JP2006083306A - Diglycidyl ether, curable composition and cured product - Google Patents
Diglycidyl ether, curable composition and cured product Download PDFInfo
- Publication number
- JP2006083306A JP2006083306A JP2004270423A JP2004270423A JP2006083306A JP 2006083306 A JP2006083306 A JP 2006083306A JP 2004270423 A JP2004270423 A JP 2004270423A JP 2004270423 A JP2004270423 A JP 2004270423A JP 2006083306 A JP2006083306 A JP 2006083306A
- Authority
- JP
- Japan
- Prior art keywords
- curable composition
- diglycidyl ether
- epoxy resin
- curing agent
- cured product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *c(cc1)ccc1[Si](c1ccc(*)cc1)c1ccc(*)cc1 Chemical compound *c(cc1)ccc1[Si](c1ccc(*)cc1)c1ccc(*)cc1 0.000 description 7
Landscapes
- Epoxy Resins (AREA)
Abstract
Description
本発明は、[i] 下記式(1) The present invention provides [i] the following formula (1)
で示されるジグリシジルエーテル[以下、ジグリシジルエーテル(1)と略称する。]、
[ii] ジグリシジルエーテル(1)、エポキシ樹脂[a]および硬化剤[b]を含有する硬化性組成物、
[iii] さらに下記式(2)
Diglycidyl ether [hereinafter abbreviated as diglycidyl ether (1). ],
[Ii] a curable composition containing diglycidyl ether (1), an epoxy resin [a] and a curing agent [b],
[Iii] Furthermore, following formula (2)
で示されるジグリシジルエーテル[以下、ジグリシジルエーテル(2)と略称する。]を含有する上記[ii]の硬化性組成物、および
[iv] [ii]または[iii]の硬化性組成物を硬化させてなる硬化物に関する。
本発明によって得られるジグリシジルエーテル(1)は、樹脂改質剤、架橋剤、塗料、コーティング剤、インキ、医薬品、接着剤、バインダー、紙・繊維改質剤、また、特にエポキシ樹脂の反応性希釈剤などとして有用である。
Diglycidyl ether [hereinafter abbreviated as diglycidyl ether (2). ] [Ii] The curable composition of [ii] and [iv] [ii] or [iii] The curable composition obtained by curing.
The diglycidyl ether (1) obtained by the present invention is a resin modifier, a crosslinking agent, a paint, a coating agent, an ink, a pharmaceutical, an adhesive, a binder, a paper / fiber modifier, and particularly a reactivity of an epoxy resin. Useful as a diluent.
エポキシ樹脂は金属・ガラス・プラスチックなどの様々な材料への密着性に優れる上、耐熱性、耐薬品性、電気絶縁性が高く、硬化収縮率が低いという性質を有するので、塗料、接着剤、インキ、半導体封止材などの様々な用途に用いられている。しかし、エポキシ樹脂は一般に高粘度で作業性が悪いという問題点を有する。これを改善するために、エポキシ樹脂は、通常、反応性希釈剤を混合して組成物とし、硬化性を維持しながら、かかる組成物の粘度を低下させることが行なわれる。このような反応性希釈剤としては、従来、メチルグリシジルエーテル、n−ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルなどのモノグリシジルエーテル;1,6−ヘキサンジオールのジグリシジル化物、2−ブチル−2−エチル−1,3−プロパンジオールのジグリシジル化物、ネオペンチルグリコールのジグリシジル化物、ジエチレングリコールのジグリシジル化物などの(ポリ)アルキレングリコールのジグリシジル化物などの(ポリ)グリシジルエーテル;ネオデカン酸グリシジル、ダイマー酸ジグリシジル、テレフタル酸ジグリシジルなどのグリシジルエステルが知られている(例えば非特許文献1参照)。 Epoxy resins have excellent adhesion to various materials such as metal, glass, and plastic, as well as high heat resistance, chemical resistance, electrical insulation, and low cure shrinkage. It is used for various applications such as ink and semiconductor encapsulant. However, epoxy resins generally have a problem of high viscosity and poor workability. In order to improve this, an epoxy resin is usually mixed with a reactive diluent to form a composition, and the viscosity of the composition is lowered while maintaining curability. As such reactive diluents, conventionally, monoglycidyl ethers such as methyl glycidyl ether, n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether; 1,6-hexanediol diglycidylated product (Poly) glycidyl ethers such as (poly) alkylene glycol diglycidyl compounds such as diglycidyl compounds of 2-butyl-2-ethyl-1,3-propanediol, diglycidyl compounds of neopentyl glycol, diglycidyl compounds of diethylene glycol; Glycidyl esters such as glycidyl, diglycidyl dimer, and diglycidyl terephthalate are known (see, for example, Non-Patent Document 1).
上記した従来の反応性希釈剤をエポキシ樹脂に添加すると、粘度は低下して作業性は改善されるが、反応性希釈剤の種類や使用量によっては、エポキシ樹脂および反応性希釈剤からなる組成物を硬化させた硬化物の力学的強度が低下したり、吸水率が増加するなどの物性低下の問題が生じる。そのため、力学的特性に優れ、かつ吸水率が低い硬化物を得ることができる反応性希釈剤の開発が望まれている。
本発明は、上記問題を解決し、特にエポキシ樹脂の反応性希釈剤として有用な新規なグリシジルエーテル、該グリシジルエーテルを含有する硬化性組成物、および該硬化性組成物を硬化させてなる硬化物を提供することを目的とする。
When the above-mentioned conventional reactive diluent is added to the epoxy resin, the viscosity is lowered and the workability is improved, but depending on the type and amount of the reactive diluent, the composition comprising the epoxy resin and the reactive diluent Problems such as a decrease in physical properties such as a decrease in mechanical strength of a cured product obtained by curing the product and an increase in water absorption occur. Therefore, development of the reactive diluent which can obtain the hardened | cured material which is excellent in a mechanical characteristic and has a low water absorption is desired.
The present invention solves the above-mentioned problems, and in particular, a novel glycidyl ether useful as a reactive diluent for an epoxy resin, a curable composition containing the glycidyl ether, and a cured product obtained by curing the curable composition The purpose is to provide.
本発明によれば、上記の課題は、
[i] ジグリシジルエーテル(1)、
[ii] ジグリシジルエーテル(1)、エホ゜キシ樹脂[a]および硬化剤[b]を含有する硬化性組成物、
[iii] さらにジグリシジルエーテル(2)を含有する上記[ii]の硬化性組成物、および
[iv] [ii]または[iii]の硬化性組成物を硬化させてなる硬化物を提供することにより達成される。
According to the present invention, the above problem is
[I] diglycidyl ether (1),
[Ii] a curable composition containing diglycidyl ether (1), an epoxy resin [a] and a curing agent [b],
[Iii] Provided is a curable composition of the above [ii] that further contains diglycidyl ether (2), and a cured product obtained by curing the curable composition of [iv] [ii] or [iii]. Is achieved.
本発明によれば、樹脂改質剤、架橋剤、塗料、コーティング剤、インキ、医薬品、接着剤、バインダー、紙・繊維改質剤などの用途、特にエポキシ樹脂の反応性希釈剤として有用であり、力学的特性に優れ、かつ吸水率の小さい硬化物を与える新規なグリシジルエーテルが提供される。そして、該グリシジルエーテル、エポキシ樹脂および硬化剤を含有する硬化性組成物および該硬化性組成物を硬化させてなる硬化物は、塗料、接着剤、インキ、半導体封止材などとして有用である。 According to the present invention, it is useful as a resin diluent, a crosslinking agent, a paint, a coating agent, an ink, a pharmaceutical, an adhesive, a binder, a paper / fiber modifier, etc., particularly as a reactive diluent for an epoxy resin. A novel glycidyl ether that provides a cured product having excellent mechanical properties and low water absorption is provided. And the curable composition containing this glycidyl ether, an epoxy resin, and a hardening | curing agent, and the hardened | cured material formed by hardening | curing this curable composition are useful as a coating material, an adhesive agent, ink, a semiconductor sealing material, etc.
