封止されている。このスラストリング41は、第3の回転部材21の他端側の係止突部22の他端面を覆いつつこの他端側の開口部24を覆って閉塞している。さらに、このスラストリング41の中央部には、開口部42が設けられている。そして、この第3の回転部材21の内側面と第2の回転部材11の外側面との間の内部空間である間隙Bには、狭い軸受間隙Fを保って中空な固定子である固定体51が回転可能に嵌合されて取り付けられている。ここで、この軸受間隙Fは、固定体51の内側面と第2の固定部材11の外周面との間に形成されている空間である。   The opening 24 inside the locking projection 22 on the other end side is sealed with a substantially annular thrust ring 41. The thrust ring 41 covers and closes the opening 24 on the other end side while covering the other end surface of the locking projection 22 on the other end side of the third rotating member 21. Further, an opening 42 is provided at the center of the thrust ring 41. A fixed body that is a hollow stator with a narrow bearing gap F maintained in a gap B that is an internal space between the inner surface of the third rotating member 21 and the outer surface of the second rotating member 11. 51 is rotatably fitted and attached. Here, the bearing gap F is a space formed between the inner surface of the fixed body 51 and the outer peripheral surface of the second fixing member 11.

この固定体51は、他端側が閉塞した径大部である有底円筒状の中空筒部52を備えている。この中空筒部52は、第2の回転部材11と第3の回転部材21との間に回転可能かつ摺動可能に嵌合されつつ、この第2の回転部材11の係止段部13に回転可能かつ摺動可能に係止されている。さらに、この中空筒部52の外周面には、螺旋溝53が設けられてラジアル軸受面54が形成されてラジアル方向の動圧式すべり軸受とされている。したがって、この中空筒部52の外周面と第3の回転部材21の内周面とに間に動圧式すべり軸受が構成されている。   The fixed body 51 includes a hollow cylindrical portion 52 having a bottomed cylindrical shape, which is a large-diameter portion whose other end is closed. The hollow cylinder portion 52 is rotatably and slidably fitted between the second rotating member 11 and the third rotating member 21, and is fitted to the locking step portion 13 of the second rotating member 11. It is rotatably and slidably locked. Further, a spiral groove 53 is provided on the outer peripheral surface of the hollow cylindrical portion 52 to form a radial bearing surface 54, thereby forming a dynamic pressure type slide bearing in the radial direction. Therefore, a hydrodynamic slide bearing is formed between the outer peripheral surface of the hollow cylindrical portion 52 and the inner peripheral surface of the third rotating member 21.

また、この中空筒部52の他端側には、この中空筒部52より外径寸法が小さな径小部としての陽極支持部55が同軸状に連結されて固定されて取り付けられている。この陽極支持部55は、スラストリング41の開口部42を貫通して、このスラストリング41の外側まで伸びて突出している。さらに、この中空筒部52の一端側の開口縁と他端面とのそれぞれには、図示しない螺旋溝が設けられてスラスト軸受面が形成されてスラスト方向の動圧式すべり軸受とされている。   Further, an anode support portion 55 as a small diameter portion having a smaller outer diameter than the hollow cylinder portion 52 is coaxially connected and fixedly attached to the other end side of the hollow cylinder portion 52. The anode support portion 55 extends through the opening 42 of the thrust ring 41 and projects to the outside of the thrust ring 41. Further, a spiral groove (not shown) is provided on each of the opening edge on the one end side and the other end surface of the hollow cylindrical portion 52 to form a thrust bearing surface, thereby forming a dynamic pressure type slide bearing in the thrust direction.

そして、これら螺旋溝53や軸受間隙Dには、動作時に図示しない金属潤滑剤が送り込まれて充填されて介在されるように構成されている。ここで、この金属潤滑剤としては、液体金属潤滑剤として、例えば液状のガリウム(Ga)合金などの活性な液体金属が用いられる。したがって、第3の回転部材21および固定体51のそれぞれには、比較的高硬度で金属潤滑剤によって侵されにくい材料、例えば鉄合金工具鋼のSKD11(JIS規格)などの材料にて構成されている。   The helical groove 53 and the bearing gap D are configured so as to be filled with a metal lubricant (not shown) during operation. Here, as the metal lubricant, an active liquid metal such as a liquid gallium (Ga) alloy is used as the liquid metal lubricant. Therefore, each of the third rotating member 21 and the fixed body 51 is made of a material having a relatively high hardness and hardly corroded by the metal lubricant, for example, a material such as SKD11 (JIS standard) of iron alloy tool steel. Yes.

