JP2005037533A - Parallel light transceiver - Google Patents

Parallel light transceiver Download PDF

Info

Publication number
JP2005037533A
JP2005037533A JP2003198481A JP2003198481A JP2005037533A JP 2005037533 A JP2005037533 A JP 2005037533A JP 2003198481 A JP2003198481 A JP 2003198481A JP 2003198481 A JP2003198481 A JP 2003198481A JP 2005037533 A JP2005037533 A JP 2005037533A
Authority
JP
Japan
Prior art keywords
light
optical
parallel
plane
optical transceiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003198481A
Other languages
Japanese (ja)
Other versions
JP4289053B2 (en
Inventor
Koji Kumagai
幸治 熊谷
Ryuta Takahashi
龍太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003198481A priority Critical patent/JP4289053B2/en
Publication of JP2005037533A publication Critical patent/JP2005037533A/en
Application granted granted Critical
Publication of JP4289053B2 publication Critical patent/JP4289053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel light transceiver which can be made small in size. <P>SOLUTION: The transceiver is equipped with: a plurality of light guides 2 disposed parallel to each other on a common plane 1; a plurality of light emitting elements 13 facing the ends of the light guides 2; a multilayer film filter 15 orthogonally inserted into the light guides 2 and tilted against the plane; and a plurality of light receiving elements 16 facing the multilayer film filter 15 in the direction orthogonal to the plane 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、双方向光通信を複数チャンネルで行うパラレル光トランシーバに係り、特に、小型化が可能なパラレル光トランシーバに関するものである。
【0002】
【従来の技術】
通信機器に装着或いは内蔵されて光信号の送受信を担う光トランシーバには、1心の光ファイバを用いてこの1心の光ファイバで送受双方向の光信号を伝送する1心光トランシーバがある。
【0003】
図3に示されるように、この種の光トランシーバ30では、光ファイバ31の端部であるファイバフェルール32に発光素子33を臨ませ、その発光素子33とファイバフェルール32との間にこれら発光素子33とファイバフェルール32を結ぶ光軸34に対して45°傾斜した多層膜フィルタ35を設け、この多層膜フィルタ35に上記光軸34に対して直交する方向から受光素子36を臨ませ、これらの部材をパッケージ37に収容したものである。
【0004】
多層膜フィルタ35は、所定の入射角で入射した光をその光波長に応じて反射若しくは透過するものである。今、送信する光信号の波長を1.3μm、受信する光信号の波長を1.5μmとし、多層膜フィルタ35は入射角45°で入射した光信号のうち1.3μmの光信号は透過し、1.5μmの光信号は反射するものとする。これにより、発光素子33から入射角45°で多層膜フィルタ35に入射した1.3μmの光信号は多層膜フィルタ35を透過してファイバフェルール32へ入射する。ファイバフェルール32から入射角45°で多層膜フィルタ35に入射した1.5μmの光信号は多層膜フィルタ35で反射角45°で反射されて受光素子36へ入射する。
【0005】
このようにして、1心の光ファイバ31で伝送される送受双方向の光信号を光トランシーバ30の内部では送信光信号と受信光信号とに分離することができる。
【0006】
一般に、光トランシーバは、通信機器の外部に配線される光ファイバと繋がっているため、通信機器の外壁にパッケージ37の光ファイバ側が露出するように配置される。1つの通信機器が複数の通信機器を相手として通信するために、通信機器には複数の光トランシーバが並べて配置される。従って、より多くの光トランシーバを通信機器に搭載するには、通信機器の外から見たパッケージ37のサイズ(図3での横幅)を小さくすることが重要となる。
【0007】
しかし、従来の光トランシーバ30では、光ファイバ31と発光素子33を結ぶ光軸34に対して直交する方向に受光素子36を配置する必要があることから、パッケージ37の横幅は、発光素子33の横幅に受光素子36の横幅を加えたものより小さくすることはできない。
【0008】
【特許文献1】
特開平7−168038号公報
【0009】
【発明が解決しようとする課題】
近年では、通信容量増大の要求に対し、伝送速度を高めることに加えて伝送路を多重化することが考えられている。即ち、光ファイバ31を複数本平行に配線し、通信機器と相手の通信機器とが複数チャンネルで通信できるようにするのである。このように双方向光通信を複数チャンネルで行うという目的は、図3の1心の光トランシーバ30を複数個並べて設置してそれぞれの光トランシーバ30に繋がる複数本の光ファイバ31を1つに束ねれば達成できる。
