JP2006083444A - Porous titanium alloy - Google Patents

Porous titanium alloy Download PDF

Info

Publication number
JP2006083444A
JP2006083444A JP2004270963A JP2004270963A JP2006083444A JP 2006083444 A JP2006083444 A JP 2006083444A JP 2004270963 A JP2004270963 A JP 2004270963A JP 2004270963 A JP2004270963 A JP 2004270963A JP 2006083444 A JP2006083444 A JP 2006083444A
Authority
JP
Japan
Prior art keywords
titanium alloy
porous
porous titanium
alloy
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270963A
Other languages
Japanese (ja)
Inventor
Kuni Ka
国 何
Masuo Hagiwara
益夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004270963A priority Critical patent/JP2006083444A/en
Publication of JP2006083444A publication Critical patent/JP2006083444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous titanium alloy in which a porous structure can be formed only by being simply subjected to cooling in a melted state. <P>SOLUTION: The porous titanium alloy has a composition expressed by formula (1): (Ti<SB>a</SB>M1<SB>b</SB>M2<SB>c</SB>M3<SB>d</SB>)<SB>x</SB>(Ti<SB>e</SB>R1<SB>f</SB>)<SB>1-x</SB>; wherein, M1 is V, Cr, Co, Mn, Fe, Ni, Zr or Y; M2 is Cu, Pd, Ag, Pt or Au; M3 is Al, Zn, Ga, Cd, In, Sn, Sb, Hg, Tl, Pb, Bi or Po; R1 is Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Re, Os or Ir; and a=100-(b+c+d), b=1 to 30, C=1 to 30, d=2 to 20, e=100-f, f=10 to 50, and x=0.1 to 0.7 (in the formula, a, b, c, d, e and f are atomic percent). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、溶融状態から単純に冷却するだけでポーラス構造が形成されるポーラスチタン合金に関するものである。   The present invention relates to a porous titanium alloy in which a porous structure is formed simply by cooling from a molten state.

金属または合金中にかなりの量の空孔(ポア、pore)を含むポーラス金属またはポーラス合金は、空孔のない金属または合金と比較して低密度および低弾性率を示し、また、ユニークな熱的、電気的、音響的特性等を示すことから、近年、機能用途、構造用途等の広範な分野で適用が試みられているものである。   Porous metals or alloys that contain a significant amount of pores in the metal or alloy exhibit low density and low modulus of elasticity compared to metals or alloys without pores, and unique heat In recent years, it has been attempted to be applied in a wide range of fields such as functional applications and structural applications.

とりわけ、人工骨のような硬組織代替生体用素材への適用は、優位であると考えられる。   In particular, application to a hard tissue substitute biomaterial such as an artificial bone is considered to be advantageous.

たとえば、ポア内部で新たな骨組織が成長し、ポーラス金属またはポーラス合金と骨との接合は強固なものとなることが予想される。また、ポア部分を通じて体液が流れ、円滑に体内に伝達されると期待される。また、人工骨等の硬組織代替材料のヤング率は、約40GPaといわれている人骨のヤング率に等しいか、または極めて近い値であることが要求されるが、低ヤング率を示すポーラス金属またはポーラス合金は、まさにこの条件を満たす可能性を有している。   For example, it is expected that a new bone tissue grows inside the pore, and the bonding between the porous metal or the porous alloy and the bone becomes strong. In addition, it is expected that body fluid flows through the pore and is smoothly transmitted to the body. Further, the Young's modulus of a hard tissue substitute material such as artificial bone is required to be equal to or very close to the Young's modulus of human bone, which is said to be about 40 GPa. Porous alloys have the potential to meet this exact condition.

生体用素材に要求される第2の条件は、人体に対して為害作用を及ぼさないことである。チタン合金は、軽くて強く、かつ人体に無害であることから生体用素材として最適である。   The second condition required for the biomaterial is that it does not cause harmful effects on the human body. Titanium alloys are optimal as biomaterials because they are light, strong and harmless to the human body.

しかしながら、チタン合金のヤング率は70〜110GPaの範囲にあり、鉄系素材と比較すれば約半分と低いものの、人骨よりも大幅に高い。したがって、生体用チタン合金の開発では、ヤング率をいかにして人骨に近づけるかが大きな課題となっている。   However, the Young's modulus of the titanium alloy is in the range of 70 to 110 GPa, which is about half lower than that of the iron-based material, but is significantly higher than that of the human bone. Therefore, in the development of biomedical titanium alloys, how to make Young's modulus closer to human bones is a major issue.