ここで、回転陽極2、第1の回転部材6および回転機構8のそれぞれは、電子銃などとともに真空容器としての真空外囲器61内に収納されて真空保持されている。この真空外囲器61より外側である非真空領域には、駆動手段としての磁界形成手段である誘導電動機62が設置されて取り付けられている。この誘導電動機62は、この誘導電動機62への電圧の印加によって誘導磁界を形成させて、この誘導磁界を回転磁界として外側回転部材31を回転駆動させるステータコイルである。そして、この外側回転部材31は、この外側回転部材31の回転によって第3の回転部材21、第2の回転部材11および第1の回転部材6のそれぞれを介して回転陽極2を回転させる。   Here, each of the rotating anode 2, the first rotating member 6, and the rotating mechanism 8 is housed in a vacuum envelope 61 as a vacuum container together with an electron gun or the like and held in vacuum. In the non-vacuum region outside the vacuum envelope 61, an induction motor 62 as magnetic field forming means as drive means is installed and attached. The induction motor 62 is a stator coil that forms an induction magnetic field by applying a voltage to the induction motor 62 and rotationally drives the outer rotating member 31 using the induction magnetic field as a rotating magnetic field. Then, the outer rotating member 31 rotates the rotating anode 2 through the third rotating member 21, the second rotating member 11, and the first rotating member 6 by the rotation of the outer rotating member 31.

次に、上記一実施の形態の回転陽極型X線管の作用について説明する。   Next, the operation of the rotary anode X-ray tube of the above embodiment will be described.

まず、誘導電動機62にて回転磁界を誘導させて形成して、この回転磁界を外側回転部材31に作用させて、この外側回転部材31を回転駆動させる。   First, a rotating magnetic field is induced by the induction motor 62, and this rotating magnetic field is applied to the outer rotating member 31, so that the outer rotating member 31 is rotationally driven.

このとき、この外側回転部材31の回転に伴って第3の回転部材21、第2の回転部材11および第1の回転部材6のそれぞれが回転して、この第1の回転部材6に固定されている回転陽極2が回転する。   At this time, each of the third rotating member 21, the second rotating member 11, and the first rotating member 6 rotates with the rotation of the outer rotating member 31, and is fixed to the first rotating member 6. The rotating anode 2 is rotated.

この状態で、この回転している回転陽極2のターゲット層4に、電子銃3から電子ビームを照射させて、このターゲット層4からX線を放出させる。   In this state, the target layer 4 of the rotating rotary anode 2 is irradiated with an electron beam from the electron gun 3 to emit X-rays from the target layer 4.

このとき、電子銃3からターゲット層4に電子ビームが照射されたときに発生するエネルギの一部がX線に変換されるが、このエネルギの大部分が熱エネルギとなってターゲット層4の温度を上昇させてしまう。   At this time, a part of the energy generated when the electron beam 3 is irradiated onto the target layer 4 from the electron gun 3 is converted into X-rays. Will rise.

ここで、このターゲット層4に蓄えられた熱エネルギは、回転陽極2を介して第1の回転部材6、第2の回転部材11、第3の回転部材21および外側回転部材31へと伝導されて、この外側回転部材31から外部へと放出される。   Here, the heat energy stored in the target layer 4 is conducted to the first rotating member 6, the second rotating member 11, the third rotating member 21, and the outer rotating member 31 through the rotating anode 2. Thus, the outer rotating member 31 is discharged to the outside.

さらに、この回転陽極2の回転に伴う回転機構8の第3の回転部材21による固定体51に対する回転によって、これら固定体51と第3の回転部材21との間のラジアル軸受面54でのトルク損失によって、回転機構8自体が発熱する。   Furthermore, the torque on the radial bearing surface 54 between the fixed body 51 and the third rotating member 21 by the rotation of the rotating mechanism 8 with respect to the fixed body 51 by the third rotating member 21 accompanying the rotation of the rotating anode 2. Due to the loss, the rotation mechanism 8 itself generates heat.

そして、この回転機構8自体の発熱もまた、第3の回転部材21から外側回転部材31へと伝導されて、この外側回転部材31から外部へと放出される。   The heat generated by the rotating mechanism 8 itself is also conducted from the third rotating member 21 to the outer rotating member 31, and is released from the outer rotating member 31 to the outside.