本発明のジグリシジルエーテル(1)の製造方法に特に制限はないが、例えば2−メチル−1,8−オクタンジオールを、塩基性物質および必要に応じて相間移動触媒、溶媒の存在下、エピハロヒドリンと反応させることによって製造することができる(以下、この反応を「反応1」と称する)。以下、ジグリシジルエーテル(1)の製造方法の一例として、該反応1について詳細に説明する。 The production method of the diglycidyl ether (1) of the present invention is not particularly limited. For example, 2-methyl-1,8-octanediol is converted into epihalohydrin in the presence of a basic substance and, if necessary, a phase transfer catalyst and a solvent. (Hereinafter, this reaction is referred to as “reaction 1”). Hereinafter, the reaction 1 will be described in detail as an example of a method for producing the diglycidyl ether (1).
エピハロヒドリンとしては、例えばエピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンなどが挙げられる。エピハロヒドリンの使用量に特に制限はないが、2−メチル−1,8−オクタンジオールに対して、通常、0.5〜20倍モルの範囲であるのが好ましく、収率および容積効率の観点からは、1〜10倍モルの範囲であるのがより好ましい。 Examples of epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, and the like. Although there is no restriction | limiting in particular in the usage-amount of epihalohydrin, Usually, it is preferable that it is the range of 0.5-20 times mole with respect to 2-methyl- 1,8-octanediol, and from a viewpoint of a yield and volume efficiency. Is more preferably in the range of 1 to 10 moles.
塩基性物質としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物などが挙げられる。塩基性物質の使用量は、2−メチル−1,8−オクタンジオールに対して0.5〜20倍モルの範囲であるのが好ましく、1〜10倍モルの範囲であるのがより好ましい。塩基性物質は、水溶液の状態で使用してもよい。その場合、水の使用量は、該塩基性物質に対して、0.2〜10倍質量の範囲であるのが好ましく、0.5〜4倍質量の範囲であるのがより好ましい。 Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal hydrides such as sodium hydride and potassium hydride. The amount of the basic substance used is preferably in the range of 0.5 to 20 times mol, more preferably in the range of 1 to 10 times mol with respect to 2-methyl-1,8-octanediol. You may use a basic substance in the state of aqueous solution. In that case, it is preferable that the usage-amount of water is the range of 0.2-10 times mass with respect to this basic substance, and it is more preferable that it is the range of 0.5-4 times mass.
塩基性物質としてアルカリ金属水酸化物を用いる場合や、塩基性物質を水溶液として反応に用いる場合は、水(反応の進行に伴い副生する水も含む)を除去しながら反応を行なってもよい。水を除去する方法としては、例えば硫酸ナトリウム、硫酸マグネシウム、モレキュラーシーブなどの脱水剤を反応系に共存させる方法や、原料として用いるエピハロヒドリン、または溶媒を使用する場合にはかかる溶媒との共沸蒸留により水を反応系外に除去する方法などが挙げられる。 When an alkali metal hydroxide is used as the basic substance, or when the basic substance is used as an aqueous solution for the reaction, the reaction may be performed while removing water (including water by-produced as the reaction proceeds). . As a method for removing water, for example, a method in which a dehydrating agent such as sodium sulfate, magnesium sulfate or molecular sieve coexists in the reaction system, an epihalohydrin used as a raw material, or an azeotropic distillation with such a solvent when a solvent is used. And a method of removing water out of the reaction system.
反応1において、塩基性物質として、例えば水酸化ナトリウム水溶液などの水溶液を用いる場合、通常、相間移動触媒を使用するのが好ましい。相間移動触媒の種類に特に制限は無いが、例えばトリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、セチルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリドなどの第四級アンモニウム塩;テトラブチルホスホニウムクロリドなどのホスホニウム塩;15−クラウン−5、18−クラウン−6などのクラウンエーテルなどが挙げられる。相間移動触媒を使用する場合、その使用量は、2−メチル−1,8−オクタンジオールに対して、通常、0.001〜0.5倍モルの範囲であるのが好ましく、0.01〜0.2倍モルの範囲であるのがより好ましい。 In Reaction 1, when an aqueous solution such as an aqueous sodium hydroxide solution is used as the basic substance, it is usually preferable to use a phase transfer catalyst. There are no particular restrictions on the type of phase transfer catalyst, but for example, quaternary ammonium salts such as trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium chloride, benzyltriethylammonium chloride; tetrabutylphosphonium chloride And phosphonium salts such as crown ethers such as 15-crown-5 and 18-crown-6. When a phase transfer catalyst is used, the amount used is usually preferably in the range of 0.001 to 0.5 moles relative to 2-methyl-1,8-octanediol, 0.01 to The range of 0.2 mole is more preferable.
反応1は、溶媒の存在下または不存在下に実施できる。溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばベンゼン、トルエン、キシレンなどの芳香族炭化水素;ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサンなどの飽和脂肪族炭化水素;ジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4−ジオキサン、テトラヒドロフランなどのエーテル;塩化メチレン、クロロホルム、四塩化炭素などのハロゲン化炭化水素などが挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。溶媒を使用する場合、その使用量に特に制限はないが、2−メチル−1,8−オクタンジオールに対して、通常、0.01〜20倍質量の範囲であるのが好ましく、0.1〜10倍質量の範囲であるのがより好ましい。なお、反応1では、溶媒の不存在下に実施してもジグリシジルエーテル(1)を効率よく製造することができ、容積効率の観点から特に好ましい。 Reaction 1 can be carried out in the presence or absence of a solvent. The solvent is not particularly limited as long as it does not adversely influence the reaction. For example, aromatic hydrocarbons such as benzene, toluene and xylene; saturated aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane and methylcyclohexane; diethyl ether, Examples include ethers such as diethylene glycol dimethyl ether, 1,4-dioxane and tetrahydrofuran; halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride. These may be used individually by 1 type, and may use 2 or more types together. When a solvent is used, the amount used is not particularly limited, but it is usually preferably in the range of 0.01 to 20 times the mass with respect to 2-methyl-1,8-octanediol. More preferably, it is in the range of 10 to 10 times the mass. In reaction 1, diglycidyl ether (1) can be produced efficiently even when carried out in the absence of a solvent, which is particularly preferable from the viewpoint of volumetric efficiency.
反応1の反応温度は、通常、−30〜150℃の範囲であるのが好ましく、−10〜120℃の範囲であるのがより好ましい。−30℃未満では反応速度が極めて低下する傾向となる。一方、150℃を超えると、例えば重合などの副反応が起こり易くなり、ジグリシジルエーテル(1)の収率が低下する傾向となる。また反応時間は、通常、10分〜15時間の範囲であるのが好ましく、副反応抑制の観点からは、10分〜10時間の範囲であるのがより好ましい。 The reaction temperature of reaction 1 is usually preferably in the range of -30 to 150 ° C, more preferably in the range of -10 to 120 ° C. If it is less than -30 degreeC, it will become the tendency for reaction rate to fall extremely. On the other hand, when it exceeds 150 ° C., for example, side reactions such as polymerization tend to occur, and the yield of diglycidyl ether (1) tends to decrease. The reaction time is usually preferably in the range of 10 minutes to 15 hours, and more preferably in the range of 10 minutes to 10 hours from the viewpoint of suppressing side reactions.
反応1は、安全性の観点から、窒素、アルゴンなどの不活性ガス雰囲気下で実施するのが好ましい。また、反応は減圧下、大気圧下、加圧下のいずれでも実施できる。 Reaction 1 is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon from the viewpoint of safety. The reaction can be carried out under reduced pressure, atmospheric pressure, or increased pressure.