ポーラスチタン合金は、チタン合金のヤング率を低下させるための一つの解決策と考えられる。ポーラスチタン合金の製造方法には、(a)金属粉末を混合し、焼結して合金化するという粉末冶金法(たとえば、非特許文献1参照)、(b)溶融金属または溶融合金にガスを吹き付け、溶融金属または溶融合金を攪拌して凝固させる方法(たとえば、特許文献1参照)、(c)固体−ガス共融凝固反応を利用する方法(たとえば、非特許文献2参照)が知られている。
C.Y.Chung, C.L.Chu and S.D.Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis, Materials Letters, volume 58, Issue 11, April 2004, Pages 1683-1686 Jin, I., Kenny, L. and Sang, H., Method of Producing Lightweight Foamed Metal, U.S. Patent No. 4,973,358, 1990 A.E.Simone and L.J.Gibson, The tensile strength of porous copper made by the GASAR process, Acta Materialia, volume 44, Issue 4, April 1996, Pages 1437-1447
Porous titanium alloys are considered as one solution for reducing the Young's modulus of titanium alloys. The porous titanium alloy manufacturing method includes: (a) a powder metallurgy method in which metal powder is mixed, sintered and alloyed (for example, see Non-Patent Document 1); (b) a gas is supplied to the molten metal or molten alloy. There are known a method of solidification by spraying, stirring a molten metal or a molten alloy (for example, see Patent Document 1), and a method (c) using a solid-gas eutectic solidification reaction (for example, see Non-Patent Document 2). Yes.
CYChung, CLChu and SDWang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis, Materials Letters, volume 58, Issue 11, April 2004, Pages 1683-1686 Jin, I., Kenny, L. and Sang, H., Method of Producing Lightweight Foamed Metal, US Patent No. 4,973,358, 1990 AESimone and LJGibson, The tensile strength of porous copper made by the GASAR process, Acta Materialia, volume 44, Issue 4, April 1996, Pages 1437-1447

しかしながら、以上の製造方法にはそれぞれに問題点が指摘される。すなわち、粉末冶金法は、製造プロセスが複雑であり、他の二つの方法と比較してコスト高になるという欠
点がある。液体反応を利用する方法は、吹き付けガスは液体金属と反応しないものを選択する必要がある上、反応を制御することが難しく、ポーラス構造は一般に不均一であるという欠点を有している。
However, each of the above manufacturing methods has problems. That is, the powder metallurgy method has a drawback that the manufacturing process is complicated and the cost is higher than the other two methods. The method using the liquid reaction has a drawback that it is necessary to select a blowing gas that does not react with the liquid metal, and it is difficult to control the reaction, and the porous structure is generally non-uniform.

本願発明は、このような事情に鑑みてなされたものであり、溶融状態から単純に冷却するだけでポーラス構造が形成されるポーラスチタン合金を提供することを解決すべき課題としている。   This invention is made | formed in view of such a situation, and makes it the problem which should be solved to provide the porous titanium alloy in which a porous structure is formed only by cooling from a molten state.

本願発明のポーラスチタン合金の組成は、次式(1)で示される。   The composition of the porous titanium alloy of the present invention is represented by the following formula (1).

(TiaM1bM2cM3dx(TieR1f1-x (1)
ここで、M1は、V,Cr,Co,Mn,Fe,Ni,ZrまたはY
M2は、Cu,Pd,Ag,PtまたはAu
M3は、Al,Zn,Ga,Cd,In,Sn,Sb,Hg,Tl,Pb,BiまたはPo
R1は、Nb,Mo,Tc,Ru,Rh,Hf,Ta,W,Re,OsまたはIr
a=100−(b+c+d),b=1〜30,C=1〜30,d=2〜20,e=100−f,f=10〜50,x=0.1〜0.7(a,b,c,d,eおよびfは原子パーセント)
R1は、高融点体心立方晶元素である。TiとR1とを組み合わせることによりチタン固溶体の液相温度は2000K〜3000Kという高い温度となる。
(Ti a M1 b M2 c M3 d ) x (Ti e R1 f ) 1-x (1)
Here, M1 is V, Cr, Co, Mn, Fe, Ni, Zr or Y
M2 is Cu, Pd, Ag, Pt or Au
M3 is Al, Zn, Ga, Cd, In, Sn, Sb, Hg, Tl, Pb, Bi, or Po.
R1 is Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Re, Os or Ir
a = 100- (b + c + d), b = 1-30, C = 1-30, d = 2-20, e = 100-f, f = 10-50, x = 0.1-0.7 (a, b, c, d, e and f are atomic percent)
R1 is a refractory body-centered cubic element. By combining Ti and R1, the liquid phase temperature of the titanium solid solution is as high as 2000K to 3000K.

M1,M2およびM3は、チタンと共晶反応を起こす元素であり、周期律表にしたがってこのように3つに仕分けしている。共晶反応を起こす組成での融点は、1000K〜1500Kという低い温度である。また、これら3つの元素を同時に添加すると、金属組織はきわめて微細になる。   M1, M2 and M3 are elements that cause a eutectic reaction with titanium, and are thus classified into three according to the periodic table. The melting point of the composition causing the eutectic reaction is a low temperature of 1000K to 1500K. Moreover, when these three elements are added simultaneously, the metal structure becomes extremely fine.

以上のR1と(M1,M2およびM3)を組み合わせたことにより、図1に示したチタン合金の状態図において、温度差(Tl−Te)はきわめて大きな値となる。上記(1)式で示される組成を持つ合金を液体状態から冷却すると、図2の模式図に示したように、1)温度Tl付近で、まず、R1元素が析出し、デンドライトが形成される。2)冷却にと
もなって、温度Teまでの間にデンドライトがさらに形成され、成長し、残湯を囲みこむ
ようになる。3)温度Teより下がると、囲み込まれた残存溶湯は固体になるが、このと
きに体積収縮を起こし、空孔が形成される。体積収縮量は、次式(2)で示される。
By combining the above R1 and (M1, M2 and M3), the temperature difference (T 1 −T e ) becomes a very large value in the phase diagram of the titanium alloy shown in FIG. When the alloy having the composition represented by the above formula (1) is cooled from the liquid state, as shown in the schematic diagram of FIG. 2, 1) first, the R1 element is precipitated near the temperature T l , and dendrite is formed. The 2) With the cooling, dendrite is further formed until the temperature T e, grown, so Komu surrounds the remaining hot water. 3) drops below the temperature T e, but the remaining molten metal incorporated enclosed becomes solid, causing a volumetric contraction at this time, holes are formed. The volume shrinkage is expressed by the following equation (2).

体積収縮量∝α(Tl−Te)V+ΔVL-S (2)
ここで、αは残存溶湯の熱収縮係数、Vは残存溶湯の体積、ΔVL-Sは残存溶湯の液体
から固体への変態に際しての体積収縮である。(Tl−Te)は1000K〜2000Kと大きな温度範囲を取るので、上記1)〜3)に記載された機構によって形成される空孔は、きわめて大きな寸法を持つ。また、このような体積収縮にともなう空孔は、デンドライトにより取り囲まれているので、空孔の寸法および分布は、合金中のデンドライトの形態、寸法および体積率に大きく依存する。
Volume shrinkage ∝α (T 1 −T e ) V + ΔV LS (2)
Where α is the thermal shrinkage coefficient of the remaining molten metal, V is the volume of the remaining molten metal, and ΔV LS is the volume shrinkage during the transformation of the remaining molten metal from liquid to solid. Since (T 1 −T e ) takes a large temperature range of 1000 K to 2000 K, the holes formed by the mechanisms described in 1) to 3) above have extremely large dimensions. Moreover, since the void | hole accompanying such a volume contraction is surrounded by the dendrite, the dimension and distribution of a void | hole are greatly dependent on the form, dimension, and volume ratio of the dendrite in an alloy.

このように、本願発明のポーラスチタン合金は、R1と(M1,M2およびM3)とを組み合わせたことで(Tl−Te)の値を大きく取り、空孔の形成をin−situで容易にしたものである。ポーラス構造は、合金の組成や冷却速度を変えることにより調整することができ、制御することも可能である。たとえば組成を変えることにより空孔率を変化させることができる。また、組成と冷却速度を変えることにより、空孔の寸法と分布を変化させることが可能である。 As described above, the porous titanium alloy of the present invention takes a large value of (T 1 -T e ) by combining R1 and (M1, M2 and M3), and facilitates formation of pores in-situ. It is a thing. The porous structure can be adjusted and controlled by changing the alloy composition and cooling rate. For example, the porosity can be changed by changing the composition. It is also possible to change the pore size and distribution by changing the composition and cooling rate.

本願発明のポーラスチタン合金の機械的性質は、従来の方法で作製されるポーラスチタン合金の機械的性質より優れる。降伏強さは500MPa〜1500MPaである。圧縮試験化での塑性歪みは3%〜50%である。引張り強さは300MPa〜800MPaである。そして、ヤング率は30GPa〜90GPaの範囲に調整される。したがって、本願発明のポーラスチタン合金は、人工骨等の硬組織代替材料に特に適している。   The mechanical properties of the porous titanium alloy of the present invention are superior to the mechanical properties of the porous titanium alloy produced by the conventional method. The yield strength is 500 MPa to 1500 MPa. The plastic strain in the compression test is 3% to 50%. The tensile strength is 300 MPa to 800 MPa. And Young's modulus is adjusted to the range of 30 GPa-90 GPa. Therefore, the porous titanium alloy of the present invention is particularly suitable for a hard tissue substitute material such as artificial bone.

なお、組成が前記(1)式からはずれると、十分な体積率の空孔が得られず、必要な機械的性質が得られない。   If the composition deviates from the above formula (1), pores having a sufficient volume ratio cannot be obtained, and necessary mechanical properties cannot be obtained.

本願発明のポーラスチタン合金によれば、機械的性質に優れたポーラスチタン合金が容易に得られる。   According to the porous titanium alloy of the present invention, a porous titanium alloy having excellent mechanical properties can be easily obtained.

(Ti45Cu25Ni23Sn70.6(Ti75Nb250.4の組成を持つチタン合金を銅製
鋳型に鋳込んで製造した。図3は、得られたチタン合金のポーラス構造を示している。空孔の体積率は約7%であった。このポーラスチタン合金は、圧縮試験に際して800KPaの降伏強さ、3%の塑性歪みを示した。圧縮試験の際の応力−歪み曲線の傾きからヤング率を求めた。ヤング率は約80GPaであった。
A titanium alloy having a composition of (Ti 45 Cu 25 Ni 23 Sn 7 ) 0.6 (Ti 75 Nb 25 ) 0.4 was cast into a copper mold. FIG. 3 shows the porous structure of the obtained titanium alloy. The volume ratio of the pores was about 7%. This porous titanium alloy exhibited a yield strength of 800 KPa and a plastic strain of 3% during the compression test. The Young's modulus was determined from the slope of the stress-strain curve during the compression test. Young's modulus was about 80 GPa.

(Ti40Cu28Ni24Sn80.5(Ti80Mo200.5の組成を持つチタン合金を銅製
鋳型に鋳込んで製造した。図4(a)(b)は、得られたチタン合金のポーラス構造を示している。図4(a)はポーラス金属組織を示したものであり、図4(b)は、デンドライトおよびデンドライト間の空孔の詳細を示したものである。空孔の体積率は約35%であった。このポーラスチタン合金は、圧縮試験に際して400MPaの降伏強さ、10%の塑性歪みを示した。ヤング率は約53GPaであった。
A titanium alloy having a composition of (Ti 40 Cu 28 Ni 24 Sn 8 ) 0.5 (Ti 80 Mo 20 ) 0.5 was cast into a copper mold. 4 (a) and 4 (b) show the porous structure of the obtained titanium alloy. FIG. 4A shows the porous metal structure, and FIG. 4B shows the details of the dendrite and the pores between the dendrites. The volume ratio of the pores was about 35%. This porous titanium alloy exhibited a yield strength of 400 MPa and a plastic strain of 10% during the compression test. The Young's modulus was about 53 GPa.

(Ti70Cu3Ni10Sn170.3(Ti54Ta460.7の組成を持つチタン合金を、水
冷銅ハース上においてアルゴン雰囲気下でアーク溶解により溶製した。図5は、得られたチタン合金のポーラス構造を示している。空孔の体積率は約40%であった。このポーラスチタン合金は、圧縮試験に際して300MPaの降伏強さ、50%の塑性歪みを示した。ヤング率は約40GPaであった。
A titanium alloy having a composition of (Ti 70 Cu 3 Ni 10 Sn 17 ) 0.3 (Ti 54 Ta 46 ) 0.7 was melted by arc melting in an argon atmosphere on a water-cooled copper hearth. FIG. 5 shows the porous structure of the obtained titanium alloy. The volume ratio of the pores was about 40%. This porous titanium alloy exhibited a yield strength of 300 MPa and a plastic strain of 50% during the compression test. Young's modulus was about 40 GPa.

もちろん、本願発明は、以上の実施例によって限定されるものではない。組成、製造方法等の細部については様々な態様が可能である。   Of course, the present invention is not limited to the above embodiments. Various aspects are possible for details such as composition and manufacturing method.

以上詳しく説明したとおり、本願発明によって、高強度、低ヤング率の生体用素材としての適用が有望視されるポーラスチタン合金が容易に得られる。   As described above in detail, according to the present invention, a porous titanium alloy that is expected to be applied as a biomaterial with high strength and low Young's modulus is easily obtained.

ポーラスチタン合金の組成と温度との関係を示した状態図である。It is the state figure which showed the relationship between the composition of porous titanium alloy, and temperature. ポーラスチタン合金におけるポーラス構造の形成過程を示した模式図である。It is the schematic diagram which showed the formation process of the porous structure in a porous titanium alloy. 実施例1で得られた(Ti45Cu25Ni23Sn70.6(Ti75Nb250.4合金のポーラス構造を示した電子顕微鏡写真である。2 is an electron micrograph showing a porous structure of (Ti 45 Cu 25 Ni 23 Sn 7 ) 0.6 (Ti 75 Nb 25 ) 0.4 alloy obtained in Example 1. FIG. (a)(b)は、それぞれ、実施例2で得られた(Ti40Cu28Ni24Sn80.5(Ti80Mo200.5合金のポーラス構造を示した電子顕微鏡写真である。(a)はポーラス金属組織を、(b)はデンドライトおよびデンドライト間の空孔の詳細を示している。(A) and (b) are electron micrographs each showing a porous structure of the (Ti 40 Cu 28 Ni 24 Sn 8 ) 0.5 (Ti 80 Mo 20 ) 0.5 alloy obtained in Example 2. (A) shows the porous metal structure, and (b) shows the details of the dendrites and the pores between the dendrites. 実施例3で得られた(Ti70Cu3Ni10Sn170.3(Ti54Ta460.7合金のポーラス構造を示した電子顕微鏡写真である。4 is an electron micrograph showing a porous structure of (Ti 70 Cu 3 Ni 10 Sn 17 ) 0.3 (Ti 54 Ta 46 ) 0.7 alloy obtained in Example 3. FIG.

Claims (1)

組成式が次式(1)で示されることを特徴とするポーラスチタン合金。
(TiaM1bM2cM3dx(TieR1f1-x (1)
ここで、M1は、V,Cr,Co,Mn,Fe,Ni,ZrまたはY
M2は、Cu,Pd,Ag,PtまたはAu
M3は、Al,Zn,Ga,Cd,In,Sn,Sb,Hg,Tl,Pb,BiまたはPo
R1は、Nb,Mo,Tc,Ru,Rh,Hf,Ta,W,Re,OsまたはIr
a=100−(b+c+d),b=1〜30,C=1〜30,d=2〜20,e=100−f,f=10〜50,x=0.1〜0.7(a,b,c,d,eおよびfは原子パーセント)

A porous titanium alloy having a composition formula represented by the following formula (1):
(Ti a M1 b M2 c M3 d ) x (Ti e R1 f ) 1-x (1)
Here, M1 is V, Cr, Co, Mn, Fe, Ni, Zr or Y
M2 is Cu, Pd, Ag, Pt or Au
M3 is Al, Zn, Ga, Cd, In, Sn, Sb, Hg, Tl, Pb, Bi, or Po.
R1 is Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Re, Os or Ir
a = 100- (b + c + d), b = 1-30, C = 1-30, d = 2-20, e = 100-f, f = 10-50, x = 0.1-0.7 (a, b, c, d, e and f are atomic percent)

JP2004270963A 2004-09-17 2004-09-17 Porous titanium alloy Pending JP2006083444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270963A JP2006083444A (en) 2004-09-17 2004-09-17 Porous titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270963A JP2006083444A (en) 2004-09-17 2004-09-17 Porous titanium alloy

Publications (1)

Publication Number Publication Date
JP2006083444A true JP2006083444A (en) 2006-03-30

Family

ID=36162194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270963A Pending JP2006083444A (en) 2004-09-17 2004-09-17 Porous titanium alloy

Country Status (1)

Country Link
JP (1) JP2006083444A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443965B1 (en) 2012-09-07 2014-09-29 세종대학교산학협력단 Ti-Fe alloy comprising Bi or Pb in colony boundaries
CN105543555A (en) * 2015-12-18 2016-05-04 江苏常盛无纺设备有限公司 High-yield carding machine
CN108893650A (en) * 2018-06-01 2018-11-27 张家港保税区恒隆钢管有限公司 A kind of front anticollision beam of automobile seamless steel pipe and preparation method thereof
CN109136643A (en) * 2018-09-28 2019-01-04 广州宇智科技有限公司 A kind of casting high thermal conductivity and has liquid spinodal decomposition Type Titanium Alloy
CN109971985A (en) * 2019-04-11 2019-07-05 南昌大学 A kind of preparation method of POROUS TITANIUM
CN110343894A (en) * 2019-08-09 2019-10-18 南昌大学 A kind of POROUS TITANIUM, preparation method and applications based on vacuum in situ hot melt reaction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443965B1 (en) 2012-09-07 2014-09-29 세종대학교산학협력단 Ti-Fe alloy comprising Bi or Pb in colony boundaries
CN105543555A (en) * 2015-12-18 2016-05-04 江苏常盛无纺设备有限公司 High-yield carding machine
CN108893650A (en) * 2018-06-01 2018-11-27 张家港保税区恒隆钢管有限公司 A kind of front anticollision beam of automobile seamless steel pipe and preparation method thereof
CN109136643A (en) * 2018-09-28 2019-01-04 广州宇智科技有限公司 A kind of casting high thermal conductivity and has liquid spinodal decomposition Type Titanium Alloy
CN109971985A (en) * 2019-04-11 2019-07-05 南昌大学 A kind of preparation method of POROUS TITANIUM
CN110343894A (en) * 2019-08-09 2019-10-18 南昌大学 A kind of POROUS TITANIUM, preparation method and applications based on vacuum in situ hot melt reaction

Similar Documents

Publication Publication Date Title
Krishna et al. Laser processing of net-shape NiTi shape memory alloy
Krishna et al. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping
Yeh et al. Synthesis of NiTi intermetallics by self-propagating combustion
JP2008537763A (en) Metal composite material and method of forming the same
Wen et al. Porous shape memory alloy scaffolds for biomedical applications: a review
JP5678353B2 (en) Metal member manufacturing method and metal member
US20130032252A1 (en) Amorphous nickel-free zirconium alloy
US20210114094A1 (en) Production of a bulk metallic glass composite material using a powder-based additive manufacture
JP2021527162A (en) Density-optimized molybdenum alloy
Azar et al. Synthesis and consolidation of W–Cu composite powders with silver addition
JP2009024198A (en) Method for manufacturing sputtering target material for nickel-tangsten based interlayer
JP2006083444A (en) Porous titanium alloy
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
CN100457933C (en) Preparation method of intensified tantalum and tantalum alloy material
US20100150767A1 (en) Method of making metallic foams and foams produced
CN111850327B (en) Preparation method of porous NiTi alloy based on selective dissolution and product
Senthilkumar et al. Spark plasma sintering of NiTi shape memory alloy
JP3731041B2 (en) High corrosion resistance magnesium alloy and method for producing high corrosion resistance magnesium material
Kim Martensitic transformation behavior and mechanical properties of highly porous Ti-Ni-Mo scaffolds
JP4392371B2 (en) Method for producing particle-dispersed intermetallic compound
CN108070800B (en) Ti-based amorphous alloy composite material and preparation method thereof
JP4303241B2 (en) Method for producing magnetically active shape memory metal alloy
Hitit et al. Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses
Kim et al. Microstructure and shape memory characteristics of gas-atomized TiNi powders
Nam et al. Effect of ball milling conditions on the microstructure and the transformation behavior of Ti− Ni and Ti− Ni− Cu shape memory alloy powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02