JP2006084047A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006084047A
JP2006084047A JP2004266509A JP2004266509A JP2006084047A JP 2006084047 A JP2006084047 A JP 2006084047A JP 2004266509 A JP2004266509 A JP 2004266509A JP 2004266509 A JP2004266509 A JP 2004266509A JP 2006084047 A JP2006084047 A JP 2006084047A
Authority
JP
Japan
Prior art keywords
ice
inlet
ice slurry
header
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004266509A
Other languages
Japanese (ja)
Inventor
Yasuhiko Isayama
安彦 諫山
Tatsu Ninomiya
達 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Original Assignee
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Toyo Seisakusho KK filed Critical Kansai Electric Power Co Inc
Priority to JP2004266509A priority Critical patent/JP2006084047A/en
Publication of JP2006084047A publication Critical patent/JP2006084047A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of improving heat exchanging efficiency and providing stable cooling by equally supplying ice slurry to each of cooling coils, and surely utilizing melting latent heat of ice in the ice slurry for cooling. <P>SOLUTION: In this heat exchanger 1 wherein a number of cooling coils 2, 2 are arranged in parallel between an inlet header 3 and an outlet header 4, and the ice slurry as ice water including small pieces of ice is distributed to the cooling coils 2, 2 from the inlet header 3 to supply cold heat of the ice slurry to the fluid outside of the coils, and discharged to the outside through the outlet header 4. The inlet header 3 has the cylindrical shape, comprises an inlet 3a of the ice slurry and a plurality of outlets 3b, 3b as connection ports with the cooling coils in the longitudinal direction, and is constituted in such a manner that the longer a distance from the ice slurry inlet is, the smaller a cross-sectional area of a flow channel of the header is. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は氷水を冷熱源として空気や水等の流体を冷却するための熱交換器に関する。   The present invention relates to a heat exchanger for cooling a fluid such as air or water using ice water as a cold heat source.

氷スラリを冷熱源として熱交換器に送り、空調等に利用する冷却システムは例えば氷蓄熱装置から負荷側へ冷熱を供給するのに従来から利用されている(例えば、特許文献1または2参照)。
上記氷スラリは水やブライン(不凍液)中に微細な氷の細片を含むいわゆるシャーベット状の氷水であり、掻き取り式の製氷機で生成した微細な氷を例えば水槽内で水と混合して所要の氷の存在割合(IPF)に調節したり、あるいは一旦過冷却した水の過冷却状態を解除して水中に微細な氷の細片を発生させたりすることにより生成し、氷スラリを冷熱源とする冷却システムは水の顕熱に加えて潜熱も利用できるというメリットがある。
A cooling system that sends ice slurry to a heat exchanger as a cold heat source and uses it for air conditioning or the like has been conventionally used to supply cold heat from, for example, an ice heat storage device to the load side (see, for example, Patent Document 1 or 2). .
The ice slurry is a so-called sherbet-like ice water containing fine ice pieces in water or brine (antifreeze), and the fine ice produced by a scraping-type ice making machine is mixed with water in a water tank, for example. The ice slurry is generated by adjusting the required ice abundance ratio (IPF) or by releasing the supercooled water once it has been cooled to generate fine ice fragments in the water. The cooling system as a source has the merit that latent heat can be used in addition to sensible heat of water.

上述のように氷スラリを冷熱源とする冷却システムにおいては、氷スラリが融けて顕熱上昇すると空気等の被冷却流体との温度差が小となって熱交換効率が低下するので、氷スラリの潜熱が熱交換器内で十分に消費されなければならず、潜熱消費を十分に行うには熱交換器の多数の冷却コイルに均一に氷スラリを供給しなければならない。   As described above, in a cooling system using ice slurry as a cooling source, if the ice slurry melts and the sensible heat rises, the temperature difference with the fluid to be cooled such as air becomes small and the heat exchange efficiency decreases. The latent heat of the heat exchanger must be sufficiently consumed in the heat exchanger, and ice slurry must be supplied uniformly to the multiple cooling coils of the heat exchanger in order to sufficiently consume the latent heat.

ところで、液をコイル中に流して冷熱源とする熱交換器においては、ストレートな筒状の入口ヘッダと出口ヘッダとの間に、圧力損失のほぼ等しい多数の冷却コイルを並列に設けており、このようにすると各冷却コイルには均等に液が流れる。   By the way, in the heat exchanger that flows liquid into the coil and uses it as a cooling heat source, a large number of cooling coils with almost equal pressure loss are provided in parallel between the straight cylindrical inlet header and outlet header, If it does in this way, a liquid will flow into each cooling coil equally.

しかし冷却コイルに氷スラリを流通させる場合には、各冷却コイルに流れる氷スラリの氷の存在率に偏りが生じ、したがって氷の存在率が高い冷却コイルではコイル出口において氷が残り、十分な潜熱消費が行われず、氷の存在率が低い冷却コイルでは顕熱上昇が生じて熱交換効率が低下するという問題がある。   However, when ice slurry is circulated through the cooling coils, there is a bias in the ice content of the ice slurry that flows through each cooling coil, so that ice remains at the coil exit in the cooling coil where the ice content is high, and sufficient latent heat is generated. There is a problem that a sensible heat rises in a cooling coil where consumption is not performed and ice content is low and heat exchange efficiency is lowered.

また、入口ヘッダから冷却コイルへの氷スラリの流入がスムーズに行われないと入口ヘッダ内に氷が溜まって冷却コイル入口が閉塞されるおそれもある。
なお、氷による冷却コイル入口の閉塞を防止する技術としては、入口ヘッダ内に攪拌機構を設けるもの(例えば、特許文献2参照)や、入口ヘッダと出口ヘッダ間にバイパス管を設け、このバイパス管に流量調節弁を設けて冷却コイル内を流れる氷スラリの流速を制御するもの(例えば、特許文献3参照)が提案されているが、各冷却コイルへ氷スラリを均一に流通させるための技術については未だに汎用技術として確立されたものがない。
特開平10−332178号公報(第1〜3頁、図1〜3) 特開平09−89315号公報(第1〜5頁、図1〜6) 特開平11−108383号公報(第1〜4頁、図1〜5)
In addition, if the ice slurry does not flow smoothly from the inlet header to the cooling coil, ice may accumulate in the inlet header and the cooling coil inlet may be blocked.
In addition, as a technique for preventing the cooling coil inlet from being blocked by ice, an agitating mechanism is provided in the inlet header (see, for example, Patent Document 2), or a bypass pipe is provided between the inlet header and the outlet header. Has been proposed to control the flow rate of ice slurry flowing in the cooling coil by providing a flow control valve (see, for example, Patent Document 3), but a technique for uniformly circulating ice slurry to each cooling coil is proposed. Has not yet been established as a general-purpose technology.
Japanese Patent Laid-Open No. 10-332178 (pages 1 to 3, FIGS. 1 to 3) Japanese Unexamined Patent Publication No. 09-89315 (pages 1-5, FIGS. 1-6) Japanese Patent Laid-Open No. 11-108383 (pages 1 to 4, FIGS. 1 to 5)

本発明は、各冷却コイルに均等に氷スラリが供給され、氷スラリ中の氷の融解潜熱を確実に冷却に利用することができ、熱交換効率が高くて安定した冷却を行うことができる熱交換器を提供することを課題としている。   In the present invention, the ice slurry is evenly supplied to each cooling coil, the latent heat of melting of the ice in the ice slurry can be reliably used for cooling, and the heat exchange efficiency is high and stable cooling can be performed. The challenge is to provide an exchange.

発明者らは氷スラリが冷却コイルに均等に分配されない、すなわち各冷却コイル内におけるIPFが異なるという上述した問題について鋭意研究を重ねたところ、入口ヘッダ内を流れる氷スラリの流速が低下すると氷スラリ中の氷が冷却コイルに流入しにくくなり、したがって入口ヘッダの氷スラリ入口近傍に接続された冷却コイルに流入する氷スラリはIPFが大であるが、入口ヘッダの氷スラリ入口から離れるにしたがって冷却コイルに流入する氷スラリは流速の低下に伴ってIPFが小となり、さらに途中の冷却コイルに流入しきれなかった氷が氷スラリ入口から最も離れた冷却コイルに流入してこの冷却コイルのIPFが大となったり、入口ヘッダに流入する氷スラリのIPFがさらに大である場合には、氷が氷スラリ入口から最も離れた冷却コイル入口付近に溜まって同コイルへの氷スラリの流通を妨げたりすることもわかった。   The inventors have conducted extensive research on the above-mentioned problem that the ice slurry is not evenly distributed to the cooling coils, that is, the IPF in each cooling coil is different. As a result, when the flow rate of the ice slurry flowing in the inlet header decreases, the ice slurry is reduced. The ice inside the cooling coil is less likely to flow into the cooling coil, so the ice slurry flowing into the cooling coil connected to the vicinity of the ice slurry inlet of the inlet header has a large IPF, but cools as it moves away from the ice slurry inlet of the inlet header. The ice slurry that flows into the coil becomes smaller in IPF as the flow velocity decreases, and further, the ice that could not flow into the cooling coil in the middle flows into the cooling coil farthest from the ice slurry inlet, and the IPF of this cooling coil becomes smaller. If the IPF of the ice slurry flowing into the inlet header is larger or larger, the ice is the most from the ice slurry inlet. It was also found that accumulated in the cooling coil inlet near that or impede the flow of ice slurry into the coil.

そこで、入口ヘッダ内の各冷却コイルの入口部分における氷スラリの流速を一定以上にすることによって各冷却コイルのIPFを均等にすることができるようにした。   Therefore, the IPF of each cooling coil can be made equal by setting the flow rate of the ice slurry at the inlet portion of each cooling coil in the inlet header to a certain level or more.

しかして本発明に係る熱交換器は、入口ヘッダと出口ヘッダ間に多数の冷却コイルが並列に設けられ、氷の細片を含む氷水である氷スラリが入口ヘッダから各冷却コイルに分配されてコイル外部の流体に氷スラリの冷熱を供給し、出口ヘッダを経て外部に送出される熱交換器において、前記入口ヘッダは筒状にして、氷スラリの入口と長手方向に各冷却コイルとの接続口たる複数の出口を備え、前記氷スラリ入口からの距離が大となるにつれてヘッダの流路断面積が小となるように構成したものとしてある。   Thus, in the heat exchanger according to the present invention, a large number of cooling coils are provided in parallel between the inlet header and the outlet header, and ice slurry, which is ice water including ice strips, is distributed from the inlet header to each cooling coil. In the heat exchanger that supplies ice slurry cold heat to the fluid outside the coil and is sent to the outside via the outlet header, the inlet header is formed into a cylindrical shape, and the inlet of the ice slurry is connected to each cooling coil in the longitudinal direction. A plurality of outlets serving as mouths are provided, and the flow path cross-sectional area of the header is reduced as the distance from the ice slurry inlet increases.

また前記入口ヘッダを、一方の端部側に氷スラリ入口を設け、他方の端部に向かって徐々にまたは段階的に流路断面積が減少するように構成したものとしてある。   In addition, the inlet header is configured such that an ice slurry inlet is provided on one end side, and the flow path cross-sectional area decreases gradually or stepwise toward the other end.

本発明に係る熱交換器は、入口ヘッダ内における氷スラリが、氷スラリ入口近傍から離れるにしたがって冷却コイルに分岐流入するので流量が減少するが、流路断面積が小となるので、流速が維持される。   In the heat exchanger according to the present invention, the flow rate decreases because the ice slurry in the inlet header branches and flows into the cooling coil as it moves away from the vicinity of the ice slurry inlet, but the flow rate decreases because the cross-sectional area of the flow path becomes small. Maintained.

したがって、氷スラリ入口からの距離が異なっても、各冷却コイルの入口部分における氷スラリの流速はほぼ一定となり、したがって各冷却コイルに流入する氷スラリはIPFが均等となり、各冷却コイルにおいては氷スラリ中の氷の融解潜熱を十分に利用することができ、熱交換効率を向上させることができる。 Therefore, even if the distance from the ice slurry inlet is different, the ice slurry flow velocity at the inlet portion of each cooling coil is substantially constant, so that the ice slurry flowing into each cooling coil has the same IPF, and the ice in each cooling coil is the same. The latent heat of melting of ice in the slurry can be fully utilized, and the heat exchange efficiency can be improved.

また、本発明の熱交換器は入口ヘッダの形状に特徴を有しているので、既存の一般的な熱交換器の入口ヘッダ部分以外の構成をそのまま利用することができ、低コストに製造することができるというメリットもある。 In addition, since the heat exchanger of the present invention is characterized by the shape of the inlet header, the configuration other than the inlet header portion of an existing general heat exchanger can be used as it is, and is manufactured at a low cost. There is also an advantage that you can.

以下、本発明に係る装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
熱交換器本体1は、多数の放熱用フィン10、10に多数のストレートなチューブ2aを平行に貫通せしめたものとしてあって隣り合うチューブの端部どうしをU字状のベンド管2bで接続して冷却コイル2を構成してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the apparatus according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
The heat exchanger main body 1 has a large number of heat radiation fins 10 and 10 that are penetrated by a large number of straight tubes 2a in parallel, and the ends of adjacent tubes are connected by a U-shaped bend tube 2b. Thus, the cooling coil 2 is configured.

上記冷却コイル2の各入口は入口ヘッダ3の多数の出口3bにそれぞれ接続してあり、また冷却コイルの各出口は出口ヘッダ4の多数の入口4bにそれぞれ接続してある。   Each inlet of the cooling coil 2 is connected to a number of outlets 3 b of the inlet header 3, and each outlet of the cooling coil is connected to a number of inlets 4 b of the outlet header 4.

前記入口ヘッダ3と出口ヘッダ4はそれぞれ下端部寄りに氷スラリの入口3aと出口4aを有しており、各ヘッダはいずれも上端および下端が塞がれた筒体で構成してある。   Each of the inlet header 3 and the outlet header 4 has an inlet 3a and an outlet 4a for ice slurry near the lower end, and each header is formed of a cylinder whose upper and lower ends are closed.

しかして、出口ヘッダ4はストレートな円筒形に構成してあるが、入口ヘッダ3は上半部の流路断面積が徐々に小となる形状に構成されていて、具体的には入口ヘッダの多数の出口が設けられている側とは反対側の上半部に、入口ヘッダの中心軸線と斜交する側面を設けてあり、氷スラリの出口3b、3bは鉛直方向に一列に並ぶように配設されている。   Thus, although the outlet header 4 is configured in a straight cylindrical shape, the inlet header 3 is configured in a shape in which the flow path cross-sectional area of the upper half is gradually reduced. In the upper half of the side opposite to the side where many outlets are provided, a side surface oblique to the central axis of the inlet header is provided, and the ice slurry outlets 3b and 3b are arranged in a line in the vertical direction. It is arranged.

したがって入口ヘッダ3内に流入する氷スラリは入口3a近傍の下部から上端部へ向かって冷却コイルへの分岐流入によって流量が減少するが、流路断面積が上方に向かって小となるので、流速が一定以上に維持され、したがって各冷却コイル2、2の入口部分における氷スラリの流速にあまりばらつきが生じず、したがって各冷却コイル2、2に流入する氷スラリのIPFがほぼ均等となってどの冷却コイルにおいてもコイル内部の氷スラリの融解潜熱がコイル外部を流過する空気等の流体に十分かつ安定して伝えられ、熱交換効率を向上せしめることができる。   Accordingly, the flow rate of the ice slurry flowing into the inlet header 3 decreases due to the branching flow into the cooling coil from the lower part in the vicinity of the inlet 3a toward the upper end, but the cross-sectional area of the flow path becomes smaller upward. Is maintained above a certain level, so that the ice slurry flow rate at the inlet portion of each cooling coil 2 and 2 does not vary so much, so that the IPF of the ice slurry flowing into each cooling coil 2 and 2 becomes almost equal. Also in the cooling coil, the latent heat of melting of the ice slurry inside the coil is sufficiently and stably transmitted to a fluid such as air flowing outside the coil, and the heat exchange efficiency can be improved.

上述した実施例における入口ヘッダ3は氷スラリ入口から離れるにしたがって、すなわち上方に向かって徐々に流路断面積が小となるように構成してあるが、流路断面積は段階的に小となるように構成する場合もあり、例えば図3に示される入口ヘッダ5のように氷スラリ入口5aを有する大径部6に続いて中径部7と小径部8を順に設け、これらの間をそれぞれ移行部9、9で接続する。   The inlet header 3 in the above-described embodiment is configured so that the flow passage cross-sectional area gradually decreases as it moves away from the ice slurry inlet, that is, upwards. In some cases, for example, an inlet header 5 shown in FIG. 3 is provided with a medium diameter portion 7 and a small diameter portion 8 in this order, followed by a large diameter portion 6 having an ice slurry inlet 5a. Connections are made at the transition units 9 and 9, respectively.

なお、この実施例のものの場合にも冷却コイルとの接続口たる出口5b、5bを有する側は上下方向(鉛直方向)に一列に並ぶように配設されている。
上記実施例における入口ヘッダ5は流路断面積が3段階に変化するように構成してあるが、熱交換器の仕様に応じて2段階や4段階以上のものに構成する場合もある。
In the case of this embodiment as well, the sides having the outlets 5b and 5b serving as connection ports with the cooling coils are arranged in a line in the vertical direction (vertical direction).
The inlet header 5 in the above embodiment is configured so that the flow passage cross-sectional area changes in three stages, but may be configured in two stages or four or more stages depending on the specifications of the heat exchanger.

本発明に係る熱交換器の実施例を示す正面図。The front view which shows the Example of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の実施例を示す側面図。The side view which shows the Example of the heat exchanger which concerns on this invention. 入口ヘッダの他の例を示す(a)は正面図、(b)は側面図。(A) which shows the other example of an inlet header is a front view, (b) is a side view.

符号の説明Explanation of symbols

1 熱交換器本体
2 冷却コイル
3 入口ヘッダ
4 出口ヘッダ
5 入口ヘッダ
6 大径部
7 中径部
8 小径部
9 移行部
1 Heat exchanger body
2 Cooling coil
3 Entrance header
4 Exit header
5 Entrance header
6 Large diameter part
7 Medium diameter part
8 Small diameter part
9 Transition Department

Claims (3)

入口ヘッダと出口ヘッダ間に多数の冷却コイルが並列に設けられ、氷の細片を含む氷水である氷スラリが入口ヘッダから各冷却コイルに分配されてコイル外部の流体に氷スラリの冷熱を供給し、出口ヘッダを経て外部に送出される熱交換器において、前記入口ヘッダは筒状にして、氷スラリの入口と長手方向に各冷却コイルとの接続口たる複数の出口を備え、前記氷スラリ入口からの距離が大となるにつれてヘッダの流路断面積が小となるように構成してなる熱交換器。   A number of cooling coils are provided in parallel between the inlet header and the outlet header, and ice slurry, which is ice water containing ice strips, is distributed from the inlet header to each cooling coil to supply ice slurry to the fluid outside the coil. In the heat exchanger sent to the outside through the outlet header, the inlet header is formed in a cylindrical shape and includes a plurality of outlets serving as connection ports between the inlets of the ice slurry and the cooling coils in the longitudinal direction. A heat exchanger configured such that the flow path cross-sectional area of the header decreases as the distance from the inlet increases. 前記入口ヘッダを、一方の端部側に氷スラリ入口を設け、他方の端部に向かって徐々に流路断面積が減少するように構成してなる請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the inlet header is configured such that an ice slurry inlet is provided on one end side and the flow path cross-sectional area gradually decreases toward the other end. 前記入口ヘッダを、一方の端部側に氷スラリ入口を設け、他方の端部に向かって段階的に流路断面積が減少するように構成してなる請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the inlet header is configured such that an ice slurry inlet is provided on one end side, and the flow path cross-sectional area gradually decreases toward the other end.
JP2004266509A 2004-09-14 2004-09-14 Heat exchanger Pending JP2006084047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266509A JP2006084047A (en) 2004-09-14 2004-09-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266509A JP2006084047A (en) 2004-09-14 2004-09-14 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006084047A true JP2006084047A (en) 2006-03-30

Family

ID=36162696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266509A Pending JP2006084047A (en) 2004-09-14 2004-09-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2006084047A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064678A (en) * 2007-09-06 2009-03-26 Panasonic Electric Works Co Ltd Light source device
KR100902140B1 (en) 2007-07-16 2009-06-10 에니웰에이치피(주) An electric heating fan with a join and separation type heat exchanger
JP2013217528A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Heat exchanger
CN110513796A (en) * 2019-08-21 2019-11-29 杭州华电华源环境工程有限公司 A kind of unequal spacing Ice storage coiled pipe and its design method
KR102069882B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
KR102069881B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
KR102069883B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
KR102089545B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for free space active antenna, and active antenna
KR102089546B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for free space active antenna, and active antenna
KR102089543B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for active antenna, and active antenna
KR102089544B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for active antenna, and active antenna
KR102089548B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for active phased-array antenna, and active antenna
KR102089547B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for active phased-array antenna, and active antenna

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902140B1 (en) 2007-07-16 2009-06-10 에니웰에이치피(주) An electric heating fan with a join and separation type heat exchanger
JP2009064678A (en) * 2007-09-06 2009-03-26 Panasonic Electric Works Co Ltd Light source device
JP2013217528A (en) * 2012-04-05 2013-10-24 Daikin Industries Ltd Heat exchanger
KR102069883B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
KR102069882B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
KR102069881B1 (en) * 2019-03-29 2020-01-23 한화시스템 주식회사 Thermal radiating apparatus for active antenna, and active antenna
CN110513796A (en) * 2019-08-21 2019-11-29 杭州华电华源环境工程有限公司 A kind of unequal spacing Ice storage coiled pipe and its design method
KR102089545B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for free space active antenna, and active antenna
KR102089546B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for free space active antenna, and active antenna
KR102089543B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for active antenna, and active antenna
KR102089544B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for active antenna, and active antenna
KR102089548B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having cooling plate for active phased-array antenna, and active antenna
KR102089547B1 (en) * 2020-01-17 2020-03-16 한화시스템 주식회사 Thermal radiating apparatus having single channel for active phased-array antenna, and active antenna

Similar Documents

Publication Publication Date Title
JP2006084047A (en) Heat exchanger
CN102884877B (en) There is the cooling device of multiple spacing of fin
KR20040047614A (en) Heat exchanger
CN102272546B (en) Heat exchanger, heat pump system and air conditioning system
CN101952674A (en) Multilateral continuous uniform rapid cooling device of double cooling structure
JP2010060267A (en) Heat exchanger and heat pump apparatus using the same
JP2021501951A (en) Cooling cabinet and cooling system
KR20140005865A (en) Waste heat boiler
JP2007132582A (en) Cooling system
EP2282140B1 (en) Heat exchanger and hot-water supply device using same
KR20120131403A (en) Air-conditioning system using vortex tube
JP2006084090A (en) Heat pump heat accumulator
US20090064945A1 (en) Heat exchanger, water heater and water tube
CN102123577B (en) Arrangement in a liquid cooler
JP2007003080A (en) Evaporator
CN101240939A (en) Heat changing device
EP1431685B1 (en) System for making ice by underwater supercooling release and low temperature water supply system comprising it
KR101497347B1 (en) Heat exchanger
KR102188286B1 (en) Chiller control apparatus for semiconductor process
JP2009168383A (en) Heat exchanger and heat pump type water heater using the same
JPH11264674A (en) Parallel flow heat exchanger
JP2005106368A (en) Cooling medium distribution mechanism, and air conditioner
JP2008133994A (en) Heat exchanger
KR102076679B1 (en) A heat exchanger and a natural coolant circulation air conditioner
JP3831529B2 (en) Ice heat storage unit of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Effective date: 20090713

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901