上述したように、上記一実施の形態によれば、回転陽極2から遠い側で第1の回転部材6と第2の回転部材11とが結合され、この回転陽極2に近い側で第2の回転部材11と第3の回転部材21とが結合されている。よって、回転陽極2の回転に伴って回転陽極2のターゲット層4に発生する温度上昇にて回転陽極2に蓄えられた熱が、第1の回転部材6の回転陽極2に近い側から遠い側へと伝導されてから、この第1の回転部材6の回転陽極2に遠い側から鍔部7を介して第2の回転部材11の回転陽極2に遠い側へと伝導される。   As described above, according to the embodiment, the first rotating member 6 and the second rotating member 11 are coupled on the side far from the rotating anode 2, and the second side is close to the rotating anode 2. The rotating member 11 and the third rotating member 21 are coupled. Therefore, the heat stored in the rotating anode 2 due to the temperature rise generated in the target layer 4 of the rotating anode 2 as the rotating anode 2 rotates is the side farther from the side closer to the rotating anode 2 of the first rotating member 6. Then, it is conducted from the side far from the rotating anode 2 of the first rotating member 6 to the side farther from the rotating anode 2 of the second rotating member 11 through the flange portion 7.

さらに、この第2の回転部材11の回転陽極2に遠い側へと伝導された熱は、この第2の回転部材11の回転陽極2の遠い側から近い側へと伝導されてから、この第2の回転部材11の回転陽極2に近い側から取付片部12を介して第3の回転部材21の回転陽極2に近い側へと伝導される。この場合、第2の回転部材11が第1の回転部材6から回転陽極2側へと折り返され、第3の回転部材21が第2の回転部材11から回転陽極2の反対側へと折り返されている同軸二重折り返し構造となっているから、構造が簡素であるとともに、回転陽極2から第3の回転部材21までの熱伝導経路としての伝熱経路がより長くなる。   Further, the heat conducted to the side of the second rotary member 11 far from the rotary anode 2 is conducted from the far side of the second rotary member 11 to the near side of the rotary anode 2, and then the second rotary member 11. Conduction is conducted from the side of the second rotating member 11 close to the rotating anode 2 to the side of the third rotating member 21 close to the rotating anode 2 through the attachment piece 12. In this case, the second rotating member 11 is folded back from the first rotating member 6 toward the rotating anode 2, and the third rotating member 21 is folded back from the second rotating member 11 to the opposite side of the rotating anode 2. Therefore, the structure is simple and the heat transfer path as the heat transfer path from the rotating anode 2 to the third rotating member 21 becomes longer.

このため、回転陽極2での温度上昇が効率良く抑制されるとともに、第3の回転部材21の温度上昇が低減され、この第3の回転部材21と固定体51との間のラジアル軸受面54での温度上昇を抑制できる。この結果、このラジアル軸受面54に充填される軸受用の金属潤滑剤の温度上昇が抑制されるので、この金属潤滑剤として活性な液体金属を使用しても、第3の回転部材21あるいは固定体51との反応が抑制されるので、長時間に亘って安定な軸受性能を維持できる。   For this reason, the temperature rise at the rotating anode 2 is efficiently suppressed, and the temperature rise of the third rotating member 21 is reduced, and the radial bearing surface 54 between the third rotating member 21 and the fixed body 51 is reduced. The temperature rise at can be suppressed. As a result, the temperature rise of the metal lubricant for the bearing filled in the radial bearing surface 54 is suppressed, so that even if an active liquid metal is used as the metal lubricant, the third rotating member 21 or the fixed member is fixed. Since the reaction with the body 51 is suppressed, stable bearing performance can be maintained for a long time.

さらに、第2の回転部材11および第3の回転部材21それぞれによる熱膨張によって第1の回転部材6の熱膨張をより効率良く相殺できる。したがって、第3の回転部材21の熱膨張に起因する回転陽極2の電子銃3側への焦点の移動量を少なくできるとともに、この第3の回転部材21と固定体51との間のラジアル軸受面54での隙間の変化を少なくできる。   Further, the thermal expansion of the first rotating member 6 can be more efficiently offset by the thermal expansion by the second rotating member 11 and the third rotating member 21. Therefore, the amount of movement of the focal point of the rotary anode 2 toward the electron gun 3 due to the thermal expansion of the third rotary member 21 can be reduced, and the radial bearing between the third rotary member 21 and the fixed body 51 can be reduced. The change in the gap on the surface 54 can be reduced.

また、第2の回転部材11と第3の回転部材21との間の軸受空間に固定体51の円筒状の中空筒部52を回転可能に嵌合させて、この中空筒部52の外周面と第3の回転部材21の内周面との間にラジアル軸受面54を形成させた。この結果、これら第2の回転部材11および第3の回転部材21の間の軸受空間全体に亘って、この第3の回転部材21と固定体51の中空筒部52との間のラジアル軸受面54の面積を大きくできる。   In addition, a cylindrical hollow tube portion 52 of the fixed body 51 is rotatably fitted in a bearing space between the second rotating member 11 and the third rotating member 21, and an outer peripheral surface of the hollow tube portion 52. A radial bearing surface 54 is formed between the first rotary member 21 and the inner peripheral surface of the third rotating member 21. As a result, the radial bearing surface between the third rotating member 21 and the hollow cylindrical portion 52 of the fixed body 51 extends over the entire bearing space between the second rotating member 11 and the third rotating member 21. The area of 54 can be increased.