【0010】
しかし、前述のように光トランシーバ30はパッケージ37の横幅を小さくするには限界がある。このような光トランシーバ30を複数個並べて設置すると、総合的な横幅がかなり大きくなり、通信機器の外壁に配置できる光トランシーバ30の個数が限られるために、複数チャンネルで通信できる相手の通信機器の数が限られてしまう。
【0011】
そこで、本発明の目的は、上記課題を解決し、小型化が可能なパラレル光トランシーバを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明は、共通の平面上に互いに平行に設けられた複数のライトガイドと、これらライトガイドに臨ませた複数の発光素子と、上記ライトガイドに直交しかつ上記平面に対して傾斜した多層膜フィルタと、上記多層膜フィルタからの反射光を受光するための複数の受光素子とを備えたものである。
【0013】
上記ライトガイドは、基板上に互いに平行なV溝を設け、それぞれのV溝に光ファイバを嵌め込んだものでもよい。
【0014】
上記ライトガイドは、導波路基板上に互いに平行な導波路コアを設けたものでもよい。
【0015】
上記ライトガイドの端部に上記ライトガイドに直交しかつ上記平面に対して傾斜した光軸変換ミラーを設け、上記複数の発光素子を上記平面に対して直交する方向から上記光軸変換ミラーに臨ませてもよい。
【0016】
上記ライトガイドの本数が4本であってもよい。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0018】
図1(a)及び図1(b)に示されるように、本発明に係るパラレル光トランシーバ10は、共通の平面1上に互いに平行に設けられた複数のライトガイド2と、これらライトガイド2に平面1の端部より臨ませた複数の発光素子13と、これら複数のライトガイド2に直交してかつ平面1に対して所定の角度、例えば、45°傾斜するようライトガイド2に挿入された多層膜フィルタ15と、多層膜フィルタ15からの反射光を受光すべく平面1に対して直交する方向から多層膜フィルタ15に臨ませた複数の受光素子16とを備える。
【0019】
ライトガイド2の中に設けられた多層膜フィルタ15は1.3ミクロン帯の光は透過し、1.55ミクロン帯の光を反射する機能を有する。従って、パラレルトランシーバ10が受光した1.5ミクロン光は光軸に対してある角度Θで傾斜して設置された多層膜フィルタ15によって再び光軸に対して角度Θで反射される。本実施例では、多層膜フィルタ15の光軸に対する設置角度Θ=45度のときの例を示しており、従って受光素子16は発光素子13からの1.3ミクロン帯の信号光の光軸に直交する方向に設置されている。
【0020】
この実施形態では、ライトガイド2は光ファイバ12で構成される。即ち、複数のライトガイド2は、共通の平面1を提供する基板11上に互いに平行な複数のV溝17を設け、それぞれのV溝17に光ファイバ12を嵌め込んでなる。
【0021】
基板11には、多層膜フィルタ15を挿入するために、平面1に対して45°傾斜したスリット18が形成され、光ファイバ12にもスリット18に沿った断面が形成される。
【0022】
発光素子13は、具体的には、レーザダイオード(LD)であり、キャンタイプ13aやチップタイプ13bなどが使用できる。勿論、複数のLDをライトガイド2のピッチに合わせて並べたアレイを形成してもよい。
【0023】
受光素子16は、具体的には、フォトダイオード(PD)であり、キャンタイプやチップタイプのものが使用できる。勿論、複数のPDをライトガイド2のピッチに合わせて並べたアレイを形成してもよい。
【0024】
また、発光素子13や受光素子16にレンズを必要とする場合、後述する図2(c)のようにレンズアレイを用いるとよい。
【0025】
このパラレル光トランシーバ10における光送受信の動作は、発光素子13の光軸が光ファイバ12中を通るほかは図3で説明した従来技術とほぼ同様であるので、説明は省略する。
【0026】
本発明のパラレル光トランシーバ10と図3の光トランシーバ30との構造的な相違は、パラレル光トランシーバ10では発光素子13の光軸(光ファイバ12)に対し受光素子16が下方に位置している点である。これにより、複数の光ファイバ12のピッチは、発光素子13の横幅又は受光素子16の横幅の大きい方で規定される。従って、このパラレル光トランシーバ10を収容したパッケージ(図示せず)の横幅は、従来のパッケージ37を複数個並べた横幅よりも顕著に小さくすることができる。
【0027】
次に、他の実施形態を説明する。
【0028】
図2(a)及び図2(b)に示されるように、本発明に係るパラレル光トランシーバ20は、共通の平面1上に互いに平行に設けられた複数のライトガイド2と、これらライトガイド2に臨みライトガイド2に直交しかつ平面1に対して傾斜した光軸変換ミラー29と、この光軸変換ミラー29に臨ませた複数の発光素子23と、これら複数のライトガイド2に直交しかつ平面1に対して45°傾斜するようライトガイド2に挿入された多層膜フィルタ25と、平面1に対して直交する方向から多層膜フィルタ25に臨ませた複数の受光素子26とを備える。
【0029】
この実施形態では、ライトガイド2は光導波路コア22で構成される。即ち、複数のライトガイド2は、共通の平面1を提供する導波路基板21上に互いに平行な複数の導波路コア22を設けて構成される。導波路コア22にはそれぞれ光ファイバ31が光結合させて設けられている。
【0030】
導波路基板21には、多層膜フィルタ25を挿入するために、平面1に対して45°傾斜したスリット28が形成され、光導波路コア22にもスリット28に沿った断面が形成される。
【0031】
発光素子23、受光素子26には図1で用いた発光素子13、受光素子16と同じものを用いることができる。受光素子26にレンズを必要とする場合、図2(c)に示されるように、複数の受光素子26に渡って伸びたレンズ素材に受光素子26の配置ピッチでレンズを形成したレンズアレイ41を設ける。
【0032】