反応1は、例えば攪拌型反応装置に、塩基性物質の水溶液、2−メチル−1,8−オクタンジオール、エピハロヒドリンならびに必要に応じて溶媒および相間移動触媒を一度に、または分割して仕込み、エピハロヒドリンまたは溶媒との共沸蒸留により水を系外に除去しながら、所定温度、所定圧力で所定時間反応させることにより実施できる。 In the reaction 1, for example, an aqueous solution of a basic substance, 2-methyl-1,8-octanediol, epihalohydrin and, if necessary, a solvent and a phase transfer catalyst are charged at one time or dividedly, and an epihalohydrin is prepared. Alternatively, the reaction can be carried out at a predetermined temperature and a predetermined pressure for a predetermined time while removing water out of the system by azeotropic distillation with a solvent.
反応終了後、反応液から固体残留物をろ過して除去し、必要に応じて水、飽和食塩水などで洗浄してから有機層を濃縮し、さらに蒸留、カラムクロマトグラフィーなどの有機化合物の単離・精製において通常用いられる操作を行なうことによって、純度の高いジグリシジルエーテル(1)を取得できる。 After completion of the reaction, the solid residue is removed from the reaction solution by filtration. If necessary, the organic layer is concentrated after washing with water, saturated saline, etc., and further a simple organic compound such as distillation or column chromatography is used. Highly pure diglycidyl ether (1) can be obtained by carrying out an operation usually used in separation / purification.
また、ジグリシジルエーテル(2)は、1,9−ノナンジオールを原料にして、上記した反応1の方法と同様にして製造することができる。 The diglycidyl ether (2) can be produced in the same manner as in the above reaction 1 using 1,9-nonanediol as a raw material.
なお、ジグリシジルエーテル(1)の原料である2−メチル−1,8−オクタンジオールおよびジグリシジルエーテル(2)の原料である1,9−ノナンジオールは、7−オクテナールのヒドロホルミル化によって得られる2−メチル−1,8−オクタンジアールおよび1,9−ノナンジアールを、ラネーニッケルなどの水素添加触媒存在下および水素雰囲気下で水素添加することにより容易に製造することができる。 In addition, 2-methyl-1,8-octanediol which is a raw material of diglycidyl ether (1) and 1,9-nonanediol which is a raw material of diglycidyl ether (2) are obtained by hydroformylation of 7-octenal. 2-Methyl-1,8-octane dial and 1,9-nonane dial can be easily produced by hydrogenation in the presence of a hydrogenation catalyst such as Raney nickel and in a hydrogen atmosphere.
次に、本発明のジグリシジルエーテル(1)、エポキシ樹脂[a]および硬化剤[b]を含有する硬化性組成物について詳細に説明する。
本発明のジグリシジルエーテル(1)は反応性希釈剤として使用できる。例えば、エポキシ樹脂[a]にジグリシジルエーテル(1)を混合して粘度を低下した後、さらに硬化剤[b]を添加し、さらに必要に応じて他の反応性希釈剤[c]および/または添加剤[d]などを添加して硬化性組成物(加熱する、または活性エネルギー線を照射することにより硬化する組成物)を得、得られた硬化性組成物を加熱する、または活性エネルギー線を照射することにより、硬化物を得ることができる。なお、以下、ジグリシジルエーテル(1)、エポキシ樹脂[a]および必要に応じてその他の反応性希釈剤[c]を加えた混合物を「希釈樹脂」と称することがある。
かかる硬化性組成物を得る場合、ジグリシジルエーテル(1)の使用量に特に制限はないが、硬化性組成物中の全成分に対して、通常、0.1〜50質量%の範囲であるのが好ましく、0.5〜40質量%の範囲であるのがより好ましく、1〜30質量%の範囲であるのがさらに好ましい。
Next, the curable composition containing the diglycidyl ether (1) of the present invention, the epoxy resin [a] and the curing agent [b] will be described in detail.
The diglycidyl ether (1) of the present invention can be used as a reactive diluent. For example, after the diglycidyl ether (1) is mixed with the epoxy resin [a] to reduce the viscosity, the curing agent [b] is further added, and if necessary, other reactive diluents [c] and / or Alternatively, an additive [d] or the like is added to obtain a curable composition (a composition that is heated or cured by irradiating active energy rays), and the obtained curable composition is heated or activated energy. A cured product can be obtained by irradiating a line. Hereinafter, a mixture obtained by adding diglycidyl ether (1), epoxy resin [a], and other reactive diluent [c] as necessary may be referred to as “diluted resin”.
When obtaining such a curable composition, there is no restriction | limiting in particular in the usage-amount of diglycidyl ether (1), Usually, it is the range of 0.1-50 mass% with respect to all the components in a curable composition. Is more preferable, it is more preferable that it is the range of 0.5-40 mass%, and it is still more preferable that it is the range of 1-30 mass%.
エポキシ樹脂[a]としては特に制限はなく、公知の高粘度エポキシ化合物もしくはエポキシ樹脂を使用することができ、高粘度エポキシ化合物としては、本発明のジグリシジルエーテル(1)より粘度が高い化合物であり、例えば3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペートなどの環式脂肪族エステル;フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸グリシジルエステルのようなグリシジルエステル;テトラグリシジルジアミノジフェニルメタン、ジグリシジルトルイジン、テトラグリシジルメタキシリレンジアミン、トリグリシジルイソシアヌレートなどのアミン系グリシジル化合物などが挙げられる。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂、フェノール・ビフェニレン型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂などが挙げられる。これらエポキシ樹脂[a]は、1種を単独で使用してもよく、2種以上を併用してもよい。エポキシ樹脂[a]の使用量は、硬化性組成物全量に対して、5〜95質量%の範囲であるのが好ましい。 There is no restriction | limiting in particular as an epoxy resin [a], A well-known high viscosity epoxy compound or an epoxy resin can be used, As a high viscosity epoxy compound, it is a compound whose viscosity is higher than the diglycidyl ether (1) of this invention. For example, cycloaliphatic esters such as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate; diglycidyl phthalate, diterephthalate Glycidyl esters such as glycidyl ester and glycidyl hexahydrophthalate; amine-based glycidyl such as tetraglycidyl diaminodiphenylmethane, diglycidyl toluidine, tetraglycidyl metaxylylene diamine, triglycidyl isocyanurate Such compounds. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin, trisphenolmethane type epoxy resin, dicyclopentadiene type epoxy resin, naphthol aralkyl type epoxy resin, naphthol novolak type epoxy resin, Examples thereof include glycidyl ether type epoxy resins such as tetrafunctional naphthalene type epoxy resins and phenol / biphenylene type epoxy resins. These epoxy resins [a] may be used individually by 1 type, and may use 2 or more types together. It is preferable that the usage-amount of epoxy resin [a] is the range of 5-95 mass% with respect to the curable composition whole quantity.
硬化剤[b]としては、熱により硬化する硬化剤および紫外線などの活性エネルギー線の照射により硬化する硬化剤が挙げられる。 Examples of the curing agent [b] include a curing agent that is cured by heat and a curing agent that is cured by irradiation with active energy rays such as ultraviolet rays.
熱により硬化する硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、ジシアンジアミド、イミダゾール類などが挙げられる。
アミン系硬化剤としては、例えばジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、メタキシレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどの脂肪族アミン;イソホロンジアミン、1,3−ビスアミノメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ノルボルナンジアミン、1,2−ジアミノシクロヘキサンなどの脂環式アミン;ジアミノジフェニルメタン、メタフェニレンジアミンなどの芳香族アミン;N−アミノエチルピペラジンなどの複素環式アミンなどが挙げられる。
酸無水物系硬化剤としては、例えば無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ドデセニル無水コハク酸、クロレンド酸無水物、3,4,5,6−テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、
4−メチルテトラヒドロ無水フタル酸、5−メチルノルボルナン−2,3−ジカルボン酸無水物、5−メチル−5−ノルボルネン−2,3−ジカルボン酸無水物、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物などが挙げられる。
フェノール系硬化剤としては、例えばフェノールノボラック、トリフェニルメタンノボラック、キシリレンノボラック、ビフェニルノボラックなどが挙げられる。
イミダゾール類としては、例えば2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニルイミダゾリンなどが挙げられる。
Examples of the curing agent that is cured by heat include amine curing agents, acid anhydride curing agents, phenol curing agents, dicyandiamide, and imidazoles.
