JP2006085879A - Optical information recording medium and method for setting optimum recording power of the same - Google Patents
Optical information recording medium and method for setting optimum recording power of the same Download PDFInfo
- Publication number
- JP2006085879A JP2006085879A JP2004272397A JP2004272397A JP2006085879A JP 2006085879 A JP2006085879 A JP 2006085879A JP 2004272397 A JP2004272397 A JP 2004272397A JP 2004272397 A JP2004272397 A JP 2004272397A JP 2006085879 A JP2006085879 A JP 2006085879A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- optical information
- power
- test
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Abstract
Description
本発明は、DVD−RAM、DVD−RW、DVD+RW、CD−RWに代表されるような、記録材料に相変化材料を用い照射する光の強度変調で記録・再生・消去・書換えが可能である相変化型光情報記録媒体、特に、DVD+RW、CD−RWに代表される高速で記録可能な相変化型光情報記録媒体とその最適記録パワー設定方法に関する。 In the present invention, recording / reproducing / erasing / rewriting is possible by intensity modulation of light irradiated with a phase change material as a recording material, as typified by DVD-RAM, DVD-RW, DVD + RW, and CD-RW. The present invention relates to a phase change type optical information recording medium, and more particularly to a phase change type optical information recording medium capable of recording at high speed represented by DVD + RW and CD-RW, and an optimum recording power setting method thereof.
近年、デジタル情報の大容量化が進んでいる。大容量のデジタル情報(例えば、音声・画像など)を蓄積するためには転送速度の高速な情報記録媒体が求められている。特に、書換えが可能であること、可搬性があること、更に広く普及している再生専用装置でも再生が可能であることから、相変化型光情報記録媒体が注目されている。特にCD−RW、DVD−RW、DVD+RWは、既に広く普及しているDVD−ROM再生装置で再生できることから、再生互換性の高い、リムーバブル媒体として注目されている。
これらの相変化型光情報記録媒体の転送速度を向上させる手段は、高密度化と走査速度の高速化とが考えられるが、トラックピッチや最小マークサイズを変更する高密度化は、再生に用いる装置の光学系を変更することになり再生互換性がなくなってしまう。これに対して、走査速度の高速化は再生装置の光学系を変更することなく転送速度を向上できるため、有効な手段とされている。
In recent years, the capacity of digital information has been increasing. In order to store a large amount of digital information (for example, voice / image), an information recording medium having a high transfer rate is required. In particular, phase-change optical information recording media have attracted attention because they can be rewritten, have portability, and can be reproduced by a reproduction-only apparatus that has become widespread. In particular, CD-RW, DVD-RW, and DVD + RW are attracting attention as removable media having high playback compatibility because they can be played back by widely used DVD-ROM playback devices.
As means for improving the transfer speed of these phase change type optical information recording media, it is conceivable to increase the density and increase the scanning speed. However, increasing the density by changing the track pitch and the minimum mark size is used for reproduction. The optical system of the apparatus is changed and reproduction compatibility is lost. On the other hand, increasing the scanning speed is an effective means because the transfer speed can be improved without changing the optical system of the reproducing apparatus.
しかし、相変化型光情報記録媒体では、記録層材料にレーザ光を照射し記録層の熱履歴を制御することで情報の記録・書換えを行っている。即ち、記録層材料のダイナミカルな熱特性を利用して情報の記録を行っている。具体的には、溶融・急冷してアモルファス状態とすること、及び結晶化温度以上に加熱して結晶状態とすることで記録を行う。より高い走査速度での記録に対応するためには、より短い加熱時間で結晶化する必要があり、そのため結晶化速度の速い記録層材料を選定することが必須となる。このような結晶化速度の速い材料では、記録後・未記録によらず経時劣化があることが大きな課題となっている。これらの経時劣化のメカニズムは明確になっていないが、未記録の状態で経時後に記録(シェルフテスト)を行うと、記録感度の低下やマーク長・マーク間長(スペース)のジッタの上昇等があることから、記録層の結晶状態の緩和現象と推察される。即ち、媒体の製造直後や記録直後の未記録部分やアモルファスマーク間(スペース)などの結晶状態が、より安定な状態に緩和することによると考えられる。 However, in the phase change optical information recording medium, information is recorded / rewritten by irradiating the recording layer material with laser light and controlling the thermal history of the recording layer. That is, information is recorded by utilizing the dynamic thermal characteristics of the recording layer material. Specifically, recording is performed by melting and quenching to an amorphous state and heating to a temperature higher than the crystallization temperature to obtain a crystalline state. In order to cope with recording at a higher scanning speed, it is necessary to crystallize in a shorter heating time. Therefore, it is essential to select a recording layer material having a high crystallization speed. Such a material with a high crystallization rate has a major problem that it is deteriorated with time regardless of whether it is recorded or not. The mechanism of deterioration over time is not clear, but if recording (shelf test) is performed after a while in an unrecorded state, the recording sensitivity will decrease and the mark length / mark length (space) jitter will increase. This is presumed to be a phenomenon of relaxation of the crystalline state of the recording layer. That is, it is considered that the crystal state such as an unrecorded part immediately after recording or immediately after recording or between amorphous marks (spaces) is relaxed to a more stable state.
記録装置は、変化型光情報記録媒体に情報を記録する前に、最適な記録条件を設定するための試験記録を行う。特に記録パワーを逐次変化させながら試験記録を行い、試験記録部分の再生信号を評価することで、最適な記録パワーを設定する手法をOPC(Optimum Power Control、オプティマムパワーコントロール)という。通常のOPCでは以下のような手順となる。
(1)媒体に設けられている試験記録領域のマークを消去する。
(2)記録パワーを逐次変化させて試験記録を行う。
(3)試験記録領域の再生信号を評価し最適記録パワーを算出する。
しかし、本発明の対象となる、より高速で記録可能な相変化型光情報記録媒体の場合には、この手法では記録マークの完全な消去が困難であると同時に、最適記録パワーを安定して算出することが非常に困難であり、繰り返し記録回数や、最終記録からの経過時間によって再生信号が大きく異なってしまう。
The recording apparatus performs test recording for setting optimum recording conditions before recording information on the changeable optical information recording medium. In particular, a method for setting the optimum recording power by performing test recording while sequentially changing the recording power and evaluating the reproduction signal of the test recording portion is called OPC (Optimum Power Control). In normal OPC, the procedure is as follows.