このため、このラジアル軸受面54の面積をより大きくすることにより、回転機構8の重心をより回転陽極2に近い側に位置でき、軸受として正常に動作させるだけの回転機構8への浮力を得ることができる。よって、この固定体51に対する第3の回転部材21の回転に伴う回転陽極2の回転時の揺れを防止できるから、この回転陽極2の回転を安定できる。すなわち、長時間に亘って安定したすべり軸受の回転性能を維持できるとともに、回転陽極2の電子銃3側への伸び量を低減できるから、焦点の移動量を低減できる。   For this reason, by increasing the area of the radial bearing surface 54, the center of gravity of the rotating mechanism 8 can be positioned closer to the rotating anode 2, and a buoyancy to the rotating mechanism 8 that can be normally operated as a bearing is obtained. be able to. Therefore, the rotating anode 2 can be prevented from shaking during the rotation of the third rotating member 21 with respect to the fixed body 51, so that the rotation of the rotating anode 2 can be stabilized. That is, the stable rotation performance of the slide bearing can be maintained for a long time, and the amount of extension of the rotary anode 2 toward the electron gun 3 can be reduced, so that the amount of movement of the focal point can be reduced.

なお、上記一実施の形態では、第1の回転部材6を回転陽極2に対して一体に成形してもよく、これら回転陽極2および第1の回転部材6をどのような形状としてもよい。さらに、回転機構8の重心をより回転陽極2側に位置させるために、この回転機構2の第2の回転部材11および第3の回転部材21にて第1の回転部材6の外周面をできるだけ広く覆う構成としたが、これら第2の回転部材11および第3の回転部材21にて第1の回転部材6を覆う面積を必要に応じて変化させて、この回転機構8の重心位置やこの回転機構8の伝熱経路の長さを変化させてもよい。   In the above embodiment, the first rotating member 6 may be integrally formed with the rotating anode 2, and the rotating anode 2 and the first rotating member 6 may have any shape. Furthermore, in order to position the center of gravity of the rotating mechanism 8 closer to the rotating anode 2 side, the outer peripheral surface of the first rotating member 6 can be made as much as possible by the second rotating member 11 and the third rotating member 21 of the rotating mechanism 2. Although it is configured to cover widely, the area of the first rotating member 6 covered by the second rotating member 11 and the third rotating member 21 is changed as necessary, and the center of gravity position of the rotating mechanism 8 and the The length of the heat transfer path of the rotating mechanism 8 may be changed.

本発明の回転陽極型X線管の一実施の形態を示す説明断面図である。It is explanatory sectional drawing which shows one Embodiment of the rotating anode type | mold X-ray tube of this invention. 同上回転陽極型X線管の一部を示す説明断面図である。It is explanatory sectional drawing which shows a part of rotary anode type X-ray tube same as the above. 図1中のa−a断面図である。It is aa sectional drawing in FIG.

符号の説明Explanation of symbols

1 回転陽極型X線管
2 陽極ターゲットとしての回転陽極
6 第1の回転部材
11 第2の回転部材
21 第3の回転部材
31 外側回転部材
51 固定体
54 軸受面としてのラジアル軸受面
A,B 間隙
DESCRIPTION OF SYMBOLS 1 Rotating anode type X-ray tube 2 Rotating anode as an anode target 6 1st rotating member
11 Second rotating member
21 Third rotating member
31 Outer rotating member
51 Fixed body
54 Radial bearing surface as bearing surface A, B clearance

Claims (4)

陽極ターゲットと、
この陽極ターゲットが取り付けられた第1の回転部材と、
この第1の回転部材の前記陽極ターゲットが位置する側の反対側で前記第1の回転部材に接触して取り付けられ、この第1の回転部材を間隙を介して覆って設けられた略筒状の第2の回転部材と、
この第2の回転部材の前記陽極ターゲットが位置する側で前記第2の回転部材に接触して取り付けられ、この第2の回転部材を間隙を介して覆って設けられた略筒状の第3の回転部材と、
この第3の回転部材と前記第2の回転部材との間に回転可能に嵌合され、前記第3の回転部材との間に軸受面が設けられた略筒状の固定体と
を具備したことを特徴とした回転陽極型X線管。
An anode target;
A first rotating member to which the anode target is attached;
A substantially cylindrical shape which is attached in contact with the first rotating member on the opposite side of the first rotating member to the side where the anode target is located, and which covers the first rotating member with a gap therebetween. A second rotating member of
The second rotating member is attached in contact with the second rotating member on the side where the anode target is located, and is provided in a substantially cylindrical third shape provided to cover the second rotating member with a gap. A rotating member of
A substantially cylindrical fixed body that is rotatably fitted between the third rotating member and the second rotating member and has a bearing surface provided between the third rotating member and the third rotating member; Rotating anode X-ray tube characterized by the above.
第1の回転部材は、陽極ターゲットが位置する側の反対側に向けて開口した略筒状に形成されている
ことを特徴とした請求項1記載の回転陽極型X線管。
The rotary anode type X-ray tube according to claim 1, wherein the first rotary member is formed in a substantially cylindrical shape opening toward a side opposite to a side where the anode target is located.
第2の回転部材および第3の回転部材は、第1の回転部材の回転軸方向に亘って、この第1の回転部材を覆っている
ことを特徴とした請求項1または2記載の回転陽極型X線管。
The rotating anode according to claim 1 or 2, wherein the second rotating member and the third rotating member cover the first rotating member over the rotation axis direction of the first rotating member. Type X-ray tube.
第3の回転部材の外側に設けられ、熱輻射機能を有する略筒状の外側回転部材を具備した
ことを特徴とした請求項1ないし3いずれか記載の回転陽極型X線管。
The rotary anode X-ray tube according to any one of claims 1 to 3, further comprising a substantially cylindrical outer rotary member provided outside the third rotary member and having a heat radiation function.
JP2004268796A 2004-09-15 2004-09-15 Rotary anode type x-ray tube Withdrawn JP2006085995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268796A JP2006085995A (en) 2004-09-15 2004-09-15 Rotary anode type x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268796A JP2006085995A (en) 2004-09-15 2004-09-15 Rotary anode type x-ray tube

Publications (1)

Publication Number Publication Date
JP2006085995A true JP2006085995A (en) 2006-03-30

Family

ID=36164311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268796A Withdrawn JP2006085995A (en) 2004-09-15 2004-09-15 Rotary anode type x-ray tube

Country Status (1)

Country Link
JP (1) JP2006085995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192334A1 (en) * 2020-03-25 2021-09-30 キヤノン電子管デバイス株式会社 Sliding bearing unit and rotary anode type x-ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192334A1 (en) * 2020-03-25 2021-09-30 キヤノン電子管デバイス株式会社 Sliding bearing unit and rotary anode type x-ray tube
EP4131324A4 (en) * 2020-03-25 2024-03-27 Canon Electron Tubes & Devices Co., Ltd. Sliding bearing unit and rotary anode type x-ray tube

Similar Documents

Publication Publication Date Title
US7489763B2 (en) Rotary anode x-ray radiator
US7697665B2 (en) Rotating anode X-ray tube
JP3663111B2 (en) Rotating anode X-ray tube
KR940009323B1 (en) Rotary-anode type x-ray tube
KR970002680B1 (en) X-ray tube of the rotary anode type
US9922794B2 (en) Rotating anode X-ray tube
US20230018791A1 (en) Sliding bearing unit and rotary anode type x-ray tube
US6160868A (en) X-ray tube apparatus employing liquid metal for heat removal
US9275822B2 (en) Liquid metal containment in an X-ray tube
JP2006085995A (en) Rotary anode type x-ray tube
JP2005518071A (en) X-ray generator
JP7098469B2 (en) Rotating anode X-ray tube
JP6620348B2 (en) Rotating anode X-ray tube
WO2023228430A1 (en) Rotary positive electrode x-ray tube
JP4388816B2 (en) X-ray generation apparatus having an integral component part of a carrier and a bearing member
JPH06196112A (en) Rotating anode type x-ray tube
JP2003272548A (en) Rotating anode type x-ray tube
JP2001357806A (en) Rotary anode type x-ray tube
JP4219486B2 (en) X-ray tube device
JP7374874B2 (en) Rotating anode X-ray tube and method for manufacturing the rotating anode X-ray tube
JP4846214B2 (en) Rotating anode X-ray tube
JP2007157640A (en) Rotating anode x-ray tube, and x-ray tube device
JP2010212088A (en) Rotating anode x-ray tube
JP2011086463A (en) Rotating anode type x-ray tube
JP2002352756A (en) Rotating anode x-ray tube device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204