JP2006084546A - Light transmitting and receiving device and optical communication system - Google Patents

Light transmitting and receiving device and optical communication system Download PDF

Info

Publication number
JP2006084546A
JP2006084546A JP2004266934A JP2004266934A JP2006084546A JP 2006084546 A JP2006084546 A JP 2006084546A JP 2004266934 A JP2004266934 A JP 2004266934A JP 2004266934 A JP2004266934 A JP 2004266934A JP 2006084546 A JP2006084546 A JP 2006084546A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
face
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004266934A
Other languages
Japanese (ja)
Inventor
Mariko Obinata
真理子 小日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004266934A priority Critical patent/JP2006084546A/en
Publication of JP2006084546A publication Critical patent/JP2006084546A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the occurrence of crosstalk being unique to a one-fiber and bidirectional full-duplex optical fiber communication. <P>SOLUTION: A light transmitting and receiving device 1a which performs the one-fiber and bidirectional full-duplex optical fiber communication by being connected with an optical fiber 6 is characterized in that the position of the light-entering and exiting end face 6a of the optical fiber 6 is arranged by being shifted in the direction of the optical axis with respect to the focal position of the transmitting light emitted from a light emitting element 2, and that the focal position of return light which is emitted from the light emitting element 2 and which is reflected at the light-entering and exiting end face 6a of the optical fiber 6 is made to differ from the focal position of receiving light to be emitted from the light-entering and exiting end face 6a of the optical fiber 6, and that a light receiving element 3 is arranged where the return light is out of a position in which it is converged and the element 3 is within the light receiving range of receiving light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一芯双方向全二重光ファイバ通信を行う光送受信装置および光通信システムに関する。詳しくは、発光手段から出射して、光ファイバの入出射端面で反射した光が受光手段へ集光しないようにすることで、クロストークの低減を図るものである。   The present invention relates to an optical transmission / reception apparatus and an optical communication system that perform single-core bidirectional full-duplex optical fiber communication. Specifically, the crosstalk is reduced by preventing the light emitted from the light emitting means and reflected by the light incident / exit end face of the optical fiber from being condensed on the light receiving means.

図8は一芯双方向全二重光ファイバ通信を行う光通信システムの概略構成例を示す説明図である。この光通信システム100は、発光素子101と受光素子102を備えた光送受信装置103の間を一芯の光ファイバ104で接続したものである。   FIG. 8 is an explanatory diagram showing a schematic configuration example of an optical communication system that performs single-core bidirectional full-duplex optical fiber communication. In this optical communication system 100, an optical transmission / reception apparatus 103 including a light emitting element 101 and a light receiving element 102 is connected by a single optical fiber 104.

そして、一方の光送受信装置103Aから他方の光送受信装置103Bへデータを送信する場合は、光送受信装置103Aの発光素子101から送信光を出射する。光送受信装置103Aの発光素子101から出射した送信光は光ファイバ104を伝送され、光送受信装置103Bの受光素子102で受光される。   When data is transmitted from one optical transceiver 103A to the other optical transceiver 103B, transmission light is emitted from the light emitting element 101 of the optical transceiver 103A. The transmission light emitted from the light emitting element 101 of the optical transceiver 103A is transmitted through the optical fiber 104 and received by the light receiving element 102 of the optical transceiver 103B.

他方の光送受信装置103Bから一方の光送受信装置103Aへデータを送信する場合は、光送受信装置103Bの発光素子101から送信光を出射する。光送受信装置103Bの発光素子101から出射した送信光は、光送受信装置103Aからデータを送信した際に用いた光ファイバ104を伝送され、光送受信装置103Aの受光素子102で受光される。   When data is transmitted from the other optical transmission / reception device 103B to one optical transmission / reception device 103A, transmission light is emitted from the light emitting element 101 of the optical transmission / reception device 103B. The transmission light emitted from the light emitting element 101 of the optical transmission / reception device 103B is transmitted through the optical fiber 104 used when data is transmitted from the optical transmission / reception device 103A, and is received by the light receiving element 102 of the optical transmission / reception device 103A.

以上のように、一芯の光ファイバ104を用いて、一方の光送受信装置103Aと他方の光送受信装置103Bで同時に送受信を行う技術を、一芯双方向全二重光ファイバ通信等と呼んでいる。   As described above, a technique of simultaneously transmitting and receiving with one optical transmission / reception apparatus 103A and the other optical transmission / reception apparatus 103B using a single-core optical fiber 104 is called single-core bidirectional full-duplex optical fiber communication or the like. .

さて、一芯双方向全二重光ファイバ通信を行うため、発光素子101から出射した送信光を光ファイバ104へ導き、かつ、この光ファイバ104から出射した受信光を受光素子102へ導く機能を備えた光送受信装置103が必要である。このような機能を有する光送受信装置としては、ビームスプリッタを用いる構成のものがある(例えば、特許文献1参照)。   Now, in order to perform single-core bi-directional full-duplex optical fiber communication, the transmission light emitted from the light emitting element 101 is guided to the optical fiber 104, and the reception light emitted from the optical fiber 104 is guided to the light receiving element 102. The optical transmitter / receiver 103 is necessary. As an optical transmitter / receiver having such a function, there is a configuration using a beam splitter (see, for example, Patent Document 1).

図9はビームスプリッタを備えた従来の光送受信装置の概略構成例を示す平面図である。光送受信装置103は、発光素子101からの送信光を透過率約50%、反射率約50%のビームスプリッタ107で立ち上げ、レンズ108で光ファイバ104の端面に集光させる。   FIG. 9 is a plan view showing a schematic configuration example of a conventional optical transceiver having a beam splitter. The optical transmission / reception apparatus 103 starts up the transmission light from the light emitting element 101 with a beam splitter 107 having a transmittance of about 50% and a reflectance of about 50%, and condenses it on the end face of the optical fiber 104 with a lens 108.

そして、光ファイバ104からの受信光は、送信時に用いたレンズ108で集光させ、ビームスプリッタ107を透過させて、受光素子102へ結合させるものである。この図9では、送信光を実線で示し、受信光を破線で示している。   The received light from the optical fiber 104 is condensed by the lens 108 used at the time of transmission, transmitted through the beam splitter 107, and coupled to the light receiving element 102. In FIG. 9, transmission light is indicated by a solid line, and reception light is indicated by a broken line.

ビームスプリッタ107を用いた光送受信装置103では、送信光と受信光の光軸が同一であるので、光ファイバ104の端面近傍にレンズ108を配置して、送信光と受信光をともに集光できる。よって、発光素子101から光ファイバ104への入射光の送信効率、および光ファイバ104から受光素子102への受信効率が高くなる。   In the optical transmission / reception apparatus 103 using the beam splitter 107, the optical axes of the transmission light and the reception light are the same. Therefore, a lens 108 can be disposed near the end face of the optical fiber 104 to collect both the transmission light and the reception light. . Therefore, the transmission efficiency of incident light from the light emitting element 101 to the optical fiber 104 and the reception efficiency from the optical fiber 104 to the light receiving element 102 are increased.

特開平8−166527号公報JP-A-8-166527

しかし、ビームスプリッタ107を用いた従来の光送受信装置103は、発光素子101から出射され、光ファイバ104の入出射端面で反射した光がレンズ108で集光されて受光素子102へ結合してしまうので、一芯双方向全二重光ファイバ通信特有の大きなクロストークが発生してしまう欠点がある。   However, in the conventional optical transmission / reception apparatus 103 using the beam splitter 107, the light emitted from the light emitting element 101 and reflected by the incident / exit end face of the optical fiber 104 is collected by the lens 108 and coupled to the light receiving element 102. Therefore, there is a drawback that large crosstalk peculiar to single-core bidirectional full-duplex optical fiber communication occurs.

図10はクロストークの発生原理を示す説明図である。図10において、Sはここでは図示しない光送受信装置からの信号光(受信光)である。発光素子101から出射した送信光は、ビームスプリッタ107で反射され、レンズ108で集光されて光ファイバ104の入出射端面から入射する。   FIG. 10 is an explanatory diagram showing the principle of occurrence of crosstalk. In FIG. 10, S is signal light (received light) from an optical transmission / reception apparatus not shown here. The transmission light emitted from the light emitting element 101 is reflected by the beam splitter 107, collected by the lens 108, and enters from the incident / exit end face of the optical fiber 104.

この発光素子101から出射した送信光の一部は、光ファイバ104の入出射端面で反射するが、送信光と受信光の光軸が同一であるので、この反射した戻り光がレンズ108で集光され、受光素子102へ結合されてしまう。これがクロストーク(戻り光)Nである。   A part of the transmitted light emitted from the light emitting element 101 is reflected by the incident / exit end face of the optical fiber 104. However, since the optical axes of the transmitted light and the received light are the same, the reflected return light is collected by the lens 108. The light is received and coupled to the light receiving element 102. This is crosstalk (return light) N.

図11は従来における受光素子の受光面と、受信光および戻り光の関係を示す説明図である。従来の光送受信装置103では、送信光と受信光の光軸が同一であるので、受信光が受光素子102の受光面102aに集光する構成では、送信光が光ファイバ104の入出射端面で反射した戻り光も受光素子102の受光面102aに集光する。   FIG. 11 is an explanatory view showing a relationship between a light receiving surface of a conventional light receiving element and received light and return light. In the conventional optical transceiver 103, the optical axes of the transmitted light and the received light are the same. Therefore, in the configuration in which the received light is collected on the light receiving surface 102a of the light receiving element 102, the transmitted light is transmitted at the incident / exit end surface of the optical fiber 104. The reflected return light is also condensed on the light receiving surface 102 a of the light receiving element 102.

以下、ビームスプリッタを用いた従来の光送受信装置のS/N(信号雑音比)の計算例を式(1)に示す。なお、以下の計算において、ビームスプリッタの透過率は0.5、ビームスプリッタの反射率は0.5とした。   An example of calculating the S / N (signal-to-noise ratio) of a conventional optical transmission / reception apparatus using a beam splitter is shown in equation (1) below. In the following calculation, the transmittance of the beam splitter was 0.5 and the reflectance of the beam splitter was 0.5.

ここで、
1:発光素子の強度
2:ファイバ出射強度
a :受信光の受光素子との結合効率
b :ファイバ入出射端面の反射率
c :ファイバ入出射端面における戻り光の受光素子との結合効率
である。
here,
P 1 : intensity of the light emitting element P 2 : fiber emission intensity a: coupling efficiency of the received light with the light receiving element b: reflectivity of the fiber entrance / exit end face c: coupling efficiency of the return light on the fiber entrance / exit end face with the light receiving element is there.

そして、受信光が受光素子に全て結合する場合は、a=1であり、また、光ファイバに屈折率が1.35程度のフッ素系プラスチックファイバを用いた場合は、b=0.023であり、更に、光ファイバの端面での戻り光が受光素子に全て結合する場合は、c=1である。   When all the received light is coupled to the light receiving element, a = 1, and when a fluorine-based plastic fiber having a refractive index of about 1.35 is used for the optical fiber, b = 0.024. Furthermore, when all the return light at the end face of the optical fiber is coupled to the light receiving element, c = 1.

これにより、受信光SとクロストークNは、
S=0.5aP2=0.5P2
N=0.5×0.5bcP1=5.8×10-31
となるので、
S/N=86P2/P1・・・(1)
である。
Thus, the received light S and the crosstalk N are
S = 0.5aP 2 = 0.5P 2
N = 0.5 × 0.5bcP 1 = 5.8 × 10 −3 P 1
So,
S / N = 86P 2 / P 1 (1)
It is.

ギガ帯域の一芯双方向通信で、符号誤り率BER<10-12を達成するには、通常S/N>10が必要とされているため、許容される損失は、以下の式(2)で示される。
2/P1>0.12(−9.2dB)・・・(2)
In order to achieve a bit error rate BER <10 −12 in single-core two-way communication in the giga band, S / N> 10 is usually required, and thus the allowable loss is expressed by the following equation (2): Indicated by
P 2 / P 1 > 0.12 (−9.2 dB) (2)

式(2)によれば、発光素子からファイバ出射端までに9.2dBの損失しか許されない。ファイバ入射端までに、ビームスプリッタにより3dBの損失となるので、残る6.2dBがファイバに許される損失となる。   According to Equation (2), only 9.2 dB loss is allowed from the light emitting element to the fiber exit end. Since the beam splitter causes a loss of 3 dB up to the fiber incident end, the remaining 6.2 dB is a loss allowed for the fiber.

例えば、伝送損失4dB/100m、曲げ損失0.2dB/90°、曲率許容半径R=20mmを有しているフッ素系プラスチックファイバを用いてファイバを敷設することを考えると、100mで11回の曲げしか許されない。これは、敷設上の大きな制約条件であり、例えば12回以上の曲げが要求される敷設環境では、S/N>10が確保できず、ギガ帯域の一芯双方向通信が困難であることがわかる。   For example, considering that a fiber is laid using a fluorine-based plastic fiber having a transmission loss of 4 dB / 100 m, a bending loss of 0.2 dB / 90 °, and an allowable radius of curvature R = 20 mm, bending is performed 11 times at 100 m. Only allowed. This is a major constraint on laying. For example, in a laying environment where bending of 12 times or more is required, S / N> 10 cannot be secured, and giga-band single-core bidirectional communication may be difficult. Recognize.

本発明は、このような課題を解決するためになされたもので、クロストークを低減させた光送受信装置および光通信システムを提供することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to provide an optical transmission / reception apparatus and an optical communication system in which crosstalk is reduced.

上述した課題を解決するため、本発明に係る光送受信装置は、光ファイバと接続され、一芯双方向全二重光ファイバ通信を行う光送受信装置において、送信光を出射する発光手段と、受信光を入射する受光手段と、発光手段から出射した送信光を光ファイバの入出射端面に集光すると共に、光ファイバの入出射端面から出射された受信光を受光手段に集光する集光手段と、送信光を光ファイバの入出射端面へ導光すると共に、受信光を受光手段へ導光する光路分離手段と、発光手段から出射して光ファイバの入出射端面で反射した戻り光の焦点の位置を、光ファイバの入出射端面から出射される受信光の焦点の位置と異ならせる戻り光反射手段とを備え、受光手段を、戻り光の焦点から外れた位置で、かつ、受信光の受光範囲内に配置したものである。   In order to solve the above-described problems, an optical transmission / reception apparatus according to the present invention is an optical transmission / reception apparatus that is connected to an optical fiber and performs single-core bidirectional full-duplex optical fiber communication. And a light collecting means for condensing the transmission light emitted from the light emitting means on the incident / exit end face of the optical fiber and condensing the received light emitted from the incident / exit end face of the optical fiber on the light receiving means, The optical path separating means for guiding the transmitted light to the incident / exit end face of the optical fiber and the received light to the light receiving means, and the focal point of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber. And a return light reflecting means for making the position different from the focus position of the received light emitted from the incident / exit end face of the optical fiber, and the light receiving means is at a position deviated from the focus of the returned light and receives the received light. Also placed within the range It is.

本発明に係る光通信システムは、上述した光送受信装置を備えたもので、光送受信装置同士を光ファイバで接続し、一芯双方向全二重光ファイバ通信を行う光通信システムにおいて、光送受信装置は、送信光を出射する発光手段と、受信光を入射する受光手段と、発光手段から出射した送信光を光ファイバの入出射端面に集光すると共に、光ファイバの入出射端面から出射された受信光を受光手段に集光する集光手段と、送信光を光ファイバの入出射端面へ導光すると共に、受信光を受光手段へ導光する光路分離手段と、発光手段から出射して光ファイバの入出射端面で反射した戻り光の焦点の位置を、光ファイバの入出射端面から出射される受信光の焦点の位置と異ならせる戻り光反射手段とを備え、受光手段を、戻り光の焦点から外れた位置で、かつ、受信光の受光範囲内に配置したものである。   An optical communication system according to the present invention includes the above-described optical transmission / reception device. In an optical communication system in which optical transmission / reception devices are connected to each other through an optical fiber to perform one-core bidirectional full-duplex optical fiber communication, The light emitting means for emitting the transmission light, the light receiving means for receiving the received light, and the transmission light emitted from the light emitting means are condensed on the incident / exit end face of the optical fiber and emitted from the incident / exit end face of the optical fiber. Light collecting means for condensing the received light on the light receiving means, light path separating means for guiding the transmitted light to the incident / exit end face of the optical fiber, and light receiving light to the light receiving means, and light emitted from the light emitting means. A return light reflecting means for making the position of the focal point of the return light reflected by the incident / exit end face of the fiber different from the position of the focal point of the received light emitted from the incident / exit end face of the optical fiber, Out of focus In location, and, in which it was placed in the light receiving range of the receiving light.

本発明に係る光送受信装置および光通信システムによれば、発光手段から出射された信号光(送信光)は、光路分離手段によって光ファイバへと導光され、集光手段で集光されて光ファイバの入出射端面に入射する。   According to the optical transmitter / receiver and the optical communication system according to the present invention, the signal light (transmitted light) emitted from the light emitting means is guided to the optical fiber by the optical path separating means, and condensed by the light collecting means. The light enters the input / output end face of the fiber.

光ファイバの入出射端面から入射した送信光は、光ファイバを伝搬され、他方入出射端面から出射する。光ファイバの入出射端面から出射した信号光(受信光)は、集光手段で集光され、光路分離手段によって受光手段へと導光される。   The transmission light incident from the incident / exit end face of the optical fiber is propagated through the optical fiber and emitted from the other incident / exit end face. The signal light (received light) emitted from the incident / exit end face of the optical fiber is collected by the light collecting means and guided to the light receiving means by the optical path separating means.

そして、一芯双方向全二重光ファイバ通信では、一芯の光ファイバで接続された光送受信装置の間で送受信が同時に行われる。   In single-core bidirectional full-duplex optical fiber communication, transmission / reception is performed simultaneously between optical transmission / reception devices connected by a single-core optical fiber.

ここで、発光手段から出射された送信光の一部は、光ファイバの入出射端面で反射する。この入出射端面で反射する戻り光は、戻り光反射手段によって、受信光の焦点の位置と異なる位置に集光することで、戻り光の集光面上では、受信光のスポット径は戻り光のスポット径より大きくなる。   Here, a part of the transmission light emitted from the light emitting means is reflected by the incident / exit end face of the optical fiber. The return light reflected by the incident / exit end face is condensed at a position different from the focal position of the received light by the return light reflecting means, so that the spot diameter of the received light is the return light on the return light collecting surface. Larger than the spot diameter.

これにより、戻り光の集光する位置を外して、受信光の受光範囲内となる位置に受光手段が配置されることで、受信光は受光手段で受信され、これに対して戻り光は受光手段に集光しないことから受光手段で受信されず、クロストークの低減が図られる。   As a result, the light receiving means is disposed at a position within the light receiving range of the received light by removing the position where the return light is collected, and the received light is received by the light receiving means, whereas the return light is received. Since the light is not condensed on the means, it is not received by the light receiving means, and crosstalk is reduced.

本発明の光送受信装置によれば、自装置の発光手段から出射した送信光が、光ファイバの入出射端面で反射することによる戻り光を受信しない位置に受光手段が配置されるので、クロストークの低減を図ることができる。   According to the optical transmission / reception apparatus of the present invention, the light receiving means is disposed at a position where the transmitted light emitted from the light emitting means of the own apparatus does not receive the return light due to reflection by the incident / exit end face of the optical fiber. Can be reduced.

これにより、一芯双方向全二重光ファイバ通信を行う光送受信装置において高S/N比の達成が可能で、光ファイバに許容される損失を大幅に緩和できる。   As a result, a high S / N ratio can be achieved in an optical transmission / reception apparatus that performs single-core bidirectional full-duplex optical fiber communication, and loss allowed for the optical fiber can be greatly reduced.

従って、このような光送受信装置を備えた光通信システムによれば、光ファイバの曲げや長さによる敷設上の制約条件が大幅に緩和され、設置条件を問わず、ギガ帯域の一芯双方向全二重光ファイバ通信を実現できる。   Therefore, according to the optical communication system equipped with such an optical transmission / reception apparatus, the constraints on installation due to the bending and length of the optical fiber are greatly relaxed, and the single-core bidirectional in the giga band regardless of the installation conditions. Full duplex optical fiber communication can be realized.

以下、図面を参照して本発明の光送受装置および光通信システムの実施の形態について説明する。   Embodiments of an optical transmission / reception apparatus and an optical communication system according to the present invention will be described below with reference to the drawings.

図1は第1の実施の形態の光送受信装置の概略構成例を示す平面図である。第1の実施の形態の光送受信装置1aは、送信光を出射する発光素子2と、受信光を入射する受光素子3と、送信光および受信光を集光するレンズ4と、送信光と受信光を分離するビームスプリッタ5を備え、光ファイバ6と接続される。   FIG. 1 is a plan view showing a schematic configuration example of the optical transmission / reception apparatus according to the first embodiment. The optical transmitter / receiver 1a according to the first embodiment includes a light emitting element 2 that emits transmission light, a light receiving element 3 that receives reception light, a lens 4 that collects transmission light and reception light, and transmission light and reception. A beam splitter 5 for separating light is provided and connected to an optical fiber 6.

光送受信装置1aは、光ファイバ6の入出射端面6aから出射される受信光(S)の集光する位置と、光ファイバ6の入出射端面6aで反射した戻り光(N)の集光する位置を、光ファイバ6の光軸方向にずらす。これにより、戻り光を受信しない位置に受光素子3を調軸できるようにして、クロストークの低減の図るものである。   The optical transmitter / receiver 1a condenses the position where the received light (S) emitted from the incident / exit end face 6a of the optical fiber 6 is condensed and the return light (N) reflected by the incident / exit end face 6a of the optical fiber 6. The position is shifted in the optical axis direction of the optical fiber 6. As a result, the light receiving element 3 can be adjusted to a position where no return light is received, thereby reducing crosstalk.

発光素子2は発光手段の一例で、例えばレーザダイオードから構成される。受光素子3は受光手段の一例で、例えばフォトダイオードから構成される。レンズ4は集光手段の一例で、発光素子2から出射した送信光を光ファイバ6の入出射端面6aに集光すると共に、光ファイバ6の入出射端面6aから拡散して出射される受信光を受光素子3に集光して結合させる。   The light emitting element 2 is an example of a light emitting means, and is composed of, for example, a laser diode. The light receiving element 3 is an example of a light receiving means, and is composed of, for example, a photodiode. The lens 4 is an example of a condensing unit, and condenses the transmission light emitted from the light emitting element 2 on the incident / exit end face 6a of the optical fiber 6 and diffuses and emits the received light from the incident / exit end face 6a of the optical fiber 6. Is condensed and coupled to the light receiving element 3.

ビームスプリッタ5は光路分離手段の一例で、例えば透過率約50%、反射率約50%のハーフミラーで構成される。ビームスプリッタ5は、レンズ4の光軸上に45度の傾斜角で設けられ、発光素子2から出射した送信光を反射して光ファイバ6の入出射端面6aへ導光すると共に、光ファイバ6の入出射端面6aから出射した受信光を透過して受光素子3へ導光する。   The beam splitter 5 is an example of an optical path separating unit, and is composed of, for example, a half mirror having a transmittance of about 50% and a reflectance of about 50%. The beam splitter 5 is provided at an inclination angle of 45 degrees on the optical axis of the lens 4, reflects the transmission light emitted from the light emitting element 2, guides it to the incident / exit end face 6 a of the optical fiber 6, and the optical fiber 6. The received light emitted from the incident / exit end face 6 a is transmitted and guided to the light receiving element 3.

光ファイバ6は例えばフッ素系プラスチックファイバで、図示しないコネクタ等によって光送受信装置1aに接続される。光送受信装置1aでは、レンズ4の光軸と光ファイバ6の光軸が一致するように、光ファイバ6が接続される。   The optical fiber 6 is a fluorine plastic fiber, for example, and is connected to the optical transceiver 1a by a connector or the like (not shown). In the optical transceiver 1a, the optical fiber 6 is connected so that the optical axis of the lens 4 and the optical axis of the optical fiber 6 coincide.

図2は光送受信装置1aを備えた光通信システムの実施の形態の一例を示す概略構成図である。光通信システム11は、光通信装置1a同士の間を一芯の光ファイバ6で接続したものである。   FIG. 2 is a schematic configuration diagram showing an example of an embodiment of an optical communication system provided with the optical transceiver 1a. The optical communication system 11 is formed by connecting the optical communication apparatuses 1a with each other through a single-core optical fiber 6.

光ファイバ6の一方の端部側に接続された第1の光送受信装置1aの発光素子2から出射した送信光は、ビームスプリッタ5で反射し、レンズ4によって光ファイバ6の一方の入出射端面6aに集光する。   Transmitted light emitted from the light emitting element 2 of the first optical transmission / reception device 1 a connected to one end of the optical fiber 6 is reflected by the beam splitter 5, and is input / output end face of the optical fiber 6 by the lens 4. Condensed to 6a.

光ファイバ6の一方の入出射端面6aから入射した送信光は、光ファイバ6の図示しないコア内を伝搬され、光ファイバ6の他方の入出射端面6aから出射する。光ファイバ6の他方の端部側には第2の光送受信装置1aが接続され、光ファイバ6の他方の入出射端面6aから出射した受信光は、第2の光送受信装置1aにおいてレンズ4で集光され、ビームスプリッタ5を透過して受光素子3へ結合する。   The transmission light incident from one incident / exit end face 6 a of the optical fiber 6 is propagated through a core (not shown) of the optical fiber 6 and is emitted from the other incident / exit end face 6 a of the optical fiber 6. The second optical transmission / reception device 1a is connected to the other end of the optical fiber 6, and the received light emitted from the other incident / exit end surface 6a of the optical fiber 6 is transmitted through the lens 4 in the second optical transmission / reception device 1a. The condensed light passes through the beam splitter 5 and is coupled to the light receiving element 3.

同様にして、第2の光送受信装置1aの発光素子2から出射した送信光は、ビームスプリッタ5で反射し、レンズ4によって光ファイバ6の他方の入出射端面6aに集光する。   Similarly, the transmission light emitted from the light emitting element 2 of the second optical transmission / reception device 1a is reflected by the beam splitter 5 and condensed on the other incident / exit end face 6a of the optical fiber 6 by the lens 4.

光ファイバ6の他方の入出射端面6aから入射した送信光は、光ファイバ6の図示しないコア内を伝搬され、光ファイバ6の一方の入出射端面6aから出射する。光ファイバ6の一方の入出射端面6aから出射した受信光は、第1の光送受信装置1aにおいてレンズ4で集光され、ビームスプリッタ5を透過して受光素子3へ結合する。   The transmission light incident from the other incident / exit end face 6 a of the optical fiber 6 is propagated through a core (not shown) of the optical fiber 6 and is emitted from one incident / exit end face 6 a of the optical fiber 6. Received light emitted from one incident / exit end face 6 a of the optical fiber 6 is collected by the lens 4 in the first optical transmitter / receiver 1 a, passes through the beam splitter 5, and is coupled to the light receiving element 3.

一芯双方向全二重光ファイバ通信を行う光通信システム11では、第1の光送受信装置1aと第2の光送受信装置1aで同時に送受信が行われる。   In the optical communication system 11 that performs the single-core bidirectional full-duplex optical fiber communication, the first optical transmission / reception device 1a and the second optical transmission / reception device 1a perform transmission / reception simultaneously.

ここで、発光素子2から出射した送信光の一部は、光ファイバ6の入出射端面6aで反射する。光ファイバ6の入出射端面6aで反射した戻り光は、レンズ4で集光され、ビームスプリッタ5を透過して、受光素子3方向へ導光される。   Here, part of the transmission light emitted from the light emitting element 2 is reflected by the incident / exit end face 6 a of the optical fiber 6. The return light reflected by the incident / exit end face 6 a of the optical fiber 6 is collected by the lens 4, passes through the beam splitter 5, and is guided toward the light receiving element 3.

そして、接続相手の光送受信装置1aから出射され、光ファイバ6の入出射端面6aから出射した受信光は受信し、入出射端面6aで反射した自装置の送信光の戻り光は受信しない位置に受光素子3を調軸できるように戻り光を反射する戻り光反射手段を備えることで、受信光と戻り光との間のクロストークの低減を図る。   Then, the received light emitted from the optical transmission / reception apparatus 1a of the connection partner and emitted from the incident / exit end face 6a of the optical fiber 6 is received, and the return light of the own apparatus reflected by the incident / exit end face 6a is not received. By providing return light reflecting means for reflecting the return light so that the light receiving element 3 can be adjusted, crosstalk between the received light and the return light is reduced.

すなわち、光送受信装置1aは、光ファイバ6が接続されると、図1に示すようにレンズ4から光ファイバ6の入出射端面6aまでの長さが、レンズ4で集光される送信光の焦点距離f1よりも短く、送信光の焦点位置F1が、光ファイバ6の入出射端面6aより光軸方向奥方に入り込んだ位置となるように構成される。 In other words, when the optical fiber 6 is connected, the optical transmission / reception apparatus 1a has a length from the lens 4 to the incident / exit end face 6a of the optical fiber 6 as shown in FIG. It is shorter than the focal length f 1, and is configured such that the focal position F 1 of the transmitted light is located deeper in the optical axis direction than the incident / exit end face 6 a of the optical fiber 6.

これにより、光ファイバ6の入出射端面6aから出射してレンズ4で集光される受信光の焦点距離f2に対して、光ファイバ6の入出射端面6aで反射してレンズ4で集光される戻り光の焦点距離f3が短くなる。 As a result, the focal length f 2 of the received light that is emitted from the incident / exit end face 6 a of the optical fiber 6 and collected by the lens 4 is reflected by the incident / exit end face 6 a of the optical fiber 6 and condensed by the lens 4. The focal length f 3 of the returned light is shortened.

よって、受光素子3側では、戻り光の焦点位置F3が、受信光の焦点位置F2よりレンズ4に対して光ファイバ6の光軸方向手前となり、光ファイバ6の光軸に垂直で、戻り光のスポット径が最も小さくなる戻り光集光面Mでは、受信光のスポット径は戻り光のスポット径より大きい。 Therefore, on the light receiving element 3 side, the focal position F 3 of the return light is in front of the optical fiber 6 in the optical axis direction with respect to the lens 4 from the focal position F 2 of the received light, and is perpendicular to the optical axis of the optical fiber 6. On the return light condensing surface M where the spot diameter of the return light is the smallest, the spot diameter of the received light is larger than the spot diameter of the return light.

図3は受光素子の受光面と、受信光および戻り光のスポット径の関係を示す説明図である。図1に示すように、戻り光のスポット径が最も小さくなる戻り光集光面Mでは、受信光のスポット径は戻り光のスポット径より大きいので、図3に示すように、受光素子3の受光面3aが、戻り光は受信せず、受信光は受信する位置となるように、受光素子3を調軸することができる。   FIG. 3 is an explanatory diagram showing the relationship between the light receiving surface of the light receiving element and the spot diameters of received light and return light. As shown in FIG. 1, on the return light condensing surface M where the spot diameter of the return light is the smallest, the spot diameter of the received light is larger than the spot diameter of the return light. The light receiving element 3 can be adjusted so that the light receiving surface 3a does not receive the return light and receives the received light.

光送受信装置1aでは、受光素子3の受光面3aに受信光を集光させないことから、受光素子3と受信光の結合効率は100%以下となるが、光ファイバ6の入出射端面6aにおける戻り光と受光素子3の結合効率は0%にすることができる。   In the optical transmitter / receiver 1a, since the received light is not condensed on the light receiving surface 3a of the light receiving element 3, the coupling efficiency between the light receiving element 3 and the received light is 100% or less, but the return at the incident / exit end face 6a of the optical fiber 6 is reduced. The coupling efficiency between the light and the light receiving element 3 can be 0%.

以下、第1の実施の形態の光送受信装置1aのS/N比の計算例を式(3)に示す。なお、以下の計算において、ビームスプリッタ5の透過率は0.5、ビームスプリッタ5の反射率は0.5とした。   An example of calculating the S / N ratio of the optical transmission / reception device 1a according to the first embodiment is shown in Expression (3) below. In the following calculation, the transmittance of the beam splitter 5 was 0.5, and the reflectance of the beam splitter 5 was 0.5.

ここで、
1:発光素子の強度
2:ファイバ出射強度
a :受信光の受光素子との結合効率
b :ファイバ入出射端面の反射率
c :ファイバ入出射端面における戻り光の受光素子との結合効率
である。
here,
P 1 : intensity of the light emitting element P 2 : fiber emission intensity a: coupling efficiency of the received light with the light receiving element b: reflectivity of the fiber entrance / exit end face c: coupling efficiency of the return light on the fiber entrance / exit end face with the light receiving element is there.

受光素子3の受光面3aに受信光を集光させないことから、a=0.12程度である。光ファイバ6として屈折率が1.35程度のフッ素系プラスチックファイバを用いた場合は、b=0.023である。更に、受光素子3を戻り光を受信しない位置に調軸することで、c=0である。   Since the received light is not collected on the light receiving surface 3a of the light receiving element 3, a = 0.12. When a fluorine-based plastic fiber having a refractive index of about 1.35 is used as the optical fiber 6, b = 0.023. Furthermore, c = 0 by adjusting the light receiving element 3 to a position where it does not receive return light.

これにより、受信光SとクロストークNは、
S=0.5aP2=0.15P2
N=0.5×0.5bcP1=0
となるので、
S/N=∞・・・(3)
である。
Thus, the received light S and the crosstalk N are
S = 0.5aP 2 = 0.15P 2
N = 0.5 × 0.5bcP 1 = 0
So,
S / N = ∞ (3)
It is.

ギガ帯域の一芯双方向通信で、符号誤り率BER<10-12を達成するには、通常S/N>10が必要とされているが、光送受信装置1aでは、発光素子2の強度P1に関係なく、常にS/N>10を確保できることが判る。 In order to achieve a code error rate BER <10 −12 in single-core two-way communication in the giga band, S / N> 10 is usually required. However, in the optical transmission / reception apparatus 1a, the intensity P of the light emitting element 2 is required. It can be seen that S / N> 10 can always be secured regardless of 1 .

従来方式では、光ファイバで許容される損失に約6dBという制約があったが、本例では、S/N=∞となるため、クロストークに起因する光ファイバでの損失の制約を設ける必要がない。   In the conventional method, the loss allowed in the optical fiber is limited to about 6 dB. However, in this example, since S / N = ∞, it is necessary to limit the loss in the optical fiber due to crosstalk. Absent.

よって、一芯双方向全二重光ファイバ通信においても、二芯双方向光ファイバ通信と同様のクロストークの緩和が見込まれ、曲げやファイバ長による敷設上の制約条件が大幅に緩和される。   Therefore, also in the single-core bidirectional full-duplex optical fiber communication, the same crosstalk as that in the two-core bidirectional optical fiber communication is expected to be relaxed, and the restrictions on the installation due to bending and fiber length are greatly eased.

図4は第2の実施の形態の光送受信装置の概略構成例を示す平面図である。第2の実施の形態の光送受信装置1bは、光ファイバ6が接続されると、レンズ4から光ファイバ6の入出射端面6aまでの長さが、レンズ4で集光される送信光の焦点距離f1よりも長く、送信光の焦点位置F1が、光ファイバ6の入出射端面6aより光軸方向手前の位置となるように構成される。 FIG. 4 is a plan view illustrating a schematic configuration example of the optical transmission / reception apparatus according to the second embodiment. In the optical transceiver 1b of the second embodiment, when the optical fiber 6 is connected, the length from the lens 4 to the incident / exit end face 6a of the optical fiber 6 is the focal point of the transmission light condensed by the lens 4. It is longer than the distance f 1 and is configured such that the focal position F 1 of the transmitted light is a position before the incident / exit end face 6 a of the optical fiber 6 in the optical axis direction.

これにより、光ファイバ6の入出射端面6aから出射してレンズ4で集光される受信光の焦点距離f2に対して、光ファイバ6の入出射端面6aで反射してレンズ4で集光される戻り光の焦点距離f3が長くなる。 As a result, the focal length f 2 of the received light that is emitted from the incident / exit end face 6 a of the optical fiber 6 and collected by the lens 4 is reflected by the incident / exit end face 6 a of the optical fiber 6 and condensed by the lens 4. the focal length f 3 of the return light becomes longer.

よって、受光素子3側では、戻り光の焦点位置F3が、受信光の焦点位置F2よりレンズ4に対して光ファイバ6の光軸方向奥方となり、第1の実施の形態と同様に、光ファイバ6の光軸に垂直で、戻り光のスポット径が最も小さくなる戻り光集光面Mでは、受信光のスポット径は戻り光のスポット径より大きい。 Therefore, on the light receiving element 3 side, the focal position F 3 of the return light is located behind the lens 4 in the optical axis direction of the optical fiber 6 with respect to the focal position F 2 of the received light, and as in the first embodiment, On the return light condensing surface M perpendicular to the optical axis of the optical fiber 6 and having the smallest spot diameter of the return light, the spot diameter of the received light is larger than the spot diameter of the return light.

従って、図3に示すように、受光素子3の受光面3aが、戻り光は受信せず、受信光は受信する位置となるように、受光素子3を調軸することができ、光ファイバ6の入出射端面6aにおける戻り光と受光素子3の結合効率を0%にすることができる。   Therefore, as shown in FIG. 3, the light receiving surface 3a of the light receiving element 3 can be adjusted so that the light receiving surface 3a does not receive the return light and the received light is received. The coupling efficiency between the return light and the light receiving element 3 at the light incident / exit end face 6a can be reduced to 0%.

図5は第3の実施の形態の光送受信装置の概略構成例を示す平面図である。第3の実施の形態の光送受信装置1cは、第1の実施の形態の光送受信装置1aと同様に、光ファイバ6が接続されると、レンズ4から光ファイバ6の入出射端面6aまでの長さが、レンズ4で集光される送信光の焦点距離f1よりも短く、送信光の焦点位置F1が、光ファイバ6の入出射端面6aより光軸方向奥方に入り込んだ位置となるように構成される。 FIG. 5 is a plan view showing a schematic configuration example of the optical transmission / reception apparatus according to the third embodiment. Similarly to the optical transmission / reception apparatus 1a of the first embodiment, the optical transmission / reception apparatus 1c of the third embodiment is connected from the lens 4 to the incident / exit end face 6a of the optical fiber 6 when the optical fiber 6 is connected. The length is shorter than the focal length f 1 of the transmission light collected by the lens 4, and the focal position F 1 of the transmission light is a position that enters the depth in the optical axis direction from the incident / exit end face 6 a of the optical fiber 6. Configured as follows.

更に、レンズ4の光軸に対して、光ファイバ6の光軸が平行にずれて接続されるように構成される。   Further, the optical axis of the optical fiber 6 is configured to be shifted parallel to the optical axis of the lens 4.

レンズ4の光軸に対して光ファイバ6の光軸がずれていると、光ファイバ6の中心がレンズ4で集光される送信光の光軸からずれ、光ファイバ6の入出射端面6aにおいて中心からずれた位置に送信光が入射する。   If the optical axis of the optical fiber 6 is deviated from the optical axis of the lens 4, the center of the optical fiber 6 is deviated from the optical axis of the transmission light collected by the lens 4, and the incident / exit end face 6 a of the optical fiber 6 is changed. Transmitted light is incident on a position deviated from the center.

光ファイバ6から出射する受信光は、入出射端面6aの中心から出射するので、レンズ4には中心からずれて入射し、レンズ4で集光される受信光の光軸は、レンズ4の光軸に対して傾斜する。   Since the reception light emitted from the optical fiber 6 is emitted from the center of the incident / exit end face 6 a, the optical axis of the reception light incident on the lens 4 is shifted from the center and collected by the lens 4 is the light of the lens 4. Tilt relative to the axis.

これにより、図示しない接続相手の光送受信装置から出射され、光ファイバ6の入出射端面6aから出射した受信光の中心と、入出射端面6aで反射した自装置の送信光の戻り光の中心がずれる。   As a result, the center of the reception light emitted from the connection optical transmission / reception apparatus (not shown) and emitted from the incident / exit end face 6a of the optical fiber 6 and the center of the return light of the transmission light of the own apparatus reflected by the incident / exit end face 6a are obtained. Shift.

よって、戻り光のスポット径が最も小さくなる戻り光集光面Mでは、受信光のスポット径は戻り光のスポット径より大きく、かつ、戻り光のスポットの中心と、受信光のスポットの中心が分離される。   Therefore, on the return light condensing surface M where the spot diameter of the return light is the smallest, the spot diameter of the received light is larger than the spot diameter of the return light, and the center of the spot of the return light and the center of the spot of the received light are To be separated.

図6は受信光のガウシアン分布と、受光素子の受光面における受信光と戻り光のスポットの関係を示す説明図である。光送受信装置1cでは、図6(a)に示すように、受光素子3の受光面3aが、戻り光は受信せず、受信光は受信する位置で、かつ、受信光の強度が強いガウシアン分布の中心部に位置するように、受光素子3を調軸することができる。   FIG. 6 is an explanatory diagram showing the Gaussian distribution of the received light and the relationship between the spot of the received light and the return light on the light receiving surface of the light receiving element. In the optical transmission / reception device 1c, as shown in FIG. 6A, the light receiving surface 3a of the light receiving element 3 does not receive the return light, receives the received light, and has a strong Gaussian distribution. The light receiving element 3 can be adjusted so as to be positioned at the center of the light receiving element 3.

これにより、第1の実施の形態および第2の実施の形態の光送受信装置と比較して、受光素子3と受信光の結合効率を大きくすることができる。   Thereby, compared with the optical transmission / reception apparatus of 1st Embodiment and 2nd Embodiment, the coupling efficiency of the light receiving element 3 and received light can be enlarged.

また、送信光の光軸と、光ファイバ6の中心のずれの距離を調整することで、図6(b)に示すように、戻り光と受信光を完全に分離して、受信光の強度が強いガウシアン分布の中心部に受光面3aが位置するように、受光素子3を調軸することができる。   Further, by adjusting the distance between the optical axis of the transmitted light and the center of the optical fiber 6, the return light and the received light are completely separated as shown in FIG. The light-receiving element 3 can be adjusted so that the light-receiving surface 3a is positioned at the center of the Gaussian distribution having a strong.

図7は第4の実施の形態の光送受信装置の概略構成例を示す平面図である。第4の実施の形態の光送受信装置1dは、第1の実施の形態の光送受信装置1aと同様に、光ファイバ6が接続されると、レンズ4から光ファイバ6の入出射端面6aまでの長さが、レンズ4で集光される送信光の焦点距離f1よりも短く、送信光の焦点位置F1が、光ファイバ6の入出射端面6aより光軸方向奥方に入り込んだ位置となるように構成される。 FIG. 7 is a plan view showing a schematic configuration example of the optical transmission / reception apparatus according to the fourth embodiment. Similarly to the optical transmission / reception apparatus 1a of the first embodiment, the optical transmission / reception apparatus 1d of the fourth embodiment is connected from the lens 4 to the incident / exit end face 6a of the optical fiber 6 when the optical fiber 6 is connected. The length is shorter than the focal length f 1 of the transmission light collected by the lens 4, and the focal position F 1 of the transmission light is a position that enters the depth in the optical axis direction from the incident / exit end face 6 a of the optical fiber 6. Configured as follows.

更に、光ファイバ6の入出射端面6aで反射した戻り光が、光ファイバ6の入出射端面6aから出射される受信光に対して傾斜するように、例えば、光ファイバ6の入出射端面6aに入射する送信光の光軸を傾斜させる。   Further, the return light reflected by the incident / exit end face 6a of the optical fiber 6 is inclined, for example, on the incident / exit end face 6a of the optical fiber 6 so that it is inclined with respect to the received light emitted from the incident / exit end face 6a of the optical fiber 6. The optical axis of incident transmission light is tilted.

送信光の光軸を傾斜させるには、例えば、ビームスプリッタ5の光ファイバ6の光軸に対する傾斜を、45度より大きく、あるいは小さくする。   In order to tilt the optical axis of the transmission light, for example, the tilt of the beam splitter 5 with respect to the optical axis of the optical fiber 6 is made larger or smaller than 45 degrees.

送信光の光軸を傾斜させると、光ファイバ6の入出射端面6aで反射した戻り光の光軸が傾斜する。また、光ファイバ6の入出射端面6aにおいて中心からずれた位置に送信光が入射する。   When the optical axis of the transmission light is tilted, the optical axis of the return light reflected by the incident / exit end face 6a of the optical fiber 6 is tilted. Further, the transmission light is incident on the incident / exit end face 6 a of the optical fiber 6 at a position shifted from the center.

光ファイバ6の入出射端面6aから出射する受信光の光軸は、光ファイバ6の光軸と略平行であるので、図示しない接続相手の光送受信装置から出射され、光ファイバ6の入出射端面6aから出射した受信光の光軸に対して、入出射端面6aで反射した自装置の送信光の戻り光の光軸が傾斜する。   Since the optical axis of the reception light emitted from the incident / exit end face 6 a of the optical fiber 6 is substantially parallel to the optical axis of the optical fiber 6, the optical axis is emitted from a not-shown optical transmission / reception device to be connected. The optical axis of the return light of the transmission light of the own apparatus reflected by the incident / exit end face 6a is inclined with respect to the optical axis of the reception light emitted from 6a.

これにより、戻り光のスポット径が最も小さくなる戻り光集光面Mでは、受信光の中心と戻り光の中心がずれ、かつ、受信光のスポット径は戻り光のスポット径より大きくなる。   Thereby, in the return light condensing surface M where the spot diameter of the return light is the smallest, the center of the reception light is shifted from the center of the return light, and the spot diameter of the reception light is larger than the spot diameter of the return light.

よって、光送受信装置1dでは、図6(a),(b)に示すように、受光素子3の受光面3aが、戻り光は受信せず、受信光は受信する位置で、かつ、受信光の強度が強いガウシアン分布の中心部に位置するように、受光素子3を調軸することができる。   Therefore, in the optical transmitter / receiver 1d, as shown in FIGS. 6A and 6B, the light receiving surface 3a of the light receiving element 3 does not receive the return light, receives the received light, and receives the received light. The light receiving element 3 can be adjusted so as to be positioned at the center of the Gaussian distribution having a high intensity of.

これにより、第1の実施の形態および第2の実施の形態の光送受信装置と比較して、受光素子3と受信光の結合効率を大きくすることができる。   Thereby, compared with the optical transmission / reception apparatus of 1st Embodiment and 2nd Embodiment, the coupling efficiency of the light receiving element 3 and received light can be enlarged.

なお、戻り光の光軸を受信光の光軸に対して傾斜させるため、送信光の光軸を傾斜させるには、発光素子2あるいはレンズ4を傾斜させても良い。また、光ファイバ6の入出射端面6aを傾斜させることでも、戻り光の光軸を受信光の光軸に対して傾斜させることができる。この場合は、送信光の光軸は傾斜していなくても良い。   Since the optical axis of the return light is tilted with respect to the optical axis of the received light, the light emitting element 2 or the lens 4 may be tilted in order to tilt the optical axis of the transmitted light. In addition, the optical axis of the return light can be inclined with respect to the optical axis of the received light also by inclining the incident / exit end face 6 a of the optical fiber 6. In this case, the optical axis of the transmission light may not be inclined.

本発明は、クロストークを低減させた光送受信装置を安価に提供できることから、家庭内やオフィス内に構築される光通信ネットワークに適用される。   The present invention can be applied to an optical communication network built in a home or office because an optical transceiver having reduced crosstalk can be provided at low cost.

第1の実施の形態の光送受信装置の概略構成例を示す平面図である。It is a top view which shows the schematic structural example of the optical transmission / reception apparatus of 1st Embodiment. 光通信システムの実施の形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of an optical communication system. 受光素子の受光面と、受信光および戻り光のスポット径の関係を示す説明図である。It is explanatory drawing which shows the relationship between the light-receiving surface of a light receiving element, and the spot diameter of received light and return light. 第2の実施の形態の光送受信装置の概略構成例を示す平面図である。It is a top view which shows the schematic structural example of the optical transmission / reception apparatus of 2nd Embodiment. 第3の実施の形態の光送受信装置の概略構成例を示す平面図である。It is a top view which shows the schematic structural example of the optical transmission / reception apparatus of 3rd Embodiment. 受信光のガウシアン分布と、受光素子の受光面における受信光と戻り光のスポットの関係を示す説明図である。It is explanatory drawing which shows the relationship between the Gaussian distribution of received light, and the spot of the received light and return light in the light-receiving surface of a light receiving element. 第4の実施の形態の光送受信装置の概略構成例を示す平面図である。It is a top view which shows the schematic structural example of the optical transmission / reception apparatus of 4th Embodiment. 一芯双方向全二重光ファイバ通信を行う光通信システムの概略構成例を示す説明図である。It is explanatory drawing which shows the schematic structural example of the optical communication system which performs single core bidirectional | two-way full duplex optical fiber communication. 従来の光送受信装置の概略構成例を示す平面図である。It is a top view which shows the schematic structural example of the conventional optical transmitter / receiver. クロストークの発生原理を示す説明図である。It is explanatory drawing which shows the generation | occurrence | production principle of crosstalk. 従来における受光素子の受光面と、受信光および戻り光の関係を示す説明図である。It is explanatory drawing which shows the relationship between the light-receiving surface of the conventional light receiving element, received light, and return light.

符号の説明Explanation of symbols

1a・・・光送受信装置、2・・・発光素子、3・・・受光素子、3a・・・受光面、4・・・レンズ、5・・・ビームスプリッタ、6・・・光ファイバ、6a・・・入出射端面、11・・・光通信システム
DESCRIPTION OF SYMBOLS 1a ... Optical transmitter / receiver, 2 ... Light emitting element, 3 ... Light receiving element, 3a ... Light receiving surface, 4 ... Lens, 5 ... Beam splitter, 6 ... Optical fiber, 6a ... Incoming / outgoing end face, 11 ... Optical communication system

Claims (10)

光ファイバと接続され、一芯双方向全二重光ファイバ通信を行う光送受信装置において、
送信光を出射する発光手段と、
受信光を入射する受光手段と、
前記発光手段から出射した送信光を前記光ファイバの入出射端面に集光すると共に、前記光ファイバの入出射端面から出射された受信光を前記受光手段に集光する集光手段と、
前記送信光を前記光ファイバの入出射端面へ導光すると共に、前記受信光を前記受光手段へ導光する光路分離手段と、
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の焦点の位置を、前記光ファイバの入出射端面から出射される受信光の焦点の位置と異ならせる戻り光反射手段とを備え、
前記受光手段を、前記戻り光の焦点から外れた位置で、かつ、前記受信光の受光範囲内に配置した
ことを特徴とする光送受信装置。
In an optical transceiver that is connected to an optical fiber and performs single-core bidirectional full-duplex optical fiber communication,
Light emitting means for emitting transmission light;
A light receiving means for receiving the received light;
Condensing means for condensing the transmitted light emitted from the light emitting means on the light incident / exit end face of the optical fiber, and condensing the received light emitted from the light incident / exit end face of the optical fiber on the light receiving means,
An optical path separating unit that guides the transmission light to the incident / exit end face of the optical fiber and guides the reception light to the light receiving unit;
Return light reflecting means for making the position of the focal point of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber different from the focus position of the received light emitted from the incident / exit end face of the optical fiber; With
An optical transmission / reception apparatus, wherein the light receiving means is arranged at a position deviated from a focus of the return light and within a light receiving range of the received light.
前記戻り光反射手段は、前記光ファイバの入出射端面の位置を、前記発光手段から出射した送信光の焦点の位置に対して光軸に沿ってずらして配置して構成される
ことを特徴とする請求項1記載の光送受信装置。
The return light reflecting means is configured such that the position of the incident / exit end face of the optical fiber is shifted along the optical axis with respect to the position of the focal point of the transmission light emitted from the light emitting means. The optical transceiver according to claim 1.
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の前記入出射端面における中心と、前記光ファイバの入出射端面から出射される受信光の前記入出射端面における中心をずらし、前記集光手段で集光される前記受信光の中心と前記戻り光の中心を分離させた
ことを特徴とする請求項1記載の光送受信装置。
The center of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber is shifted from the center of the received light emitted from the incident / exit end face of the optical fiber. The optical transmission / reception apparatus according to claim 1, wherein the center of the reception light and the center of the return light collected by the light condensing means are separated.
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の光軸を、前記光ファイバの入出射端面から出射される受信光の光軸に対して傾斜させた
ことを特徴とする請求項1記載の光送受信装置。
The optical axis of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber is tilted with respect to the optical axis of the received light emitted from the incident / exit end face of the optical fiber. The optical transceiver according to claim 1.
前記発光手段から出射して前記光ファイバの入出射端面に入射する送信光の光軸を、前記光ファイバの光軸に対して傾斜させて、前記光ファイバの入出射端面で反射した戻り光の光軸を、前記光ファイバの入出射端面から出射される受信光の光軸に対して傾斜させた
ことを特徴とする請求項4記載の光送受信装置。
The return light reflected from the input / output end face of the optical fiber is tilted with respect to the optical axis of the optical fiber by tilting the optical axis of the transmission light emitted from the light emitting means and incident on the input / output end face of the optical fiber. The optical transmission / reception apparatus according to claim 4, wherein the optical axis is inclined with respect to the optical axis of the reception light emitted from the incident / exit end face of the optical fiber.
光送受信装置同士を光ファイバで接続し、一芯双方向全二重光ファイバ通信を行う光通信システムにおいて、
前記光送受信装置は、
送信光を出射する発光手段と、
受信光を入射する受光手段と、
前記発光手段から出射した送信光を前記光ファイバの入出射端面に集光すると共に、前記光ファイバの入出射端面から出射された受信光を前記受光手段に集光する集光手段と、
前記送信光を前記光ファイバの入出射端面へ導光すると共に、前記受信光を前記受光手段へ導光する光路分離手段と、
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の焦点の位置を、前記光ファイバの入出射端面から出射される受信光の焦点の位置と異ならせる戻り光反射手段とを備え、
前記受光手段を、前記戻り光の焦点から外れた位置で、かつ、前記受信光の受光範囲内に配置した
ことを特徴とする光通信システム。
In an optical communication system in which optical transmission / reception devices are connected by an optical fiber and single-core bidirectional full-duplex optical fiber communication is performed,
The optical transceiver is
Light emitting means for emitting transmission light;
A light receiving means for receiving the received light;
Condensing means for condensing the transmitted light emitted from the light emitting means on the light incident / exit end face of the optical fiber, and condensing the received light emitted from the light incident / exit end face of the optical fiber on the light receiving means,
An optical path separating unit that guides the transmission light to the incident / exit end face of the optical fiber and guides the reception light to the light receiving unit;
Return light reflecting means for making the position of the focal point of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber different from the focus position of the received light emitted from the incident / exit end face of the optical fiber; With
An optical communication system, wherein the light receiving means is disposed at a position deviated from a focus of the return light and within a light receiving range of the received light.
前記戻り光反射手段は、前記光ファイバの入出射端面の位置を、前記発光手段から出射した送信光の焦点の位置に対して光軸に沿ってずらして配置して構成される
ことを特徴とする請求項6記載の光通信システム。
The return light reflecting means is configured such that the position of the incident / exit end face of the optical fiber is shifted along the optical axis with respect to the position of the focal point of the transmission light emitted from the light emitting means. The optical communication system according to claim 6.
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の前記入出射端面における中心と、前記光ファイバの入出射端面から出射される受信光の前記入出射端面における中心をずらし、前記集光手段で集光される前記受信光の中心と前記戻り光の中心を分離させた
ことを特徴とする請求項6記載の光通信システム。
The center of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber is shifted from the center of the received light emitted from the incident / exit end face of the optical fiber. The optical communication system according to claim 6, wherein the center of the received light and the center of the return light collected by the light collecting unit are separated.
前記発光手段から出射して前記光ファイバの入出射端面で反射した戻り光の光軸を、前記光ファイバの入出射端面から出射される受信光の光軸に対して傾斜させた
ことを特徴とする請求項6記載の光通信システム。
The optical axis of the return light emitted from the light emitting means and reflected by the incident / exit end face of the optical fiber is tilted with respect to the optical axis of the received light emitted from the incident / exit end face of the optical fiber. The optical communication system according to claim 6.
前記発光手段から出射して前記光ファイバの入出射端面に入射する送信光の光軸を、前記光ファイバの光軸に対して傾斜させて、前記光ファイバの入出射端面で反射した戻り光の光軸を、前記光ファイバの入出射端面から出射される受信光の光軸に対して傾斜させた
ことを特徴とする請求項9記載の光通信システム。
The return light reflected from the input / output end face of the optical fiber is tilted with respect to the optical axis of the optical fiber by tilting the optical axis of the transmission light emitted from the light emitting means and incident on the input / output end face of the optical fiber. The optical communication system according to claim 9, wherein an optical axis is inclined with respect to an optical axis of received light emitted from an incident / exit end face of the optical fiber.
JP2004266934A 2004-09-14 2004-09-14 Light transmitting and receiving device and optical communication system Pending JP2006084546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266934A JP2006084546A (en) 2004-09-14 2004-09-14 Light transmitting and receiving device and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266934A JP2006084546A (en) 2004-09-14 2004-09-14 Light transmitting and receiving device and optical communication system

Publications (1)

Publication Number Publication Date
JP2006084546A true JP2006084546A (en) 2006-03-30

Family

ID=36163139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266934A Pending JP2006084546A (en) 2004-09-14 2004-09-14 Light transmitting and receiving device and optical communication system

Country Status (1)

Country Link
JP (1) JP2006084546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084714A (en) * 2010-10-13 2012-04-26 Opnext Japan Inc Photodetector module
WO2018221401A1 (en) * 2017-05-31 2018-12-06 株式会社エンプラス Optical receptacle and optical module
CN110542961A (en) * 2019-09-23 2019-12-06 广东瑞谷光网通信股份有限公司 High-performance high-speed single-fiber bidirectional optical device and assembling method thereof with PCB
WO2021186799A1 (en) * 2020-03-19 2021-09-23 住友大阪セメント株式会社 Optical function device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084714A (en) * 2010-10-13 2012-04-26 Opnext Japan Inc Photodetector module
WO2018221401A1 (en) * 2017-05-31 2018-12-06 株式会社エンプラス Optical receptacle and optical module
JP2018205423A (en) * 2017-05-31 2018-12-27 株式会社エンプラス Optical receptacle and optical module
CN110709745A (en) * 2017-05-31 2020-01-17 恩普乐股份有限公司 Optical receptacle and optical module
CN110709745B (en) * 2017-05-31 2022-03-29 恩普乐股份有限公司 Optical receptacle and optical module
CN110542961A (en) * 2019-09-23 2019-12-06 广东瑞谷光网通信股份有限公司 High-performance high-speed single-fiber bidirectional optical device and assembling method thereof with PCB
WO2021186799A1 (en) * 2020-03-19 2021-09-23 住友大阪セメント株式会社 Optical function device

Similar Documents

Publication Publication Date Title
CA2222845C (en) An inexpensive single-fiber bidirectional data link
KR101286262B1 (en) Optical transceiver by using single wavelength communication
KR100703464B1 (en) Bi-directional optical transceiver
US20100272403A1 (en) Fiber connector module including integrated optical lens turn block and method for coupling optical signals between a transceiver module and an optical fiber
JPH022503A (en) Integrated fiber optical transmitter/receiver
JP2008181025A (en) Single fiber bidirectional optical module
JP2009151051A (en) Single-fiber bidirectional optical communication module
JP2009151106A (en) Single-core bidirectional optical device
WO2014086393A1 (en) Optical receiver and method for receiving optical signals
US6801722B1 (en) Optical tracking system with reflective fiber
US7206140B2 (en) Lens, lens array and optical receiver
JP2006084546A (en) Light transmitting and receiving device and optical communication system
US7016559B2 (en) Optical transmitter-receiver and optical fiber
US7212745B2 (en) Optical transmission system
US7502533B2 (en) Mechanism for conditioning launched beams from an optical transmitter
KR100557407B1 (en) Bi-directional optical transceiver module
JP3834178B2 (en) Bidirectional optical communication device and bidirectional optical communication device
JP2007147740A (en) Multimode single core bidirectional device
JP2001188148A (en) Bi-directional optical communicator and bi-directional optical communication device
JP2005037533A (en) Parallel light transceiver
JP2011065150A (en) Single-core bidirectional optical module
JP5831046B2 (en) Optical module
JP2008028631A (en) Optical space communication device and optical space communication unit
JP2007025423A (en) Wavelength polarization separation filter and optical communication module
WO2012026523A1 (en) Optical tap module

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060613