このパラレル光トランシーバ20における光送受信の動作は、図1で説明したパラレル光トランシーバ10とほぼ同様であるので、相違点のみ説明する。パラレル光トランシーバ20では、ライトガイド2として光ファイバ12の代わりに光導波路コア22が用いられているが、光信号が伝送される道筋は図1と同じである。また、発光素子23がライトガイド2に直接ではなく光軸変換ミラー29を介して臨んでいるが、発光素子23からの光信号がライトガイド2に入射するのは図1と同じである。
【0033】
パラレル光トランシーバ20とパラレル光トランシーバ10との構造的な相違は、パラレル光トランシーバ20では光軸変換ミラー29が設けられ、ライトガイド2に対し発光素子23が下方に位置している点である。これにより、図2(c)のように全部の発光素子23を一列に配置した場合、パラレル光トランシーバ10に比べて奥行き方向(ライトガイド2の長手方向)が発光素子13(23)の分だけ短くすることができる。
【0034】
また、図2(a)及び図2(b)では、複数の発光素子23を奥行き方向に異なる位置に複数列にして分散配置してある。これにより、図2(c)のように全部の発光素子23を一列に配置した場合に比べて、導波路基板21の横幅を小さくすることができる。詳しく述べると、光導波路コア22は、図示のように曲げて形成することができるので、多層膜フィルタ25に交差する場所では各光導波路コア22を互いに平行な直線状とし、前列の光軸変換ミラー29を迂回した場所では後列の光軸変換ミラー29に向かう光導波路コア22を曲げるようにすると、前列、後列の発光素子23を横幅方向の同じ位置に配置させることができる。これにより、導波路基板21の横幅が発光素子23の全個数分の横幅より小さくできる。ただし、受光素子26の横幅は十分に小さいものとする。
【0035】
受光素子26の横幅が大きい場合、図示しなかったが、多層膜フィルタ25を光軸変換ミラー29と同様に複数列配置とし、受光素子26も発光素子23と同様に複数列配置とすればよい。
【0036】
以上の実施形態では、ライトガイド2の数を4本として4チャンネル用パラレル光トランシーバとしたが、ライトガイド2の数(発光素子、受光素子の数)は任意である。
【0037】
また、送受信光を分離するために多層膜フィルタ15,25を用いたが、ハーフミラーを用いて送受信光を分離してもよい。
【0038】
また、図2の形態において、前列の光軸変換ミラー29を迂回して後列の光軸変換ミラー29に向かう光導波路コア22をいったん曲げた後、導波路基板21の長辺と平行になるよう曲げ返したが、曲げ返しはしないで後列の光軸変換ミラー29の方を導波路基板21の長辺に対して斜めに設けて光導波路コア22に直交させてもよい。
【0039】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0040】
(1)小型化が可能になる。
【0041】
(2)高密度の光送受信が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すパラレル光トランシーバの構造図であり、(a)は平面図、(b)は側面透視図である。
【図2】本発明の一実施形態を示すパラレル光トランシーバの構造図であり、(a)は平面図、(b)は側面透視図、(c)は別の実施形態を示す発光素子及び受光素子の配置図である。
【図3】従来の光トランシーバの構造図(平面透視図)である。
【符号の説明】
1 平面
2 ライトガイド
11 基板
12 光ファイバ
13,23 発光素子
15,25 多層膜フィルタ
16,26 受光素子
17 V溝
22 光導波路コア
29 光軸変換ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a parallel optical transceiver that performs bidirectional optical communication with a plurality of channels, and more particularly to a parallel optical transceiver that can be miniaturized.
[0002]
[Prior art]
As an optical transceiver that is mounted on or incorporated in a communication device and transmits and receives an optical signal, there is a one-fiber optical transceiver that transmits and receives two-way optical signals using a single optical fiber.
[0003]
As shown in FIG. 3, in this type of optical transceiver 30, a light emitting element 33 faces a fiber ferrule 32 that is an end portion of an optical fiber 31, and these light emitting elements 33 are interposed between the light emitting element 33 and the fiber ferrule 32. A multilayer filter 35 inclined by 45 ° with respect to the optical axis 34 connecting the optical fiber 34 and the fiber ferrule 32 is provided, and the light receiving element 36 faces the multilayer filter 35 from a direction orthogonal to the optical axis 34. The member is accommodated in the package 37.
[0004]
The multilayer filter 35 reflects or transmits light incident at a predetermined incident angle according to the light wavelength. Now, the wavelength of the optical signal to be transmitted is 1.3 μm, the wavelength of the optical signal to be received is 1.5 μm, and the multilayer filter 35 transmits an optical signal of 1.3 μm out of the incident optical signal at an incident angle of 45 °. , 1.5 μm optical signal is reflected. As a result, the 1.3 μm optical signal incident on the multilayer filter 35 from the light emitting element 33 at an incident angle of 45 ° passes through the multilayer filter 35 and enters the fiber ferrule 32. The 1.5 μm optical signal that has entered the multilayer filter 35 from the fiber ferrule 32 at an incident angle of 45 ° is reflected by the multilayer filter 35 at a reflection angle of 45 ° and enters the light receiving element 36.
[0005]
In this way, a bidirectional optical signal transmitted and received by the single optical fiber 31 can be separated into a transmission optical signal and a reception optical signal inside the optical transceiver 30.
[0006]
In general, since the optical transceiver is connected to an optical fiber wired outside the communication device, the optical transceiver side of the package 37 is arranged to be exposed on the outer wall of the communication device. In order for one communication device to communicate with a plurality of communication devices, a plurality of optical transceivers are arranged side by side in the communication device. Therefore, in order to mount more optical transceivers in the communication device, it is important to reduce the size (width in FIG. 3) of the package 37 viewed from the outside of the communication device.
[0007]
However, in the conventional optical transceiver 30, it is necessary to arrange the light receiving element 36 in a direction orthogonal to the optical axis 34 that connects the optical fiber 31 and the light emitting element 33, so that the lateral width of the package 37 is It cannot be made smaller than the width plus the width of the light receiving element 36.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-168038
[Problems to be solved by the invention]
In recent years, in response to a request for an increase in communication capacity, it has been considered to multiplex transmission paths in addition to increasing the transmission speed. In other words, a plurality of optical fibers 31 are wired in parallel so that the communication device and the partner communication device can communicate with each other through a plurality of channels. The purpose of performing bidirectional optical communication in a plurality of channels in this way is to arrange a plurality of single optical transceivers 30 in FIG. 3 and bundle a plurality of optical fibers 31 connected to each optical transceiver 30 into one. Can be achieved.