Examples of amine-based curing agents include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, metaxylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro. [5.5] Aliphatic amines such as undecane; Cycloaliphatic amines such as isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornanediamine, 1,2-diaminocyclohexane; Aromatic amines such as diphenylmethane and metaphenylenediamine; heterocyclic amines such as N-aminoethylpiperazine and the like.
Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, dodecenyl succinic anhydride, chlorendic anhydride, 3,4,5,6- Tetrahydrophthalic anhydride, hexahydrophthalic anhydride,
4-methyltetrahydrophthalic anhydride, 5-methylnorbornane-2,3-dicarboxylic anhydride, 5-methyl-5-norbornene-2,3-dicarboxylic anhydride, 5- (2,5-dioxotetrahydro- 3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride.
Examples of the phenolic curing agent include phenol novolak, triphenylmethane novolak, xylylene novolak, and biphenyl novolak.
Examples of imidazoles include 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phenylimidazoline, and the like.
一方、紫外線などの活性エネルギー線の照射により硬化する硬化剤としては、例えば芳香族系スルホニウム塩、芳香族系ヨードニウム塩などの以下の化学式で示される化合物が挙げられる。 On the other hand, examples of the curing agent that is cured by irradiation with active energy rays such as ultraviolet rays include compounds represented by the following chemical formulas such as aromatic sulfonium salts and aromatic iodonium salts.
(式中、R1〜R5はそれぞれ独立して、水素、炭素数1〜18のヒドロキシル基を有していてもよいアルキル基、炭素数1〜18のヒドロキシル基を有していてもよいアルコキシル基を表す。また、Mはホウ素、リン、ヒ素またはアンチモンを表し、Xはハロゲンまたはペンタフルオロフェニル基を表し、kはMの価数を表し、具体的にはMがホウ素の場合、kは3であり、Mがリン、ヒ素、アンチモンの場合、kは5である。) (In the formula, R 1 to R 5 may each independently have hydrogen, an alkyl group optionally having a hydroxyl group having 1 to 18 carbon atoms, or a hydroxyl group having 1 to 18 carbon atoms. Represents an alkoxyl group, M represents boron, phosphorus, arsenic or antimony, X represents a halogen or a pentafluorophenyl group, k represents a valence of M, specifically, when M is boron, k Is 3, and when M is phosphorus, arsenic or antimony, k is 5.)
これらの硬化剤[b]は1種を単独で使用してもよく、2種以上を併用してもよい。これらの硬化剤[b]の使用量は、エポキシ樹脂[a]および硬化剤[b]、ならびに必要に応じて他の反応性希釈剤[c]および/または添加剤[d]からなる硬化性組成物を硬化せしめる量であれば特に制限はないが、例えばアミン系硬化剤を使用する場合、通常、硬化性組成物中に含有されるエポキシ基に対して、硬化剤が有する活性水素が0.7〜1.3当量の範囲であるのが好ましい。酸無水物系硬化剤を使用する場合、通常、硬化性組成物に含有されるエポキシ基に対して硬化剤が有する酸無水物基が0.5〜1.3当量の範囲であるのが好ましい。フェノール系硬化剤を使用する場合、通常、硬化性組成物に含有されるエポキシ基に対して0.5〜1.3当量の範囲であるのが好ましい。ジシアンジアミドを使用する場合、通常、硬化性組成物に含有されるエポキシ基に対して、ジシアンジアミドが有する活性水素が0.5〜1.3当量の範囲であるのが好ましい。イミダゾール類を使用する場合、通常、硬化性組成物中のエポキシ基を有する化合物に対して0.1〜10質量%の範囲であるのが好ましい。 These curing agents [b] may be used alone or in combination of two or more. The amount of these curing agents [b] used is a curability comprising the epoxy resin [a] and the curing agent [b] and, if necessary, other reactive diluents [c] and / or additives [d]. The amount of the curing agent is not particularly limited as long as the composition is cured. For example, when an amine-based curing agent is used, the active hydrogen possessed by the curing agent is usually 0 with respect to the epoxy group contained in the curable composition. It is preferably in the range of 7 to 1.3 equivalents. When using an acid anhydride curing agent, it is usually preferable that the acid anhydride group of the curing agent is in the range of 0.5 to 1.3 equivalents relative to the epoxy group contained in the curable composition. . When using a phenol type hardening | curing agent, it is preferable normally that it is the range of 0.5-1.3 equivalent with respect to the epoxy group contained in a curable composition. When dicyandiamide is used, it is usually preferred that the active hydrogen possessed by dicyandiamide is in the range of 0.5 to 1.3 equivalents relative to the epoxy group contained in the curable composition. When imidazoles are used, it is usually preferably in the range of 0.1 to 10% by mass relative to the compound having an epoxy group in the curable composition.
また、活性エネルギー線の照射により硬化する硬化剤の使用量は、通常、硬化性組成物中のエポキシ基を有する化合物に対して、0.1〜10質量%の範囲であるのが好ましい。 Moreover, it is preferable that the usage-amount of the hardening | curing agent hardened | cured by irradiation of an active energy ray is the range of 0.1-10 mass% normally with respect to the compound which has an epoxy group in a curable composition.
他の反応性希釈剤[c]としては、ジグリシジルエーテル(1)以外の、エポキシ樹脂組成物において通常用いられる反応性希釈剤であれば特に限定は無く、例えばn−ブチルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、メチルフェニルグリシジルエーテル、p−sec−ブチルフェニルグリシジルエーテル、p−t−ブチルフェニルグリシジルエーテルなどのモノグリシジルエーテル;2−ブチル−2−エチル−1,3−プロパンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,9−ノナンジオール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン、トリメチロールプロパンなどの多価アルコールとエピクロロヒドリンを反応させて得られるポリグリシジルエーテル;ネオデカン酸グリシジルエステル、アジピン酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルなどのグリシジルエステル;グリシジルメタクリレート、スチレンオキサイドなどが挙げられる。特に1,9−ノナンジオールのジグリシジル化物、すなわちジグリシジルエーテル(2)をさらに用いた場合、得られる硬化性組成物を硬化してなる硬化物の吸水率が低くなる傾向があり好ましい。
他の反応性希釈剤[c]を添加する場合、本発明のジグリシジルエーテル(1)の効果が失われない程度、通常は、硬化性組成物中の全成分に対して、0.1〜30質量%の範囲であるのが好ましく、0.5〜20質量%の範囲であるのがより好ましい。
The other reactive diluent [c] is not particularly limited as long as it is a reactive diluent usually used in the epoxy resin composition other than diglycidyl ether (1). For example, n-butyl glycidyl ether, allyl glycidyl Monoglycidyl ethers such as ether, 2-ethylhexyl glycidyl ether, methylphenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, pt-butylphenyl glycidyl ether; 2-butyl-2-ethyl-1,3-propanediol , Neopentyl glycol, 1,6-hexanediol, 1,9-nonanediol, polyethylene glycol, polypropylene glycol, glycerol, trimethylolpropane, and other polyhydric alcohols obtained by reacting with epichlorohydrin Ethers; neodecanoic acid glycidyl ester, adipic acid diglycidyl ester, glycidyl esters such as dimer acid diglycidyl ester; glycidyl methacrylate, styrene oxide and the like. In particular, when a diglycidylated product of 1,9-nonanediol, that is, diglycidyl ether (2) is further used, the water absorption of a cured product obtained by curing the resulting curable composition tends to be low, which is preferable.
When adding other reactive diluent [c], the effect of the diglycidyl ether (1) of the present invention is not lost, usually 0.1 to 0.1% relative to all components in the curable composition. It is preferably in the range of 30% by mass, and more preferably in the range of 0.5 to 20% by mass.
本発明の硬化性組成物に必要に応じて添加する添加剤[d]としては、例えばポリブタジエン、CTBN(末端カルボン酸変性ニトリルブタジエンゴム)などの改質剤;酸化チタン、カーボンブラック、レーキレッドC、トルイジンレッド、銅フタロシアニンなどの顔料;2,6−ジ−t−ブチル−4−メチルフェノール、6−エトキシ−1,2−ジヒドロ−2,2,4−トリメチルキノリンなどの安定剤;炭酸カルシウム、硫酸バリウム、酸化亜鉛、カオリンクレー、シリカなどの充填剤;水酸化アルミニウム、水酸化マグネシウム、デカブロモジフェニルオキサイド、トリフェニルホスファイトなどの難燃剤;アクリル系共重合物、シリコーンなどの消泡剤;フッ素系界面活性剤などのレべリング剤;n−ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)−フェノール、イミダゾール、トリフェニルホスフィン、テトラ−n−ブチルホスホニウムテトラフェニルボレート、トリメチルアンモニウムフェノキシド、金属硝酸塩(硝酸マグネシウム、硝酸マンガンなど)、トリフルオロメタンスルホン酸およびその塩、過塩素酸マグネシウム、過塩素酸カルシウムなどの硬化促進剤;アントラセン、ペリレン、チオキサントン、アセトフェノンなどの増感剤などが挙げられる。
添加剤[d]を添加する場合、その使用量に特に制限はなく、用途に応じて任意に定めればよい。
Examples of the additive [d] added to the curable composition of the present invention as needed include modifiers such as polybutadiene and CTBN (terminal carboxylic acid-modified nitrile butadiene rubber); titanium oxide, carbon black, and lake red C. Pigments such as toluidine red and copper phthalocyanine; stabilizers such as 2,6-di-t-butyl-4-methylphenol and 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline; calcium carbonate , Barium sulfate, zinc oxide, kaolin clay, silica and other fillers; flame retardants such as aluminum hydroxide, magnesium hydroxide, decabromodiphenyl oxide and triphenyl phosphite; antifoaming agents such as acrylic copolymers and silicone Leveling agents such as fluorosurfactants; n-benzyldimethylamine, 2, , 6-Tris (dimethylaminomethyl) -phenol, imidazole, triphenylphosphine, tetra-n-butylphosphonium tetraphenylborate, trimethylammonium phenoxide, metal nitrate (magnesium nitrate, manganese nitrate, etc.), trifluoromethanesulfonic acid and its salts Curing accelerators such as magnesium perchlorate and calcium perchlorate; and sensitizers such as anthracene, perylene, thioxanthone and acetophenone.
When the additive [d] is added, the amount used is not particularly limited and may be arbitrarily determined according to the application.
本発明の硬化性組成物の硬化条件は、用いるエポキシ樹脂[a]、硬化剤[b]、他の反応性希釈剤[c]および添加剤[d]により変化するため、特に制限はないが、熱により硬化する硬化剤を用いた場合、通常、0〜200℃の範囲で加熱することにより、硬化性組成物の硬化を行なう。加熱時間は、温度によって異なり、0〜40℃であれば、通常、30分〜30日間、40〜200℃であれば、通常、10分〜30時間の範囲である。一方、活性エネルギー線の照射により硬化する硬化剤を用いた場合、活性エネルギー線としては、例えば紫外線、電子線、放射線、マイクロ波などが挙げられ、これらを硬化性組成物に照射することにより硬化を行なう。活性エネルギー線の照射時間は、その種類、強度により異なるが、通常、0.1秒〜1時間の範囲である。 The curing condition of the curable composition of the present invention is not particularly limited because it varies depending on the epoxy resin [a], curing agent [b], other reactive diluent [c] and additive [d] used. When a curing agent that cures by heat is used, the curable composition is usually cured by heating in the range of 0 to 200 ° C. The heating time varies depending on the temperature, and is usually in the range of 30 minutes to 30 days if it is 0 to 40 ° C, and usually in the range of 10 minutes to 30 hours if it is 40 to 200 ° C. On the other hand, when a curing agent that is cured by irradiation with active energy rays is used, examples of the active energy rays include ultraviolet rays, electron beams, radiation, microwaves, and the like, which are cured by irradiating the curable composition with these. To do. The irradiation time of the active energy ray varies depending on the type and intensity, but is usually in the range of 0.1 second to 1 hour.
以下、実施例により本発明を更に詳しく説明するが、本発明はかかる実施例により何ら限定されるものではない。なお、以下の実施例、比較例および参考例における粘度の測定、吸水率の測定および引張試験は次のようにして実施した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited at all by this Example. The viscosity measurement, water absorption measurement, and tensile test in the following examples, comparative examples and reference examples were carried out as follows.
[1]粘度
以下の実施例2〜5および比較例1〜2で用いた希釈樹脂の粘度を、B型粘度計(株式会社トキメック製、商品名:TVB−20L)を用いて25℃にて測定した。
[2]吸水率
試験片の大きさを80mm×10mm×3mmとした以外は、JIS K 7209(A法)に従って吸水率を測定した。すなわち、恒温槽で23℃に保った蒸留水に試験片を24時間浸漬し、試験前の試験片の質量と試験後の試験片の質量から、下式に従い、吸水率を算出した。
吸水率(%)=(m2−m1)/m1×100
但し、m1:試験前の試験片の質量(g)
m2:試験後の試験片の質量(g)
[3]引張試験
JIS K 7162に従って引張試験を行なった。すなわち、JIS K 7162附属書A規定の1BA形小型試験片を、JIS K 7161の9に従い、万能材料試験機(インストロン社製、型番:5566)を用いて、気温25℃、湿度50%の条件下で、試験速度2mm/minで試験を行ない、降伏応力および引張弾性率を測定した。
[4]アイゾット衝撃試験
JIS K 7110に従ってアイゾット衝撃試験を行なった。すなわち、幅3mmの1号B試験片を、アイゾット衝撃試験機(東洋精機製作所製)を用いて、気温25℃、湿度50%の条件下で試験を行ない、試験片破断後のハンマ振り上がり角度を測定した。測定した試験片破断後のハンマ振り上がり角度から、JIS K 7110附属書2の7記載に従い、吸収エネルギーを算出した。
そして、算出した吸収エネルギーより、JIS K 7110の7の2に記載に従いアイゾット衝撃値を算出した。
以上の測定結果を表1にまとめた。
[1] Viscosity The viscosity of the diluted resin used in Examples 2 to 5 and Comparative Examples 1 and 2 below is 25 ° C. using a B-type viscometer (trade name: TVB-20L, manufactured by Tokimec Co., Ltd.). It was measured.
[2] Water Absorption Rate The water absorption rate was measured according to JIS K 7209 (Method A) except that the size of the test piece was 80 mm × 10 mm × 3 mm. That is, the test piece was immersed for 24 hours in distilled water maintained at 23 ° C. in a thermostatic bath, and the water absorption rate was calculated from the mass of the test piece before the test and the mass of the test piece after the test according to the following formula.
Water absorption (%) = (m 2 −m 1 ) / m 1 × 100
Where m 1 : mass of the test piece before the test (g)
m 2 : Mass of the test piece after the test (g)
[3] Tensile test A tensile test was performed according to JIS K 7162. That is, according to JIS K 7161 9, a 1BA type small test piece defined in Annex A of JIS K 7162 is used with a universal material testing machine (manufactured by Instron, model number: 5566) with an air temperature of 25 ° C. and a humidity of 50%. Under the conditions, the test was conducted at a test speed of 2 mm / min, and the yield stress and the tensile modulus were measured.
[4] Izod impact test An Izod impact test was conducted in accordance with JIS K 7110. That is, a No. 1 B test piece with a width of 3 mm was tested using an Izod impact tester (manufactured by Toyo Seiki Seisakusho) under the conditions of an air temperature of 25 ° C. and a humidity of 50%. Was measured. The absorbed energy was calculated from the measured hammer swing-up angle after the test piece fracture according to 7 described in JIS K 7110 Annex 2.
Then, an Izod impact value was calculated from the calculated absorbed energy according to JIS K 7110-7-2.
The above measurement results are summarized in Table 1.
<実施例1>ジグリシジルエーテル(1)の合成
ディーンスタークレシーバーを備えた内容積1Lの三口フラスコに、2−メチル−1,8−オクタンジオール100.0g(0.624mol)、エピクロロヒドリン346.3g(3.743mol)およびベンジルトリエチルアンモニウムクロリド14.2g(0.062mol)を仕込み、窒素置換した。次いで、50質量%水酸化ナトリウム水溶液199.7g(2.496mol)を1時間かけて滴下しながら攪拌し、フラスコ内の温度を50℃、圧力を7.98kPaとし、エピクロロヒドリンおよび水を還流させることにより水を除去した。水酸化ナトリウム水溶液の滴下終了後、50℃、7.98kPaのまま2.5時間反応を行なった。反応混合液を室温まで冷却した後、ろ過することにより、未反応の水酸化ナトリウムと副生成物の塩化ナトリウムを除去した。得られたろ液にジエチルエーテル900mlを加えた後、水50mlで4回洗浄した。得られた有機層から、減圧下(85℃/1.33kPa)でエピクロロヒドリンおよびジエチルエーテルを留去した。次いで、減圧蒸留(150℃/0.047kPa)することにより、ジグリシジルエーテル(1)110.4g(0.405mol;収率64.9%、純度99.0%)を得た。かかるジグリシジルエーテル(1)のNMR測定結果を以下に示す。
<Example 1> Synthesis of diglycidyl ether (1) In a 1 L three-necked flask equipped with a Dean-Stark receiver, 100.0 g (0.624 mol) of 2-methyl-1,8-octanediol, epichlorohydrin 346.3 g (3.743 mol) and 14.2 g (0.062 mol) of benzyltriethylammonium chloride were charged and purged with nitrogen. Next, the mixture was stirred while dropping 199.7 g (2.496 mol) of a 50% by mass aqueous sodium hydroxide solution over 1 hour, the temperature in the flask was 50 ° C., the pressure was 7.98 kPa, and epichlorohydrin and water were added. Water was removed by refluxing. After completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was carried out for 2.5 hours at 50 ° C. and 7.98 kPa. The reaction mixture was cooled to room temperature and then filtered to remove unreacted sodium hydroxide and by-product sodium chloride. After adding 900 ml of diethyl ether to the obtained filtrate, it was washed 4 times with 50 ml of water. Epichlorohydrin and diethyl ether were distilled off from the obtained organic layer under reduced pressure (85 ° C./1.33 kPa). Then, 110.4 g (0.405 mol; yield 64.9%, purity 99.0%) of diglycidyl ether (1) was obtained by distillation under reduced pressure (150 ° C./0.047 kPa). The NMR measurement result of this diglycidyl ether (1) is shown below.
1H−NMR(500MHz、CDCl3、TMS)δ:0.90(d,3H,J=6.5Hz)、1.05−1.15(m,1H)1.20−1.44(m,7H)、1.55−1.63(m,2H)、1.66−1.76(m,1H)、2.60−2.62(m,2H)、2.78−2.81(m,2H)、3.12−3.17(m,2H)、3.21−3.41(m,4H)、3.43−3.54(m,2H)、3.68−3.72(m,2H)
13C−NMR(125MHz、CDCl3、TMS)δ:17.02、26.06、26.86、29.69、29.72、33.42、33.50、44.29、44.34、50.90、50.96、71.48、71.63、71.69、77.22
1 H-NMR (500 MHz, CDCl 3 , TMS) δ: 0.90 (d, 3H, J = 6.5 Hz), 1.05-1.15 (m, 1H) 1.20-1.44 (m 7H), 1.55-1.63 (m, 2H), 1.66-1.76 (m, 1H), 2.60-2.62 (m, 2H), 2.78-2.81. (M, 2H), 3.12-3.17 (m, 2H), 3.21-3.41 (m, 4H), 3.43-3.54 (m, 2H), 3.68-3 .72 (m, 2H)
13 C-NMR (125 MHz, CDCl 3 , TMS) δ: 17.02, 26.06, 26.86, 29.69, 29.72, 33.42, 33.50, 44.29, 44.34, 50.90, 50.96, 71.48, 71.63, 71.69, 77.22
<参考例1> ジグリシジルエーテル(2)の合成
ディーンスタークレシーバーを備えた内容積1Lの三口フラスコに、1,9−ノナンジオール100.0g(0.624mol)、エピクロロヒドリン346.3g(3.743mol)およびベンジルトリエチルアンモニウムクロリド14.2g(0.062mol)を仕込み、窒素置換した。次いで、50質量%水酸化ナトリウム水溶液199.7g(2.496mol)を1時間かけて滴下しながら攪拌し、フラスコ内の温度を50℃、圧力を7.98kPaとし、エピクロロヒドリンと水を還流させることにより水を除去した。水酸化ナトリウム水溶液の滴下終了後、50℃、7.89kPaのまま2時間反応を行なった。反応混合液を室温まで冷却した後、ろ過することにより、未反応の水酸化ナトリウムと塩化ナトリウムを除去した。得られたろ液にジエチルエーテル900mlを加えた後、水50mlで4回洗浄した。得られた有機層から、減圧下(85℃/1.33kPa)でエピクロロヒドリンおよびジエチルエーテルを留去した。次いで、減圧蒸留(160℃/0.033kPa)することにより、ジグリシジルエーテル(2)111.7g(0.410mol;収率65.7%、純度98.5%)を得た。
<Reference Example 1> Synthesis of diglycidyl ether (2) In a 1 L three-necked flask equipped with a Dean Stark receiver, 100.0 g (0.624 mol) of 1,9-nonanediol, 346.3 g of epichlorohydrin ( 3.743 mol) and 14.2 g (0.062 mol) of benzyltriethylammonium chloride were charged and purged with nitrogen. Then, 199.7 g (2.496 mol) of 50% by weight aqueous sodium hydroxide solution was added dropwise over 1 hour with stirring, the temperature in the flask was 50 ° C., the pressure was 7.98 kPa, and epichlorohydrin and water were added. Water was removed by refluxing. After completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was carried out for 2 hours at 50 ° C. and 7.89 kPa. The reaction mixture was cooled to room temperature and then filtered to remove unreacted sodium hydroxide and sodium chloride. After adding 900 ml of diethyl ether to the obtained filtrate, it was washed 4 times with 50 ml of water. Epichlorohydrin and diethyl ether were distilled off from the obtained organic layer under reduced pressure (85 ° C./1.33 kPa). Then, 111.7 g (0.410 mol; yield 65.7%, purity 98.5%) of diglycidyl ether (2) was obtained by distillation under reduced pressure (160 ° C./0.033 kPa).
<実施例2>
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:エピコート828;以下、単に「エポキシ樹脂1」と称する)76.2gおよび実施例1で得られたジグリシジルエーテル(1)23.8gを混合して「希釈樹脂A」を得た。得られた希釈樹脂Aの粘度を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Aにアミン系硬化剤(ジャパンエポキシレジン株式会社製、商品名:エポメートB002W、主成分:3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン;以下、「アミン系硬化剤1」と称する)54.4gを混合し、硬化性組成物を得た。
上記の方法により得られた硬化性組成物から、JIS K 7238−2の3.3.3に記載の方法に従って作製した厚さ3mmの硬化物を機械加工することにより、吸水率測定およびアイゾット衝撃試験用の試験片を作製した。具体的には、外部離型剤を塗布した2枚のガラス板を厚さ3mmのスペーサーを介して向かい合わせ、その間に上記の硬化性組成物を流し込み、室温で24時間放置、引き続き80℃で3時間加熱して硬化させることにより、厚さ3mmの硬化物を得た。得られた硬化物から80mm×10mm×3mmの試験片を切り出し、吸水率を測定した。一方、アイゾット衝撃試験は、該試験片にJIS K 7110記載のB切欠き(先端半径1mm、切欠き深さ2.54mm)を付与して実施した。また、ガラス板上にPETフィルムを敷き、該フィルム上に170mm×170mm×2mmのセルを作製し、ここに上記硬化性組成物を流し込み、セル上にPETフィルムを被せた後、ガラス板を載せた。室温で24時間放置、引き続き80℃で3時間加熱して硬化させることにより、厚さ2mmの硬化物を得た。得られた硬化物を、JIS K 7162附属書A規定の1BA形小型試験片の形状に打ち抜くことにより引張試験用の試験片を作製した。
それぞれの試験片を用いた測定結果を表1に示す。
<Example 2>
76.2 g of bisphenol A type epoxy resin (trade name: Epicoat 828; hereinafter simply referred to as “epoxy resin 1” manufactured by Japan Epoxy Resin Co., Ltd.) and 23.8 g of diglycidyl ether (1) obtained in Example 1 Were mixed to obtain “Diluted Resin A”. It was 600 mPa * s when the viscosity of the obtained dilution resin A was measured by the above-mentioned method. Thereafter, an amine curing agent (manufactured by Japan Epoxy Resin Co., Ltd., trade name: Epomate B002W, main component: 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxa) was added to the diluted resin A Spiro [5.5] undecane; hereinafter referred to as “amine-based curing agent 1”) was mixed with 54.4 g to obtain a curable composition.
By measuring a 3 mm-thick cured product prepared from the curable composition obtained by the above-described method according to the method described in 3.3.3 of JIS K 7238-2, water absorption measurement and Izod impact Test specimens for testing were prepared. Specifically, two glass plates coated with an external release agent are faced to each other through a spacer having a thickness of 3 mm, and the curable composition is poured between them and left at room temperature for 24 hours, and subsequently at 80 ° C. By curing by heating for 3 hours, a cured product having a thickness of 3 mm was obtained. A test piece of 80 mm × 10 mm × 3 mm was cut out from the obtained cured product, and the water absorption was measured. On the other hand, the Izod impact test was carried out by applying a B notch (tip radius 1 mm, notch depth 2.54 mm) described in JIS K 7110 to the test piece. Also, a PET film is laid on a glass plate, a 170 mm × 170 mm × 2 mm cell is produced on the film, the curable composition is poured into the cell, the PET film is placed on the cell, and then the glass plate is placed. It was. The cured product having a thickness of 2 mm was obtained by allowing it to stand at room temperature for 24 hours, followed by heating at 80 ° C. for 3 hours to cure. A test piece for a tensile test was produced by punching the obtained cured product into the shape of a 1BA type small test piece defined in JIS K 7162 Annex A.
The measurement results using each test piece are shown in Table 1.
<実施例3>
エポキシ樹脂1を76.6g、実施例1で得られたジグリシジルエーテル(1)17.6gおよび参考例1で得られたジグリシジルエーテル(2)5.8gを混合して「希釈樹脂B」を得た。得られた希釈樹脂Bの粘度を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Bにアミン系硬化剤1を54.3gを混合して硬化性組成物を得た。実施例2と同様の方法で該硬化性組成物から各種測定用の硬化物を得、物性評価を行なった。結果を表1に示す。
<Example 3>
76.6 g of epoxy resin 1, 17.6 g of diglycidyl ether (1) obtained in Example 1 and 5.8 g of diglycidyl ether (2) obtained in Reference Example 1 were mixed to obtain “Diluted Resin B”. Got. It was 600 mPa * s when the viscosity of the obtained dilution resin B was measured by the above-mentioned method. Thereafter, 54.3 g of the amine curing agent 1 was mixed with the diluted resin B to obtain a curable composition. A cured product for various measurements was obtained from the curable composition in the same manner as in Example 2, and physical properties were evaluated. The results are shown in Table 1.
<実施例4>
エポキシ樹脂1を77.0g、実施例1で得られたジグリシジルエーテル(1)11.5gおよび参考例1で得られたジグリシジルエーテル(2)11.5gを混合して「希釈樹脂C」を得た。得られた希釈樹脂CDの粘を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Cにアミン系硬化剤1を54.3gを混合して硬化性組成物を得た。実施例2と同様の方法で該硬化性組成物から各種測定用の硬化物を得、物性評価を行なった。結果を表1に示す。
<Example 4>
77.0 g of epoxy resin 1 and 11.5 g of diglycidyl ether (1) obtained in Example 1 and 11.5 g of diglycidyl ether (2) obtained in Reference Example 1 were mixed to obtain “Diluted Resin C”. Got. It was 600 mPa * s when the viscosity of obtained dilution resin CD was measured by the above-mentioned method. Thereafter, 54.3 g of the amine curing agent 1 was mixed with the diluted resin C to obtain a curable composition. A cured product for various measurements was obtained from the curable composition in the same manner as in Example 2, and physical properties were evaluated. The results are shown in Table 1.
<実施例5>
エポキシ樹脂1を77.4g、実施例1で得られたジグリシジルエーテル(1)5.6gおよび参考例1で得られたジグリシジルエーテル(2)17.0gを混合して「希釈樹脂D」を得た。得られた希釈樹脂Dの粘度を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Dにアミン系硬化剤1を54.0gを混合して硬化性組成物を得た。実施例2と同様の方法で該硬化性組成物から各種測定用の硬化物を得、物性評価を行なった。結果を表1に示す。
<Example 5>
77.4 g of epoxy resin 1, 5.6 g of diglycidyl ether (1) obtained in Example 1 and 17.0 g of diglycidyl ether (2) obtained in Reference Example 1 were mixed to obtain “Diluted Resin D”. Got. It was 600 mPa * s when the viscosity of the obtained dilution resin D was measured by the above-mentioned method. Thereafter, 54.0 g of amine-based curing agent 1 was mixed with the diluted resin D to obtain a curable composition. A cured product for various measurements was obtained from the curable composition in the same manner as in Example 2, and physical properties were evaluated. The results are shown in Table 1.
<比較例1>
エポキシ樹脂1を74.7gおよび1,6−ヘキサンジオールジグリシジルエーテル(共栄社化学株式会社製、商品名:エポライト1600、成分[C]に相当する。)25.3gを混合して「希釈樹脂E」を得た。得られた希釈樹脂Eの粘度を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Eにアミン系硬化剤1を52.8gを混合して硬化性組成物を得た。実施例2と同様の方法で該硬化性組成物から各種測定用の硬化物を得、物性評価を行なった。結果を表1に示す。
<Comparative Example 1>
74.7 g of epoxy resin 1 and 25.3 g of 1,6-hexanediol diglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Epolite 1600, equivalent to component [C]) were mixed to obtain “Diluted resin E " It was 600 mPa * s when the viscosity of the obtained dilution resin E was measured by the above-mentioned method. Thereafter, 52.8 g of the amine curing agent 1 was mixed with the diluted resin E to obtain a curable composition. A cured product for various measurements was obtained from the curable composition in the same manner as in Example 2, and physical properties were evaluated. The results are shown in Table 1.
<比較例2>
エポキシ樹脂1を78.8gおよび炭素数12〜13の一価アルコールのモノグリシジルエーテル(大日本インキ株式会社製、商品名:EPICLON703、成分[C]に相当する。)21.2gを混合して「希釈樹脂F」を得た。得られた希釈樹脂Fの粘度を上記した方法により測定したところ、600mPa・sであった。その後、該希釈樹脂Fにアミン系硬化剤1を46.4gを混合して硬化性組成物を得た。実施例2と同様の方法で該硬化性組成物から各種測定用の硬化物を得、物性評価を行なった。結果を表1に示す。
<Comparative example 2>
78.8 g of epoxy resin 1 and monoglycidyl ether of monohydric alcohol having 12 to 13 carbon atoms (Dainippon Ink Co., Ltd., trade name: EPICLON 703, corresponding to component [C]) 21.2 g were mixed. “Diluted resin F” was obtained. It was 600 mPa * s when the viscosity of the obtained dilution resin F was measured by the above-mentioned method. Thereafter, 46.4 g of amine-based curing agent 1 was mixed with the diluted resin F to obtain a curable composition. A cured product for various measurements was obtained from the curable composition in the same manner as in Example 2, and physical properties were evaluated. The results are shown in Table 1.
表1より、本発明のジグリシジルエーテル(1)を反応性希釈剤として用いて硬化物を得た場合(実施例2〜5)は、1,6−ヘキサンジオールのジグリシジル化物または炭素数12〜13の一価アルコールのモノグリシジルエーテルのみを反応性希釈剤として用いて硬化物を得た場合(比較例1〜2)よりも、降伏応力、引張弾性率が高く、アイゾット衝撃値も遜色無く高い値となっており、力学的特性に優れていることがわかる。また、一般的に、モノグリシジルエーテルを使用した場合に比べてジグリシジルエーテルを使用した場合、得られる硬化物の吸水率は高くなる(比較例1および2参照)が、本発明のジグリシジルエーテル(1)を使用した場合(実施例2〜5)には、モノグリシジルエーテルを使用した場合(比較例2)と同等の低い吸水率を示し、耐水性に優れている。
From Table 1, when the diglycidyl ether (1) of the present invention was used as a reactive diluent to obtain a cured product (Examples 2 to 5), 1,6-hexanediol diglycidyl compound or 12 to 12 carbon atoms. The yield stress and the tensile elastic modulus are higher and the Izod impact value is inferiorly higher than when the cured product is obtained using only monoglycidyl ether of 13 monohydric alcohol as a reactive diluent (Comparative Examples 1 and 2). It is understood that the mechanical properties are excellent. In general, when diglycidyl ether is used as compared to the case where monoglycidyl ether is used, the water absorption of the resulting cured product is high (see Comparative Examples 1 and 2), but the diglycidyl ether of the present invention. When (1) is used (Examples 2 to 5), the water absorption is as low as when monoglycidyl ether is used (Comparative Example 2), and the water resistance is excellent.
Claims (4)
Hardened | cured material formed by hardening | curing the curable composition of Claim 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270423A JP4509715B2 (en) | 2004-09-16 | 2004-09-16 | Diglycidyl ether, curable composition and cured product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004270423A JP4509715B2 (en) | 2004-09-16 | 2004-09-16 | Diglycidyl ether, curable composition and cured product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006083306A true JP2006083306A (en) | 2006-03-30 |
JP4509715B2 JP4509715B2 (en) | 2010-07-21 |
Family
ID=36162079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004270423A Expired - Lifetime JP4509715B2 (en) | 2004-09-16 | 2004-09-16 | Diglycidyl ether, curable composition and cured product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4509715B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306900A (en) * | 2005-04-26 | 2006-11-09 | Kuraray Co Ltd | Curable composition and cured material |
WO2009041389A1 (en) * | 2007-09-27 | 2009-04-02 | Mitsubishi Gas Chemical Company, Inc. | Epoxy resin composition, cured object obtained therefrom, and light-emitting diode |
US20130144015A1 (en) * | 2010-09-30 | 2013-06-06 | Dow Global Technologies Llc | Epoxy resin adducts and thermosets therefrom |
JP2017508718A (en) * | 2014-01-21 | 2017-03-30 | ロケット フレールRoquette Freres | Process for producing isohexide glycidyl ether, products obtained thereby, and uses thereof |
WO2023171572A1 (en) | 2022-03-09 | 2023-09-14 | 株式会社Adeka | One-pack type epoxy resin composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178974A (en) * | 1985-02-04 | 1986-08-11 | Daicel Chem Ind Ltd | Production of polyhydric alcohol glycidyl ether |
JPH0286615A (en) * | 1988-09-22 | 1990-03-27 | Mitsui Petrochem Ind Ltd | Composite material and composition for forming same |
JPH05202167A (en) * | 1992-01-24 | 1993-08-10 | Mitsui Petrochem Ind Ltd | Flexible epoxy polyol resin |
JP2001288337A (en) * | 2000-04-07 | 2001-10-16 | Nippon Kayaku Co Ltd | Rein composition, its film and cured product thereof |
JP2005042105A (en) * | 2003-07-07 | 2005-02-17 | Showa Denko Kk | Epoxy resin composition |
-
2004
- 2004-09-16 JP JP2004270423A patent/JP4509715B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178974A (en) * | 1985-02-04 | 1986-08-11 | Daicel Chem Ind Ltd | Production of polyhydric alcohol glycidyl ether |
JPH0286615A (en) * | 1988-09-22 | 1990-03-27 | Mitsui Petrochem Ind Ltd | Composite material and composition for forming same |
JPH05202167A (en) * | 1992-01-24 | 1993-08-10 | Mitsui Petrochem Ind Ltd | Flexible epoxy polyol resin |
JP2001288337A (en) * | 2000-04-07 | 2001-10-16 | Nippon Kayaku Co Ltd | Rein composition, its film and cured product thereof |
JP2005042105A (en) * | 2003-07-07 | 2005-02-17 | Showa Denko Kk | Epoxy resin composition |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306900A (en) * | 2005-04-26 | 2006-11-09 | Kuraray Co Ltd | Curable composition and cured material |
JP4649264B2 (en) * | 2005-04-26 | 2011-03-09 | 株式会社クラレ | Curable composition and cured product |
WO2009041389A1 (en) * | 2007-09-27 | 2009-04-02 | Mitsubishi Gas Chemical Company, Inc. | Epoxy resin composition, cured object obtained therefrom, and light-emitting diode |
US9102786B2 (en) | 2007-09-27 | 2015-08-11 | Mitsubishi Gas Chemical Company, Inc. | Epoxy resin composition, cured object obtained therefrom, and light-emitting diode |
US20130144015A1 (en) * | 2010-09-30 | 2013-06-06 | Dow Global Technologies Llc | Epoxy resin adducts and thermosets therefrom |
US9371414B2 (en) * | 2010-09-30 | 2016-06-21 | Blue Cube Ip Llc | Epoxy resin adducts and thermosets thereof |
JP2017508718A (en) * | 2014-01-21 | 2017-03-30 | ロケット フレールRoquette Freres | Process for producing isohexide glycidyl ether, products obtained thereby, and uses thereof |
WO2023171572A1 (en) | 2022-03-09 | 2023-09-14 | 株式会社Adeka | One-pack type epoxy resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP4509715B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754731B2 (en) | Epoxy resin, method for producing epoxy resin, and use thereof | |
NO157174B (en) | Diglycidylether. | |
JP2015521683A (en) | Polybutadiene having epoxy groups | |
TW201406805A (en) | Esterified epoxy resin, method for producing same, and curable composition comprising same | |
TWI520980B (en) | The epoxy resin composition and cured | |
JP4742625B2 (en) | Hydrogenated epoxy resin, method for producing the same, and epoxy resin composition | |
US20160122466A1 (en) | Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound | |
JP4509715B2 (en) | Diglycidyl ether, curable composition and cured product | |
JP4649264B2 (en) | Curable composition and cured product | |
JP2002097251A (en) | Alicyclic compound containing glycidyl group, its production method and epoxy resin composition using the same | |
JP5301997B2 (en) | Liquid epoxy resin composition and cured epoxy resin | |
JP2009209117A (en) | Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof | |
JP2006249145A (en) | Epoxy resin, its manufacturing method and epoxy resin composition | |
JP2019070070A (en) | Composition and cured product | |
JP6444692B2 (en) | Polyvalent hydroxy compound and method for producing the same | |
JP2003246837A (en) | Epoxy resin and curable resin composition | |
JP6427116B2 (en) | Epoxy resin mixture, epoxy resin composition, cured product thereof, and semiconductor device | |
JP2015209516A (en) | Curable composition, and cured product | |
EP0595530A1 (en) | Epoxide resins derived from polycyclic phenols | |
JP6386386B2 (en) | Epoxy compound having fluorene skeleton and method for producing the same | |
JP7316009B2 (en) | Curing catalysts, resin compositions, encapsulants, adhesives, and cured products | |
JP4671018B2 (en) | Method for producing glycidyl 2-hydroxyisobutyrate | |
JP6910173B2 (en) | Dithiocarbonate compound and resin composition using it | |
JP4158137B2 (en) | Epoxy resin composition and cured product thereof. | |
JPH08333356A (en) | New glycidyl compound, its production and curable composition containing the same compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100428 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4509715 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |