JP2006083448A - Steel for minimum quantity lubrication machining - Google Patents

Steel for minimum quantity lubrication machining Download PDF

Info

Publication number
JP2006083448A
JP2006083448A JP2004271218A JP2004271218A JP2006083448A JP 2006083448 A JP2006083448 A JP 2006083448A JP 2004271218 A JP2004271218 A JP 2004271218A JP 2004271218 A JP2004271218 A JP 2004271218A JP 2006083448 A JP2006083448 A JP 2006083448A
Authority
JP
Japan
Prior art keywords
cutting
steel
oil lubrication
ferrite
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004271218A
Other languages
Japanese (ja)
Other versions
JP2006083448A5 (en
JP4379604B2 (en
Inventor
Koji Watari
宏二 渡里
Naoki Matsui
直樹 松井
Hiroaki Taira
裕章 多比良
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004271218A priority Critical patent/JP4379604B2/en
Publication of JP2006083448A publication Critical patent/JP2006083448A/en
Publication of JP2006083448A5 publication Critical patent/JP2006083448A5/ja
Application granted granted Critical
Publication of JP4379604B2 publication Critical patent/JP4379604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for minimum quantity lubrication machining in which machining is carried out while feeding a small quantity of lubricating oil. <P>SOLUTION: The steel for minimum quantity lubrication machining has a chemical composition consisting of 0.30 to 0.46% C, 0.1 to 1.0% Si, 0.2 to 2.0% Mn, ≤0.08% P, 0.01 to 0.12% S, ≤0.010% N, 0.002 to 0.03% Al, 0 to 0.03% Ti and the balance Fe with impurities and satisfying at least either of (Al/N≥2) and (Ti/N≥3) and also has a structure composed of ferrite-pearlite structure of 15 to 65% ferrite fraction. This steel can contain one or more elements selected from at least one group among the following three groups: (1) 0.01 to 0.8% Cr and 0.01 to 0.3% V; (2) 0.005 to 0.05% Nd and 0.005 to 0.1% Nb; (3) 0.0005 to 0.005% B. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微量油潤滑加工用鋼材に関する。詳しくは、鋼材の機械加工において微量の潤滑油剤(切削油剤)を供給しながら加工する「微量油潤滑加工」用の鋼材に関する。   The present invention relates to a steel material for trace oil lubrication. More specifically, the present invention relates to a steel material for “trace oil lubrication” which is processed while supplying a small amount of lubricant (cutting fluid) in machining of steel.

これまで切削加工用の鋼材は、多量の潤滑油剤を用いる所謂「湿式切削」あるいは潤滑油剤を全く用いない所謂「ドライ切削」を対象として開発されてきた。   Conventionally, steel materials for cutting have been developed for so-called “wet cutting” using a large amount of lubricant or so-called “dry cutting” using no lubricant.

しかし近年、エネルギー消費が少ないばかりか環境に優しく、しかも、切削加工効率を高めることができるとともに加工精度も維持することができる新しい切削加工法として、微量の潤滑油剤を供給しながら加工する「微量油潤滑加工」(以下、「微量潤滑油切削」ともいう。)技術の検討が活発になっており、例えば、非特許文献1〜非特許文献6に極微量油潤滑切削(MQL切削)技術に関する報告がなされている。また、特許文献1及び特許文献2には、極微量油潤滑切削に適した加工装置が開示されている。   However, in recent years, as a new cutting method that not only consumes less energy but is also environmentally friendly, and can improve cutting efficiency and maintain machining accuracy, it is possible to process while supplying a small amount of lubricant. The study of “oil lubrication” (hereinafter, also referred to as “micro-lubricating oil cutting”) has been actively studied. For example, Non-Patent Document 1 to Non-Patent Document 6 relate to an ultra-trace oil lubrication cutting (MQL cutting) technique. A report has been made. Further, Patent Document 1 and Patent Document 2 disclose processing apparatuses suitable for ultra-trace oil lubrication cutting.

これらを含む微量油潤滑切削が適用される代表的な加工には、直径10mm以下の細径ドリルを用い、ドリル直径の10倍以上の深さの穴をあける深穴加工がある。従来、こうした深穴加工は、高速度工具鋼(通称「ハイス」)製のツイストドリルあるいは刃先を超硬合金でろう付けしたガンドリルを用いて、潤滑油剤を多量に使用して行っていた。時には多量の潤滑油剤を高圧で塗布して加工することも行われていた。しかしながら、ハイス製のツイストドリルを用いた場合には切削速度を速くすることができず、また、刃先を超硬合金でろう付けしたガンドリルを用いた場合には工具の剛性面から送り量を高くできないなど、いずれの場合も加工能率に限界があった。また、上記の両加工法とも、多量の潤滑油剤を使用するため、その廃棄処理の費用が嵩むものであった。   As a typical process to which micro-oil lubrication cutting including these is applied, there is a deep hole process using a small diameter drill having a diameter of 10 mm or less and making a hole having a depth of 10 times or more the drill diameter. Conventionally, such deep hole machining has been carried out using a twist drill made of high-speed tool steel (commonly known as “Hi-S”) or a gun drill in which the cutting edge is brazed with a cemented carbide and using a large amount of lubricant. Sometimes a large amount of lubricating oil is applied and processed at high pressure. However, when using a high-speed twist drill, the cutting speed cannot be increased, and when using a gun drill brazed with a cemented carbide, the feed rate is increased due to the rigid surface of the tool. In all cases, there was a limit to machining efficiency. Further, both of the above-described processing methods use a large amount of lubricating oil, which increases the cost of disposal.

これに対して、超硬合金製のツイストドリルを用いて微量油潤滑切削すれば、高速切削が可能で送り量も高くすることができる。このため、高能率の切削加工が可能となり、また、潤滑油剤の廃棄処理の問題を解決することもできる。しかしながら、微量油潤滑切削に関しては、従来、工具、油剤、機械及び給油システムについての検討がなされてきたものの、その対象となる被切削材、なかでも鋼材について検討された例はこれまで殆どない。   On the other hand, if a trace oil lubricated cutting is performed using a cemented carbide twist drill, high-speed cutting is possible and the feed amount can be increased. For this reason, highly efficient cutting can be performed, and the problem of disposal of the lubricant can be solved. However, with respect to micro-oil lubrication cutting, tools, oils, machines, and oil supply systems have been conventionally studied. However, there have been few examples that have been studied on the workpieces to be cut, particularly steel materials.

湿式切削、ドライ切削及び微量油潤滑切削においては潤滑油剤の状態に差があることから、切削現象も変化することが予測される。したがって、従来の湿式切削やドライ切削を対象として開発された切削加工用鋼材である所謂「快削鋼」を用いても、微量油潤滑切削の場合には十分な加工性が確保されない可能性がある。   In wet cutting, dry cutting, and trace oil lubricated cutting, it is predicted that the cutting phenomenon will change because of the difference in the state of the lubricant. Therefore, even when using so-called “free-cutting steel”, which is a steel material for cutting developed for conventional wet cutting and dry cutting, there is a possibility that sufficient workability may not be ensured in the case of trace oil lubrication cutting. is there.

例えば、特許文献3には、MnS及び鋼中酸化物の組成や形態を調整し、これらの介在物による工具表面の保護及び潤滑効果によって超硬工具による被削性を高めた「超硬工具切削性に優れた機械構造用の快削鋼」が開示されている。しかしながら、この特許文献3で提案された快削鋼の切削は、「速度:200m/分、送り:0.2mm/回転、深さ:2mm」という条件で行われた従来の「旋削」加工でしかない。   For example, in Patent Document 3, the composition and form of MnS and steel oxide are adjusted, and the tool surface protection and lubrication effect by these inclusions increases the machinability with a carbide tool. “Free-cutting steel for machine structures having excellent properties” is disclosed. However, the cutting of free-cutting steel proposed in Patent Document 3 is a conventional “turning” process performed under the conditions of “speed: 200 m / min, feed: 0.2 mm / rotation, depth: 2 mm”. There is only.

また、特許文献4には、Biの存在形態を調整することで切屑処理性を高めた「Bi快削鋼」が開示されている。この特許文献4で提案された技術の基本思想は、BiがPbと同様に低融点介在物であることから、切削加工時の昇温により溶融し、工具面上での潤滑作用を高めることにある。そして、この特許文献4で提案された快削鋼の切削も、「切削速度:150m/min、送り:0.05、0.1、0.2、0.3mm/revの4水準、切込み:0.5、1.0、2.0mmの3水準」という条件で行われた従来の「旋削」加工でしかない。   Further, Patent Document 4 discloses “Bi free-cutting steel” in which chip disposal is improved by adjusting the existence form of Bi. The basic idea of the technique proposed in Patent Document 4 is that Bi is a low-melting point inclusion like Pb, so that it melts due to a temperature rise during cutting and enhances the lubricating action on the tool surface. is there. The cutting of free-cutting steel proposed in Patent Document 4 is also “cutting speed: 150 m / min, feed: four levels of 0.05, 0.1, 0.2, 0.3 mm / rev, cutting: It is only the conventional “turning” processing performed under the conditions of “three levels of 0.5, 1.0, and 2.0 mm”.

「MQL切削の技術動向」(稲崎一郎著、トライボロジスト、第47巻第7号(2002年)、519〜525ページ)"Technical trends in MQL cutting" (Ichiro Inasaki, Tribologist, Volume 47, Issue 7 (2002), pages 519-525) 「複合ミスト法による旋削加工の動向」(鈴木康夫著、トライボロジスト、第47巻第7号(2002年)、526〜532ページ)"Turning Trends by Compound Mist Method" (Yasuo Suzuki, Tribologist, Vol. 47, No. 7 (2002), pages 526-532) 「MQL切削用工作機械の動向」(槇山正著、トライボロジスト、第47巻第7号(2002年)、533〜537ページ)"Trends in machine tools for MQL cutting" (Masayama Hata, Tribologist, Vol. 47, No. 7 (2002), 533-537) 「MQL切削油供給システムの動向」(鈴木繁著、トライボロジスト、第47巻第7号(2002年)、538〜543ページ)"Trends in MQL cutting oil supply system" (by Shigeru Suzuki, Tribologist, Vol. 47, No. 7 (2002), pp. 538-543) 「MQL切削工具の動向」(狩野勝吉著、トライボロジスト、第47巻第7号(2002年)、544〜549ページ)"Trends in MQL cutting tools" (Katsuyoshi Kano, Tribologist, Volume 47, Issue 7 (2002), pages 544-549) 「MQL切削用油剤の動向」(須田聡著、トライボロジスト、第47巻第7号(2002年)、550〜556ページ)"Trends in MQL cutting fluids" (Mr. Suda, Tribologist, Vol. 47, No. 7 (2002), 550-556) 特開2002−355735号公報JP 2002-355735 A 特開2002−355736号公報Japanese Patent Laid-Open No. 2002-355736 特開2003−55735号公報JP 2003-55735 A 特開2000−265243号公報JP 2000-265243 A

本発明の目的は、微量の潤滑油剤を供給しながら加工する微量油潤滑切削用の鋼材を提供することである。   An object of the present invention is to provide a steel material for trace oil lubrication cutting that is processed while supplying a trace amount of lubricant.

具体的には、1時間当たり200cm3以下の潤滑油剤を使用する微量油潤滑切削条件の下で用いられる鋼材を提供することである。 Specifically, it is to provide a steel material used under a trace oil lubrication cutting condition using a lubricant of 200 cm 3 or less per hour.

前述の特許文献3及び特許文献4で提案された快削鋼だけではなく、従来の湿式切削やドライ切削を対象として開発された快削鋼は、主に鋼中介在物の形態を調整し、加工中における工具面上での潤滑作用を活用したものである。   In addition to the free-cutting steel proposed in Patent Document 3 and Patent Document 4, the free-cutting steel developed for conventional wet cutting and dry cutting mainly adjusts the form of inclusions in the steel, It utilizes the lubrication action on the tool surface during machining.

しかし、微量油潤滑切削は、その名のとおり工具面上での潤滑効果は既にその給油システムや工具等で確保されている。このため、微量油潤滑切削現象は、従来の湿式切削やドライ切削とは全く異なり、介在物に基づく潤滑効果での切削性の向上は期待できない。   However, as the name suggests, the lubrication effect on the tool surface is already ensured by the oil supply system and the tool. For this reason, the trace oil-lubricated cutting phenomenon is completely different from conventional wet cutting and dry cutting, and improvement in machinability due to the lubrication effect based on inclusions cannot be expected.

加えて、微量油潤滑切削用の鋼材は、未だ開発されておらず、更に、湿式切削やドライ切削が対象であるPb快削鋼、S快削鋼、その複合快削鋼、並びに、前述の特許文献3及び特許文献4で提案された快削鋼など従来からの種々の快削鋼を用いて、これまでに微量油潤滑切削性について詳細な検討がなされたことはない。   In addition, steel materials for trace oil lubrication cutting have not been developed yet, and Pb free-cutting steel, S free-cutting steel, its combined free-cutting steel, which is subject to wet cutting and dry cutting, and the aforementioned There has never been a detailed study of trace oil lubrication machinability using various conventional free cutting steels such as the free cutting steels proposed in Patent Document 3 and Patent Document 4.

そこで、本発明者らは、従来、機械構造用快削鋼として知られている表1に示す化学組成を有する快削鋼を実験室溶解して、微量油潤滑切削、湿式切削及びドライ切削の各場合における工具寿命の比較を行った。   Therefore, the present inventors have made a laboratory melting of free-cutting steel having a chemical composition shown in Table 1, which is conventionally known as free-cutting steel for machine structures, and used for trace oil lubrication cutting, wet cutting and dry cutting. The tool life in each case was compared.

Figure 2006083448
Figure 2006083448

すなわち、表1に示す各鋼の鋼塊を1250℃に加熱し、熱間鍛造を行って1000℃以上で仕上げ、直径60mmの丸棒を作製した。なお、仕上げ後は空冷して非調質鋼材の製造プロセスを模擬した。   That is, the ingot of each steel shown in Table 1 was heated to 1250 ° C., subjected to hot forging, and finished at 1000 ° C. or higher to produce a round bar having a diameter of 60 mm. In addition, after finishing, it air-cooled and simulated the manufacturing process of a non-tempered steel material.

このようにして得た各丸棒の横断面におけるR/2部(R:丸棒の半径)位置の8箇所についてビッカース硬さ(以下、「Hv硬さ」という。)を測定した。なお、試験力は98.07Nで行った。なお、表1には、各丸棒について8箇所測定したHv硬さの平均値を併記した。   The Vickers hardness (hereinafter referred to as “Hv hardness”) was measured at 8 locations at the R / 2 part (R: radius of the round bar) position in the cross section of each round bar thus obtained. The test force was 98.07N. In Table 1, the average value of the Hv hardness measured at 8 locations for each round bar is also shown.

表1から明らかなように、いずれの丸棒もHv硬さで240程度の同等の硬さを有するものである。   As apparent from Table 1, all the round bars have equivalent hardness of about 240 in Hv hardness.

そこで次に、上記の各丸棒を100mmずつの長さに切断したものを試験片とし、直径(D)が6.0mm、全長が180mm、刃長が130mmで先端角が140゜の油穴付き超硬コーティングドリルを用いて、下記の条件で、従来の湿式切削及びドライ切削、並びに新しい切削法である微量油潤滑切削を施して工具寿命を比較した。   Therefore, an oil hole having a diameter (D) of 6.0 mm, a total length of 180 mm, a blade length of 130 mm, and a tip angle of 140 ° is obtained by cutting each round bar into a length of 100 mm. Using a cemented carbide coated drill, tool life was compared by applying conventional wet cutting and dry cutting, and a micro oil lubrication cutting, which is a new cutting method, under the following conditions.

・回転数:5300rpm、
・送り:0.15mm/rev、
・試験片長手方向の加工穴深さ:95mm(約16D)。
なお、各切削法における潤滑条件は下記のとおりである。
・ Rotation speed: 5300 rpm,
-Feed: 0.15 mm / rev,
-Processed hole depth in the longitudinal direction of the test piece: 95 mm (about 16D).
In addition, the lubrication conditions in each cutting method are as follows.

・湿式切削:油量を10L/分とし、20倍に希釈した水溶性エマルジョンによる外部給油、
・ドライ切削:無潤滑、
・微量油潤滑切削:生分解性の高い合成エステルを約1cm3/時でドリル油穴から内部給油。
・ Wet cutting: External oil supply with water-soluble emulsion diluted to 20 times with oil amount 10L / min,
・ Dry cutting: no lubrication,
・ Treatment with a trace amount of oil: Internal lubrication of a highly biodegradable synthetic ester at about 1 cm 3 / hour from a drill oil hole.

なお、上記の条件で300穴穿孔するまでのドリル外周コーナー摩耗量を工具寿命とした。但し、従来の湿式切削及びドライ切削の場合には、300穴穿孔するまでにドリルが折損して穿孔不能となったため、穿孔不能となるまでの穿孔個数を工具寿命とした。また、全ての加工試験においては、事前に直径が6.05mm、深さが12mmの穴をガイド穴として加工するものとする。したがって、先に述べた加工穴深さとしての95mmには、このガイド穴が含まれている。   The amount of wear on the outer periphery of the drill until 300 holes were drilled under the above conditions was defined as the tool life. However, in the case of conventional wet cutting and dry cutting, the drill broke before drilling 300 holes and became impossible to drill. Therefore, the number of drilled holes until drilling became impossible was defined as the tool life. In all processing tests, a hole having a diameter of 6.05 mm and a depth of 12 mm is processed in advance as a guide hole. Therefore, this guide hole is included in 95 mm as the processing hole depth described above.

表2に、上記のようにして測定した工具寿命を示す。   Table 2 shows the tool life measured as described above.

Figure 2006083448
Figure 2006083448

表2から、従来法である湿式切削及びドライ切削に比べて、微量油潤滑切削が穿孔数において格段に優れていることがわかる。そして、微量油潤滑切削の場合には、従来の切削法、特に、水溶性エマルジョンを用いた湿式切削において有効な快削元素であるPbやSの効果が発揮されていないことから、潤滑油剤の量が少ない微量油潤滑切削が単に従来の切削法の延長線上には無く、全く新しい現象によって切削されていることが示唆される。また、微量油潤滑切削の場合には、被切削材の硬さが同等でも工具寿命に差が生じているので、微量油潤滑加工性は、従来の切削法のように単に室温の硬さだけで整理できるものではないことも明らかである。更に、細径の超硬コーティングドリルを用いた深穴加工の場合には、切削抵抗の上昇による折損が重要な問題であり、切削抵抗の上昇が工具摩耗を進行させることも明らかになった。   From Table 2, it can be seen that the trace oil lubrication cutting is remarkably superior in the number of perforations compared to the conventional wet cutting and dry cutting. In the case of micro oil lubricated cutting, the effect of Pb and S which are effective free cutting elements in conventional cutting methods, particularly wet cutting using a water-soluble emulsion, has not been demonstrated. It is suggested that a small amount of oil-lubricated cutting is not simply an extension of the conventional cutting method but is cut by a completely new phenomenon. Also, in the case of micro oil lubrication cutting, there is a difference in tool life even if the hardness of the work material is the same, so micro oil lubrication workability is just the hardness at room temperature as in the conventional cutting method. It is also clear that it is not something that can be organized. Furthermore, in the case of deep hole drilling using a thin carbide coating drill, it has become clear that breakage due to an increase in cutting resistance is an important issue, and that the increase in cutting resistance causes tool wear to progress.

上述のことから明らかなように、微量油潤滑切削は従来の切削法とは全く新しい現象に基づくものであり、したがって、微量油潤滑切削用の快削鋼を探索することは極めて重要なことである。   As is clear from the above, micro oil lubrication cutting is based on a completely new phenomenon from the conventional cutting method, and therefore it is extremely important to search for free cutting steel for micro oil lubrication cutting. is there.

そこで、本発明者らは、先ず、微量油潤滑切削現象に関して詳細な研究を重ねた。その結果、微量油潤滑切削性、特に切削抵抗の支配因子について、下記(a)及び(b)の新たな知見を得た。   Therefore, the present inventors first conducted detailed studies on the trace oil lubrication cutting phenomenon. As a result, the following new findings (a) and (b) were obtained for the controlling factors of trace oil lubrication machinability, particularly cutting resistance.

(a)微量油潤滑切削法において、細径ドリルを用いた場合の切削抵抗は200〜400℃近傍の強度、なかでも引張特性における0.2%耐力と相関を有する。これは、従来の湿式切削法におけるドリル加工が潤滑油剤(切削油剤)を大量に使用するため加工温度が低いのに対し、微量油潤滑切削法の場合はその名のとおり潤滑油剤が非常に少ないために加工中の冷却能が小さくなったことに基づくものである。   (A) In the trace oil lubrication cutting method, the cutting resistance when a small diameter drill is used has a correlation with the strength in the vicinity of 200 to 400 ° C., in particular, the 0.2% proof stress in the tensile properties. This is because drilling in the conventional wet cutting method uses a large amount of lubricant (cutting fluid), so the processing temperature is low, whereas in the case of the trace oil lubrication cutting method, there is very little lubricant. Therefore, this is based on the fact that the cooling capacity during processing is reduced.

(b)一般に、切削抵抗は「切り屑生成時のせん断変形力」及び「工具と被切削材との間の摩擦力」に区分できる。微量油潤滑切削法の場合、切削抵抗に対する摩擦力の寄与は小さくなると考えられるために、本加工における切削抵抗への寄与は「切り屑生成時のせん断変形力」が支配的となる。このことから、微量油潤滑切削法での細径ドリル加工の場合には、引張試験における破断強さではなく、塑性変形能の目安である0.2%耐力が切削抵抗と大きな相関を有することとなる。   (B) Generally, the cutting resistance can be classified into “shear deformation force when generating chips” and “friction force between the tool and the workpiece”. In the case of a micro-oil lubricated cutting method, it is considered that the contribution of frictional force to cutting force is small, so the contribution to cutting force in this processing is dominated by “shear deformation force when generating chips”. From this, in the case of small-diameter drilling by a micro-oil lubricated cutting method, the 0.2% proof stress, which is a measure of plastic deformability, has a large correlation with the cutting resistance, not the breaking strength in the tensile test. It becomes.

上記の知見(a)及び(b)から、従来提案された快削鋼を用いても、何らかの要因で200〜400℃の引張特性における0.2%耐力が高くなれば、微量油潤滑切削法には適用し難いこととなる。そこで次に、本発明者らは、微量油潤滑切削用の鋼材を得るために、微量油潤滑切削性に及ぼす鋼材の材料因子について研究を重ねた。その結果、下記(c)〜(j)の知見を得た。   From the above findings (a) and (b), even if the conventionally proposed free-cutting steel is used, if the 0.2% proof stress in the tensile characteristics at 200 to 400 ° C. is increased for some reason, a trace oil lubrication cutting method is used. It will be difficult to apply. Then, in order to obtain the steel material for trace oil lubrication cutting, the present inventors repeated research on the material factor of the steel material affecting the trace oil lubrication machinability. As a result, the following findings (c) to (j) were obtained.

(c)鋼に添加される合金元素には、温度が数百度上昇した場合、常温(室温)強度からの強度低下を小さく抑えるものがあり、また、常温強度からの強度上昇を招くものさえある。合金元素のなかでは、N(窒素)がその傾向が最も大きい。したがって、微量油潤滑切削性用の鋼材とするためには、Nをできるだけ固溶状態で存在させないようにするのがよい。   (C) Some alloying elements added to steel suppress a decrease in strength from normal temperature (room temperature) strength when the temperature increases by several hundred degrees, and even cause an increase in strength from normal temperature strength. . Among alloy elements, N (nitrogen) has the greatest tendency. Therefore, in order to obtain a steel material for trace oil lubrication machinability, it is preferable that N is not present in a solid solution state as much as possible.

(d)Tiは、炭化物として析出した場合には強化に寄与し、200℃近傍での強度低下を抑制するので微量油潤滑切削の場合の切削抵抗を高めてしまう。したがって、微量油潤滑切削用の鋼材とするためには、Tiを炭化物として析出させないことがよい。但し、TiはNとの親和力が大きく、Ti窒化物はTi炭化物よりも先に形成されるので、固溶Nを低減するという意味合いからTiを添加してもよい。   (D) When Ti precipitates as a carbide, it contributes to strengthening and suppresses a decrease in strength in the vicinity of 200 ° C., so that the cutting resistance in the case of trace oil lubrication cutting is increased. Therefore, in order to obtain a steel material for trace oil lubrication cutting, Ti should not be precipitated as carbide. However, since Ti has a large affinity with N and Ti nitride is formed before Ti carbide, Ti may be added from the viewpoint of reducing solid solution N.

(e)VもTiと同様に炭化物として析出し、200℃近傍での強度低下を抑制するので微量油潤滑切削の場合の切削抵抗を高めてしまう。このため、微量油潤滑切削性用の鋼材とするためには、Vは添加しないことが望ましい。しかしながら、Vは非調質鋼材の強度確保には欠かせない元素である。このため、微量油潤滑切削用の鋼材として非調質鋼材を用いる場合には、Vを添加してもよい。   (E) V also precipitates as a carbide like Ti, and suppresses a decrease in strength in the vicinity of 200 ° C., thus increasing the cutting resistance in the case of trace oil lubrication cutting. For this reason, it is desirable not to add V in order to obtain a steel material for trace oil lubrication machinability. However, V is an element indispensable for ensuring the strength of the non-tempered steel material. For this reason, when using a non-tempered steel material as a steel material for trace oil lubrication cutting, you may add V.

(f)Moは、200℃近傍での強度低下を抑制するので微量油潤滑切削の場合の切削抵抗を高めてしまう。このため、微量油潤滑切削性用の鋼材とするためには、Moは添加しないことが望ましい。   (F) Since Mo suppresses the strength decrease in the vicinity of 200 ° C., it increases the cutting resistance in the case of trace oil lubrication cutting. For this reason, it is desirable not to add Mo in order to obtain a steel material for trace oil lubrication machinability.

(g)CuやNiも200℃近傍での強度低下を抑制して微量油潤滑切削の場合の切削抵抗を高めてしまう。このため、微量油潤滑切削用の鋼材とするためには、Cu及びNi添加せず、溶製時に不純物として混入するレベルに抑えることが望ましい。   (G) Cu and Ni also suppress the strength decrease in the vicinity of 200 ° C. and increase the cutting resistance in the case of trace oil lubrication cutting. For this reason, in order to obtain a steel material for trace oil lubrication cutting, it is desirable not to add Cu and Ni, but to suppress the level to be mixed as an impurity during melting.

(h)従来から快削元素として知られているPbやBiは添加しても構わないが、微量油潤滑切削の場合には切削性改善効果はほとんど認められない。同様に、MnS介在物やCa処理などによって形成させた低融点酸化物も微量油潤滑切削の場合には切削性改善効果をほとんど有しない。また、硫化物等の介在物形態が微量油潤滑切削性の改善効果に及ぼす影響も小さい。これは微量油潤滑切削法の場合には、微量の潤滑油剤がすでに存在するためである。   (H) Pb and Bi, which are conventionally known as free-cutting elements, may be added, but in the case of micro-oil lubricated cutting, the machinability improving effect is hardly recognized. Similarly, low-melting point oxides formed by MnS inclusions, Ca treatment, etc. have almost no cutting effect in the case of trace oil lubrication cutting. Moreover, the influence of inclusions such as sulfides on the improvement effect of trace oil lubrication machinability is small. This is because a trace amount of lubricant is already present in the case of the trace oil lubrication cutting method.

(i)同じ化学組成の鋼材であっても、常温での組織形態が異なれば高温での引張特性も異なってくる。特に、組織がフェライトパーライト組織の場合には、フェライト量の割合を最適化することで200℃近傍での強度、なかでも0.2%耐力の低下が大きくなるので、微量油潤滑切削性を改善することができる。   (I) Even if the steel materials have the same chemical composition, the tensile properties at high temperatures will be different if the microstructure at normal temperature is different. In particular, when the structure is a ferrite pearlite structure, by optimizing the ferrite content ratio, the strength near 200 ° C, especially the 0.2% proof stress, is greatly reduced. can do.

(j)Crは、セメンタイトを安定させる元素であり、パーライト組織の生成を促進してフェライト量を低減させてしまうので、微量油潤滑切削の場合の切削抵抗を高めてしまう。このため、微量油潤滑切削性用の鋼材とするためには、Crは添加しないことが望ましい。しかしながら、Crは非調質鋼材の強度確保には欠かせない元素である。このため、微量油潤滑切削用の鋼材として非調質鋼材を用いる場合には、Crを添加してもよい。   (J) Cr is an element that stabilizes cementite and promotes the formation of a pearlite structure to reduce the amount of ferrite, thus increasing the cutting resistance in the case of trace oil-lubricated cutting. For this reason, it is desirable not to add Cr in order to obtain a steel material for trace oil lubrication machinability. However, Cr is an element indispensable for ensuring the strength of the non-tempered steel material. For this reason, when using a non-tempered steel material as a steel material for trace oil lubrication cutting, you may add Cr.

本発明は、上記の知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

本発明の要旨は、下記(1)〜(4)に示す微量油潤滑加工用鋼材にある。   The gist of the present invention resides in the steel materials for trace oil lubrication processing shown in the following (1) to (4).

(1)質量%で、C:0.30〜0.46%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.08%以下、S:0.01〜0.12%、N:0.010%以下、Al:0.002〜0.03%及びTi:0〜0.03%を含むとともに、少なくとも下記の(1)式又は(2)式のいずれかを満たし、残部はFe及び不純物の化学組成で、組織がフェライト率が15〜65%のフェライトパーライト組織からなることを特徴とする微量油潤滑加工用鋼材。
Al/N≧2・・・(1)、
Ti/N≧3・・・(2)、
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
(1) By mass%, C: 0.30 to 0.46%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.08% or less, S: 0.01 to 0.12%, N: 0.010% or less, Al: 0.002 to 0.03% and Ti: 0 to 0.03%, and at least the following formula (1) or (2 ), And the balance is a chemical composition of Fe and impurities, and the structure is a ferrite pearlite structure having a ferrite ratio of 15 to 65%.
Al / N ≧ 2 (1),
Ti / N ≧ 3 (2),
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.

(2)Feの一部に代えて、質量%で、Cr:0.01〜0.8%及びV:0.01〜0.3%のうちの1種以上を含有する上記(1)に記載の微量油潤滑加工用鋼材。   (2) In place of part of Fe, in the above-mentioned (1) containing at least one of Cr: 0.01 to 0.8% and V: 0.01 to 0.3% in mass% Steel material for lubrication processing of trace amount of description.

(3)Feの一部に代えて、質量%で、Nd:0.005〜0.05%及びNb:0.005〜0.1%のうちの1種以上を含有する上記(1)又は(2)に記載の微量油潤滑加工用鋼材。   (3) In place of a part of Fe, (1) or (%) containing one or more of Nd: 0.005 to 0.05% and Nb: 0.005 to 0.1% in mass% (2) The steel material for trace oil lubrication processing according to (2).

(4)Feの一部に代えて、質量%で、B:0.0005〜0.005%を含有する上記(1)から(3)までのいずれかに記載の微量油潤滑加工用鋼材。   (4) The steel material for trace oil lubrication according to any one of (1) to (3) above, which contains B: 0.0005 to 0.005% by mass% instead of part of Fe.

ここで、上記の「フェライトパーライト組織」とは、全体の95%を超える部分がフェライトとパーライトの混合組織からなることを指す。そして、「フェライト率」とは、「フェライトパーライト組織」におけるフェライトの割合をいい、「セメンタイト」と「フェライト」からなる「パーライト」中の「フェライト」は含まない。   Here, the above-mentioned “ferrite pearlite structure” means that a portion exceeding 95% of the whole is composed of a mixed structure of ferrite and pearlite. “Ferrite ratio” means the proportion of ferrite in the “ferrite pearlite structure” and does not include “ferrite” in “pearlite” composed of “cementite” and “ferrite”.

なお、或る相の体積割合は面積割合に等しいことが知られており、したがって、上記の「フェライト率」は、例えば、光学顕微鏡による観察のような通常の2次元的な評価方法によって求めたフェライトの割合から決定すればよい。   In addition, it is known that the volume ratio of a certain phase is equal to the area ratio. Therefore, the above-mentioned “ferrite ratio” is obtained by a normal two-dimensional evaluation method such as observation with an optical microscope. What is necessary is just to determine from the ratio of a ferrite.

「微量油潤滑」とは、具体的には、用いる潤滑油剤(切削油剤)の量が1時間当たり200cm3以下であることを指す。 Specifically, “trace oil lubrication” indicates that the amount of lubricant (cutting fluid) to be used is 200 cm 3 or less per hour.

以下、上記(1)〜(4)の微量油潤滑加工用鋼材に係る発明を、それぞれ「(1)の発明」〜「(4)の発明」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions relating to the steel materials for trace oil lubrication processing of (1) to (4) above are referred to as “invention of (1)” to “invention of (4)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の微量油潤滑加工用鋼材は、微量油潤滑切削用として利用することができる。なお、微量油潤滑切削法は、エネルギー消費が少ないばかりか環境に優しく、しかも、切削加工効率を高めることができるとともに加工精度も維持することができる技術である。このため、本発明の微量油潤滑加工用鋼材を用いることで、地球環境の保護やコスト低減を図ることができる。   The steel material for trace oil lubrication processing of the present invention can be used for trace oil lubrication cutting. The micro-oil lubricated cutting method is a technique that not only consumes less energy but is also environmentally friendly, and can increase cutting efficiency and maintain machining accuracy. For this reason, protection of global environment and cost reduction can be aimed at by using the steel material for trace oil lubrication processing of the present invention.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(A)鋼の化学組成
C:0.30〜0.46%
Cは、鋼の硬さ(強度)を高めて機械構造部品に所望の高い硬さを付与するのに必須の元素である。Cには、微量油潤滑切削の場合の加工性に影響する後述のフェライト率を適正化する作用もある。しかし、その含有量が0.30%未満では前記の効果が得難い。一方、Cの含有量が0.46%を超えると切削抵抗の上昇を招いて工具摩耗量の増大をきたす。したがって、Cの含有量を0.30〜0.46%とした。なお、Cの好ましい含有量は、0.33〜0.43%である。
(A) Chemical composition of steel C: 0.30 to 0.46%
C is an element essential for increasing the hardness (strength) of steel and imparting a desired high hardness to machine structural parts. C also has an effect of optimizing the ferrite rate described later, which affects the workability in the case of micro oil lubrication cutting. However, if the content is less than 0.30%, it is difficult to obtain the above effect. On the other hand, if the C content exceeds 0.46%, the cutting resistance is increased and the amount of tool wear is increased. Therefore, the content of C is set to 0.30 to 0.46%. In addition, preferable content of C is 0.33-0.43%.

Si:0.1〜1.0%
Siは、鋼の脱酸に有効な元素である。しかし、その含有量が0.1%未満ではその効果が期待できない。一方、Siを1.0%を超えて含有させると前記効果が飽和するばかりか、靱性の低下が生じる。したがって、Siの含有量を0.1〜1.0%とした。なお、Siの含有量の上限は0.7%とすることが好ましい。
Si: 0.1 to 1.0%
Si is an element effective for deoxidation of steel. However, if the content is less than 0.1%, the effect cannot be expected. On the other hand, if Si is contained in excess of 1.0%, the above effect is saturated and the toughness is reduced. Therefore, the Si content is set to 0.1 to 1.0%. The upper limit of the Si content is preferably 0.7%.

Mn:0.2〜2.0%
Mnは、強度を高める作用がある。この効果を確実に得るには、Mnは0.2%以上の含有量とする必要がある。しかし、その含有量が2.0%を超えると組織中のフェライト率が低下するので、加工性が低下し、更に、靱性も大きく劣化する。したがって、Mnの含有量を0.2〜2.0%とした。なお、Mn含有量の下限は0.5%とすることが好ましく、また、上限は1.6%とすることが好ましい。
Mn: 0.2 to 2.0%
Mn has the effect of increasing strength. In order to obtain this effect with certainty, the Mn content must be 0.2% or more. However, when the content exceeds 2.0%, the ferrite ratio in the structure is lowered, so that workability is lowered, and further, toughness is greatly deteriorated. Therefore, the Mn content is set to 0.2 to 2.0%. The lower limit of the Mn content is preferably 0.5%, and the upper limit is preferably 1.6%.

P:0.08%以下
Pは靱性を低下させてしまう。特にその含有量が0.08%を超えると靱性の低下が著しくなる。したがって、Pの含有量を0.08%以下とした。なお、Pの含有量は0.03%以下とすることが好ましい。
P: 0.08% or less P reduces toughness. In particular, when the content exceeds 0.08%, the toughness is significantly lowered. Therefore, the content of P is set to 0.08% or less. The P content is preferably 0.03% or less.

S:0.01〜0.12%
Sは、鋼中でMnSを形成して被削性を改善する作用を有する。その効果は工具との潤滑よりむしろ、切り屑せん断域での変形の起点となることでせん断変形抵抗を小さくすることにある。しかし、その含有量が0.01%未満では前記の効果が得難い。一方、Sを多量に添加すると、MnSが粗大化するとともにその量が多くなるので靱性の異方性が顕著になり、更に、靱性そのものが劣化する。特に、Sの含有量が0.12%を超えると靱性の劣化が著しくなる。したがって、Sの含有量を0.01〜0.12%とした。なお、Sの含有量は0.03〜0.10%とすることが好ましい。
S: 0.01 to 0.12%
S has the effect | action which forms MnS in steel and improves machinability. The effect is to reduce the shear deformation resistance by becoming the starting point of deformation in the chip shear region rather than lubrication with the tool. However, if the content is less than 0.01%, it is difficult to obtain the above effect. On the other hand, when a large amount of S is added, MnS coarsens and the amount thereof increases, so that the anisotropy of toughness becomes remarkable and the toughness itself deteriorates. In particular, when the S content exceeds 0.12%, the deterioration of toughness becomes significant. Therefore, the content of S is set to 0.01 to 0.12%. In addition, it is preferable that content of S shall be 0.03-0.10%.

N:0.010%以下
Nは本発明において重要な意味を持つ元素である。すなわち、Nは、フェライトに固溶していても200℃近傍で時効析出して強度を高め、鋼材の常温硬さ(強度)に関係なく微量油潤滑切削の場合の切削抵抗を高めてしまう。このため、微量油潤滑切削性用の鋼材とするには、Nの含有量は極力少なくするのがよい。したがって、Nの含有量を0.010%以下とした。なお、一層好ましいNの含有量は0.008%以下である。Nの含有量は0.006%以下とすれば極めて好ましい。
N: 0.010% or less N is an element having an important meaning in the present invention. That is, even if it dissolves in ferrite, N ages and precipitates at around 200 ° C. to increase the strength, and the cutting resistance in the case of trace oil lubrication cutting is increased regardless of the normal temperature hardness (strength) of the steel material. For this reason, in order to make a steel material for trace oil lubrication machinability, it is preferable to reduce the N content as much as possible. Therefore, the N content is set to 0.010% or less. A more preferable N content is 0.008% or less. The N content is very preferably 0.006% or less.

Al:0.002〜0.03%
Alは鋼の脱酸に有効な元素であり鋼中に酸化物を形成する。また、窒化物を形成し固溶Nを低減させる効果がある。しかし、その含有量が0.002%未満では添加効果に乏しい。一方、Alを多く含有させると硬質な酸化物の量が多くなって工具損傷をきたす場合があり、特に、Alの含有量が0.03%を超えると工具損傷が著しくなる。したがって、Alの含有量を0.002〜0.03%以下とした。
Al: 0.002 to 0.03%
Al is an element effective for deoxidation of steel and forms an oxide in the steel. Moreover, it has the effect of forming nitrides and reducing the solute N. However, if the content is less than 0.002%, the effect of addition is poor. On the other hand, if a large amount of Al is contained, the amount of hard oxide may increase, resulting in tool damage. In particular, if the Al content exceeds 0.03%, tool damage becomes significant. Therefore, the content of Al is set to 0.002 to 0.03% or less.

Ti:0〜0.03%
Tiの添加は任意である。添加すれば、窒化物を形成して固溶Nを低減させ、切削抵抗が高くなるのを抑える作用を有する。この効果を確実に得るには、Tiは0.005%以上の含有量とすることが好ましい。しかし、Tiを多く含有させると硬質な窒化物の量が増加して工具損傷をきたす場合があるし、Ti炭化物を形成して、常温強度だけではなく高温強度を高めて微量油潤滑切削の場合の切削抵抗が高くなって被削性が低下する場合がある。特に、Tiの含有量が0.03%を超えると、工具損傷が著しくなり、また、微量油潤滑切削の場合の被削性の低下も著しくなる。したがって、Tiの含有量を0〜0.03%とした。
Ti: 0 to 0.03%
The addition of Ti is optional. If added, it has the action of forming nitrides and reducing the solid solution N and suppressing the cutting resistance from increasing. In order to obtain this effect with certainty, Ti is preferably contained in an amount of 0.005% or more. However, if a large amount of Ti is included, the amount of hard nitride may increase and cause tool damage, and when Ti carbide is formed to increase not only normal temperature strength but also high temperature strength, in the case of trace oil lubrication cutting In some cases, the cutting resistance of the steel increases and the machinability decreases. In particular, when the Ti content exceeds 0.03%, tool damage becomes significant, and the machinability in the case of trace oil lubrication cutting also becomes significant. Therefore, the content of Ti is set to 0 to 0.03%.

Al/N:2以上又は/及びTi/N:3以上
200℃近傍で固溶Nが時効析出することによる切削抵抗の上昇を抑えて、微量油潤滑切削性を確実に高めるには、AlやTiで固溶Nを窒化物として固定するのがよく、このためには、少なくとも「Al/N」の値を2以上又は「Ti/N」の値を3以上とする必要がある。したがって、前記の(1)式又は(2)式のいずれかを満たすこととした。
Al / N: 2 or more or / and Ti / N: 3 or more In order to suppress the increase in cutting resistance due to aging precipitation of solid solution N at around 200 ° C. It is preferable to fix solute N as a nitride with Ti. For this purpose, at least the value of “Al / N” needs to be 2 or more, or the value of “Ti / N” needs to be 3 or more. Therefore, it was decided to satisfy either of the above formulas (1) or (2).

上述のことから、前記(1)の発明に係る微量油潤滑加工用鋼材の化学組成を、上述した範囲のCからTiまでの元素を含むとともに、少なくとも前記の(1)式又は(2)式のいずれかを満たし、残部はFe及び不純物からなることと規定した。   From the above, the chemical composition of the steel material for micro-oil lubrication processing according to the invention of (1) above contains elements from C to Ti within the above range, and at least the above formula (1) or (2) One of the above was satisfied, and the balance was defined as consisting of Fe and impurities.

なお、本発明に係る微量油潤滑加工用鋼材には、上記の成分元素に加え、必要に応じて、後述する第1群〜第3群のうちの少なくとも1群から選んだ1種以上の元素を任意添加元素として添加し、含有させてもよい。   In addition to the above-described component elements, the steel material for micro-oil lubrication processing according to the present invention includes, as necessary, one or more elements selected from at least one of the first to third groups described below. May be added as an optional additive element.

以下、任意添加元素に関して説明する。   Hereinafter, the optional additive element will be described.

第1群:Cr:0.01〜0.8%及びV:0.01〜0.3%
Crは、鋼材の強度を高める作用を有する。この効果を確実に得るには、Crは0.01%以上の含有量とすることが好ましい。しかしながら、その含有量が0.8%を超えると、組織中のフェライト率が大きく低下して、加工性の低下及び靱性の大きな劣化を招く。したがって、添加する場合のCrの含有量は、0.01〜0.8%とするのがよい。なお、微量油潤滑切削性の観点からは、Cr含有量の上限は0.55%とするのが好ましい。
First group: Cr: 0.01 to 0.8% and V: 0.01 to 0.3%
Cr has the effect | action which raises the intensity | strength of steel materials. In order to reliably obtain this effect, the Cr content is preferably 0.01% or more. However, if its content exceeds 0.8%, the ferrite ratio in the structure is greatly reduced, resulting in a decrease in workability and a large deterioration in toughness. Therefore, the Cr content when added is preferably 0.01 to 0.8%. In addition, from the viewpoint of trace oil lubrication machinability, the upper limit of the Cr content is preferably 0.55%.

Vも、Crと同様に、鋼材の強度を高める作用を有する。この効果を確実に得るには、Vは0.01%以上の含有量とすることが好ましい。しかし、その含有量が0.3%を超えると、強度が過度に高くなるとともに高温強度に対する軟化抵抗が増加して、微量油潤滑切削の場合の切削抵抗を高めてしまう。したがって、添加する場合のVの含有量は、0.01〜0.3%とするのがよい。   V, like Cr, has the effect of increasing the strength of the steel material. In order to reliably obtain this effect, it is preferable that V is a content of 0.01% or more. However, if its content exceeds 0.3%, the strength becomes excessively high and the softening resistance against high-temperature strength increases, increasing the cutting resistance in the case of trace oil lubrication cutting. Therefore, when V is added, the content of V is preferably 0.01 to 0.3%.

なお、上記のCr及びVはいずれか1種のみ、或いは2種の複合で添加することができる。   In addition, said Cr and V can be added only in any 1 type or 2 types of composite.

第2群:Nd:0.005〜0.05%及びNb:0.005〜0.1%
Ndは、フェライトの生成核となるMnSを微細に分散させて、フェライトパーライト組織におけるフェライト率を確保し、微量油潤滑切削の場合の切削抵抗を低減する作用を有する。この効果を確実に得るには、Ndは0.005%以上の含有量とすることが好ましい。しかしながら、Ndが0.05%を超えて含有されると、前記の効果が飽和するばかりか、熱間加工性の著しい低下が生じる。したがって、添加する場合のNdの含有量は、0.005〜0.05%とするのがよい。
Second group: Nd: 0.005 to 0.05% and Nb: 0.005 to 0.1%
Nd finely disperses MnS that forms ferrite nuclei, ensures the ferrite rate in the ferrite pearlite structure, and has an action of reducing cutting resistance in the case of trace oil lubrication cutting. In order to reliably obtain this effect, the Nd content is preferably 0.005% or more. However, if Nd exceeds 0.05%, not only the above effect is saturated, but also the hot workability is significantly reduced. Therefore, the content of Nd when added is preferably 0.005 to 0.05%.

Nb
Nbも、Ndと同様に、フェライトパーライト組織におけるフェライト率を確保し、微量油潤滑切削の場合の切削抵抗を低減する作用を有する。Nbには、結晶粒を微細にして靱性を高める作用もある。こうした効果を確実に得るには、Nbは0.005%以上の含有量とすることが好ましい。しかし、その含有量が0.1%を超えると、粗大で硬質なNb炭窒化物が未固溶で残留し、却って被削性が低下する。したがって、添加する場合のNbの含有量は、0.005〜0.1%とするのがよい。
Nb
Similarly to Nd, Nb also has the effect of securing the ferrite rate in the ferrite pearlite structure and reducing the cutting resistance in the case of trace oil lubrication cutting. Nb also has the effect of increasing the toughness by making the crystal grains fine. In order to reliably obtain such an effect, it is preferable that Nb has a content of 0.005% or more. However, if its content exceeds 0.1%, coarse and hard Nb carbonitrides remain undissolved and the machinability deteriorates. Therefore, the content of Nb when added is preferably 0.005 to 0.1%.

なお、上記のNd及びNbはいずれか1種のみ、或いは2種の複合で添加することができる。   In addition, said Nd and Nb can be added only by any 1 type or 2 types of composite.

第3群:B:0.0005〜0.005%
Bは、粒界を強化し、本発明でいう「フェライトパーライト組織」を有する鋼材に切削加工等の機械加工を施した後で焼入れ処理を施す場合の、焼入れ後に生じる粒界割れに伴う遅れ破壊を抑制する作用を有する。この効果を確実に得るには、Bは0.0005%以上の含有量とすることが好ましい。しかし、Bが0.005%を超えて含有されても前記の効果は飽和するので、コストが嵩むばかりである。したがって、添加する場合のBの含有量は0.0005〜0.005%とするのがよい。
Group 3: B: 0.0005 to 0.005%
B is a delayed fracture associated with intergranular cracking that occurs after quenching when strengthening the grain boundaries and applying a quenching treatment to the steel material having the “ferrite pearlite structure” according to the present invention after machining. Has the effect of suppressing In order to reliably obtain this effect, it is preferable that B has a content of 0.0005% or more. However, even if B is contained in an amount exceeding 0.005%, the above effect is saturated, and the cost is increased. Therefore, when B is added, the B content is preferably 0.0005 to 0.005%.

上述のことから、前記(2)の発明に係る微量油潤滑加工用鋼材の化学組成は、鋼材の強度を高めることを目的として、前記(1)の発明の鋼のFeの一部に代えて、Cr:0.01〜0.8%及びV:0.01〜0.3%のうちの1種以上を含有するものと規定した。   From the above, the chemical composition of the steel material for micro-oil lubrication processing according to the invention of (2) is replaced with a part of Fe of the steel of the invention of (1) for the purpose of increasing the strength of the steel material. , Cr: 0.01 to 0.8% and V: 0.01 to 0.3%.

また、前記(3)の発明に係る微量油潤滑加工用鋼材の化学組成は、フェライトパーライト組織におけるフェライト率を確保し、切削抵抗を低減することを目的として、前記(1)又は(2)の発明の鋼のFeの一部に代えて、Nd:0.005〜0.05%及びNb:0.005〜0.1%のうちの1種以上を含有するものと規定した。   In addition, the chemical composition of the steel material for micro-oil lubrication processing according to the invention of (3) described above is for the purpose of ensuring the ferrite rate in the ferrite pearlite structure and reducing cutting resistance. Instead of a part of Fe of the steel of the invention, it was defined to contain one or more of Nd: 0.005 to 0.05% and Nb: 0.005 to 0.1%.

更に、前記(4)の発明に係る微量油潤滑加工用鋼材の化学組成は、切削加工等の機械加工後の焼入れ処理を施す場合の焼入れ後に生じる粒界割れに伴う遅れ破壊を抑制することを目的として、前記(1)から(3)までのいずれかの発明の鋼のFeの一部に代えて、B:0.0005〜0.005%を含有するものと規定した。   Furthermore, the chemical composition of the steel for micro-oil lubrication processing according to the invention of (4) suppresses delayed fracture due to grain boundary cracking that occurs after quenching when performing quenching after machining such as cutting. As an object, it was defined that B: 0.0005 to 0.005% was contained instead of a part of Fe of the steel of any one of the inventions (1) to (3).

なお、本発明に係る微量油潤滑加工用鋼材には、Moを添加しない。これは先の知見(f)で述べたたように、Moが200℃近傍の強度低下を抑制して微量油潤滑切削の場合の切削抵抗を高めるからである。   In addition, Mo is not added to the steel material for trace oil lubrication processing according to the present invention. This is because, as described in the previous finding (f), Mo suppresses a decrease in strength in the vicinity of 200 ° C. and increases the cutting resistance in the case of trace oil-lubricated cutting.

同様に、本発明に係る微量油潤滑加工用鋼材には、Cu及びNiを添加しない。これも先の知見(g)で述べたたように、CuやNiが200℃近傍の強度低下を抑制して微量油潤滑切削の場合の切削抵抗を高めるからである。なお、Cu及びNiは、溶製時に不純物元素として混入する場合があり、その範囲においては微量油潤滑切削の場合にも十分許容できる。具体的には、Cu及びNiはいずれも、それぞれ0.15%までは含有していても微量油潤滑切削の場合の加工性には大きく影響しない。   Similarly, Cu and Ni are not added to the steel material for trace oil lubrication processing according to the present invention. This is also because Cu or Ni suppresses the strength decrease in the vicinity of 200 ° C. and increases the cutting resistance in the case of trace oil lubrication cutting as described in the previous finding (g). In addition, Cu and Ni may be mixed as an impurity element at the time of melting, and within this range, it is sufficiently acceptable even in the case of trace oil lubrication cutting. Specifically, even if both Cu and Ni are contained up to 0.15%, they do not greatly affect the workability in the case of trace oil lubrication cutting.

また、知見(h)で述べたたように、従来から快削元素として良く知られているPb及びBiのほか、MnSの形態をコントロールできるCa、TeやSe等は、微量油潤滑切削の場合には切削抵抗を低減することによる切削性改善効果が見られないので、微量油潤滑切削を対象とする本発明に係る微量油潤滑加工用鋼材においては、これらの元素を添加する必要はない。なお、本発明に係る微量油潤滑加工用鋼材には、Pb、Bi、Ca、Te及びSeが含まれていても差し支えない。その場合の上限は、それぞれ、0.25%、0.10%、0.05%、0.05%及び0.5%である。   As described in Knowledge (h), in addition to Pb and Bi, which have been well known as free-cutting elements, Ca, Te, Se, etc., which can control the form of MnS, Since no cutting effect is reduced by reducing the cutting resistance, it is not necessary to add these elements in the steel material for trace oil lubrication processing according to the present invention intended for trace oil lubrication cutting. In addition, the steel material for trace oil lubrication processing according to the present invention may contain Pb, Bi, Ca, Te, and Se. The upper limits in that case are 0.25%, 0.10%, 0.05%, 0.05% and 0.5%, respectively.

なお、鋼中に混入する不純物としてのO(酸素)については、その含有量は特に規定しなくてもよいが、良好な靱性を確保するために、できればその含有量を0.015%以下とすることが好ましく、0.010%以下とすれば一層好ましい。   Note that the content of O (oxygen) as an impurity mixed in the steel does not have to be specified, but in order to ensure good toughness, the content is preferably 0.015% or less. Preferably, 0.010% or less is more preferable.

上述の化学組成を有する鋼は、例えば、転炉や電気炉等により溶製することができる。鋼塊の製造は、鋳型に注入する「造塊法」又は「連続鋳造法」のいずれの手段を用いても構わない。   Steel having the above-described chemical composition can be melted by, for example, a converter or an electric furnace. For the production of the steel ingot, any means of “ingot-making method” or “continuous casting method” injected into the mold may be used.

(B)鋼材の組織
本発明の微量油潤滑加工用鋼材は、その組織を、フェライト率が15〜65%のフェライトパーライト組織とする必要がある。
(B) Structure of steel material The steel material for trace oil lubrication processing of the present invention needs to have a ferrite pearlite structure with a ferrite ratio of 15 to 65%.

フェライトは軟質相である。このため、微量油潤滑切削の際に優先的に変形して切削加工中の変形抵抗を小さくするので、切削抵抗の低減に寄与する。しかし、フェライト率が15%未満では、上記の効果を十分に得ることができない。一方、フェライト率が65%を超えると、鋼材としての強度が確保し難くなるし、軟質の組織が過剰となって却って鋼材としての延性が増加して微量油潤滑切削の場合の切削抵抗を高めてしまう場合がある。   Ferrite is a soft phase. For this reason, it deforms preferentially in the case of trace oil-lubricated cutting to reduce the deformation resistance during the cutting process, thereby contributing to the reduction of the cutting resistance. However, if the ferrite ratio is less than 15%, the above effect cannot be obtained sufficiently. On the other hand, if the ferrite ratio exceeds 65%, it becomes difficult to ensure the strength as a steel material, and the soft structure becomes excessive, and the ductility as the steel material increases, thereby increasing the cutting resistance in the case of trace oil lubrication cutting. May end up.

上述の理由から、本発明の微量油潤滑加工用鋼材は、その組織を、フェライト率が15〜65%のフェライトパーライト組織からなるものとした。   For the reasons described above, the steel for micro-oil lubrication processing according to the present invention is composed of a ferrite pearlite structure having a ferrite ratio of 15 to 65%.

本発明の微量油潤滑加工用鋼材の組織は、フェライト率が20〜45%のフェライトパーライト組織からなるものであることが一層好ましい。   More preferably, the structure of the steel for micro-oil lubrication processing of the present invention is composed of a ferrite pearlite structure having a ferrite ratio of 20 to 45%.

なお、既に述べたように、本発明でいう「フェライトパーライト組織」とは、全体の95%を超える部分がフェライトとパーライトの混合組織からなるものを指す。また、「フェライト率」とは、「フェライトパーライト組織」におけるフェライトの割合を指し、「セメンタイト」と「フェライト」からなる「パーライト」中の「フェライト」は含まない。   As already described, the term “ferrite pearlite structure” as used in the present invention refers to a structure in which more than 95% of the whole is composed of a mixed structure of ferrite and pearlite. The “ferrite ratio” refers to the ratio of ferrite in the “ferrite pearlite structure” and does not include “ferrite” in “pearlite” composed of “cementite” and “ferrite”.

また、或る相の体積割合は面積割合に等しいことが知られており、したがって、上記の「フェライト率」は、例えば、光学顕微鏡による観察のような通常の2次元的な評価方法によって求めたフェライトの割合から決定すればよいことも既に述べたとおりである。   In addition, it is known that the volume ratio of a certain phase is equal to the area ratio. Therefore, the above-mentioned “ferrite ratio” is obtained by a normal two-dimensional evaluation method such as observation with an optical microscope. As already described, it may be determined from the ratio of ferrite.

なお、本発明の微量油潤滑加工用鋼材における「フェライトパーライト組織」以外の組織としては、例えば、ベイナイトやマルテンサイトなどの第3相を挙げることができるが、第3相が5%以下でありさえすれば、微量油潤滑切削の場合の被削性には実質的な影響がない。したがって、本発明においては上記のとおり、全体の95%を超える部分がフェライトとパーライトの混合組織からなる「フェライトパーライト組織」におけるフェライト率を規定する。すなわち、前述した「フェライト率」とは、より具体的には、{「フェライト」/(「フェライト」+「パーライト」+「第3相」)}×100(%)のことをいう。   In addition, examples of the structure other than the “ferrite pearlite structure” in the steel material for micro-oil lubrication processing of the present invention can include the third phase such as bainite and martensite, but the third phase is 5% or less. As long as it is done, there is no substantial effect on the machinability in the case of micro oil lubrication cutting. Therefore, in the present invention, as described above, the ferrite ratio is defined in a “ferrite pearlite structure” in which a portion exceeding 95% of the whole is composed of a mixed structure of ferrite and pearlite. That is, the above-mentioned “ferrite ratio” more specifically means {“ferrite” / (“ferrite” + “pearlite” + “third phase”)} × 100 (%).

なお、前記の所定の組織は非調質処理、つまり最終の熱間加工後に冷却したままでも得られるし、熱間加工後に「焼ならし」、「焼ならし−焼戻し」などの熱処理を行っても得られる。なお、コスト面からは熱処理を行わずに所定の組織が得られる非調質処理とすることが好ましい。この非調質処理の場合には、熱処理を行う必要がないためコスト面で有利であるし、工程が簡素化できるために納期の面でも有利である。   In addition, the predetermined structure can be obtained by non-tempering treatment, that is, even after cooling after the final hot working, and after the hot working, heat treatment such as “normalizing” and “normalizing-tempering” is performed. Can also be obtained. From the viewpoint of cost, it is preferable to use a non-tempering treatment in which a predetermined structure is obtained without performing heat treatment. This non-tempering treatment is advantageous in terms of cost because it does not require heat treatment, and is advantageous in terms of delivery because the process can be simplified.

なお、本発明でいう「微量油潤滑」とは、用いる潤滑油剤(切削油剤)の量が1時間当たり200cm3以下であることを指すが、実際の鋼材の加工においては潤滑油剤の量を1時間当たり約50cm3以下として実施することも多い。潤滑油剤の塗布方法は潤滑油をミスト状にしてから空気と混合して噴射する方法が一般的である。場合によってはミスト状の水も混合させる場合がある。本発明においては、特に塗布時の潤滑油剤の形態については限定するものではなく、単に潤滑油剤の単独の量が1時間当たり200cm3以下であればその効果は確保できる。 The “trace oil lubrication” referred to in the present invention means that the amount of lubricant (cutting fluid) used is 200 cm 3 or less per hour, but in actual processing of steel materials, the amount of lubricant is 1 It is often carried out at about 50 cm 3 or less per hour. As a method for applying the lubricant, a method in which the lubricant is made into a mist, mixed with air and sprayed is generally used. In some cases, mist-like water may also be mixed. In the present invention, the form of the lubricant at the time of application is not particularly limited, and the effect can be secured if the amount of the lubricant alone is 200 cm 3 or less per hour.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表3及び表4に示す化学組成を有する鋼A1〜A24及びB1〜B7を150kgの真空溶解炉を用いて溶製した。表3及び表4における鋼A1〜A24は化学組成が本発明で規定する範囲内にある本発明例の鋼である。一方、表4における鋼B1〜B7は本発明で規定する条件から外れた比較例の鋼である。   Steels A1 to A24 and B1 to B7 having chemical compositions shown in Tables 3 and 4 were melted using a 150 kg vacuum melting furnace. Steels A1 to A24 in Tables 3 and 4 are steels of the present invention examples whose chemical compositions are within the range defined by the present invention. On the other hand, steels B1 to B7 in Table 4 are steels of comparative examples that deviate from the conditions defined in the present invention.

Figure 2006083448
Figure 2006083448

Figure 2006083448
Figure 2006083448

次いで、これらの鋼の鋼塊を1250℃に加熱し、熱間鍛造を行って1000℃以上で仕上げ、直径60mmの丸棒を作製した。なお、仕上げ後は空冷して非調質鋼材の製造プロセスを模擬した。   Subsequently, these steel ingots were heated to 1250 ° C. and subjected to hot forging and finished at 1000 ° C. or higher to produce a round bar having a diameter of 60 mm. In addition, after finishing, it air-cooled and simulated the manufacturing process of a non-tempered steel material.

このようにして得た各丸棒について、組織、機械的特性及び微量油潤滑切削性を調査した。   Each round bar thus obtained was examined for structure, mechanical properties and trace oil lubrication machinability.

組織は、各丸棒を鍛造長手方向に平行に、その表面から15mmの位置(半径の1/2の位置、以下、「R/2部位置」という。)を含んで切断した面を鏡面研磨してナイタルで腐食した後、倍率が400倍の光学顕微鏡で観察して、R/2部位置におけるフェライト率(面積率)の測定と組織(相)の特定を行った。   The surface of each round bar is mirror-polished in parallel with the longitudinal direction of forging and includes a position 15 mm from the surface (position of 1/2 radius, hereinafter referred to as “R / 2 part position”). Then, after corroding with the nital, the ferrite ratio (area ratio) was measured at the R / 2 part position and the structure (phase) was identified with an optical microscope having a magnification of 400 times.

機械的特性は、各丸棒のR/2部位置からJIS14A号の引張試験片を採取して室温及び200℃で引張試験を行い、各鋼の高温強度特性を、室温での引張強度に対する200℃での0.2%耐力の比率(以下、「高温降伏比」という。)で評価した。   The mechanical properties were obtained by collecting a tensile test piece of JIS14A from the R / 2 part position of each round bar and conducting a tensile test at room temperature and 200 ° C. The ratio was evaluated by the ratio of 0.2% proof stress at ℃ (hereinafter referred to as “high temperature yield ratio”).

また、微量油潤滑切削性は、上記の各丸棒を100mmずつの長さに切断したものを試験片とし、直径(D)が6.0mm、全長が180mm、刃長が130mmで先端角が140゜の油穴付き超硬コーティングドリルを用いて、下記の条件で切削して調査した。   Micro oil lubrication cutting performance is obtained by cutting each of the above-mentioned round bars into a length of 100 mm as a test piece, having a diameter (D) of 6.0 mm, a total length of 180 mm, a blade length of 130 mm, and a tip angle of Using a cemented carbide drill with a 140 ° oil hole, cutting was conducted under the following conditions.

・回転数:5300rpm、
・送り:0.15mm/rev、
・試験片長手方向の加工穴深さ:95mm(約16D)、
・潤滑条件:生分解性の高い合成エステルを約1.0cm3/時の割合でドリル油穴から内部給油で塗布。
・ Rotation speed: 5300 rpm,
-Feed: 0.15 mm / rev,
-Processing hole depth in the longitudinal direction of the test piece: 95 mm (about 16D),
Lubrication condition: Synthetic ester with high biodegradability is applied at a rate of about 1.0 cm 3 / hour from the drill oil hole with internal lubrication.

なお、上記の条件で微量油潤滑切削した際の切削抵抗(スラスト力)の測定値と工具寿命によって微量油潤滑切削性を評価し、工具寿命は、700穴穿孔するまでにドリルが折損して穿孔不能となった場合の、穿孔不能となるまでの穿孔個数で評価した。なお、折損することなく700穴の穿孔を行えた場合には工具寿命は良好であるとした。また、本加工試験においても、事前に直径が6.05mm、深さが12mmの穴をガイド穴として加工するものとする。したがって、先に述べた加工穴深さとしての95mmには、このガイド穴が含まれている。   In addition, micro oil lubrication cutting performance is evaluated based on the measured value of cutting resistance (thrust force) and tool life when micro oil lubricated cutting is performed under the above conditions. The tool life is that the drill breaks before 700 holes are drilled. Evaluation was made based on the number of drilled holes until drilling was not possible. In addition, when 700 holes could be drilled without breaking, the tool life was considered good. In this processing test, a hole having a diameter of 6.05 mm and a depth of 12 mm is processed in advance as a guide hole. Therefore, this guide hole is included in 95 mm as the processing hole depth described above.

表5に、上記の各種調査結果をまとめて示す。表5においては、室温での引張強度を「TS(RT)」と表記し、200℃での0.2%耐力を「YP(200℃)」と表記した。また、「工具寿命」欄における「○」印は、折損することなく700穴の穿孔が行え、工具寿命が良好であったことを示す。なお、表5中における「第3相」とは、既に述べたように、「フェライトパーライト組織」以外の組織を指す。   Table 5 summarizes the results of the various surveys described above. In Table 5, the tensile strength at room temperature was expressed as “TS (RT)”, and the 0.2% proof stress at 200 ° C. was expressed as “YP (200 ° C.)”. In addition, a “◯” mark in the “tool life” column indicates that 700 holes could be drilled without breakage and that the tool life was good. The “third phase” in Table 5 refers to a structure other than the “ferrite pearlite structure” as described above.

Figure 2006083448
Figure 2006083448

表5から明らかなように、鋼の化学組成が本発明で規定する範囲内にあり、更に、組織も本発明の規定を満足する本発明例の試験番号1〜24の場合、高温降伏比が0.53以下であって、切削抵抗(スラスト力)は小さく工具寿命も良好で微量油潤滑切削性に優れている。   As is apparent from Table 5, the chemical composition of the steel is within the range defined by the present invention, and the structure is also the test numbers 1 to 24 of the present invention examples that satisfy the requirements of the present invention. It is 0.53 or less, cutting resistance (thrust force) is small, tool life is good, and trace oil lubrication machinability is excellent.

これに対して、試験番号25〜31の比較例は、いずれも高温降伏比が高く、切削抵抗(スラスト力)が1000Nを超える高い値で、また、700穴穿孔するまでにドリルが折損して工具寿命も短く微量油潤滑切削性に劣ることが明らかである。   On the other hand, the comparative examples of test numbers 25 to 31 all have a high high-temperature yield ratio, the cutting resistance (thrust force) is a high value exceeding 1000 N, and the drill breaks before 700 holes are drilled. It is clear that the tool life is also short and inferior in trace oil lubricity.

なお、Sの含有量が本発明で規定する下限を下回る鋼B1を用いた試験番号25の場合、高温降伏比が試験番号1〜24の本発明例に比べて若干高いだけの0.55であるにも拘わらず微量油潤滑切削性が低いのは、切り屑せん断域での変形の起点となるMnSが少なく、せん断変形抵抗が大きいためである。   In addition, in the case of test number 25 using steel B1 in which the content of S is lower than the lower limit specified in the present invention, the high temperature yield ratio is 0.55 which is only slightly higher than the present invention examples of test numbers 1 to 24. The reason why the oil-lubricated machinability is low in spite of the fact is that there is little MnS that is the starting point of deformation in the chip shear region, and the shear deformation resistance is large.

また、Cの含有量が本発明で規定する上限を超える鋼B4を用いた試験番号28の場合、高温降伏比が試験番号1〜24の本発明例に比べて若干高いだけの0.55であるにも拘わらず微量油潤滑切削性が低いのは、C増量により強度そのものが高くなっているために200℃での0.2%耐力自身が高くなっているためである。   Further, in the case of test number 28 using steel B4 in which the C content exceeds the upper limit specified in the present invention, the high temperature yield ratio is 0.55 which is only slightly higher than the present invention examples of test numbers 1 to 24. Nevertheless, the reason why the trace oil lubricity machinability is low is that the 0.2% proof stress itself at 200 ° C. is high because the strength itself is increased by the C increase.

本発明の微量油潤滑加工用鋼材は、微量油潤滑切削用として利用することができる。なお、微量油潤滑切削法は、エネルギー消費が少ないばかりか環境に優しく、しかも、切削加工効率を高めることができるとともに加工精度も維持することができる技術である。このため、本発明の微量油潤滑加工用鋼材を用いることで、地球環境の保護やコスト低減を図ることができる。
The steel material for trace oil lubrication processing of the present invention can be used for trace oil lubrication cutting. The micro-oil lubricated cutting method is a technique that not only consumes less energy but is also environmentally friendly, and can increase cutting efficiency and maintain machining accuracy. For this reason, protection of global environment and cost reduction can be aimed at by using the steel material for trace oil lubrication processing of the present invention.

Claims (4)

質量%で、C:0.30〜0.46%、Si:0.1〜1.0%、Mn:0.2〜2.0%、P:0.08%以下、S:0.01〜0.12%、N:0.010%以下、Al:0.002〜0.03%及びTi:0〜0.03%を含むとともに、少なくとも下記の(1)式又は(2)式のいずれかを満たし、残部はFe及び不純物の化学組成で、組織がフェライト率が15〜65%のフェライトパーライト組織からなることを特徴とする微量油潤滑加工用鋼材。
Al/N≧2・・・(1)
Ti/N≧3・・・(2)
なお、(1)式及び(2)式中の元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.30 to 0.46%, Si: 0.1 to 1.0%, Mn: 0.2 to 2.0%, P: 0.08% or less, S: 0.01 -0.12%, N: 0.010% or less, Al: 0.002-0.03% and Ti: 0-0.03%, and at least of the following formula (1) or (2) A trace oil lubrication steel material characterized by satisfying any of the above, with the balance being the chemical composition of Fe and impurities, and the structure comprising a ferrite pearlite structure having a ferrite ratio of 15 to 65%.
Al / N ≧ 2 (1)
Ti / N ≧ 3 (2)
In addition, the element symbol in (1) Formula and (2) Formula represents content in steel in the mass% of the element.
Feの一部に代えて、質量%で、Cr:0.01〜0.8%及びV:0.01〜0.3%のうちの1種以上を含有する請求項1に記載の微量油潤滑加工用鋼材。   The trace amount oil of Claim 1 which replaces with a part of Fe and contains 1 or more types in Cr: 0.01-0.8% and V: 0.01-0.3% by the mass%. Steel material for lubrication. Feの一部に代えて、質量%で、Nd:0.005〜0.05%及びNb:0.005〜0.1%のうちの1種以上を含有する請求項1又は2に記載の微量油潤滑加工用鋼材。   It replaces with a part of Fe, and contains 1 or more types of Nd: 0.005-0.05% and Nb: 0.005-0.1% by the mass%. Steel material for micro oil lubrication. Feの一部に代えて、質量%で、B:0.0005〜0.005%を含有する請求項1から3までのいずれかに記載の微量油潤滑加工用鋼材。
The steel material for trace oil lubrication processing according to any one of claims 1 to 3, which contains B: 0.0005 to 0.005% in mass% instead of a part of Fe.
JP2004271218A 2004-09-17 2004-09-17 Steel material for micro oil lubrication Active JP4379604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271218A JP4379604B2 (en) 2004-09-17 2004-09-17 Steel material for micro oil lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271218A JP4379604B2 (en) 2004-09-17 2004-09-17 Steel material for micro oil lubrication

Publications (3)

Publication Number Publication Date
JP2006083448A true JP2006083448A (en) 2006-03-30
JP2006083448A5 JP2006083448A5 (en) 2006-11-30
JP4379604B2 JP4379604B2 (en) 2009-12-09

Family

ID=36162197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271218A Active JP4379604B2 (en) 2004-09-17 2004-09-17 Steel material for micro oil lubrication

Country Status (1)

Country Link
JP (1) JP4379604B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291323A (en) * 2007-05-25 2008-12-04 Sumitomo Metal Ind Ltd Steel for deep hole drilling with minimum quantity lubrication
WO2011122233A1 (en) 2010-03-30 2011-10-06 新日本製鐵株式会社 Cutting method for steel for use in machine structure
JP2015212414A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Steel for cold-forged component
CN115537646A (en) * 2021-06-29 2022-12-30 宝山钢铁股份有限公司 Non-quenched and tempered steel and manufacturing method thereof
CN115852239A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-strength and high-toughness free-cutting non-quenched and tempered steel and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291323A (en) * 2007-05-25 2008-12-04 Sumitomo Metal Ind Ltd Steel for deep hole drilling with minimum quantity lubrication
WO2011122233A1 (en) 2010-03-30 2011-10-06 新日本製鐵株式会社 Cutting method for steel for use in machine structure
CN102470502A (en) * 2010-03-30 2012-05-23 新日本制铁株式会社 Cutting method for steel for use in machine structure
US8545137B2 (en) 2010-03-30 2013-10-01 Nippon Steel & Sumitomo Metal Corporation Cutting method of steel for machine structural use
JP2015212414A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Steel for cold-forged component
CN115537646A (en) * 2021-06-29 2022-12-30 宝山钢铁股份有限公司 Non-quenched and tempered steel and manufacturing method thereof
CN115852239A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-strength and high-toughness free-cutting non-quenched and tempered steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4379604B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
KR101374991B1 (en) Method of cutting steel for use in machine structures
JP5009438B2 (en) Cutting method for machine structural steel
JP5114689B2 (en) Case-hardened steel and method for producing the same
CN100355927C (en) Steel excellent in machinability
US20060013720A1 (en) Steel superior in machinability and method of production of same
JP2008111186A (en) Martensitic free-cutting stainless steel
JP4403875B2 (en) Cold work tool steel
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
JP7283271B2 (en) Free-cutting ferritic stainless steel and method for producing the same
EP1270757A1 (en) Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy
JP2000160284A (en) Free-cutting steel
JP3680674B2 (en) Machine structural steel and machine structural parts with excellent machinability and toughness
JP4379604B2 (en) Steel material for micro oil lubrication
JP3437079B2 (en) Machine structural steel with excellent chip control
JP4788320B2 (en) Steel material for micro oil lubrication
JP6631234B2 (en) Ferritic free-cutting stainless steel and its manufacturing method.
JP6477382B2 (en) Free-cutting steel
JP5018237B2 (en) Steel for deep oil drilling
JP3978111B2 (en) Carburizing steel with excellent torsional fatigue properties
JP6477383B2 (en) Free-cutting steel
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP3680708B2 (en) Machine structural steel and machine structural parts with excellent machinability
JP5837837B2 (en) High-hardness BN free cutting steel with a tool life of 300HV10 or higher

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350