[0010]
However, as described above, the optical transceiver 30 has a limit in reducing the lateral width of the package 37. If a plurality of such optical transceivers 30 are installed side by side, the overall width becomes considerably large, and the number of optical transceivers 30 that can be arranged on the outer wall of the communication device is limited. The number will be limited.
[0011]
Accordingly, an object of the present invention is to provide a parallel optical transceiver that can solve the above-described problems and can be miniaturized.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of light guides provided in parallel to each other on a common plane, a plurality of light emitting elements facing the light guide, a plane orthogonal to the light guide and the plane. And a plurality of light receiving elements for receiving reflected light from the multilayer filter.
[0013]
The light guide may be provided with V-grooves parallel to each other on the substrate and optical fibers fitted into the respective V-grooves.
[0014]
The light guide may be provided with waveguide cores parallel to each other on a waveguide substrate.
[0015]
An optical axis conversion mirror orthogonal to the light guide and inclined with respect to the plane is provided at an end of the light guide, and the plurality of light emitting elements are exposed to the optical axis conversion mirror from a direction orthogonal to the plane. You may not.
[0016]
The number of the light guides may be four.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0018]
As shown in FIGS. 1A and 1B, a parallel optical transceiver 10 according to the present invention includes a plurality of light guides 2 provided in parallel to each other on a common plane 1, and these light guides 2. Are inserted into the light guide 2 so as to be perpendicular to the plurality of light guides 2 and inclined at a predetermined angle, for example, 45 °, with respect to the plane 1. The multilayer filter 15 and a plurality of light receiving elements 16 facing the multilayer filter 15 from a direction orthogonal to the plane 1 so as to receive reflected light from the multilayer filter 15.
[0019]
The multilayer filter 15 provided in the light guide 2 has a function of transmitting 1.3 micron band light and reflecting 1.55 micron band light. Accordingly, the 1.5-micron light received by the parallel transceiver 10 is reflected again at an angle Θ with respect to the optical axis by the multilayer filter 15 installed at an angle Θ with respect to the optical axis. In the present embodiment, an example in which the installation angle Θ = 45 degrees with respect to the optical axis of the multilayer filter 15 is shown. Therefore, the light receiving element 16 is positioned on the optical axis of the 1.3 μm band signal light from the light emitting element 13. It is installed in the orthogonal direction.
[0020]
In this embodiment, the light guide 2 is composed of an optical fiber 12. That is, the plurality of light guides 2 are formed by providing a plurality of V-grooves 17 parallel to each other on a substrate 11 that provides a common plane 1 and fitting the optical fiber 12 into each V-groove 17.
[0021]
A slit 18 inclined by 45 ° with respect to the plane 1 is formed in the substrate 11 in order to insert the multilayer filter 15, and a cross section along the slit 18 is also formed in the optical fiber 12.
[0022]
Specifically, the light emitting element 13 is a laser diode (LD), and a can type 13a, a chip type 13b, or the like can be used. Of course, an array in which a plurality of LDs are arranged in accordance with the pitch of the light guide 2 may be formed.
[0023]
The light receiving element 16 is specifically a photodiode (PD), and can type or chip type can be used. Of course, an array in which a plurality of PDs are arranged in accordance with the pitch of the light guide 2 may be formed.
[0024]
If a lens is required for the light emitting element 13 or the light receiving element 16, a lens array may be used as shown in FIG.
[0025]
The operation of optical transmission / reception in the parallel optical transceiver 10 is substantially the same as that of the prior art described with reference to FIG. 3 except that the optical axis of the light emitting element 13 passes through the optical fiber 12, and the description thereof is omitted.
[0026]
The structural difference between the parallel optical transceiver 10 of the present invention and the optical transceiver 30 of FIG. 3 is that in the parallel optical transceiver 10, the light receiving element 16 is positioned below the optical axis (optical fiber 12) of the light emitting element 13. Is a point. Thereby, the pitch of the plurality of optical fibers 12 is defined by the larger width of the light emitting element 13 or the width of the light receiving element 16. Therefore, the lateral width of the package (not shown) containing the parallel optical transceiver 10 can be made significantly smaller than the lateral width in which a plurality of conventional packages 37 are arranged.
[0027]
Next, another embodiment will be described.
[0028]
2A and 2B, a parallel optical transceiver 20 according to the present invention includes a plurality of light guides 2 provided in parallel to each other on a common plane 1, and these light guides 2. An optical axis conversion mirror 29 that is orthogonal to the light guide 2 and inclined with respect to the plane 1, a plurality of light-emitting elements 23 that are exposed to the optical axis conversion mirror 29, and an orthogonal to the plurality of light guides 2 A multilayer filter 25 inserted into the light guide 2 so as to be inclined by 45 ° with respect to the plane 1 and a plurality of light receiving elements 26 facing the multilayer filter 25 from a direction orthogonal to the plane 1 are provided.
[0029]
In this embodiment, the light guide 2 is composed of an optical waveguide core 22. That is, the plurality of light guides 2 are configured by providing a plurality of waveguide cores 22 parallel to each other on a waveguide substrate 21 that provides a common plane 1. An optical fiber 31 is optically coupled to each of the waveguide cores 22.
[0030]
In order to insert the multilayer filter 25 in the waveguide substrate 21, a slit 28 inclined by 45 ° with respect to the plane 1 is formed, and a cross section along the slit 28 is also formed in the optical waveguide core 22.
[0031]
The light emitting element 23 and the light receiving element 26 may be the same as the light emitting element 13 and the light receiving element 16 used in FIG. When a lens is required for the light receiving element 26, as shown in FIG. 2 (c), a lens array 41 in which lenses are formed on the lens material extending over the plurality of light receiving elements 26 with the arrangement pitch of the light receiving elements 26 is provided. Provide.
[0032]
Since the operation of optical transmission / reception in the parallel optical transceiver 20 is substantially the same as that of the parallel optical transceiver 10 described in FIG. 1, only the differences will be described. In the parallel optical transceiver 20, an optical waveguide core 22 is used as the light guide 2 instead of the optical fiber 12, but the route through which the optical signal is transmitted is the same as that in FIG. 1. The light emitting element 23 faces the light guide 2 not through the optical axis conversion mirror 29, but the optical signal from the light emitting element 23 enters the light guide 2 as in FIG.
[0033]
The structural difference between the parallel optical transceiver 20 and the parallel optical transceiver 10 is that the parallel optical transceiver 20 is provided with an optical axis conversion mirror 29, and the light emitting element 23 is positioned below the light guide 2. Thus, when all the light emitting elements 23 are arranged in a line as shown in FIG. 2C, the depth direction (longitudinal direction of the light guide 2) is equivalent to the light emitting element 13 (23) compared to the parallel optical transceiver 10. Can be shortened.
[0034]
2A and 2B, the plurality of light emitting elements 23 are distributed in a plurality of rows at different positions in the depth direction. Thereby, compared with the case where all the light emitting elements 23 are arrange | positioned in a line like FIG.2 (c), the horizontal width of the waveguide board | substrate 21 can be made small. More specifically, since the optical waveguide core 22 can be formed by bending as shown in the drawing, the optical waveguide cores 22 are linearly parallel to each other at a location intersecting the multilayer filter 25, and the optical axis conversion of the front row is performed. If the optical waveguide core 22 toward the optical axis conversion mirror 29 in the rear row is bent at a place where the mirror 29 is bypassed, the light emitting elements 23 in the front row and the rear row can be arranged at the same position in the lateral width direction. Thereby, the lateral width of the waveguide substrate 21 can be made smaller than the lateral width of all the light emitting elements 23. However, it is assumed that the lateral width of the light receiving element 26 is sufficiently small.
[0035]
When the lateral width of the light receiving element 26 is large, although not shown, the multilayer filter 25 may be arranged in a plurality of rows like the optical axis conversion mirror 29, and the light receiving element 26 may be arranged in a plurality of rows like the light emitting element 23. .
[0036]
In the above embodiment, the number of light guides 2 is four and a four-channel parallel optical transceiver is used, but the number of light guides 2 (the number of light emitting elements and light receiving elements) is arbitrary.
[0037]
In addition, although the multilayer filters 15 and 25 are used to separate transmitted / received light, the transmitted / received light may be separated using a half mirror.
[0038]
Further, in the embodiment of FIG. 2, the optical waveguide core 22 that goes around the optical axis conversion mirror 29 in the front row and detours toward the optical axis conversion mirror 29 in the rear row is once bent, and then parallel to the long side of the waveguide substrate 21. The optical axis conversion mirror 29 in the rear row may be provided obliquely with respect to the long side of the waveguide substrate 21 so as to be orthogonal to the optical waveguide core 22 without being bent back.
[0039]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0040]
(1) Miniaturization is possible.
[0041]
(2) High-density optical transmission / reception becomes possible.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a parallel optical transceiver showing an embodiment of the present invention, where (a) is a plan view and (b) is a side perspective view.
2A and 2B are structural views of a parallel optical transceiver showing an embodiment of the present invention, in which FIG. 2A is a plan view, FIG. 2B is a side perspective view, and FIG. 2C is a light-emitting element and a light receiving device according to another embodiment; FIG.
FIG. 3 is a structural view (plan view) of a conventional optical transceiver.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plane 2 Light guide 11 Board | substrate 12 Optical fiber 13, 23 Light emitting element 15, 25 Multilayer filter 16, 26 Light receiving element 17 V groove | channel 22 Optical waveguide core 29 Optical axis conversion mirror

Claims (5)

共通の平面上に互いに平行に設けられた複数のライトガイドと、これらライトガイドに臨ませた複数の発光素子と、上記ライトガイドに直交しかつ上記平面に対して傾斜した多層膜フィルタと、上記多層膜フィルタからの反射光を受光するための複数の受光素子とを備えたことを特徴とするパラレル光トランシーバ。A plurality of light guides provided parallel to each other on a common plane, a plurality of light emitting elements facing the light guides, a multilayer filter orthogonal to the light guide and inclined with respect to the plane, and A parallel optical transceiver comprising a plurality of light receiving elements for receiving reflected light from a multilayer filter. 上記ライトガイドは、基板上に互いに平行なV溝を設け、それぞれのV溝に光ファイバを嵌め込んでなることを特徴とする請求項1記載のパラレル光トランシーバ。2. The parallel optical transceiver according to claim 1, wherein the light guide is provided with V-grooves parallel to each other on a substrate, and optical fibers are fitted into the respective V-grooves. 上記ライトガイドは、導波路基板上に互いに平行な導波路コアを設けてなることを特徴とする請求項1記載のパラレル光トランシーバ。2. The parallel optical transceiver according to claim 1, wherein the light guide includes waveguide cores parallel to each other on a waveguide substrate. 上記ライトガイドの端部に上記ライトガイドに直交しかつ上記平面に対して傾斜した光軸変換ミラーを設け、上記複数の発光素子を上記平面に対して直交する方向から上記光軸変換ミラーに臨ませたことを特徴とする請求項1〜3いずれか記載のパラレル光トランシーバ。An optical axis conversion mirror perpendicular to the light guide and inclined with respect to the plane is provided at an end of the light guide, and the plurality of light emitting elements are exposed to the optical axis conversion mirror from a direction orthogonal to the plane. The parallel optical transceiver according to any one of claims 1 to 3, wherein 上記ライトガイドの本数が4本であることを特徴とする請求項1〜4いずれか記載のパラレル光トランシーバ。5. The parallel optical transceiver according to claim 1, wherein the number of the light guides is four.
JP2003198481A 2003-07-17 2003-07-17 Parallel optical transceiver Expired - Fee Related JP4289053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198481A JP4289053B2 (en) 2003-07-17 2003-07-17 Parallel optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198481A JP4289053B2 (en) 2003-07-17 2003-07-17 Parallel optical transceiver

Publications (2)

Publication Number Publication Date
JP2005037533A true JP2005037533A (en) 2005-02-10
JP4289053B2 JP4289053B2 (en) 2009-07-01

Family

ID=34208253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198481A Expired - Fee Related JP4289053B2 (en) 2003-07-17 2003-07-17 Parallel optical transceiver

Country Status (1)

Country Link
JP (1) JP4289053B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020720A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Optical waveguide and parallel optical transmitter-receiver
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JP2011511314A (en) * 2008-01-31 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical tap for optical waveguide mounted on circuit board
JP2011515715A (en) * 2008-03-28 2011-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Flexible optical interconnect
JP2016004859A (en) * 2014-06-16 2016-01-12 日東電工株式会社 Optical sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214351A (en) * 1999-01-21 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> Optical module mounting structure
JP2001264594A (en) * 1995-08-03 2001-09-26 Matsushita Electric Ind Co Ltd Optical device and its manufacturing method
JP2002252418A (en) * 2001-02-26 2002-09-06 Ricoh Co Ltd Optical communications system
JP2003222761A (en) * 2002-01-28 2003-08-08 Matsushita Electric Ind Co Ltd Light transmitting and receiving module and its manufacturing method
JP2003232944A (en) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd Parallel transmission and reception module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264594A (en) * 1995-08-03 2001-09-26 Matsushita Electric Ind Co Ltd Optical device and its manufacturing method
JP2000214351A (en) * 1999-01-21 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> Optical module mounting structure
JP2002252418A (en) * 2001-02-26 2002-09-06 Ricoh Co Ltd Optical communications system
JP2003222761A (en) * 2002-01-28 2003-08-08 Matsushita Electric Ind Co Ltd Light transmitting and receiving module and its manufacturing method
JP2003232944A (en) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd Parallel transmission and reception module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020720A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Optical waveguide and parallel optical transmitter-receiver
JP2008020719A (en) * 2006-07-13 2008-01-31 Fuji Xerox Co Ltd Multi-core bidirectional communication waveguide array, method of manufacturing same, and bidirectional communication module
JP4692424B2 (en) * 2006-07-13 2011-06-01 富士ゼロックス株式会社 Waveguide array for multicore bidirectional communication, method for manufacturing the same, and bidirectional communication module
JP2011511314A (en) * 2008-01-31 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical tap for optical waveguide mounted on circuit board
JP2011515715A (en) * 2008-03-28 2011-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Flexible optical interconnect
US8693814B2 (en) 2008-03-28 2014-04-08 Hewlett-Packard Development Company, L.P. Flexible optical interconnect
KR101434237B1 (en) * 2008-03-28 2014-08-27 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Flexible optical interconnect
JP2016004859A (en) * 2014-06-16 2016-01-12 日東電工株式会社 Optical sensor
US10446709B2 (en) 2014-06-16 2019-10-15 Nitto Denko Corporation Optical sensor

Also Published As

Publication number Publication date
JP4289053B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US7991290B2 (en) Optical prism and optical transceiver module for optical communications
US8380075B2 (en) Optical transceiver module
KR101540485B1 (en) Dual­lensed unitary optical receiver assembly
US20090097847A1 (en) Optical module
US6957006B2 (en) Optical element and optical device using the same
TWI511477B (en) Optical transceiver apparatus
JP2010122312A (en) Transmission/reception lens block and optical module using the same
JPH0233109A (en) Double wavelength optical communication former
JP2009151106A (en) Single-core bidirectional optical device
JP2009151051A (en) Single-fiber bidirectional optical communication module
JP2010122311A (en) Lens block and optical module using the same
JP2008181025A (en) Single fiber bidirectional optical module
JP2007187793A (en) Optical module
WO2015076469A1 (en) Optical module package structure for narrow wavelength spacing bidirectional communication
JP4289053B2 (en) Parallel optical transceiver
KR101723135B1 (en) Bi-directional optical module
US11262504B2 (en) Optical connection apparatus
JP2005010309A (en) Optical transmitting/receiving device and optical fiber
JP3888151B2 (en) Optical communication module
CN210605101U (en) Multipath wavelength demultiplexing light receiving component based on optical waveguide
JP2008015040A (en) Optical waveguide and optical module
JP2004226430A (en) Optical device and optical apparatus using same optical device
JP2005352256A (en) Optical component for single fiber bi-directional transmitting/receiving module and single fiber bi-directional transmitting/receiving module
WO2019087872A1 (en) Optical receptacle, optical module, and optical transmitter
JP2579092B2 (en) WDM module for bidirectional optical transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees