JP2006085957A - Method of manufacturing self-luminous panel - Google Patents

Method of manufacturing self-luminous panel Download PDF

Info

Publication number
JP2006085957A
JP2006085957A JP2004267849A JP2004267849A JP2006085957A JP 2006085957 A JP2006085957 A JP 2006085957A JP 2004267849 A JP2004267849 A JP 2004267849A JP 2004267849 A JP2004267849 A JP 2004267849A JP 2006085957 A JP2006085957 A JP 2006085957A
Authority
JP
Japan
Prior art keywords
self
sealing
substrate
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267849A
Other languages
Japanese (ja)
Inventor
Yoshio Menda
芳生 免田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Pioneer Corp
Original Assignee
Tohoku Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Pioneer Corp filed Critical Tohoku Pioneer Corp
Priority to JP2004267849A priority Critical patent/JP2006085957A/en
Priority to KR1020050083744A priority patent/KR20060051112A/en
Priority to TW094131310A priority patent/TW200610435A/en
Priority to CNA2005101034398A priority patent/CN1750067A/en
Publication of JP2006085957A publication Critical patent/JP2006085957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a self-luminous panel using a sealing structure directly covering a self-luminous element on a substrate with sealing material, in which productivity of the panel is not made worse. <P>SOLUTION: A self-luminous element region forming process A and a luminous element region forming process B are independently performed. A substrate having a self-luminous element region formed thereon in the self-luminous element region forming process A and a seal substrate having a layer of sealing material formed thereon in the seal member forming process B are laminated to each other in a sealing process C. In the display region forming process A, the self-luminous element forming process is performed (S2) after a pretreatment process (S1). In the luminous element region forming process B, the sealing members are formed into the sizes of the sealing substrates respectively (S3) and then the sealing material is adhered on the sealing member (S4). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自発光パネルの製造方法に関するものである。   The present invention relates to a method for manufacturing a self-luminous panel.

有機EL(Electroluminescence)パネルに代表される自発光パネルは、携帯電話や薄型テレビ、情報端末等のディスプレイは勿論のこと、車載用機能表示、例えばスピードメータ等のインパネや電化製品の機能表示部、フィルム状ディスプレイへの応用、屋外案内表示または照明への応用が期待され、盛んに開発・研究が進められている。   A self-luminous panel typified by an organic EL (Electroluminescence) panel is not only a display of a mobile phone, a flat-screen TV, an information terminal, but also an in-vehicle function display, such as an instrument panel such as a speedometer, or a function display unit of an electrical appliance, It is expected to be applied to film displays, outdoor guidance displays, or lighting, and is actively developed and researched.

このような自発光パネルは基板上に自発光素子を複数又は単数配置して形成されるものであり、自発光素子としては、有機EL素子の他に、LED(Light Emitting Diode)、FED(Field Emission Display)等の発光素子を挙げることができる。   Such a self-light-emitting panel is formed by arranging a plurality of or a single self-light-emitting element on a substrate. As the self-light-emitting element, in addition to an organic EL element, an LED (Light Emitting Diode), FED (Field And a light emitting element such as Emission Display).

自発光素子の構造は、有機EL素子を例にすると、アノード(陽極、正孔注入電極)とカソード(陰極、電子注入電極)との間に有機層(発光層を含み、低分子又は高分子有機材料からなる層)を挟み込んだ構造になっており、アノード,カソードの両電極間に電圧を印加することにより、アノードから有機層内に注入・輸送された正孔とカソードから有機層内に注入・輸送された電子が再結合して、この有機層(発光層)内での再結合によって所望の発光が得られるものである。   The structure of the self-luminous element is, for example, an organic EL element, an organic layer (including a light-emitting layer, low molecular weight or polymer) between an anode (anode, hole injection electrode) and a cathode (cathode, electron injection electrode). A layer made of an organic material) is sandwiched between the anode and cathode, and by applying a voltage between the anode and cathode, holes injected and transported from the anode into the organic layer and from the cathode into the organic layer The injected and transported electrons are recombined, and desired light emission is obtained by recombination in the organic layer (light emitting layer).

このような自発光パネルにおいては、自発光素子の発光特性を維持するために、自発光素子を外気から遮断する封止構造が一般に採用されている。特に有機ELパネルでは、有機層及び電極が大気中の水分や酸素に曝されると有機EL素子の発光特性が劣化することから、有機EL素子を外気から遮断する封止手段を設けることが現状の開発段階では不可欠になっている。   In such a self-luminous panel, in order to maintain the light emission characteristics of the self-luminous element, a sealing structure that blocks the self-luminous element from the outside air is generally employed. In particular, in an organic EL panel, when the organic layer and the electrode are exposed to moisture and oxygen in the atmosphere, the light emission characteristics of the organic EL element deteriorate. Therefore, a sealing means for blocking the organic EL element from the outside air is provided. It is indispensable at the development stage.

有機ELパネルの封止構造としては、有機EL素子の周囲に乾燥剤を配備できる封止空間を形成する構造が一般に採用されてきたが、パネルの更なる薄型化や基板上の有機EL素子に対して基板と逆側から光を取り出すトップエミッション方式の採用が検討されるようになり、基板上の有機EL素子を直接封止材料で覆う構造が開発されている。   As a sealing structure of an organic EL panel, a structure that forms a sealing space in which a desiccant can be disposed around the organic EL element has been generally adopted. On the other hand, the adoption of a top emission method in which light is extracted from the side opposite to the substrate has been studied, and a structure in which the organic EL element on the substrate is directly covered with a sealing material has been developed.

図1,図2は、このような封止構造を採用した従来例を説明する説明図であって、基板上に自発光素子を形成した領域(自発光素子領域)を複数形成した多面取り基板によって生産性の向上を図った有機EL表示装置の製造方法を示す説明図である。   FIG. 1 and FIG. 2 are explanatory views for explaining a conventional example employing such a sealing structure, and a multi-sided substrate in which a plurality of regions (self-emitting element regions) where self-emitting elements are formed are formed on the substrate. It is explanatory drawing which shows the manufacturing method of the organic electroluminescence display which aimed at the improvement of productivity.

図1は、下記特許文献1,2に示す有機EL表示装置の製造方法を説明する図であり、パネル基板J1の平面図を表す。パネル基板J1上の表示領域J2に発光素子を形成し、パネル基板J1上の外部電極領域J3に外部電極(不図示)を形成した後、外部電極領域J3に被覆部J5(特許文献1ではマスクパターン、特許文献2では保護膜)を形成し、パネル基板J1の表示領域J2上に封止樹脂J4を塗布して、パネル基板J1と封止基板(不図示)とを封止樹脂J4を介して貼り合わせたものである。   FIG. 1 is a diagram for explaining a method of manufacturing an organic EL display device disclosed in Patent Documents 1 and 2 below, and represents a plan view of a panel substrate J1. A light emitting element is formed in the display area J2 on the panel substrate J1, an external electrode (not shown) is formed in the external electrode area J3 on the panel substrate J1, and then a covering portion J5 (mask in Patent Document 1 is used in the external electrode area J3). Pattern, a protective film in Patent Document 2), a sealing resin J4 is applied on the display region J2 of the panel substrate J1, and the panel substrate J1 and the sealing substrate (not shown) are interposed via the sealing resin J4. Are pasted together.

また、図2(a),(b)は、特許文献3,4に示す有機EL表示装置の製造方法であり、それぞれパネル基板J11,封止基板J14の平面図を表す。パネル基板J11上の表示領域J12に発光素子を形成し、パネル基板J11上の外部電極領域J13Aに外部電極J13を形成した後、図2(b)に示すように、封止基板J14に封止樹脂の広がりを抑制する抑制部J16(特許文献3では凸状の防護壁、特許文献4では凹状の逃げ部)を形成し、パネル基板J11の表示領域J12上に封止樹脂J5を塗布して、パネル基板J11と封止基板J14とを封止樹脂J15を介して貼り合わせたものである。   FIGS. 2A and 2B show a method for manufacturing the organic EL display device disclosed in Patent Documents 3 and 4, and show plan views of the panel substrate J11 and the sealing substrate J14, respectively. After the light emitting element is formed in the display region J12 on the panel substrate J11 and the external electrode J13 is formed in the external electrode region J13A on the panel substrate J11, the sealing substrate J14 is sealed as shown in FIG. A suppression portion J16 (a convex protective wall in Patent Document 3 and a concave relief portion in Patent Document 4) that suppresses the spread of the resin is formed, and a sealing resin J5 is applied on the display region J12 of the panel substrate J11. The panel substrate J11 and the sealing substrate J14 are bonded together through a sealing resin J15.

特開2003−187969号公報JP 2003-187969 A 特開2004−111175号公報JP 2004-111175 A 特開2003−178866号公報JP 2003-178866 A 特開2004−111119号公報JP 2004-11119 A

前述した従来技術のように、基板上に形成された自発光素子(有機EL素子)を直接封止材料(封止樹脂)で覆うものでは、自発光素子が形成された基板(以下、素子側基板という)に対して封止材料を塗布する工程が加わることになるので、素子側基板に対する工程が増えることでパネルの生産性が悪化する問題が生じる。   As in the above-described prior art, the self-luminous element (organic EL element) formed on the substrate is directly covered with a sealing material (encapsulating resin). Since a process of applying a sealing material is added to the substrate), an increase in the number of processes for the element side substrate causes a problem that the productivity of the panel deteriorates.

また、基板に形成された自発光素子上に封止材料の層を形成するので、封止基板の貼り合わせ前に封止材料に対して脱泡等の処理を施すことが困難になり、自発光素子に対する封止効果が充分に得られないという問題もある。   In addition, since the sealing material layer is formed on the self-luminous element formed on the substrate, it becomes difficult to perform a process such as defoaming on the sealing material before bonding the sealing substrate. There is also a problem that a sealing effect on the light emitting element cannot be obtained sufficiently.

更には、硬化前の封止樹脂の塗布範囲を精度良く制御することは困難であり、特許文献1,2に示す有機EL表示装置の製造方法では、図1に示すように、封止樹脂J4が被覆部J5上にまで拡大して必要以上に封止樹脂J4を使用して無駄が多くなると共に、完全に表示領域J2を封止樹脂J4で覆うことができない場合が生じる。また、被覆部J5を形成、除去するための工程が別途必要となるので、更に素子側基板に対する工程が増えてパネルの生産性が悪化するという問題点があった。   Furthermore, it is difficult to accurately control the application range of the sealing resin before curing. In the method of manufacturing the organic EL display device disclosed in Patent Documents 1 and 2, as shown in FIG. However, it expands on the covering portion J5 and uses the sealing resin J4 more than necessary, resulting in increased waste and a case where the display region J2 cannot be completely covered with the sealing resin J4. In addition, since a process for forming and removing the covering portion J5 is required separately, there is a problem that the number of processes for the element side substrate is further increased and the productivity of the panel is deteriorated.

また、上記特許文献3,4に示す有機EL表示装置の製造方法では、基板J11上に塗布する封止樹脂J15の適量を見極めることが難しく、封止樹脂J15が少量である場合は、基板と封止基板との間に空隙が生じ、充分な封止を行うことができず、封止樹脂J15が多量となった場合は、封止樹脂J15が抑制部J16を越えて、外部電極上にまで封止樹脂が拡大し、抑制部J16の機能を充分に果たすことができなくなるという問題があった。   Moreover, in the manufacturing method of the organic EL display device described in Patent Documents 3 and 4, it is difficult to determine an appropriate amount of the sealing resin J15 to be applied on the substrate J11, and when the amount of the sealing resin J15 is small, When a gap is generated between the sealing substrate and sufficient sealing cannot be performed and the amount of the sealing resin J15 becomes large, the sealing resin J15 exceeds the suppressing portion J16 and is placed on the external electrode. There is a problem that the sealing resin expands to the extent that the function of the suppressing portion J16 cannot be sufficiently achieved.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、基板上の自発光素子を直接封止材料で覆う封止構造を採用した自発光パネルの製造方法において、パネルの生産性を悪化させない製造方法を提供すること、貼り合わせ工程前に封止材料に対して脱泡等の処理を行って確実な封止性能を得ること、また、個々の自発光素子領域からのはみ出しを抑えて封止材料を精度良く付着でき、封止材料を無駄に使用することがなく、封止材料によって自発光素子領域を確実に覆うことができること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, in a manufacturing method of a self-luminous panel that employs a sealing structure that directly covers a self-luminous element on a substrate with a sealing material, providing a manufacturing method that does not deteriorate the productivity of the panel, sealing before the bonding step Processes such as defoaming are performed on the material to obtain reliable sealing performance, and the sealing material can be attached with high accuracy by suppressing the protrusion from the individual light emitting element regions, and the sealing material is wasted. It is an object of the present invention that the self-luminous element region can be reliably covered with a sealing material without being used.

このような目的を達成するために、本発明による自発光パネルの製造方法は、以下の独立請求項に係る構成を少なくとも具備するものである。   In order to achieve such an object, a method for manufacturing a self-luminous panel according to the present invention comprises at least the configuration according to the following independent claims.

[請求項1]基板上に、一対の電極間に挟持された発光層を含む自発光素子からなる自発光素子領域を形成する工程と、前記自発光素子を封止する封止基板を前記自発光素子領域に応じた大きさに形成し、該封止基板上に封止材料を付着する工程と、前記基板と前記封止基板とを貼り合わせて、前記自発光素子領域を前記封止材料で覆うことで前記自発光素子の封止を行う工程とを有することを特徴とする自発光パネルの製造方法。   [Claim 1] A step of forming a self light emitting element region comprising a self light emitting element including a light emitting layer sandwiched between a pair of electrodes on a substrate, and a sealing substrate for sealing the self light emitting element. A step of forming a size corresponding to a light emitting element region, attaching a sealing material on the sealing substrate, and bonding the substrate and the sealing substrate together to form the self light emitting element region as the sealing material And a step of sealing the self-light-emitting element by covering with a self-light-emitting panel.

以下、本発明の実施形態を図面を参照して説明する。図3は本発明の一実施形態に係る自発光パネルの製造方法を説明する説明図(フロー図)である。この製造方法は、自発光素子領域形成工程A、封止部材形成工程B、貼り合わせ封止工程Cからなる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is an explanatory diagram (flow diagram) illustrating a method for manufacturing a self-luminous panel according to an embodiment of the present invention. This manufacturing method includes a self-luminous element region forming step A, a sealing member forming step B, and a bonding sealing step C.

自発光素子領域形成工程Aは、自発光素子が形成される基板(素子側基板)に対して、前処理工程S1(基板準備、下部電極及び引出配線パターン形成、絶縁膜パターン形成、陰極隔壁形成、基板洗浄等の工程)が施され、更に、例えば発光層を含む有機層及び上部電極の成膜を含み、一対の電極間に挟持された発光層を含む自発光素子を形成する工程(自発光素子形成工程)S2が施される。   The self-light emitting element region forming step A is a pre-processing step S1 (substrate preparation, lower electrode and lead wiring pattern formation, insulating film pattern formation, cathode partition wall formation) for the substrate (element side substrate) on which the self-light emitting element is formed. And a step of forming a self-luminous element including an organic layer including a light emitting layer and an upper electrode and including a light emitting layer sandwiched between a pair of electrodes. A light emitting element forming step) S2 is performed.

この工程は、従来から知られた自発光素子の形成工程を採用することができる。有機EL素子の場合には、低分子有機材料を真空蒸着にて成膜する方法、高分子有機材料を印刷法にて成膜する方法、予め形成した有機ELフィルムをレーザで基板側に転写させるレーザ熱転写法等を採用することができる。   For this process, a conventionally known process for forming a self-luminous element can be employed. In the case of an organic EL device, a method of forming a low molecular weight organic material by vacuum deposition, a method of forming a high molecular weight organic material by a printing method, and transferring a pre-formed organic EL film to the substrate side with a laser. A laser thermal transfer method or the like can be employed.

封止部材形成工程Bは、素子側基板と貼り合わせられ自発光素子の封止を行う封止基板を、自発光素子領域に応じた大きさに形成する封止基板形成工程S3、形成された封止基板上に封止材料を付着する封止材料付着工程S4が施される。   In the sealing member forming step B, a sealing substrate forming step S3 is formed, in which a sealing substrate that is bonded to the element side substrate and seals the self light emitting element is formed in a size corresponding to the self light emitting element region. A sealing material attaching step S4 for attaching the sealing material onto the sealing substrate is performed.

その後に、素子側基板と封止基板を貼り合わせて自発光素子領域を封止材料で覆うことで自発光素子の封止を行う工程(貼り合わせ封止工程C)が施される。そして、基板上に複数の自発光素子領域が形成されたものでは、基板を各自発光素子領域毎に切断・分割する工程が施され、最終的に形成されたパネルに対してパネル検査工程等が施されることになる。   Thereafter, a step (bonding sealing step C) for sealing the self-luminous element is performed by bonding the element-side substrate and the sealing substrate and covering the self-luminous element region with a sealing material. In the case where a plurality of self-luminous element regions are formed on the substrate, a process of cutting and dividing the substrate into each self-luminous element area is performed, and a panel inspection process or the like is performed on the finally formed panel. Will be given.

このような自発光パネルの製造方法によると、自発光素子領域に応じた大きさに形成された封止基板側に封止材料を付着させた後に自発光素子領域が形成された基板と封止基板を貼り合わせて自発光素子を封止させるので、素子側基板に対する形成工程に影響を与えることなく、自発光素子を直接封止材料で覆う封止を行うことができる。これによって、生産性の高いパネル形成を行うことが可能になる。   According to such a method for manufacturing a self-luminous panel, a sealing material and a substrate on which the self-luminous element region is formed after sealing material is attached to the sealing substrate side formed in a size corresponding to the self-luminous element region and the sealing Since the self-luminous element is sealed by bonding the substrates, the self-luminous element can be directly covered with the sealing material without affecting the formation process for the element-side substrate. This makes it possible to form a panel with high productivity.

また、貼り合わせ工程前に封止基板側に封止材料を付着させることで、素子側基板に形成された自発光素子に関係なく封止材料に対して脱泡等の処理を施すことができ、その後は単純に素子側基板と封止基板を貼り合わせればよいので、封止材料によって確実な封止性能を確保することができる。   In addition, by attaching the sealing material to the sealing substrate before the bonding step, the sealing material can be subjected to processing such as defoaming regardless of the self-luminous element formed on the element side substrate. Thereafter, since the element-side substrate and the sealing substrate are simply bonded together, reliable sealing performance can be ensured by the sealing material.

更には、封止材料の付着量を封止基板の大きさによって規定することができるので、素子側基板や封止基板に特に細工を施さなくても、単純に素子側基板と封止基板を貼り合わせるだけで封止材料を精度良く付着させることができると共に、封止材料を無駄なく付着させることができる。また、封止基板上に均一な封止材料の層を形成することで、確実に自発光素子領域を封止材料で覆うことができる。   Furthermore, since the amount of the sealing material attached can be defined by the size of the sealing substrate, the element side substrate and the sealing substrate can be simply connected without any special work on the element side substrate or the sealing substrate. The sealing material can be attached with high accuracy by simply bonding together, and the sealing material can be attached without waste. In addition, by forming a uniform sealing material layer on the sealing substrate, the self-luminous element region can be reliably covered with the sealing material.

以下、図4〜図6を用いて、有機EL素子からなる有機ELパネルを例にして本発明の実施形態に係る製造方法について更に詳細に説明する。   Hereinafter, the manufacturing method according to the embodiment of the present invention will be described in more detail with reference to FIGS. 4 to 6 by taking an organic EL panel made of organic EL elements as an example.

図4(a),(b)は、前述した自発光素子領域形成工程Aによって形成された基板1の一例を示す斜視図と断面図(同図(b)が同図(a)におけるX−X断面図)である。前処理工程S1では、基板1上に下部電極2及び引出電極3を成膜及びパターニングした後、絶縁膜4を成膜して下部電極2上に発光領域の開口部を区画するようにパターニングする。   4A and 4B are a perspective view and a cross-sectional view showing an example of the substrate 1 formed by the above-described self-light emitting element region forming step A (FIG. 4B is an X- X sectional view). In the pretreatment step S 1, the lower electrode 2 and the extraction electrode 3 are formed and patterned on the substrate 1, and then the insulating film 4 is formed and patterned so as to partition the opening of the light emitting region on the lower electrode 2. .

具体的には、下部電極2として透明基板(例えばITO)をスパッタ法等で150nm程度に成膜し、必要に応じて、表面の凹凸を平滑化させるために研磨工程や化学エッチング工程を施した後、下部電極2のパターン及び外部との駆動回路と接続させるための引出電極3のパターンに合わせたレジストを露光,現像し、塩化第二鉄溶液等をエッチャントとしてパターニングを行い、下部電極2及び引出電極3をそれぞれ形成する。引出電極3としては、ITO上に銀,クロム,アルミニウム等の低抵抗金属を積層させることが好ましい。   Specifically, a transparent substrate (for example, ITO) was formed as the lower electrode 2 to a thickness of about 150 nm by sputtering or the like, and a polishing process or a chemical etching process was performed as necessary to smooth the surface irregularities. Thereafter, a resist corresponding to the pattern of the lower electrode 2 and the pattern of the extraction electrode 3 for connection to an external driving circuit is exposed and developed, and patterned using a ferric chloride solution or the like as an etchant. Extraction electrodes 3 are formed respectively. As the extraction electrode 3, it is preferable to laminate a low-resistance metal such as silver, chromium, or aluminum on ITO.

次いで、基板1を洗浄し、絶縁膜4であるポリイミド前駆体を塗布・露光・現像を行う。現像後に200℃、2時間ベーキング処理を施し、下部電極2上に発光領域が開口した絶縁膜4のパターンを形成する。更に、この絶縁膜4上に、必要に応じて逆テーパー形状の陰極隔壁を形成する。成膜工程S2に支持基板1を搬入する前にUV照射により、基板1表面の洗浄が行われる。図示の例では、一枚の多面取り(大判)基板に複数の自発光素子領域5を形成する例を示している。   Next, the substrate 1 is washed, and a polyimide precursor as the insulating film 4 is applied, exposed and developed. After the development, a baking process is performed at 200 ° C. for 2 hours to form a pattern of the insulating film 4 having a light emitting region opened on the lower electrode 2. Further, a reverse-tapered cathode barrier rib is formed on the insulating film 4 as necessary. Before the support substrate 1 is carried into the film forming step S2, the surface of the substrate 1 is cleaned by UV irradiation. In the example shown in the figure, an example is shown in which a plurality of self-luminous element regions 5 are formed on a single multi-sided (large format) substrate.

次に、成膜工程(自発光素子形成工程:S2)として、基板1を蒸着室に搬入し、下部電極2上の絶縁膜4をパターニングした開口位置に、CuPc等の正孔注入層を成膜し、その後、NPB等の正孔輸送層、青色発光材料のDPVBi,緑色発光材料のAlq,赤色発光材料のtBu−PTC等の発光層を塗り分けて成膜、Alq等の電子輸送層、LiO等の電子注入層、Al等の上部電極6を順次成膜して、有機層7を形成する。基板1と下部電極2との間には、平坦化等を目的にした下地層を形成する場合もある。特に、下部電極2を基板1上に形成されたTFT等の駆動素子で駆動する場合には、基板1上に平坦化膜を介して下部電極2が形成されることになる。この成膜工程を経て、基板1上に複数の自発光素子領域5と引出配線3が形成される。 Next, as a film forming process (self-luminous element forming process: S2), the substrate 1 is carried into the vapor deposition chamber, and a hole injection layer such as CuPc is formed at the opening position where the insulating film 4 on the lower electrode 2 is patterned. Then, a hole transport layer such as NPB, a blue light emitting material DPVBi, a green light emitting material Alq 3 , a red light emitting material such as tBu-PTC is separately formed, and an electron transport such as Alq 3 is formed. An organic layer 7 is formed by sequentially forming a layer, an electron injection layer such as LiO 2 , and an upper electrode 6 such as Al. In some cases, a base layer for the purpose of planarization or the like is formed between the substrate 1 and the lower electrode 2. In particular, when the lower electrode 2 is driven by a driving element such as a TFT formed on the substrate 1, the lower electrode 2 is formed on the substrate 1 via a planarizing film. Through this film forming process, a plurality of self-light emitting element regions 5 and lead wirings 3 are formed on the substrate 1.

次に、図5は、図3に示す封止部材形成工程Bの一例について説明する図である。位置決めトレイ(位置決め部材)10上に個々の自発光素子領域5毎の大きさに分割形成された封止基板11を、図4に示す自発光素子領域5と同位置に配列するように支持する。そして、封止部材13をこれら複数の封止基板11上の全体に塗布部材(ディスペンサ等)12を用いて均一に塗布する。この封止部材13としては、熱硬化性又は光硬化性等の樹脂材料、エラストマー等が用いられる。塗布が完了した後には、封止材料13中の気泡を除去する脱泡処理等の必要な処理を封止部材13に対して施す。ここでは、封止材料13を塗布する例を示したが、これに限らず、フィルム状の封止材料をラミネートすることで、封止材料13を封止基板11上に付着させるようにしてもよい。   Next, FIG. 5 is a figure explaining an example of the sealing member formation process B shown in FIG. The sealing substrate 11 divided and formed for each self-light emitting element region 5 on the positioning tray (positioning member) 10 is supported so as to be arranged at the same position as the self-light emitting element region 5 shown in FIG. . And the sealing member 13 is uniformly apply | coated to the whole on these several sealing substrates 11 using the application member (dispenser etc.) 12. As the sealing member 13, a thermosetting or photo-curing resin material, an elastomer, or the like is used. After the application is completed, a necessary process such as a defoaming process for removing bubbles in the sealing material 13 is performed on the sealing member 13. Here, an example in which the sealing material 13 is applied has been described. However, the present invention is not limited thereto, and the sealing material 13 may be adhered onto the sealing substrate 11 by laminating a film-shaped sealing material. Good.

そして、図6に示すように、封止基板11上に付着させた封止材料13と基板1上に形成した自発光素子領域5とを対面させて、基板1と封止基板11との貼り合わせを行う。   Then, as shown in FIG. 6, the sealing material 13 adhered on the sealing substrate 11 and the self-luminous element region 5 formed on the substrate 1 are faced to each other, and the substrate 1 and the sealing substrate 11 are bonded. Align.

この貼り合わせ工程Cの具体例を、図7(a)〜(c)によって説明する。図7(a)は、図3で形成された基板1の自発光素子領域5と、図4で形成された封止基板の位置決めトレイ10上の封止部材13とがそれぞれ対向するように配備された状態を示している。そして、例えば、位置決めトレイ10の設けたアライメントマークと基板1上に設けたアライメントマークとを合わせる等して封止される自発光素子領域5と封止基板11との位置決めがなされ、その後に、基板1と封止基板11とを近接させる。   A specific example of the bonding step C will be described with reference to FIGS. 7A is arranged so that the self-luminous element region 5 of the substrate 1 formed in FIG. 3 and the sealing member 13 on the positioning tray 10 of the sealing substrate formed in FIG. 4 face each other. It shows the state that was done. Then, for example, the self-light emitting element region 5 and the sealing substrate 11 which are sealed by aligning the alignment mark provided on the positioning tray 10 and the alignment mark provided on the substrate 1 are positioned, and then, The substrate 1 and the sealing substrate 11 are brought close to each other.

そして、図7(b)に示すように、封止基板11上の封止部材13を基板1の自発光素子領域5に密着させ、封止部材13が自発光素子領域5全体を覆うように、基板1と位置決めトレイ10とを所定の圧力Pで圧接する。この際の圧力Pは、封止部材13の広がりを考慮して、封止部材13が引出配線3に被らないように制御される。   Then, as shown in FIG. 7B, the sealing member 13 on the sealing substrate 11 is brought into close contact with the self-luminous element region 5 of the substrate 1 so that the sealing member 13 covers the entire self-luminous element region 5. The substrate 1 and the positioning tray 10 are brought into pressure contact with each other with a predetermined pressure P. The pressure P at this time is controlled so that the sealing member 13 does not cover the extraction wiring 3 in consideration of the expansion of the sealing member 13.

その後、封止材料13として熱硬化性樹脂を用いた場合には、封止基板11(位置決めトレイ10)の背後から加熱することで封止材料13を硬化させる。そして、図7(c)に示すように、位置決めトレイ10を封止基板11から離脱させる。   Thereafter, when a thermosetting resin is used as the sealing material 13, the sealing material 13 is cured by heating from behind the sealing substrate 11 (positioning tray 10). Then, the positioning tray 10 is detached from the sealing substrate 11 as shown in FIG.

なお、図示の例では、位置決めトレイ10に封止基板11を位置決めして一括して貼り合わせる例を示したが、これに限らず、一枚の大きな基板1における多数の自発光素子領域5に対して、1個ずつ又は複数個ずつ(例えば横一列毎など)封止基板11を貼り合わせるようにしてもよい。   In the example shown in the figure, the sealing substrate 11 is positioned on the positioning tray 10 and bonded together. However, the present invention is not limited to this. On the other hand, the sealing substrate 11 may be bonded one by one or plural (for example, every horizontal row).

図8は、本発明の製造方法によって製造された自発光パネル(有機ELパネル)の実施例である。   FIG. 8 is an example of a self-luminous panel (organic EL panel) manufactured by the manufacturing method of the present invention.

ここでは、有機EL素子によって形成された表示面100aが基板101側に形成されたボトムエミッション方式の例を示しているが、これに限らず、封止基板121側から光を取り出すトップエミッション方式にすることもできる。このトップエミッション方式の場合には、有機EL素子を封止基板121側に光を取り出すように形成し、封止基板121及び封止材料123を透明材料で形成する。特に、トップエミッション方式にした場合には、封止材料13の屈折率調整によって、光の出射経路の屈折率を均一化することが可能になり、封止基板11側の出射開口と各有機EL素子の光出射面における開口との光学的なずれ、或いはカラー化を図った場合の色ずれの問題を解消することができる。   Here, an example of the bottom emission method in which the display surface 100a formed by the organic EL element is formed on the substrate 101 side is shown, but not limited to this, a top emission method in which light is extracted from the sealing substrate 121 side is shown. You can also In the case of the top emission method, the organic EL element is formed so as to extract light to the sealing substrate 121 side, and the sealing substrate 121 and the sealing material 123 are formed of a transparent material. In particular, in the case of the top emission method, it is possible to make the refractive index of the light emission path uniform by adjusting the refractive index of the sealing material 13, and the emission opening on the sealing substrate 11 side and each organic EL. It is possible to solve the problem of an optical shift from the opening on the light emitting surface of the element or a color shift in the case of colorization.

自発光素子領域5は、前述したように、下部電極31と上部電極32との間に発光層を含む有機層33を挟持して基板101上に複数の有機EL素子を形成したものである。図示の例では、有機EL素子は、支持基板101上に酸化シリコン被覆層101Aを形成し、その上に形成される下部電極31をITO等の透明電極からなる陽極に設定し、下部電極31上に発光領域30R,30G,30Bを開放するように絶縁膜34を形成して、発光領域30R,30G,30Bにおける下部電極31上に、正孔輸送層33a,発光層33b,電子輸送層33cを積層させ、その上にAl等の金属材料からなる上部電極32を形成して、これを陰極に設定している。   As described above, the self-light emitting element region 5 is obtained by forming a plurality of organic EL elements on the substrate 101 by sandwiching the organic layer 33 including the light emitting layer between the lower electrode 31 and the upper electrode 32. In the illustrated example, the organic EL element has a silicon oxide coating layer 101 </ b> A formed on a support substrate 101, and a lower electrode 31 formed thereon is set as an anode made of a transparent electrode such as ITO. An insulating film 34 is formed so as to open the light emitting regions 30R, 30G, and 30B, and a hole transport layer 33a, a light emitting layer 33b, and an electron transport layer 33c are formed on the lower electrode 31 in the light emitting regions 30R, 30G, and 30B. The upper electrode 32 made of a metal material such as Al is formed thereon, and this is set as the cathode.

陽極と陰極の設定に関しては、陽極側は陰極側より仕事関数の高い材料で構成され、クロム(Cr)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)等の金属膜やITO、IZO等の酸化金属膜等の透明導電膜が用いられる。逆に陰極側は陽極側より仕事関数の低い材料で構成され、アルカリ金属(Li,Na,K,Rb,Cs)、アルカリ土類金属(Be,Mg,Ca,Sr,Ba)、希土類金属等、仕事関数の低い金属、その化合物、又はそれらを含む合金、ドープされたポリアニリンやドープされたポリフェニレンビニレン等の非晶質半導体、Cr、NiO、Mn等の酸化物を使用できる。したがって、材料の選択によって下部電極31を陰極に設定して、上部電極32を陽極に設定することも当然可能であり、その場合には、有機層の積層順が前述した例とは逆になって、下部電極31側から、電子輸送層、発光層、正孔輸送層が積層されることになる。ボトムエミッション方式にするかトップエミッション方式にするかは、光を取り出す側の電極を透明電極にするか否かで設定され、下部電極31,上部電極32をともに透明な材料により構成した場合には、光の放出側と反対の電極側に反射膜を設けた構成にすることもできる。 Regarding the setting of the anode and the cathode, the anode side is made of a material having a higher work function than the cathode side, and a metal film such as chromium (Cr), molybdenum (Mo), nickel (Ni), platinum (Pt), ITO, IZO A transparent conductive film such as a metal oxide film is used. Conversely, the cathode side is made of a material having a lower work function than the anode side, such as alkali metals (Li, Na, K, Rb, Cs), alkaline earth metals (Be, Mg, Ca, Sr, Ba), rare earth metals, etc. , Metal having a low work function, a compound thereof, or an alloy containing them, amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, and oxides such as Cr 2 O 3 , NiO, and Mn 2 O 5 are used. it can. Therefore, it is naturally possible to set the lower electrode 31 as the cathode and the upper electrode 32 as the anode by selecting the material, and in this case, the stacking order of the organic layers is reversed from the above-described example. Thus, the electron transport layer, the light emitting layer, and the hole transport layer are stacked from the lower electrode 31 side. Whether the bottom emission method or the top emission method is used is determined by whether or not the light extraction side electrode is a transparent electrode. When both the lower electrode 31 and the upper electrode 32 are made of a transparent material, Further, a configuration in which a reflective film is provided on the electrode side opposite to the light emission side may be employed.

また、基板101上には引出配線41が形成されており、上部電極32の端部32aが引出配線41に接続されている。引出配線41は、下部電極31と同材料,同工程で形成される第1の電極層41aが第1電極31とは絶縁層34で絶縁された状態でパターン形成されており、第1の電極層41aの上には、低抵抗配線部分を形成する第2の電極層41bが形成されている。   A lead wire 41 is formed on the substrate 101, and an end 32 a of the upper electrode 32 is connected to the lead wire 41. The lead-out wiring 41 is patterned in a state in which the first electrode layer 41 a formed by the same material and in the same process as the lower electrode 31 is insulated from the first electrode 31 by the insulating layer 34. On the layer 41a, a second electrode layer 41b for forming a low resistance wiring portion is formed.

ここでは、パッシブ駆動方式を前提にした自発光素子領域5を示しているが、これに限らずアクティブ駆動方式によって自発光素子領域5を構成することもできる。   Here, the self-light-emitting element region 5 on the premise of the passive drive method is shown, but the self-light-emitting device region 5 can also be configured by the active drive method without being limited to this.

そして、この自発光素子領域5を直接覆うように封止材料123の層が形成され、この封止材料123を介して基板101と封止基板121との貼り合わせがなされている。   A layer of the sealing material 123 is formed so as to directly cover the self-light emitting element region 5, and the substrate 101 and the sealing substrate 121 are bonded to each other through the sealing material 123.

有機層33は、前述したように、正孔輸送層33a,発光層33b,電子輸送層33cの組み合わせが一般的であるが、正孔輸送層33a,発光層33b,電子輸送層33cはそれぞれ1層だけでなく複数層積層して設けても良く、正孔輸送層33a,電子輸送層33bについてはどちらかの層を省略しても、両方の層を省略しても構わない。また、正孔注入層,電子注入層,ホールブロッキング層等の有機材料層を用途に応じて挿入することも可能である。正孔輸送層33a,発光層33b,電子輸送層33cは従来の使用されている材料(高分子材料、低分子材料を問わない)を適宜選択可能である。   As described above, the organic layer 33 is generally a combination of the hole transport layer 33a, the light emitting layer 33b, and the electron transport layer 33c, but each of the hole transport layer 33a, the light emitting layer 33b, and the electron transport layer 33c is 1 in number. A plurality of layers may be provided in addition to the layers, and either one or both of the hole transport layer 33a and the electron transport layer 33b may be omitted. It is also possible to insert organic material layers such as a hole injection layer, an electron injection layer, and a hole blocking layer depending on the application. For the hole transport layer 33a, the light emitting layer 33b, and the electron transport layer 33c, a conventionally used material (regardless of a polymer material or a low molecular material) can be appropriately selected.

また、発光層33bを形成する発光材料としては、一重項励起状態から基底状態に戻る際の発光(蛍光)を呈するもの、三重項励起状態から基底状態に戻る際の発光(りん光)を呈するもののいずれであっても構わない。   The light emitting material forming the light emitting layer 33b exhibits light emission (fluorescence) when returning from the singlet excited state to the ground state, and light emission (phosphorescence) when returning from the triplet excited state to the ground state. Any one of them can be used.

また、この実施例では、有機EL素子からなる自発光素子部は、単色表示であっても複数色表示(例えば、図示のように赤(R)、緑(G)、青(B)の発光色からなるもの)であっても良く、複数色表示を実現するためには、塗り分け方式を含むことは勿論のこと、白色や青色等の単色の発光機能層にカラーフィルタや蛍光材料による色変換層を組み合わせた方式(CF方式、CCM方式)、単色の発光機能層の発光エリアに電磁波を照射する等して複数発光を実現する方式(フォトブリーチング方式)、2色以上の単位表示領域を縦に積層し一つの単位表示領域を形成した方式(SOLED(transparent Stacked OLED)方式)等を採用することができる。   Further, in this embodiment, the self-light emitting element portion made of the organic EL element can display a plurality of colors (for example, light emission of red (R), green (G), and blue (B) as shown in the figure) even in a single color display. In order to realize a multi-color display, not only a separate coating method is included, but also a single color light emitting functional layer such as white or blue is provided with a color filter or a fluorescent material. A method that combines conversion layers (CF method, CCM method), a method that realizes multiple light emission by irradiating electromagnetic waves to the light emitting area of a monochromatic light emitting functional layer (photo bleaching method), a unit display area of two or more colors It is possible to adopt a method (SOLED (Transparent Stacked OLED) method) or the like in which a single unit display area is formed by vertically stacking layers.

現在の材料開発、製造プロセスの開発状況では、フルカラーの表示パネルとしては、有機層33の材料に低分子材料を用いたものが製品化されている。この際の有機層の構造としては、下部電極(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/上部電極(陽極)という層構造が採用されている。各層は共に単一の有機材料で形成することもできるし、複数の材料を混ぜ合わせたもの(混合層)、高分子バインダーの中に有機材料や無機材料の機能材料(電荷輸送機能,発光機能,電荷ブロッキング機能,光学機能等)を分散させたものにすることもできる。また各層には、上部電極など、上方に形成する層をスパッタ法により形成する際に、下層に形成する有機層がダメージを受けないようにバッファ機能を有する層を設けることもできる。また、成膜プロセスによる凹凸を防ぐために平坦化機能を設けることもできる。   In the current material development and manufacturing process development status, full-color display panels that use low molecular weight materials for the organic layer 33 have been commercialized. As the structure of the organic layer at this time, a layer structure of lower electrode (anode) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / upper electrode (anode) is employed. . Each layer can be made of a single organic material, a mixture of multiple materials (mixed layer), or a functional material of organic or inorganic materials in a polymer binder (charge transport function, light emitting function) , Charge blocking function, optical function, etc.) can be dispersed. In addition, each layer can be provided with a layer having a buffer function so that an organic layer formed in a lower layer is not damaged when an upper layer such as an upper electrode is formed by sputtering. In addition, a planarization function can be provided in order to prevent unevenness due to the film formation process.

有機EL素子の構造としては、有機EL素子を複数積層させたもの(SOLED素子)、陽極と陰極の間に電荷発生層を介在させたもの(マルチフォトン素子)、有機層1層のみの素子構成のもの(各機能層を連続的に形成させ層境界をなくしたもの)等であっても良い。   As the structure of the organic EL element, a structure in which a plurality of organic EL elements are stacked (SOLED element), a structure in which a charge generation layer is interposed between an anode and a cathode (multiphoton element), and an element structure having only one organic layer (The functional layer is formed continuously and the layer boundary is eliminated) or the like.

以下、このような自発光パネルの製造方法の具体例を示すが、本発明は特にこれに限定されるものではない。   Hereinafter, although the specific example of the manufacturing method of such a self-light-emitting panel is shown, this invention is not specifically limited to this.

前処理工程:
ガラス製の基板101上に透明導電膜のインジウム錫酸化膜(ITO)をスパッタ法にて成膜し、フォトリソグラフィ法にてパターニングすることで、陽極となる下部電極31及び引出配線41(第1の電極層41a)のパターンを形成する。また、下部電極31上に発光領域が開口するようにポリイミドによる絶縁膜34をパターニングする。その後に、ITO付きの基板101に対してUVオゾン洗浄が施される。
Pretreatment process:
An indium tin oxide film (ITO), which is a transparent conductive film, is formed on a glass substrate 101 by a sputtering method, and patterned by a photolithography method, whereby a lower electrode 31 serving as an anode and an extraction wiring 41 (first wiring) The pattern of the electrode layer 41a) is formed. Further, the insulating film 34 made of polyimide is patterned so that the light emitting region is opened on the lower electrode 31. Thereafter, UV ozone cleaning is performed on the substrate 101 with ITO.

自発光素子形成工程(成膜工程):
前処理工程の後、基板101を10−4Paまで真空排気した真空成膜装置内に搬入し、正孔注入層としてCuPcを50nm積層し、次いで正孔輸送層としてNPDを50nm積層し、白色有機EL層を青発光層とオレンジ色発光層を積層させたものを用いる。先に青色EL発光層として、DPVBiのホスト材に1重量%ドーパントとしてBCzVBiを50nm共蒸着し、Alqのホスト材に1重量%ドーパントとしてDCMを50nm共蒸着させる。その上部に電子輸送層としてAlqを20nm、陰極としてAlを150nm蒸着させる。
Self-luminous element formation process (film formation process):
After the pretreatment step, the substrate 101 is carried into a vacuum film forming apparatus evacuated to 10 −4 Pa, CuPc is deposited as a hole injection layer by 50 nm, and then NPD is deposited as a hole transport layer by 50 nm. An organic EL layer in which a blue light emitting layer and an orange light emitting layer are laminated is used. First, as a blue EL light emitting layer, 50 nm of BCzVBi as a 1 wt% dopant is co-evaporated on a DPVBi host material, and 50 nm of DCM is co-evaporated as a 1 wt% dopant on an Alq 3 host material. On top of this, 20 nm of Alq 3 is deposited as an electron transport layer, and 150 nm of Al is deposited as a cathode.

このような成膜工程の後、基板101側に発光検査工程を施し、その後、真空雰囲気からNの不活性ガス雰囲気化にした封止室に基板101を搬入する。 After such a film formation step, a light emission inspection step is performed on the substrate 101 side, and then the substrate 101 is carried into a sealing chamber that is changed from a vacuum atmosphere to an inert gas atmosphere of N 2 .

封止部材形成工程:
ガラス製等の板材を自発光素子領域5に応じた大きさの所望の形状(長方形,正方形等)に切断・分割して、個々の封止基板121を形成する。そして、封止基板121の一面に前述した塗布等の方法で封止材料123の層を形成する。
Sealing member forming step:
Each sealing substrate 121 is formed by cutting and dividing a plate material made of glass or the like into a desired shape (rectangular, square, etc.) having a size corresponding to the self-light emitting element region 5. Then, a layer of the sealing material 123 is formed on one surface of the sealing substrate 121 by the above-described method such as coating.

貼り合わせ封止工程:
その後に、有機EL素子が形成された基板101と封止材料123の層で被覆された封止基板121とを互いに対向させ、有機EL素子が封止材料123に直接覆われるように基板101と封止基板121とを貼り合わせる。そして、基板101を加熱(70℃程度)・加圧しながら封止材料123を硬化させることによって、有機EL素子の封止及び基板101と封止基板123との接合を完了させる。また、封止材料123による封止性能を高めるために、封止材料123の層の周りに封止シールを別途設けてもよい。
Bonding sealing process:
After that, the substrate 101 on which the organic EL element is formed and the sealing substrate 121 covered with the layer of the sealing material 123 are opposed to each other, and the organic EL element is directly covered with the sealing material 123. The sealing substrate 121 is attached. Then, the sealing material 123 is cured while the substrate 101 is heated (about 70 ° C.) and pressed to complete the sealing of the organic EL element and the bonding between the substrate 101 and the sealing substrate 123. In order to improve the sealing performance of the sealing material 123, a sealing seal may be separately provided around the layer of the sealing material 123.

このような本発明の実施形態によると、基板上の自発光素子を直接封止材料で覆う封止構造を採用した自発光パネルの製造方法において、パネルの生産性を悪化させない製造方法を提供するができる。また、貼り合わせ工程前に封止材料に対して脱泡等の処理を行って確実な封止性能を得ることができる。さらに、個々の自発光素子に対し封止材料を精度良く付着でき、封止材料を無駄に使用することがなく、封止材料によって自発光素子領域を確実に覆うことができる。   According to such an embodiment of the present invention, in a method for manufacturing a self-luminous panel that employs a sealing structure that directly covers a self-luminous element on a substrate with a sealing material, a manufacturing method that does not deteriorate the productivity of the panel is provided. Can do. Moreover, reliable sealing performance can be obtained by performing a process such as defoaming on the sealing material before the bonding step. Furthermore, the sealing material can be attached to each self-light-emitting element with high accuracy, and the self-light-emitting element region can be reliably covered with the sealing material without wasteful use of the sealing material.

従来技術の説明図である。It is explanatory drawing of a prior art. 従来技術の説明図である。It is explanatory drawing of a prior art. 図3は本発明の一実施形態に係る自発光パネルの製造方法を説明する説明図(フロー図)である。FIG. 3 is an explanatory diagram (flow diagram) illustrating a method for manufacturing a self-luminous panel according to an embodiment of the present invention. 本発明の実施形態に係る自発光パネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the self-light-emitting panel which concerns on embodiment of this invention. 本発明の実施形態に係る自発光パネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the self-light-emitting panel which concerns on embodiment of this invention. 本発明の実施形態に係る自発光パネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the self-light-emitting panel which concerns on embodiment of this invention. 本発明の実施形態に係る自発光パネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the self-light-emitting panel which concerns on embodiment of this invention. 本発明の実施形態に係る製造装置によって製造された自発光パネル(有機ELパネル)を示す説明図である。It is explanatory drawing which shows the self-light-emitting panel (organic EL panel) manufactured by the manufacturing apparatus which concerns on embodiment of this invention.

1 基板
2 下部電極
3 引出電極
4 絶縁膜
5 自発光素子領域
6 上部電極
7 有機層
11 封止基板
13 封止材料
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 Lead electrode 4 Insulating film 5 Self-luminous element area 6 Upper electrode 7 Organic layer 11 Sealing substrate 13 Sealing material

Claims (5)

基板上に、一対の電極間に挟持された発光層を含む自発光素子からなる自発光素子領域を形成する工程と、
前記自発光素子を封止する封止基板を前記自発光素子領域に応じた大きさに形成し、該封止基板上に封止材料を付着する工程と、
前記基板と前記封止基板とを貼り合わせて、前記自発光素子領域を前記封止材料で覆うことで前記自発光素子の封止を行う工程とを有することを特徴とする自発光パネルの製造方法。
Forming a self light emitting element region comprising a self light emitting element including a light emitting layer sandwiched between a pair of electrodes on a substrate;
Forming a sealing substrate for sealing the self-light-emitting element in a size corresponding to the self-light-emitting element region, and attaching a sealing material on the sealing substrate;
A step of sealing the self-light-emitting element by bonding the substrate and the sealing substrate together and covering the self-light-emitting element region with the sealing material. Method.
前記自発光素子領域は前記基板上に複数形成され、前記基板と前記封止基板とを貼り合わせた後に、前記基板を前記自発光素子領域毎に分割・切断することを特徴とする請求項1に記載された自発光パネルの製造方法。   2. The self light emitting element region is formed in plural on the substrate, and the substrate and the sealing substrate are bonded together, and then the substrate is divided and cut for each self light emitting element region. The manufacturing method of the self-light-emitting panel described in 2. 複数の前記封止基板を位置決め部材に支持した後、一括して前記基板に貼り合わせることを特徴とする請求項2に記載された自発光パネルの製造方法。   3. The method for manufacturing a self-luminous panel according to claim 2, wherein a plurality of the sealing substrates are supported on a positioning member and then bonded to the substrates at a time. 前記自発光素子を前記封止基板側に光を取り出すように形成し、前記封止基板及び前記封止材料を透明材料で形成することを特徴とする請求項1〜3のいずれかに記載された自発光パネルの製造方法。   The self-luminous element is formed so as to extract light to the sealing substrate side, and the sealing substrate and the sealing material are formed of a transparent material. A method for manufacturing a self-luminous panel. 前記自発光素子は有機EL素子であることを特徴とする請求項1〜4のいずれかに記載された自発光パネルの製造方法。   The method for manufacturing a self-luminous panel according to claim 1, wherein the self-luminous element is an organic EL element.
JP2004267849A 2004-09-15 2004-09-15 Method of manufacturing self-luminous panel Pending JP2006085957A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004267849A JP2006085957A (en) 2004-09-15 2004-09-15 Method of manufacturing self-luminous panel
KR1020050083744A KR20060051112A (en) 2004-09-15 2005-09-08 Method of manufacturing self-emission panel
TW094131310A TW200610435A (en) 2004-09-15 2005-09-12 Method of manufacturing self-emission panel
CNA2005101034398A CN1750067A (en) 2004-09-15 2005-09-15 Method for producinfg self luminous panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267849A JP2006085957A (en) 2004-09-15 2004-09-15 Method of manufacturing self-luminous panel

Publications (1)

Publication Number Publication Date
JP2006085957A true JP2006085957A (en) 2006-03-30

Family

ID=36164274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267849A Pending JP2006085957A (en) 2004-09-15 2004-09-15 Method of manufacturing self-luminous panel

Country Status (4)

Country Link
JP (1) JP2006085957A (en)
KR (1) KR20060051112A (en)
CN (1) CN1750067A (en)
TW (1) TW200610435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294944A (en) * 2006-03-31 2007-11-08 Matsushita Electric Ind Co Ltd Method of manufacturing sealing body, method of manufacturing light emitting device using the same, sealing body, light emitting device, exposure device and image forming device using the exposure device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110067A1 (en) * 2008-03-04 2009-09-11 東北パイオニア株式会社 Organic el panel manufacturing method and organic el panel
CN107170874B (en) * 2017-06-08 2019-01-04 李文联 A kind of LED display surface protection film packaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352951A (en) * 2001-05-24 2002-12-06 Tohoku Pioneer Corp Organic el display panel and manufacturing method therefor
WO2002104078A1 (en) * 2001-06-14 2002-12-27 Mitsuboshi Diamond Industrial Co., Ltd. Production device for organic el display and production method for organic el display
JP2003243162A (en) * 2002-02-12 2003-08-29 Seiko Epson Corp Manufacturing method and device of electro-optic device, electro-optic device and electronic apparatus
JP2004103534A (en) * 2002-07-03 2004-04-02 Fuji Electric Holdings Co Ltd Organic el display and its manufacturing method
WO2004060022A1 (en) * 2002-12-26 2004-07-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352951A (en) * 2001-05-24 2002-12-06 Tohoku Pioneer Corp Organic el display panel and manufacturing method therefor
WO2002104078A1 (en) * 2001-06-14 2002-12-27 Mitsuboshi Diamond Industrial Co., Ltd. Production device for organic el display and production method for organic el display
JP2003243162A (en) * 2002-02-12 2003-08-29 Seiko Epson Corp Manufacturing method and device of electro-optic device, electro-optic device and electronic apparatus
JP2004103534A (en) * 2002-07-03 2004-04-02 Fuji Electric Holdings Co Ltd Organic el display and its manufacturing method
WO2004060022A1 (en) * 2002-12-26 2004-07-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294944A (en) * 2006-03-31 2007-11-08 Matsushita Electric Ind Co Ltd Method of manufacturing sealing body, method of manufacturing light emitting device using the same, sealing body, light emitting device, exposure device and image forming device using the exposure device

Also Published As

Publication number Publication date
CN1750067A (en) 2006-03-22
KR20060051112A (en) 2006-05-19
TW200610435A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
KR101011346B1 (en) Light emitting apparatus and method of fabricating the same
CN100565970C (en) Organnic electroluminescent device manufacture method and Organnic electroluminescent device
JP6570707B2 (en) Organic electroluminescence lighting panel, manufacturing method thereof, and organic electroluminescence lighting device
JP5114215B2 (en) Optical device and method for manufacturing optical device
US8536611B2 (en) Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
JP3912393B2 (en) Method for manufacturing organic electroluminescence device
JP2006278241A (en) Spontaneous light emitting panel and manufacturing method of the same
JP2010186582A (en) Organic el display
US7675229B2 (en) Self-emission panel and method of fabricating the same
JP2011065837A (en) Organic el display device and method of manufacturing the same
US20130112958A1 (en) Organic light-emitting display panel and manufacturing method
JP2009266803A (en) Organic el display panel and its manufacturing method
JP4801382B2 (en) Self-luminous panel and manufacturing method thereof
JP2007005107A (en) Light-emitting panel and method for manufacturing the same
WO2014199741A1 (en) Organic electroluminescence element, display panel, and method for manufacturing organic electroluminescence element
KR20060051112A (en) Method of manufacturing self-emission panel
JP2000123971A (en) Manufacture of organic el
JP2004095251A (en) El device and its manufacturing method
JP2001284048A (en) Organic el element full color display panel and its manufacturing method
WO2013150713A1 (en) Organic el display device and manufacturing method therefor
JP4755002B2 (en) Manufacturing method of sealing member for optical device, manufacturing method of optical device, optical device, and sealing member for optical device
JP2007250251A (en) Optical device and manufacturing method of optical device
JP2014022221A (en) Manufacturing method of display panel
JP2006086084A (en) Method of manufacturing self-luminous panel
WO2014041614A1 (en) Organic el device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615