(1) Erase the marks in the test recording area provided on the medium.
(2) Test recording is performed by sequentially changing the recording power.
(3) The reproduction signal in the test recording area is evaluated and the optimum recording power is calculated.
However, in the case of a phase change type optical information recording medium that can be recorded at a higher speed, which is the subject of the present invention, it is difficult to completely erase the recording mark by this method, and at the same time, the optimum recording power can be stabilized. It is very difficult to calculate, and the reproduction signal varies greatly depending on the number of repeated recordings and the elapsed time from the last recording.
また、最適記録パワーPwoにε(1未満の媒体固有の定数)を乗じた最適消去パワーPe=ε×Pwoの、強度変調の無い光を照射・走査することで、既に記録してあるマークを消去した後に試し書きを行い、最適記録パワーを決定する技術も公知であるが、本願発明の対象となる、より高速で記録可能な相変化型光情報記録媒体に対しては十分満足できる方法ではない。
上記の他に、特許文献1には、消去パターンのパワー情報が貯蔵された光記録媒体が開示されており、マークの消去をパルス状に変調した光を照射・走査することで行っている。しかし、パルス状の消去パターンは、ダイレクトオーバーライトの際にマークと同時に作成するためであり、パルス状に強度変調された光の振幅及びオフセットを記録・消去に合わせてコントロールするものであって、本発明とは目的・効果・手法が異なる。
In addition, by irradiating and scanning light with no intensity modulation at an optimum erasing power Pe = ε × Pwo obtained by multiplying the optimum recording power Pwo by ε (a constant specific to a medium of less than 1), a mark that has already been recorded A technique for determining the optimum recording power by performing trial writing after erasing is also known, but it is a sufficiently satisfactory method for a phase-change optical information recording medium that can be recorded at a higher speed, which is a subject of the present invention. Absent.
In addition to the above,
本発明は、試験記録領域のマーク消去の際に、試験領域の状態をより安定にすることで、最適記録パワー設定の精度を向上させた、高速で記録可能な相変化型光情報記録媒体に有効な最適記録パワー設定方法と、該設定方法をプリフォーマットした光情報記録媒体の提供を目的とする。 The present invention provides a phase-change optical information recording medium capable of high-speed recording, which improves the accuracy of optimum recording power setting by making the state of the test area more stable when erasing marks in the test recording area. An object is to provide an effective optimum recording power setting method and an optical information recording medium preformatted with the setting method.
上記課題は次の1)〜5)の発明(以下、本発明1〜5という)によって解決される。
1) 光情報記録媒体上の規定された試験記録領域に、記録パワーを逐次変化させつつ試験記録を行い、該試験記録済み領域を再生し、その再生信号を評価するに際し、該試験記録動作の前に、パルス状に強度変調した光を試験記録領域の全部又は一部に照射及び走査することを特徴とする光情報記録媒体の最適記録パワー設定方法。
2) パルス状に強度変調した光が、パワーP1でパルス幅T1からなるパルスと、パワーP2でパルス幅T2からなるパルスの2種類のパルスを交互に照射する部分を含み、かつ、P1>P2、及び、T1≦T2を満たすことを特徴とする1)記載の光情報記録媒体の最適記録パワー設定方法。
3) 記録時の最高走査速度がVwであり、Vwでの記録チャンネルビットがTwである光情報記録媒体に対し、試験記録前のパルス照射を走査速度Vで行うときに、次の関係式を満たすことを特徴とする2)記載の光情報記録媒体の最適記録パワー設定方法。
T1+T2≦2Tw
0.2Vw≦V≦0.8Vw
4) 3)記載の関係式に関する情報がプリフォーマットされていることを特徴とする光情報記録媒体。
5) 透明基板上に少なくとも下部保護層、記録層、上部保護層、反射層を有し、該記録層がGa、Sb、Sn、Geを主成分とすることを特徴とする4)記載の光情報記録媒体。
The above problems are solved by the following inventions 1) to 5) (hereinafter referred to as the
1) Perform test recording in the specified test recording area on the optical information recording medium while sequentially changing the recording power, reproduce the test recorded area, and evaluate the reproduced signal. A method for setting an optimum recording power of an optical information recording medium, characterized by irradiating and scanning all or a part of a test recording area with light whose intensity has been modulated in a pulse form before.
2) The light intensity-modulated in a pulse form includes a portion that alternately irradiates two kinds of pulses, a pulse having a power P1 and a pulse width T1, and a power P2 having a pulse width T2, and P1> P2 And the optimum recording power setting method for an optical information recording medium according to 1), wherein T1 ≦ T2 is satisfied.
3) When the pulse scanning before test recording is performed at the scanning speed V on the optical information recording medium in which the maximum scanning speed at the time of recording is Vw and the recording channel bit at Vw is Tw, the following relational expression is obtained. 2) The optimum recording power setting method for an optical information recording medium according to 2).
T1 + T2 ≦ 2Tw
0.2Vw ≦ V ≦ 0.8Vw
4) An optical information recording medium in which information relating to the relational expression described in 3) is preformatted.
5) The light according to 4), which has at least a lower protective layer, a recording layer, an upper protective layer, and a reflective layer on a transparent substrate, and the recording layer contains Ga, Sb, Sn, and Ge as main components. Information recording medium.
以下、上記本発明について詳しく説明する。
本発明の最適記録パワー設定方法の適用対象は、書き換え型光ディスクなどの相変化型光情報記録媒体である。具体的には、DVD+RW、DVD−RW、CD−RW、PD(Blu−ray Disc)などである。これらの光情報記録媒体では、基板上に積層されている(多くの場合、無機保護層によって挟まれている)結晶状態の記録層に集光した光を照射して、記録層材料を融点近傍又は融点以上に加熱し溶融させ、その後、照射した光の強度を落とすことによって急冷し、アモルファスマークを形成する。一方、アモルファスマーク部分に集光した光を照射し、結晶化温度付近(融点よりも低い温度)又は結晶化温度以上で融点以下の温度に加熱して結晶状態にし、アモルファスマークを消去する。
結晶−アモルファスの状態変化は可逆的な相変化であり、温度変調即ち照射する光の強度変調のみで相変化を起こすことができる。また、結晶状態とアモルファス状態とで光学定数が異なるので、この光物性の差を用いれば、光によってアモルファス状態と結晶状態を判別することができる。従って、アモルファスマークによって情報を記録できる。
Hereinafter, the present invention will be described in detail.
The application target of the optimum recording power setting method of the present invention is a phase change type optical information recording medium such as a rewritable optical disk. Specifically, they are DVD + RW, DVD-RW, CD-RW, PD (Blu-ray Disc), and the like. In these optical information recording media, the recording layer material is irradiated near the melting point by irradiating condensed light onto a crystalline recording layer laminated on a substrate (in many cases, sandwiched between inorganic protective layers). Alternatively, it is heated to a melting point or higher and melted, and then rapidly cooled by reducing the intensity of irradiated light to form an amorphous mark. On the other hand, the amorphous mark portion is irradiated with condensed light and heated to a temperature near the crystallization temperature (temperature lower than the melting point) or above the crystallization temperature and below the melting point to form a crystalline state, thereby erasing the amorphous mark.
The crystal-amorphous state change is a reversible phase change, and the phase change can be caused only by temperature modulation, that is, intensity modulation of irradiated light. Further, since the optical constants are different between the crystalline state and the amorphous state, the amorphous state and the crystalline state can be discriminated by light by using this difference in optical physical properties. Therefore, information can be recorded with amorphous marks.
相変化記録材料としてはSbTeを主成分とする材料が主流であり、GeInSbTe、AgInSbTe、GeGaSbTe、GeSbTe等が広く使われている。また近年の高速記録(DVDで8倍速、CDの24倍速相当)に対応できる記録層材料としては、GeSbSn、GeInSbSn系、GeInSbSnTe、GaSbSn合金、GaGeSbSn合金、GaGeSbSnTe合金などがある。これらの材料は結晶化速度が速いため、高速記録でもダイレクトオーバーライト(DOW)が可能となっている。
記録層は透明基板上に積層される。透明基板上には集光した光の位置決め(トラッキング)のため案内溝(グルーブ)を設けても良い。また、加熱による拡散や化学反応を防止するために、記録層の上下に保護層を設けても良い。
保護層材料としては、記録層材料よりも高融点であって、化学反応を起こさない安定な物質が好ましく、記録・再生に用いる光の波長領域で透明であるものが好ましい。具体的には、金属酸化物、硫化物、窒化物の単体又は混合物が好ましく、ZnSとSiO2の混合物が一般的に用いられている。
As the phase change recording material, a material mainly composed of SbTe is mainly used, and GeInSbTe, AgInSbTe, GeGaSbTe, GeSbTe, and the like are widely used. In addition, examples of recording layer materials that can support recent high-speed recording (equivalent to 8 × speed for DVD and 24 × speed for CD) include GeSbSn, GeInSbSn, GeInSbSnTe, GaSbSn alloy, GaGeSbSn alloy, and GaGeSbSnTe alloy. Since these materials have a high crystallization speed, direct overwrite (DOW) is possible even at high-speed recording.
The recording layer is laminated on a transparent substrate. A guide groove (groove) may be provided on the transparent substrate for positioning (tracking) the collected light. In order to prevent diffusion and chemical reaction due to heating, protective layers may be provided above and below the recording layer.
The protective layer material is preferably a stable substance that has a higher melting point than the recording layer material and does not cause a chemical reaction, and is preferably transparent in the wavelength region of light used for recording and reproduction. Specifically, a simple substance or a mixture of metal oxide, sulfide, and nitride is preferable, and a mixture of ZnS and SiO 2 is generally used.
また、記録層の上部(基板の反対側)に反射層を設けてもよい。保護層を設ける場合、反射層は保護層上に形成される。反射層を設けることによって再生時の反射率を高く保つことができるため、再生信号の信頼性が向上する。
反射層材料としては、任意の金属・合金が用いられるが、Al、Ag、Auが一般的である。更に、これらの金属に任意の金属元素を添加した合金を用いても良い。
反射層を設けない場合、又は反射層を設けても膜厚が薄い場合は、記録時に記録層近傍に発生する熱を効率的に逃がす熱拡散層が別途必要となる。反射層が十分に厚い場合は、反射層が熱拡散層を兼ねることが可能である。
熱拡散層としては、熱伝導率の高い任意の金属・合金材料を用いることができる。複数の記録層を積層した多層光記録媒体の場合には、熱拡散層に高い光透過率も求められる。熱拡散層の材料としては透明電極に使用される材料が好ましい。具体例としてはITO、Sn酸化物、亜鉛酸化物等が挙げられる。
更に、反射層又は熱拡散層上に同様の構成を積層して多層ディスクとしてもよい。また樹脂製の保護層を設けてもよく、基板を接着材等で貼り合わせても良い。
Further, a reflective layer may be provided above the recording layer (on the opposite side of the substrate). When the protective layer is provided, the reflective layer is formed on the protective layer. By providing the reflective layer, the reflectance during reproduction can be kept high, so that the reliability of the reproduced signal is improved.
As the reflective layer material, any metal / alloy is used, but Al, Ag, and Au are generally used. Furthermore, you may use the alloy which added arbitrary metal elements to these metals.
If the reflective layer is not provided, or if the reflective layer is provided and the film thickness is small, a separate heat diffusion layer that efficiently releases heat generated in the vicinity of the recording layer during recording is required. When the reflective layer is sufficiently thick, the reflective layer can also serve as the heat diffusion layer.
As the thermal diffusion layer, any metal / alloy material having a high thermal conductivity can be used. In the case of a multilayer optical recording medium in which a plurality of recording layers are laminated, a high light transmittance is also required for the thermal diffusion layer. As a material for the heat diffusion layer, a material used for the transparent electrode is preferable. Specific examples include ITO, Sn oxide, zinc oxide and the like.
Furthermore, the same structure may be laminated on the reflective layer or the heat diffusion layer to form a multilayer disk. Further, a protective layer made of resin may be provided, and the substrate may be bonded with an adhesive or the like.
光情報記録媒体への情報記録は図1に示すような記録・再生装置で行う。記録・再生は、光ピックアップ部で光を集光し媒体の記録層近傍に照射することで行う。照射された光は媒体で反射され光ピックアップ部に戻り、ポーラライズトビームスプリッタ(PBS)によりフォトディテクタに入射する。
記録時の光の強度変調はストラテジ作成部で行われ、パルスパターンが設定される。また照射パワーはパワー設定部において設定される。それぞれの出力はレーザードライバを介してレーザーダイオードを駆動する。記録後の信号再生は、フォトディテクタによって反射光が電気信号に変換され、その信号を測定部で測定することにより行われる。
これらの記録条件と再生信号は演算部において対応付けられ、測定値は記録条件をパラメータとした関数として扱われる。その関数を評価することで最適な記録条件をフィードバックすることが可能となる。
Information recording on the optical information recording medium is performed by a recording / reproducing apparatus as shown in FIG. Recording / reproduction is performed by condensing light with an optical pickup unit and irradiating the recording layer near the medium. The irradiated light is reflected by the medium, returns to the optical pickup unit, and is incident on the photodetector by a polarized beam splitter (PBS).
Light intensity modulation at the time of recording is performed by the strategy creation unit, and a pulse pattern is set. The irradiation power is set in the power setting unit. Each output drives a laser diode through a laser driver. Signal reproduction after recording is performed by converting the reflected light into an electrical signal by a photodetector and measuring the signal with a measurement unit.
These recording conditions and reproduction signals are associated with each other in the calculation unit, and the measured values are handled as functions with the recording conditions as parameters. It is possible to feed back optimum recording conditions by evaluating the function.
情報はマーク長・マーク間長変調されて記録される。マーク長・マーク間長記録の例としては、コンパクトディスクで採用されるEFM(8−14変調)、DVDで採用されるEFM+、1−8変調などがある。
マーク長・マーク間長変調は、それぞれの時間的な長さがチャンネルビットTに対してnTで表される。ここで、nは有限な自然数であるが、その範囲は変調方式によって決定される。EFM+の場合、nは3〜11,14に設定される。
これらの長さのマーク形成は、強度変調された光を入射及び走査することにより行う。記録時の走査速度をv、記録時のチャンネルビットをTwとするとき、v×Twを一定とすることで、記録情報の密度を一定に保つことができる。従って、高速に情報を記録するためには、vを大きくし、Twを短くすることが必要となる。
DVD+RWを通常の8倍速で記録するためのvとTwは次のようになる。
v=3.49m/s×8=27.9m/s
Tw=4.78ns
Information is recorded with the mark length and mark length modulated. Examples of mark length / inter-mark length recording include EFM (8-14 modulation) employed in compact discs, EFM + employed in DVD, and 1-8 modulation.
In the mark length / inter-mark length modulation, each time length is expressed by nT with respect to the channel bit T. Here, n is a finite natural number, but its range is determined by the modulation method. In the case of EFM +, n is set to 3 to 11 and 14.
Marks having these lengths are formed by entering and scanning light whose intensity is modulated. When the scanning speed at the time of recording is v and the channel bit at the time of recording is Tw, the density of the recording information can be kept constant by keeping v × Tw constant. Therefore, in order to record information at high speed, it is necessary to increase v and shorten Tw.
V and Tw for recording DVD + RW at the normal 8 × speed are as follows.
v = 3.49 m / s × 8 = 27.9 m / s
Tw = 4.78ns
記録時の強度変調の方法は記録ストラテジと呼ばれる。
本発明の最適記録パワー決定方法の対象となるのは、書き換え型の相変化型光情報記録媒体であるため、照射パワーPwの加熱パルスと照射パワーPbの冷却パルスを交互に照射することにより記録消去を行う。各照射パワーの関係はPw>Pe>Pbとなる。Peは消去パワーである。更に、Pe<0.6Pwであること、Pb≦1mWであることが好ましい。パルスの数はnTマークに対して、n−1に設定されるのが一般的である。即ち、1Tだけマーク長が増加した場合は、加熱パルスと冷却パルスを一組ずつ増加させていくことになる。従って照射するパルスの発光周期は1Tに設定される。
The method of intensity modulation at the time of recording is called a recording strategy.
Since the target of the optimum recording power determination method of the present invention is a rewritable phase change type optical information recording medium, recording is performed by alternately irradiating a heating pulse of irradiation power Pw and a cooling pulse of irradiation power Pb. Erase. The relationship between the irradiation powers is Pw>Pe> Pb. Pe is the erase power. Furthermore, it is preferable that Pe <0.6Pw and Pb ≦ 1 mW. In general, the number of pulses is set to n-1 with respect to the nT mark. That is, when the mark length increases by 1T, the heating pulse and the cooling pulse are increased one by one. Therefore, the light emission period of the pulse to be irradiated is set to 1T.
しかし、前述のDVDの8倍速相当となると、1Twが4.78nsとなってしまう。加熱パルスと冷却パルスの長さをそれぞれ0.5Twに設定すると、パルス幅は2.39nsとなる。通常レーザーの立ち上がり時間、立下り時間は1.7ns以上であるため、0.5Twの発光パルスを照射することが不可能になる。即ち、十分高い加熱パルスの照射パワーに達することが出来ないと同時に、十分低い冷却パルスの照射パワーに達することが出来なくなり、結果として、十分な加熱と冷却が行われずマーク形成が困難となる。
その対策として、US CD−RWで採用されたのが2Tストラテジである。
2Tストラテジの例を図2に示す。マーク長nTと加熱パルス数mの間には、次の関係が成り立つ。
n=2m (nが偶数のとき)
n=2m−1 (nが奇数のとき)
これにより、パルスの発光周期は2T〜3Tとなる。その結果、DVDの8倍速相当でパルスの発光周期はTw=9.56〜14.34nsとすることができ、加熱パルスの照射時間と冷却パルスの照射時間を十分取れるため、記録層を急冷状態にすることが可能となり、アモルファスマークを形成できる。4Tより長いマークは先頭パルスと最終パルスの位置を制御することでマーク長をコントロールできる。しかし3Tマークのパターンでは1組の加熱パルスと冷却パルスでマークを形成する必要がある。
However, 1Tw becomes 4.78 ns when it corresponds to the above-mentioned 8 × speed of DVD. When the lengths of the heating pulse and the cooling pulse are each set to 0.5 Tw, the pulse width is 2.39 ns. Usually, since the rise time and fall time of the laser are 1.7 ns or more, it becomes impossible to irradiate the light emission pulse of 0.5 Tw. That is, the irradiation power of a sufficiently high heating pulse cannot be reached, and at the same time, the irradiation power of a sufficiently low cooling pulse cannot be reached, and as a result, sufficient heating and cooling are not performed and mark formation becomes difficult.
As a countermeasure, the 2T strategy was adopted in US CD-RW.
An example of a 2T strategy is shown in FIG. The following relationship holds between the mark length nT and the number of heating pulses m.
n = 2m (when n is an even number)
n = 2m-1 (when n is an odd number)
Thereby, the light emission period of a pulse becomes 2T-3T. As a result, the light emission period of the pulse can be set to Tw = 9.56 to 14.34 ns, which is equivalent to 8 × speed of DVD, and the recording layer is rapidly cooled in order to allow sufficient irradiation time of the heating pulse and irradiation time of the cooling pulse. And an amorphous mark can be formed. For marks longer than 4T, the mark length can be controlled by controlling the positions of the first pulse and the last pulse. However, in the 3T mark pattern, it is necessary to form a mark with one set of heating pulse and cooling pulse.
何れのストラテジを用いる場合でも、記録パワー即ち加熱パルスの照射パワーが記録特性に大きく影響するため、記録装置は媒体に設けられた試験記録領域に試験記録を行って最適な記録パワーを設定する(前述したOPC)。
OPCを行うためには媒体上に試験記録領域が設けられている必要がある。この領域は媒体の情報領域外に設定される必要がある。従って、ディスク状の媒体の場合は最内周又は最外周の領域に設けるのが好ましい。試験記録領域の例としては、CD−RWのPCA(Power Calibration Area、パワーキャリブレーションエリア)やDVD+RWのInner Drive Test Zone(インナードライブテストゾーン)、Outer Drive Test Zone(アウタードライブテストゾーン)等が挙げられる。
Regardless of which strategy is used, since the recording power, that is, the irradiation power of the heating pulse, greatly affects the recording characteristics, the recording apparatus performs test recording in the test recording area provided on the medium to set the optimum recording power ( OPC mentioned above).
In order to perform OPC, it is necessary to provide a test recording area on the medium. This area needs to be set outside the information area of the medium. Therefore, in the case of a disk-shaped medium, it is preferable to provide it in the innermost or outermost region. Examples of test recording areas include CD-RW PCA (Power Calibration Area), DVD + RW Inner Drive Test Zone (inner drive test zone), Outer Drive Test Zone (outer drive test zone), and the like. It is done.
記録装置はこれらの領域に試験記録を行うが、試験記録前に試験記録領域に存在するマークを消去したり、媒体の反射率や物性の均一化を行う。通常、試験記録前のこの操作は媒体の試験記録領域にDC光(強度変調のない光)を照射及び走査することにより行う。この操作によって、試験記録領域の状態をより安定な状態にできるため、同一条件で試験記録を行った場合の再現性の向上や、DOW回数による最適記録パワーの変化を最小限に抑えることが可能となる。
しかし、DVD+RWの8倍速以上の高速・高密度記録に対応している光情報記録媒体では、従来のDC光の照射・走査による試験記録領域の均一化が十分でないことが明らかになった。
高速・高密度記録に対応した光情報記録媒体では、結晶化速度の高速化により結晶状態の経時変化が発生する傾向にある。それにより、記録パワーを逐次変化させながら記録を行った場合、試験記録領域の記録回数や最終記録からの経過時間により、最適記録パワーが異なってしまう。異なる記録パワーで記録された媒体は、繰り返し記録耐久性や再生信号の信頼性が著しく低下するため好ましくない。
The recording apparatus performs test recording in these areas, but erases marks existing in the test recording area and makes the reflectance and physical properties of the medium uniform before the test recording. Usually, this operation before test recording is performed by irradiating and scanning DC light (light without intensity modulation) on the test recording area of the medium. This operation makes the test recording area more stable, so it is possible to improve the reproducibility when performing test recording under the same conditions, and to minimize the change in the optimum recording power due to the number of DOWs. It becomes.
However, it has been clarified that in the optical information recording medium corresponding to the high-speed and high-density recording of DVD + RW of 8 times or more, the test recording area is not sufficiently uniform by the conventional DC light irradiation / scanning.
In an optical information recording medium compatible with high-speed and high-density recording, there is a tendency that the crystalline state changes with time as the crystallization speed increases. As a result, when recording is performed while sequentially changing the recording power, the optimum recording power varies depending on the number of recordings in the test recording area and the elapsed time from the last recording. Media recorded with different recording powers are not preferable because the repeated recording durability and the reliability of the reproduced signal are significantly reduced.
本発明の最適記録パワー設定方法では、媒体の試験記録領域の均一化を、従来のDC光の照射・走査による手法ではなく、強度変調した光を照射・走査することで行う。
強度変調はパワーP1で照射時間T1のパルスと、パワーP2で照射時間T2のパルスを交互に照射しつつ速度Vで走査することにより行う。ここで、P1>P2、T1≦T2とすることが好ましい。
これらの照射・走査の条件は媒体の対応する最高記録走査速度Vwと、Vwでの記録チャンネルビットTwによって異なる。VはVwよりも低いことが必要であり、0.2Vw≦V≦0.8Vwの範囲が好ましい。パワーP1は最高記録速度での最適記録パワー近傍に設定されることが好ましく、P2は前述の冷却パルスの照射パワー近傍に設定することが好ましい。また、T1+T2≦2Twとすることが好ましい。
上記の条件で試験記録領域を均一化すると、記録層は高周波数のパルスを低速で走査して照射することになり、試験記録領域は溶融結晶化されると考えられる。この状態は繰り返し記録後の結晶状態に近いと考えられる。一方、従来のDC光の照射・走査では、固相初期化と考えられ、繰り返し記録後の結晶状態とは異なってしまう。
従って、強度変調した光を照射・走査することで、繰り返し記録後に近い均一な試験記録領域を得ることができる。
In the optimum recording power setting method of the present invention, the test recording area of the medium is made uniform by irradiating and scanning the intensity-modulated light instead of the conventional method of irradiating and scanning with DC light.
Intensity modulation is performed by scanning at a speed V while alternately irradiating a pulse of irradiation time T1 with power P1 and a pulse of irradiation time T2 with power P2. Here, it is preferable that P1> P2 and T1 ≦ T2.
These irradiation / scanning conditions differ depending on the maximum recording scanning speed Vw corresponding to the medium and the recording channel bit Tw at Vw. V needs to be lower than Vw, and a range of 0.2 Vw ≦ V ≦ 0.8 Vw is preferable. The power P1 is preferably set in the vicinity of the optimum recording power at the maximum recording speed, and P2 is preferably set in the vicinity of the above-described cooling pulse irradiation power. Moreover, it is preferable that T1 + T2 ≦ 2Tw.
If the test recording area is made uniform under the above conditions, the recording layer is irradiated with scanning at a low frequency with a high-frequency pulse, and the test recording area is considered to be melt crystallized. This state is considered to be close to the crystalline state after repeated recording. On the other hand, conventional DC light irradiation / scanning is considered to be solid phase initialization, which differs from the crystalline state after repeated recording.
Therefore, by irradiating and scanning the intensity-modulated light, a uniform test recording area close to repeated recording can be obtained.
上記の均一化した試験記録領域に記録パワーを逐次変化させて試験記録を行う。記録パワーの逐次変化方法は任意に設定できる。連続的に変化させても良いが、ステップ状に変化させることが好ましい。この場合、記録条件と試験記録領域のアドレスは対応付けられていることが必要である。
上記の試験記録領域を再生し評価することで最適記録パワーの演算を行う。再生時に評価する特性としては、任意のものを利用できるが、信号振幅に関係するパラメータが記録感度に対して感度が良いため好ましい。このようなパラメータとして、変調度、アシンメトリなどが挙げられる。これらのパラメータは記録パワーの関数として処理される。
最適記録パワーの演算方法は既存の手法を利用できる。例えば、変調度を用いたγ法、アシンメトリを利用したβ法などが挙げられるが、相変化型光情報記録媒体に対しては、γ法が一般的であり好ましい。
演算には近似式によるパラメータの平滑化等の計算機上での処理を施しても良い。
記録条件やOPCに利用するパラメータや前述の均一化のパラメータであるP1、P2、T1、T2、Vは媒体に固有のものである。従って媒体に、これらの情報、又はこれらの情報を一意的に算出できる情報をプリフォーマットしておいてもよい。パラメータのプリフォーマットの手法としては、既存のものを利用できる。例としては、CD−RWのATIP ExtraInformation(ATIPエキストラインフォメーション)やDVD+RWのPhysical Information(フィジカルインフォメーション)が挙げられる。
Test recording is performed by sequentially changing the recording power in the uniform test recording area. The method for sequentially changing the recording power can be arbitrarily set. Although it may be changed continuously, it is preferably changed stepwise. In this case, the recording condition and the address of the test recording area must be associated with each other.
The optimum recording power is calculated by reproducing and evaluating the test recording area. Any characteristic can be used as a characteristic to be evaluated during reproduction, but a parameter related to signal amplitude is preferable because it has high sensitivity to recording sensitivity. Examples of such parameters include the degree of modulation and asymmetry. These parameters are processed as a function of recording power.
An existing method can be used as a method for calculating the optimum recording power. For example, the γ method using the degree of modulation, the β method using asymmetry, and the like can be mentioned. For the phase change optical information recording medium, the γ method is common and preferable.
For the calculation, processing on a computer such as smoothing of a parameter by an approximate expression may be performed.
P1, P2, T1, T2, and V, which are parameters for recording conditions, OPC, and the above-described equalization parameters, are unique to the medium. Therefore, the information may be preformatted on the medium, or information that can uniquely calculate the information. An existing method can be used as a parameter pre-formatting method. Examples include AT-IP Extra Information (ATIP extra information) of CD-RW and Physical Information (physical information) of DVD + RW.
本発明1〜3によれば、試験記録前に、試験記録領域をDOW回数に依らない安定な状態にすることにより、試験記録において記録条件(パワー)に対して再生信号の再現性が高くなり、より精度よく最適記録パワーを設定することが可能となる。
本発明4〜5によれば、媒体に最適な記録条件がプリフォーマットされており、更には記録層材料に20m/s以上の走査速度で記録可能な相変化材料を用いているので、高速で信頼性の高い光情報記録媒体を提供できる。
According to the first to third aspects of the present invention, by making the test recording area in a stable state that does not depend on the number of DOWs before the test recording, the reproducibility of the reproduction signal with respect to the recording condition (power) in the test recording becomes high. Therefore, it is possible to set the optimum recording power with higher accuracy.
According to the fourth to fifth aspects of the present invention, the optimum recording conditions for the medium are preformatted, and furthermore, a phase change material that can be recorded at a scanning speed of 20 m / s or more is used as the recording layer material. A highly reliable optical information recording medium can be provided.
以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.
実施例1
DVD+RW用の透明基板上に、スパッタリング法により、下部保護層・記録層・上部保護層・腐食防止層・反射層を順次積層した。保護層材料には相変化光ディスクに一般的に用いられるZnSとSiO2の混合物を用い、記録層にはGaSbSnGe合金を用いた。反射層にはAgを用いたので、隣接する上部保護層との反応を防止するために、SiCの腐食防止層を設けた。更に接着材を介して透明基板を反射層の上方に張り合わせて厚さ1.2mmのディスクとした。このディスクを全面初期化(記録層を結晶化)し、DVD+RWディスクを作成した。完成したDVD+RWディスクは反射率約20%でDVDの8倍速相当での記録が可能である。
上記DVD+RWディスクの外周部の試験記録領域であるアウタードライブテストゾーンに記録パワーを逐次変化させつつ記録を行い変調度を測定した。
記録・再生にはDVD+RWディスク評価装置であるパルステック工業株式会社製のDDU1000(光ピックアップのλ=659nm、NA=0.65)を用いた。
試験記録領域を均一化する条件は次の通りとした。
P1=30mW
P2=0.1mW
T1=3.0ns
T2=6.5ns
V=14.0m/s
均一化後のRF再生信号を観察した結果、照射部分が結晶状態であり、反射率が均一になっていることを確認した。
均一化した領域に記録パワーを逐次変化させて試験記録を行った。記録するデータとしてはEFM+に変調されたランダムパターンを記録した。記録ストラテジは図2に示すような2Tストラテジを用いた。記録速度はDVD+RWの8倍速相当で行なった。即ち、Tw=4.8ns、Vw=27.9m/sである。試験記録領域を再生し、変調度を測定した。変調度は記録パワーの関数として測定した。結果を図3に示す。
更に、記録パワー32mWで試験記録領域をオーバーライトし、同様に均一化した後に変調度測定を行った。この操作を10回繰り返し行った。結果を図3に示す。
図3から分るように、繰り返し記録回数によらず、変調度の記録パワー依存性は、ほぼ同一である。DVD+RWの最適記録パワーの設定は変調度とパワーの関係から最適記録パワーを算出するγ法である。従って、本発明の方法を用いることで、繰り返し記録回数に依らず、最適な記録パワーの演算が可能となることが分った。
Example 1
On the transparent substrate for DVD + RW, a lower protective layer, a recording layer, an upper protective layer, a corrosion prevention layer, and a reflective layer were sequentially laminated by sputtering. A mixture of ZnS and SiO 2 generally used for phase change optical disks was used as the protective layer material, and a GaSbSnGe alloy was used as the recording layer. Since Ag was used for the reflective layer, an SiC corrosion prevention layer was provided in order to prevent reaction with the adjacent upper protective layer. Further, a transparent substrate was bonded to the upper side of the reflective layer through an adhesive material to obtain a disk having a thickness of 1.2 mm. This disk was entirely initialized (the recording layer was crystallized) to produce a DVD + RW disk. The completed DVD + RW disc has a reflectivity of about 20% and can be recorded at a speed equivalent to 8 × DVD.
Recording was performed while the recording power was sequentially changed in the outer drive test zone, which is a test recording area on the outer periphery of the DVD + RW disc, and the degree of modulation was measured.
For recording / reproduction, DDU1000 (λ = 659 nm of optical pickup, NA = 0.65 of an optical pickup) manufactured by Pulstec Industrial Co., Ltd., which is a DVD + RW disk evaluation apparatus, was used.
The conditions for making the test recording area uniform were as follows.
P1 = 30mW
P2 = 0.1mW
T1 = 3.0ns
T2 = 6.5 ns
V = 14.0 m / s
As a result of observing the RF reproduction signal after homogenization, it was confirmed that the irradiated portion was in a crystalline state and the reflectance was uniform.
Test recording was performed by sequentially changing the recording power in the uniform area. As the data to be recorded, a random pattern modulated in EFM + was recorded. As the recording strategy, a 2T strategy as shown in FIG. 2 was used. The recording speed was equivalent to 8 times the speed of DVD + RW. That is, Tw = 4.8 ns and Vw = 27.9 m / s. The test recording area was reproduced and the modulation degree was measured. The degree of modulation was measured as a function of recording power. The results are shown in FIG.
Further, the test recording area was overwritten with a recording power of 32 mW, and the degree of modulation was measured after the test recording area was similarly made uniform. This operation was repeated 10 times. The results are shown in FIG.
As can be seen from FIG. 3, the recording power dependency of the modulation degree is almost the same regardless of the number of repeated recordings. The optimum recording power setting for DVD + RW is the γ method for calculating the optimum recording power from the relationship between the modulation factor and the power. Therefore, it has been found that by using the method of the present invention, the optimum recording power can be calculated regardless of the number of repeated recordings.
比較例1
実施例1で作成したDVD+RWディスクに対し、パワー7.4mWのDC光を用い、走査速度28.9m/sで試験記録領域の均一化を行った。パワーは、最適な消去パワーであり、走査速度は媒体の最高記録速度であるDVD+RWの8倍速相当である。
均一化した領域に、実施例1と同一の記録ストラテジを用いて、記録パワーを逐次変化させて試験記録を行い、同様に変調度の測定を行った。その結果を図4に示す。
図4から、繰り返し記録回数により、変調度のパワー依存性が大きく変動することが分る。そのため、γ法を用いた場合に記録パワーを安定して算出することができない。
Comparative Example 1
For the DVD + RW disc created in Example 1, DC light with a power of 7.4 mW was used and the test recording area was made uniform at a scanning speed of 28.9 m / s. The power is the optimum erasing power, and the scanning speed is equivalent to eight times the speed of DVD + RW which is the maximum recording speed of the medium.
Using the same recording strategy as in Example 1, the recording power was successively changed in the uniformed area to perform test recording, and the modulation degree was measured in the same manner. The result is shown in FIG.
From FIG. 4, it can be seen that the power dependency of the degree of modulation varies greatly depending on the number of repeated recordings. Therefore, the recording power cannot be calculated stably when the γ method is used.
実施例2
実施例1で作成したDVD+RWディスクを用いて、実施例1と同様の手法で記録パワー28mWでの、初回の変調度(M1)と繰り返し10回後の変調度(M10)の差ΔM〔ΔM=(M10−M1)/M10〕を測定した。
ΔMと走査速度Vの関係を図5に示す。但し、横軸はディスクの対応する最高記録走査速度Vw=27.9m/sで規格化された量である。
図5から分るように、V/Vwが0.2〜0.8の範囲でΔMが0.01以下と良好な結果となった。V/Vwが0.8を超える領域では、均一化処理後の反射率が著しく低下する傾向にある。即ちアモルファス化していると考えられる。そのため、記録パワーが低い領域では反射率を十分に戻すことができず、変調度の誤差が大きくなる傾向にある。
Example 2
Using the DVD + RW disc created in Example 1, the difference ΔM [ΔM = ΔM] between the first modulation degree (M1) and the modulation degree (M10) after 10 repetitions at a recording power of 28 mW in the same manner as in Example 1. (M10-M1) / M10] was measured.
The relationship between ΔM and scanning speed V is shown in FIG. However, the horizontal axis is the amount normalized at the corresponding maximum recording scanning speed Vw = 27.9 m / s of the disk.
As can be seen from FIG. 5, ΔM was 0.01 or less when V / Vw was in the range of 0.2 to 0.8. In the region where V / Vw exceeds 0.8, the reflectance after the homogenization treatment tends to be remarkably lowered. That is, it is thought that it has become amorphous. For this reason, in the region where the recording power is low, the reflectance cannot be sufficiently returned, and the error of the modulation degree tends to increase.
実施例3
記録パワーを34mWに変え、走査速度を14.0m/sに固定し、更にT1+T2=2Tw=9.6nsに固定して、T1とT2を変動させた点以外は、実施例2と同様にしてΔMを測定した。
図6に、T1とT2の比率であるT1/(T1+T2)に対するΔM依存性の測定結果を示す。
図6から分るように、T1/(T1+T2)≦0.5、即ちT1≦T2とすることにより、ΔMが低減し、繰り返し回数によらず安定した変調度を得ることができる。従って、変調度を用いたOPC方法を用いる場合の精度を向上できる。
Example 3
Except that the recording power was changed to 34 mW, the scanning speed was fixed to 14.0 m / s, and T1 + T2 = 2Tw = 9.6 ns, and T1 and T2 were varied, the same as in Example 2. ΔM was measured.
FIG. 6 shows the measurement result of the ΔM dependency on T1 / (T1 + T2), which is the ratio of T1 and T2.
As can be seen from FIG. 6, by setting T1 / (T1 + T2) ≦ 0.5, that is, T1 ≦ T2, ΔM is reduced, and a stable modulation degree can be obtained regardless of the number of repetitions. Therefore, it is possible to improve the accuracy when the OPC method using the modulation degree is used.
Claims (5)
T1+T2≦2Tw
0.2Vw≦V≦0.8Vw The following relational expression should be satisfied when pulse irradiation before test recording is performed at a scanning speed V on an optical information recording medium in which the maximum scanning speed during recording is Vw and the recording channel bit at Vw is Tw. The method for setting the optimum recording power of the optical information recording medium according to claim 2.
T1 + T2 ≦ 2Tw
0.2Vw ≦ V ≦ 0.8Vw
5. The optical information according to claim 4, wherein at least a lower protective layer, a recording layer, an upper protective layer, and a reflective layer are provided on a transparent substrate, and the recording layer is mainly composed of Ga, Sb, Sn, and Ge. recoding media.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004272397A JP2006085879A (en) | 2004-09-17 | 2004-09-17 | Optical information recording medium and method for setting optimum recording power of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004272397A JP2006085879A (en) | 2004-09-17 | 2004-09-17 | Optical information recording medium and method for setting optimum recording power of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006085879A true JP2006085879A (en) | 2006-03-30 |
Family
ID=36164214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004272397A Pending JP2006085879A (en) | 2004-09-17 | 2004-09-17 | Optical information recording medium and method for setting optimum recording power of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006085879A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008000903A (en) * | 2006-06-20 | 2008-01-10 | Olympus Corp | Image recorder and image recording method |
-
2004
- 2004-09-17 JP JP2004272397A patent/JP2006085879A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008000903A (en) * | 2006-06-20 | 2008-01-10 | Olympus Corp | Image recorder and image recording method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002245624A (en) | Optical recording method, optical recorder and optical recording medium | |
JP2003288722A (en) | Optical information recording method and optical information recording device | |
US8072863B2 (en) | Optical recording method, optical recording apparatus and optical storage medium | |
JP4063978B2 (en) | Information recording method | |
JP4012934B1 (en) | Optical recording medium and optical recording method and optical recording apparatus using multilayer optical recording medium | |
JP4354733B2 (en) | Optical recording medium | |
JP4078237B2 (en) | Optical recording medium, optical recording method, and optical recording apparatus | |
US7376065B2 (en) | Optical recording method, optical recording apparatus and optical storage medium | |
US7408860B2 (en) | Method of recording information in optical recording medium, information recording apparatus and optical recording medium | |
KR20080091830A (en) | Method for determining optimum laser beam power and optical recording medium | |
US7668071B2 (en) | Phase-change optical recording medium having tracking signal smaller than saturation value | |
JP2003242655A (en) | Method and apparatus for reproducing information from optical recording medium, and optical recording medium | |
JP2004322556A (en) | Optical recording medium, optical recording method, and optical recording apparatus | |
JP3740151B2 (en) | Optical recording method and optical recording apparatus | |
JP2006085879A (en) | Optical information recording medium and method for setting optimum recording power of the same | |
JP3739770B2 (en) | Optical information recording apparatus and optical information recording method | |
US20060280111A1 (en) | Optical storage medium and optical recording method | |
US7142491B2 (en) | Optical recording medium | |
JP2006221712A (en) | Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed | |
JP4390652B2 (en) | Optical information recording method, optical information recording apparatus, and optical information recording medium | |
JP4322927B2 (en) | Optical recording method, optical recording medium, and multilayer optical recording medium optical recording apparatus | |
JP4104063B2 (en) | Information recording and playback method | |
JP2003228841A (en) | Method for recording information on optical recording medium, and optical recording medium | |
JP2005035058A (en) | Phase change type optical information recording medium | |
JP4299216B2 (en) | Phase change optical recording medium and optimum recording power prediction method for high-speed recording |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100126 |