JP2006083247A - Corrosion-resistant flow accelerator for cold/hot water and method for accelerating corrosion-resistant flow - Google Patents

Corrosion-resistant flow accelerator for cold/hot water and method for accelerating corrosion-resistant flow Download PDF

Info

Publication number
JP2006083247A
JP2006083247A JP2004267845A JP2004267845A JP2006083247A JP 2006083247 A JP2006083247 A JP 2006083247A JP 2004267845 A JP2004267845 A JP 2004267845A JP 2004267845 A JP2004267845 A JP 2004267845A JP 2006083247 A JP2006083247 A JP 2006083247A
Authority
JP
Japan
Prior art keywords
corrosion
cold
fluid
hot water
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004267845A
Other languages
Japanese (ja)
Other versions
JP4719873B2 (en
Inventor
Takashi Saeki
隆 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2004267845A priority Critical patent/JP4719873B2/en
Publication of JP2006083247A publication Critical patent/JP2006083247A/en
Application granted granted Critical
Publication of JP4719873B2 publication Critical patent/JP4719873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion-resistant flow accelerator for cold/hot water which inhibits corrosion by using a counterion having a group in a meta- and para-position, not a benzene ring type counterion having a group in an ortho position which may cause metal corrosion, for a cationic surfactant which forms a bar shaped micelle in the presence of the counterion and, at the same time, can be used in a wide range of applications by stabilizing formation of the bar shaped micelle in a high temperature range, and to provide a method for accelerating corrosion-resistant flow of cool/warm water heating medium. <P>SOLUTION: The corrosion-resistant flow accelerator for cold/warm water comprises the cationic surfactant and the counterion of a benzoic acid which is at least either a meta- or a para-halogenated benzoic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、閉路循環系、地域冷暖房システム、各種工場の循環系、コージェネレーションシステムなどに使用する水などの熱媒流体中に粘弾性特性を持たせる添加剤を添加することによって抗力減少効果を誘起させ、乱流を層流化させるようにした冷温水用腐食抑制性流れ促進剤に関する。   The present invention has a drag reduction effect by adding an additive that imparts viscoelastic properties to a heat transfer fluid such as water used in closed circuit circulation systems, district cooling and heating systems, circulation systems of various factories, cogeneration systems, etc. The present invention relates to a corrosion-inhibiting flow promoter for cold / hot water that is induced to turbulently laminarize.

パイプなどの管内を流れる流体には、流体相互や該流体と管の壁面との境界のところで生ずる摩擦抵抗や、その抵抗に伴う乱流などが生ずることが知られ、それにより該流体の管内での流れに抗する力が働くこと、そしてそうした流体の中に僅かな量の特定の物質を添加することにより、該流体の管内での流れがよりスムーズになるあるいは該流体の管内での流れに抗する力を低下せしめることができることが知られている。こうした作用効果を持つ物質は、当該分野では、配管内流体用、「流れ促進剤」、「抗力減少剤」、「摩擦抵抗低減剤」、「DR剤」などと呼ばれている。オフィスビル、工場、病院、デパート、ホテル、公共施設等では空調設備が欠かせない。そうした空調などには、冷暖房用熱媒移送システムが使用される。こうした熱媒移送システム等においては、普通、配管の長さは長距離にわたり、配管内を流れる流体にかかる管内抵抗なども大きなものとなり、流体搬送動力も大きなものが必要となり、配管設備コストも膨大なものになる。さらにはランニングコストも増大する。   It is known that a fluid flowing in a pipe such as a pipe has a frictional resistance generated at the fluid and at the boundary between the fluid and the wall of the pipe, and a turbulent flow associated with the resistance. By adding a small amount of a specific substance to the fluid, the flow of the fluid in the pipe becomes smoother or the flow of the fluid in the pipe is reduced. It is known that the ability to resist can be reduced. Substances having such action and effects are referred to in the art as pipe fluids, “flow promoters”, “drag reduction agents”, “friction resistance reduction agents”, “DR agents”, and the like. Air conditioning is indispensable in office buildings, factories, hospitals, department stores, hotels and public facilities. For such air conditioning, a heat transfer system for air conditioning is used. In such a heat transfer system, etc., the length of the pipe is usually long, the resistance in the pipe acting on the fluid flowing in the pipe is large, the fluid conveyance power is also large, and the piping equipment cost is enormous. It will be something. Furthermore, the running cost increases.

設備コストを削減し、流体搬送動力を低減させる有利な方法として、配管内を流れる水などの流体の配管抵抗を低減させる「流れ促進剤」を使用することが提案されてきている(例えば、特許文献1)。   As an advantageous method for reducing the equipment cost and reducing the fluid conveyance power, it has been proposed to use a “flow promoter” that reduces the pipe resistance of fluid such as water flowing in the pipe (for example, patents). Reference 1).

ところで、空調設備等の冷温水配管は、防錆剤等を使用して水管理をしないと、管内に錆等を生じさせ、配管内部を閉塞させたり、配管自体を破損させて、トラブルを生じさせる恐れがあることから、従来より、様々な防錆、管理手段が取られている。特に大規模な空調施設(例えば、地域冷暖房、高層ビル空調など)、半導体工場での空調設備では、配管の延命が重要視されており、そうした目的で腐食抑制剤が多く利用されているのも事実である。密閉冷温水経路内に防錆として−般的に多く利用されている防錆剤としては、亜硝酸塩系の防錆剤が多いと言われている。   By the way, cold / hot water pipes for air conditioning equipment, etc., if water management is not performed using a rust inhibitor, etc., will cause rust etc. in the pipes, block the inside of the pipes, damage the pipes themselves, and cause trouble. In the past, various rust prevention and management measures have been taken. Especially in large-scale air-conditioning facilities (such as district cooling and heating, high-rise building air-conditioning) and air-conditioning facilities in semiconductor factories, life extension of piping is regarded as important, and corrosion inhibitors are often used for such purposes. It is a fact. It is said that there are many nitrite-based rust preventives as rust preventives generally used in the sealed cold / hot water path.

特開2002−80820号公報Japanese Patent Laid-Open No. 2002-80820

しかし、上記したように、近年、棒状ミセルを形成する界面活性剤を添加した冷温水を冷熱媒移送管及び放熱器内に流通せしめ、省エネルギーを図る手段が注目を浴び、その利用の一層の促進が求められているが、そういった流れ促進剤は、空調設備等の冷温水配管系は鋼管やその亜鉛メッキ管、ステンレス管を含み、さらに熱交換装置には銅管が使用されることが多い。これらの金属の腐食を抑えるためには個々の金属の腐食を抑える添加剤を混合添加することがなされている。   However, as mentioned above, in recent years, attention has been focused on means for energy saving by circulating cold / hot water added with a surfactant that forms rod-like micelles in the cooling medium transfer pipe and radiator, and further promoting its use. However, in such a flow promoter, a cold / hot water piping system such as an air conditioner includes a steel pipe, a galvanized pipe, a stainless pipe, and a copper pipe is often used for a heat exchange device. In order to suppress the corrosion of these metals, an additive for suppressing the corrosion of each metal is mixed and added.

これらの防食剤は水中でイオンの形で存在する。一方、流れ促進剤として使用される界面活性剤と対イオン剤もイオン性の物質であり、これが複数の防錆剤と混合されることによって、流れ促進効果が低下したり、流れ促進効果が得られる上限温度が低下したり、場合によっては腐食が進むといった問題があった。また、流れ促進剤を単独で使用した場合では、パイプ内の腐食は不可避であると予想され、錆等の発生により、パイプ壁面が凹凸となる恐れがある。パイブの内壁に生じた凹凸で流れが乱されることとなり、パイプ内を流れる流体と管壁との間の摩擦抵抗が増大し、流量が低下することが考えられる。   These anticorrosives exist in the form of ions in water. On the other hand, surfactants and counter-ionic agents used as flow accelerators are also ionic substances, and when this is mixed with a plurality of rust inhibitors, the flow promotion effect is reduced or the flow promotion effect is obtained. However, there is a problem that the upper limit temperature to be lowered is lowered or corrosion is advanced in some cases. In addition, when the flow accelerator is used alone, corrosion in the pipe is expected to be inevitable, and the pipe wall surface may become uneven due to the occurrence of rust or the like. It is conceivable that the flow is disturbed by the irregularities generated on the inner wall of the pipe, the frictional resistance between the fluid flowing in the pipe and the pipe wall increases, and the flow rate decreases.

また、パイプ内を流れる流体の流動抵抗低減には、熱媒に添加される流れ促進剤が、棒状ミセルを形成することがひとつの鍵であると考えられるが、こうした配管内の汚れ、錆などは、流動抵抗低減に対しそれを阻害する大きな要因の一つとなる。   In addition, it is thought that the flow accelerator added to the heat medium is one of the keys to reducing the flow resistance of the fluid flowing in the pipe, but forming rod-like micelles. Is one of the major factors that hinder the reduction of flow resistance.

本発明は、従来の問題点に鑑みてなされたものであり、本発明の目的は、対イオン剤の存在下で棒状ミセルを形成するカチオン系界面活性剤に対し、金属の腐食の原因となるオルト位に基を持つベンゼン環型対イオン剤ではなく、メタ位やパラ位に基を持つ対イオン剤を使用することによって、腐食を抑制するとともに、高温域での棒状ミセルの形成を安定せしめることによって、広範囲で使用可能な冷温水用腐食抑制性流れ促進剤を提供することにある。   The present invention has been made in view of conventional problems, and an object of the present invention is to cause metal corrosion with respect to a cationic surfactant that forms rod-like micelles in the presence of a counterionic agent. By using a counter ion agent with a meta or para group instead of a benzene ring type counter ion agent with an ortho group, the corrosion is suppressed and the formation of rod-like micelles at high temperatures is stabilized. Accordingly, it is an object to provide a corrosion-inhibiting flow promoter for cold / hot water that can be used in a wide range.

上記目的を達成するために、第1の発明では、カチオン系界面活性剤とメタまたはパラハロゲン化安息香酸のうち少なくとも一方である対イオン剤とよりなるようにした。   In order to achieve the above object, in the first invention, a cationic surfactant and a counter ion agent that is at least one of meta or para-halogenated benzoic acid are used.

第1の発明を主体とする第2の発明では、流体用流れ促進剤に防錆剤を添加するようにした。また、第1の発明を主体とする第3の発明では、流体用流れ促進剤に消泡剤を添加するようにした。さらに、第4の発明では、カチオン系界面活性剤50〜1500ppm、対イオン剤50〜5000ppmを流体に添加混合するようにした。   In the second invention based on the first invention, a rust inhibitor is added to the fluid flow accelerator. Further, in the third invention based on the first invention, an antifoaming agent is added to the fluid flow accelerator. Furthermore, in 4th invention, 50-1500 ppm of cationic surfactants and 50-5000 ppm of counterionic agents were added and mixed with the fluid.

閉路循環系、地域冷暖房システム、各種工場の循環系、コージェネレーションシステムなどに使用する水などの熱媒流体中に、カチオン系界面活性剤にメタ位またはパラ位にある対イオン剤を添加混合することにより、高温域での棒状ミセルの形成を安定せしめ、乱流を層流化させることにより、長期的に安定した抗力減少効果を誘起させ、広範囲で使用可能な熱媒流体を得ることができる。   Addition and mixing of a cationic surfactant with a counter ion agent in the meta or para position into a heat transfer fluid such as water used in closed circuit systems, district heating and cooling systems, circulation systems in various factories, cogeneration systems, etc. By stabilizing the formation of rod-like micelles at high temperatures and laminating turbulent flow, a long-term stable drag reduction effect can be induced, and a heat transfer fluid that can be used in a wide range can be obtained. .

本明細書中、「流体用流れ促進剤」とは、流体の管内での流れがよりスムーズになるあるいは該流体の管内での流れに抗する力を低下せしめることができる機能を有する物質あるいは組成物を指し、公知のもののうちから選ばれることができるが、好ましくは界面活性剤を成分として含有するものが挙げられ、より好ましくは少なくとも界面活性剤と対イオン剤とを含有するものが挙げられる。該界面活性剤としては、カチオン系界面活性剤として当業者に知られたもののうちから選ばれることができ、特に好ましくは流体中で棒状ミセルを形成する界面活性剤が挙げられ、例えば、長鎖を有する第4アンモニウム塩等である。これらのうち、特に、炭素数16〜18のアルキル基を有する第4アンモニウム塩が好ましい。   In the present specification, the “fluid flow promoter” means a substance or composition having a function of making the flow of fluid in the pipe smoother or reducing the force against the flow of the fluid in the pipe. It can be selected from among known ones, preferably those containing a surfactant as a component, more preferably those containing at least a surfactant and a counter ion agent. . The surfactant may be selected from those known to those skilled in the art as a cationic surfactant, and particularly preferably includes a surfactant that forms rod-like micelles in a fluid. For example, a long chain A quaternary ammonium salt having Among these, a quaternary ammonium salt having an alkyl group having 16 to 18 carbon atoms is particularly preferable.

好適に使用されるカチオン系界面活性剤としては、セチルトリメチルアンモニウムクロライド、ステアリルトリヌチルアンモニウムクロライド、オレイルトリメチルアンモニウムクロライド、オレイルビスヒドロキシエチルアンモニウムクロライドなどが挙げられる。   Suitable cationic surfactants include cetyltrimethylammonium chloride, stearyltrinutylammonium chloride, oleyltrimethylammonium chloride, oleylbishydroxyethylammonium chloride and the like.

また、第4級アンモニウム塩を構成するマイナスイオンは、特に限定されず、塩素、臭素、ヨウ素などのハロゲンイオン、硫酸イオン、硝酸イオン、リン酸イオン等であってもよいが、塩素イオンが一般的である。次に、対イオン剤としては、メタまたはパラ位に置換基を有する安息香酸である。特に、メタハロゲン化安息香酸あるいはパラハロゲン化安息香酸が有利であり、なかでもパラクロロ安息香酸が優れた効果を示す。
本発明の特徴の一つは、該対イオン剤として用いられる安息香酸は、オルト位に置換基を持たないことにある。
The negative ions constituting the quaternary ammonium salt are not particularly limited, and may be halogen ions such as chlorine, bromine and iodine, sulfate ions, nitrate ions, phosphate ions, etc., but chlorine ions are generally used. Is. Next, the counter ion agent is benzoic acid having a substituent at the meta or para position. In particular, metahalogenated benzoic acid or parahalogenated benzoic acid is advantageous, and parachlorobenzoic acid exhibits excellent effects.
One of the features of the present invention is that the benzoic acid used as the counter ion agent has no substituent at the ortho position.

本発明において、カチオン系界面活性剤と対イオン剤との使用割合は、特に厳密ではないが、好適な範囲として重量比で1〜3対1〜10の割合で用いられる。また、本発明の流体用流れ促進剤は対象となる熱媒、特に水または水を主体とする水溶液に対して、カチオン系界面活性剤を50〜1500ppm、対イオン剤を50〜5000ppmとなる範囲で用いるのが好ましい。これらカチオン系界面活性剤および(または)対イオン剤を更に大量に用いることは、かえって熱媒の粘度の上昇を来たし、流体の流れを阻害する方向になる。また上記範囲よりも低濃度で用いたのでは、流れ促進効果が十分に発揮されない。   In the present invention, the use ratio of the cationic surfactant and the counter ion agent is not particularly strict, but as a suitable range, it is used in a ratio of 1 to 3 to 1 by weight. The fluid flow promoter of the present invention is a range in which the cationic surfactant is 50 to 1500 ppm and the counter ion agent is 50 to 5000 ppm with respect to the target heat medium, particularly water or an aqueous solution mainly composed of water. Is preferably used. The use of a larger amount of these cationic surfactants and / or counter-ionic agents leads to an increase in the viscosity of the heat medium, and tends to inhibit the fluid flow. Moreover, if it is used at a concentration lower than the above range, the flow promoting effect is not sufficiently exhibited.

亜鉛引き配管を想定して、500mlのビーカーに試験水を用意し、これに予め秤量した亜鉛板(30×50×1mm)を12日間浸透させ、この間、ホットマグネットスターラーを用いて攪拌しながら55℃の条件に保った。その後、亜鉛板を再び秤量して減量を求め、下記の式により亜鉛板の腐食速度(MDD)を算出した。   Assuming zinc-drawing piping, prepare test water in a 500 ml beaker, and pre-weighed zinc plate (30 × 50 × 1 mm) is infiltrated for 12 days. During this period, the sample is stirred with a hot magnet stirrer. The temperature was kept at ℃. Thereafter, the zinc plate was weighed again to determine the weight loss, and the corrosion rate (MDD) of the zinc plate was calculated according to the following formula.

Figure 2006083247
Figure 2006083247

その結果、腐食速度に顕著な差異のあるデータが得られた。すなわち、比較例として水道水500mlにカチオン系界面活性剤(Arquad18−63)500ppmとサリチル酸ナトリウム500ppmを添加混合して上述した条件で腐食速度を測定した結果、22.1(MDD)であった。因みに、一般にMDD値が10以下であると防食できたと判断される。さらに、本発明に基づき、カチオン系界面活性剤(Arquad18−63)500ppmとパラクロロ安息香酸500ppmを添加混合し、上記条件下で実験を行い亜鉛板の腐食速度を測定し、前記式(化1)によって腐食速度を算出したところ、0.1(MDD)となり、腐食速度が極めて小さいことが判明した。因みに、水道水500mlのみの場合では、0.5(MDD)であった。   As a result, data with marked differences in corrosion rates were obtained. That is, as a comparative example, 500 ppm of a cationic surfactant (Arquad 18-63) and 500 ppm of sodium salicylate were added to and mixed with 500 ml of tap water, and the corrosion rate was measured under the above-described conditions. The result was 22.1 (MDD). Incidentally, it is generally judged that the anticorrosion can be achieved when the MDD value is 10 or less. Furthermore, based on the present invention, 500 ppm of cationic surfactant (Arquad 18-63) and 500 ppm of parachlorobenzoic acid were added and mixed, and the corrosion rate of the zinc plate was measured by performing an experiment under the above conditions. When the corrosion rate was calculated by the above, it was 0.1 (MDD), and it was found that the corrosion rate was extremely low. Incidentally, in the case of only 500 ml of tap water, it was 0.5 (MDD).

これに対して、既存の技術では、鉄の腐食防止はモリブデン酸ナトリウムや亜硝酸ナトリウムを添加し、銅の腐食防止はベンゾトリアゾール系腐食抑制剤を添加すればよいが、亜鉛の場合は腐食が抑えられず、ほとんど効果が無かった。しかしながら、抗力減少剤の対イオン剤をサリチル酸ナトリウムからパラクロロ安息香酸に替えたことにより、亜鉛に対する腐食が改善した。さらに、パラクロロ安息香酸の添加によって、抗力減少効果はサリチル酸ナトリウムによるものと同レベルであるばかりでなく、抗力減少を維持する上限温度を上昇することかできる。   In contrast, with existing technologies, sodium molybdate or sodium nitrite can be added to prevent iron corrosion, and benzotriazole-based corrosion inhibitors can be added to prevent copper corrosion. It was not able to be suppressed and there was almost no effect. However, the corrosion resistance to zinc was improved by changing the counterion agent of the drag reducing agent from sodium salicylate to parachlorobenzoic acid. Furthermore, by adding parachlorobenzoic acid, the drag reduction effect is not only at the same level as that by sodium salicylate, but it is also possible to increase the upper limit temperature at which drag reduction is maintained.

本発明の流体用流れ促進剤は、さらに防錆剤を併せ用いることも極めて効果的であり、冷温水用の腐食抑制流れ促進剤となる。これら併用される防錆剤は、特に制限されることなく、市販の防錆剤が使用可能であり、例えば、モリブデン酸ナトリウム塩、モリブデン酸カリウム塩、モリブデン酸リチウム塩、モリブデン酸カルシウム塩、モリブデン酸アンモニウム塩などが挙げられ、特に好適にはモリブデン酸ナトリウムあるいはモリブデン酸リチウムである。また、亜硝酸塩としては、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸リチウムなどが挙げられる。本発明の腐食抑制性流れ促進剤には、さらにベンゾトリアゾール系腐食抑制剤を含有せしめることもできる。   The fluid flow accelerator of the present invention is also extremely effective in combination with a rust inhibitor, and becomes a corrosion-inhibiting flow accelerator for cold and hot water. These rust preventives used in combination are not particularly limited, and commercially available rust preventives can be used. For example, sodium molybdate, potassium molybdate, lithium molybdate, calcium molybdate, molybdenum Examples of the acid ammonium salt include sodium molybdate and lithium molybdate. Examples of the nitrite include sodium nitrite, potassium nitrite, and lithium nitrite. The corrosion-inhibiting flow promoter of the present invention can further contain a benzotriazole-based corrosion inhibitor.

モリブデン酸塩は、通常の腐食抑制剤として一般的に利用されてはいるが、高価であり、また単独での使用だと高い添加量を必要とするため、従来は、何種類かの腐食抑制剤と併用することによってそのモリブデン酸塩の腐食抑制活性を利用してきたに止まる。モリブデン酸塩を流れ促進剤と併用しての腐食抑制の原理としては、モリブデン酸塩がパイプ管内に酸化皮膜を形成せしめて、腐食抑制を行い、かつ、界面活性剤の吸着の相乗効果により、腐食機能をもたらしていると思われる。流体用流れ促進剤をモリブデン酸塩と併用することにより、常に腐食抑制されることになりパイプ内部の腐食進行がなくなり、長期的に流れ促進機能を維持できるのである。   Although molybdate is generally used as a normal corrosion inhibitor, it is expensive and requires a high amount of addition when used alone. When used in combination with an agent, the corrosion inhibiting activity of the molybdate has only been utilized. As a principle of corrosion inhibition using molybdate in combination with a flow accelerator, molybdate forms an oxide film in the pipe pipe to suppress corrosion, and due to the synergistic effect of adsorption of surfactant, It seems to have brought about a corrosive function. By using the fluid flow accelerator together with the molybdate, the corrosion is always suppressed and the progress of corrosion inside the pipe is eliminated, and the flow promotion function can be maintained for a long time.

本発明は、さらに前記流体用流れ促進剤に防錆剤に代えてあるいは、防錆剤に併せて消泡剤を添加することも極めて有効である。この場合用いられる消泡剤は市販のものが何ら制限なく使用することができる。例えば、シリコン系消泡剤や鉱物油系消泡剤が市販されており、それらを有効量併せ用いればよい。   In the present invention, it is also extremely effective to add an antifoaming agent to the fluid flow accelerator in place of the rust inhibitor or in combination with the rust inhibitor. In this case, a commercially available antifoaming agent can be used without any limitation. For example, silicon-based antifoaming agents and mineral oil-based antifoaming agents are commercially available, and these may be used together in an effective amount.

本発明の代表的な冷温水式の空調システムでは、熱源地点と放熱地点との間の直径約5〜1000mm、好ましくは約10〜500mmの熱媒移送管内に、液温約−30〜120℃、好ましくは約−20〜100℃、より好ましくは約2〜80℃であり、また対イオン剤成分としてパラメタクロロ安息香酸成分あるいはメタクロロ安息香酸をそれぞれ約50〜5000ppm、好ましくは約100〜3000ppm、さらに好ましくは約200〜2000ppm含有し、さらにモリブデン酸塩又は亜硝酸塩を含有する防錆剤を含有している冷温水を壁面せん断速度約5〜3000γ(1/s)で流通せしめることになる。
本発明では、液温を約−30〜120℃に限定したのは、次の理由による。すなわち、−30℃以下になると、溶解度が低下して、一旦溶解したものが溶出してくる。また、120℃以上になると棒状ミセルを形成しないか、あるいは不安定な状態になり易い。
In the typical cold / hot water type air conditioning system of the present invention, the liquid temperature is about −30 to 120 ° C. in the heat medium transfer pipe having a diameter of about 5 to 1000 mm, preferably about 10 to 500 mm, between the heat source point and the heat radiation point. , Preferably about -20 to 100 ° C, more preferably about 2 to 80 ° C, and the parameter chlorobenzoic acid component or metachlorobenzoic acid as the counter ion component is about 50 to 5000 ppm, preferably about 100 to 3000 ppm, More preferably, cold / warm water containing about 200 to 2000 ppm and further containing a rust inhibitor containing molybdate or nitrite is circulated at a wall shear rate of about 5 to 3000 γ (1 / s).
In the present invention, the liquid temperature is limited to about −30 to 120 ° C. for the following reason. That is, when it becomes -30 degrees C or less, a solubility will fall and what once melt | dissolved will elute. Moreover, when it becomes 120 degreeC or more, a rod-like micelle will not be formed or it will be in an unstable state easily.

なお、0℃以下の場合熱媒が凍ることがあるが、その場合には、ポリエチレングリコールやアルコール類を加えた溶液が用いられるが、本発明の流体流れ促進剤はかかる溶液に対しても有効である。さらに、100℃を超えた高温の場合、当然高圧となるが同様に本発明の流体用流れ促進剤は適用可能である。しかしながら、本発明の流れ促進剤が最も有効に作用する範囲は前述のとおり2〜80℃である。   In addition, although a heat medium may freeze when it is 0 degrees C or less, in that case, although the solution which added polyethyleneglycol and alcohols is used, the fluid flow promoter of this invention is effective also with respect to this solution. It is. Furthermore, in the case of a high temperature exceeding 100 ° C., naturally, the pressure becomes high, but the fluid flow accelerator of the present invention is also applicable. However, the range in which the flow promoter of the present invention works most effectively is 2 to 80 ° C. as described above.

熱媒としての冷温水の移送管の直径は、好ましくは約5〜1000mm、さらに好ましくは約10〜500mmであり、この範囲より小さい場合は熱媒の送水能力に不足を生じ十分な熱媒の供給が困難となり、さらにこの範囲を越えると配管コストが高くなりすぎるという問題が生じる。   The diameter of the transfer pipe for the cold / hot water as the heat medium is preferably about 5 to 1000 mm, more preferably about 10 to 500 mm. Supply becomes difficult, and if this range is exceeded, the piping cost becomes too high.

図2は縦軸を最大DR%(%)で表し、横軸をカチオン系界面活性剤濃度(ppm)で表す。図2において、本発明の流体用流れ促進剤であるカチオン系界面活性剤(界面活性剤成分)は約50〜1500ppm、好ましくは約100〜1200ppm、さらに好ましくは約200〜1500ppm含有せしめることができ、この範囲より少ないと、抗力減少効果が不満足となり、またこの範囲を越えると熱媒の粘度上昇によって抗力減少効果の割りには熱量が増加せず、またそれの使用量の増大によるコスト上昇が問題となる。   In FIG. 2, the vertical axis represents the maximum DR% (%), and the horizontal axis represents the cationic surfactant concentration (ppm). In FIG. 2, the cationic surfactant (surfactant component), which is the fluid flow promoter of the present invention, can be contained in an amount of about 50 to 1500 ppm, preferably about 100 to 1200 ppm, more preferably about 200 to 1500 ppm. If it is less than this range, the drag reduction effect will be unsatisfactory, and if it exceeds this range, the heat quantity will not increase due to the increase in viscosity of the heat medium, and the cost will increase due to the increase in the amount of use. It becomes a problem.

さらに、図3は縦軸を最大DR%(%)で表し、横軸を対イオン濃度(ppm)で表す。図3において、対イオン濃度の好適な範囲は、約50〜5000ppmであり、より好ましい範囲は約100〜3000ppmとなる。この範囲より少ないと、抗力減少効果が不満足となり、またこの範囲を越えると熱媒の粘度上昇によって抗力減少効果の割りには熱量が増加せず、またそれの使用量の増大によるコスト上昇が問題となる。   Further, in FIG. 3, the vertical axis represents the maximum DR% (%), and the horizontal axis represents the counter ion concentration (ppm). In FIG. 3, the preferred range of the counter ion concentration is about 50 to 5000 ppm, and the more preferred range is about 100 to 3000 ppm. If it is less than this range, the drag reduction effect will be unsatisfactory, and if this range is exceeded, the amount of heat will not increase due to the increase in viscosity of the heating medium, and the cost will increase due to the increase in usage. It becomes.

以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。   The present invention will be described in detail with reference to the following examples, which are provided merely for the purpose of illustrating the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application. In the present invention, it should be understood that various embodiments based on the idea of the present specification are possible. All examples were performed or can be performed using standard techniques, except as otherwise described in detail, and are well known and routine to those skilled in the art. .

図1を用いて実施例1を説明する。図1に冷温水式の空調システムを示す。図1では、冷温水発生機(ヒートポンプ)1と高架タンク2とを熱媒移送配管3で結んで、熱媒(冷温水)の抗力減少化効果及び腐食性向上についてテストした。図1に示された装置には、電磁流量計4及び差圧計測器(U字管マノメーター)5が設けられ、それぞれ各流量の測定及びタップ間直管部区間Lの圧力損失を測定できる。循環ポンプ6をインバータ7で周波数を変化させて、各流量、各温度及び添加された流体用流れ促進剤とモリブデン酸塩又は亜硝酸塩を含有する防錆剤の影響を調べた。図中、8は調温装置、T.Cは温度計である。冷温水発生機(熱源)1としては、吸収式冷温水発生機(ヒートポンプ)を使用した。循環ポンプ6は、S型片吸込渦巻きポンプ1.5kwを使用し、熱媒移送配管3のパイプ径は20mmのものを使用した。熱媒移送配管3のパイプの総延長は220mであった。該空調システム中の保有水量はおおよそ1.54立方メートルである。インバーター7は汎用インバーター2.2kwのものを使用し、冷温水の温度範囲は冷水7〜10℃とし、温水80℃とした。   Example 1 will be described with reference to FIG. FIG. 1 shows a cold / hot water type air conditioning system. In FIG. 1, a cold / hot water generator (heat pump) 1 and an elevated tank 2 are connected by a heat medium transfer pipe 3 to test the drag reduction effect and the corrosivity improvement of the heat medium (cold / warm water). The apparatus shown in FIG. 1 is provided with an electromagnetic flow meter 4 and a differential pressure measuring device (U-shaped manometer) 5, which can measure each flow rate and pressure loss in the straight pipe section L between taps. The frequency of the circulation pump 6 was changed by the inverter 7, and the influence of each flow rate, each temperature, and the added flow promoter for fluid and a rust inhibitor containing molybdate or nitrite was examined. In the figure, 8 is a temperature control device, T.I. C is a thermometer. As the cold / hot water generator (heat source) 1, an absorption cold / hot water generator (heat pump) was used. As the circulation pump 6, an S-type single suction centrifugal pump 1.5 kw was used, and the heat medium transfer pipe 3 having a pipe diameter of 20 mm was used. The total length of the heat medium transfer pipe 3 was 220 m. The amount of water retained in the air conditioning system is approximately 1.54 cubic meters. The inverter 7 used was a general-purpose inverter 2.2 kw, and the temperature range of the cold / hot water was 7-10 ° C. cold water and 80 ° C. hot water.

水道水に、流体用流れ促進剤としてオレイルビスヒドロキシエチルメチルアンモニウムクロライド(「エソカード(Ethoquard O/12)」、商品名:ライオン(株)社製の界面活性剤)を500ppm、そして対イオン剤成分としてパラクロロ安息香酸を500ppmの同量添加した。得られたEthoquard O/12+パラクロロ安息香酸に、防錆剤としてモリブデン酸ナトリウムを添加し、抗力低減効果(drag
reduction:DR)に及ぼす影響を調べた。
Tap water, 500 ppm of oleyl bishydroxyethylmethylammonium chloride ("Ethoquad O / 12", a product of a surfactant manufactured by Lion Corporation) as a flow promoter for fluids, and a counter ion component The same amount of 500 ppm of parachlorobenzoic acid was added. Sodium molybdate as a rust preventive agent was added to the obtained Ethoquaard O / 12 + parachlorobenzoic acid to reduce drag (drag
The effect on reduction (DR) was examined.

実験は、先ず最初に水道水を使用し、実際に稼働している状態として運転し、インバーターによるモーターの回転数制御を行い、各周波数毎のポンプのモーターの回転数制御を行い、ポンプの各回転数毎のポンプの吐出圧力、熱媒(冷温水)の温度、流速(u[m/s])を測定した。次に流体用流れ促進剤を添加した水道水、流体用流れ促進剤とモリブデン酸ナトリウムを添加したもので同様に測定した。またインバーターを用いて周波数を下げて行き、流速が水道水の時と同じになるように設定し、その時の電流値を比較し、節減量を求めた。   In the experiment, tap water is used first, it is operated as if it is actually operating, the motor speed is controlled by an inverter, the motor speed of the pump is controlled at each frequency, The pump discharge pressure, the temperature of the heat medium (cold / warm water), and the flow velocity (u [m / s]) were measured for each rotation speed. Next, tap water to which a fluid flow accelerator was added, a fluid flow accelerator and sodium molybdate were added, and the same measurement was performed. In addition, the frequency was lowered using an inverter, the flow rate was set to be the same as that for tap water, and the current value at that time was compared to determine the amount of saving.

得られた結果を、図4〜5に示す。図4及び図5は縦軸を抗力低減効果(以下、DR%で表し、Drag Reduction Rateの略称である)とし、横軸を温度(℃)で表す。ここで抗力減少率DR%(%)を導入した。流体摩擦係数fとレイノズル数Reとの関係から、水(ニュートン流体)を流したときの流体摩擦抵抗fwと、流れ促進剤を流したときの流体摩擦抵抗fsを算出しておき、抗力減少率DR(%)を以下のように定義する。
抗力減少率DR%(%)=[(fw―fs)/fs]×100
The obtained results are shown in FIGS. 4 and 5, the vertical axis represents drag reduction effect (hereinafter referred to as DR%, which is an abbreviation for Drag Reduction Rate), and the horizontal axis represents temperature (° C.). Here, the drag reduction rate DR% (%) was introduced. From the relationship between the fluid friction coefficient f and the Ray nozzle number Re, the fluid friction resistance fw when water (Newtonian fluid) is flowed and the fluid friction resistance fs when a flow accelerator is flowed are calculated, and the drag reduction rate is calculated. DR (%) is defined as follows.
Drag reduction rate DR% (%) = [(fw−fs) / fs] × 100

すなわち、抗力減少が起きていないときは抗力減少率DR(%)=0%となり、抗力減少率DR%(%)が大きいほど抗力減少効果が大きい。図4と図5を比較すると、図4の場合は、カチオン系界面活性剤〔Ethoquard O/12;塩化オレイルビスヒドロキシエチルメチルアンモニウム;C1835N(COH)CHCl〕500ppmにサリチル酸ナトリウム(HOCCOONa)を添加して、温度を室温から徐々に上昇させた後に抗力減少率DR%(%)を測定した結果、流体の温度が65℃を超えると抗力減少率DR%(%)が低下し始め、抗力減少率DR%(%)が50%を切るときの上限温度は69℃になった。 That is, when there is no drag reduction, the drag reduction rate DR (%) = 0%, and the drag reduction effect increases as the drag reduction rate DR% (%) increases. When FIG. 4 is compared with FIG. 5, in the case of FIG. 4, the cationic surfactant [Ethoquad O / 12; oleylbishydroxyethylmethylammonium chloride; C 18 H 35 N (C 2 H 4 OH) 2 CH 3 Cl ] After adding sodium salicylate (HOC 6 H 4 COONa) to 500 ppm and gradually increasing the temperature from room temperature, the drag reduction rate DR% (%) was measured. As a result, if the fluid temperature exceeded 65 ° C, the drag The decrease rate DR% (%) began to decrease, and the upper limit temperature when the drag decrease rate DR% (%) fell below 50% was 69 ° C.

これに対して、図5の場合は、カチオン系界面活性剤(Ethoquard O/12;塩化オレイルビスヒドロキシエチルメチルアンモニウム;C1835N(COH)CHCl〕500ppmにパラクロロ安息香酸(ClCCOOH)を添加したときの結果である。温度が70℃を超えると抗力減少率DR%(%)が低下し始め、76℃で抗力減少率DR%=50%となった。これにより、対イオン剤をオルト位のサリチル酸ナトリウムからパラ位のパラクロロ安息香酸に替えたことで、上限温度が7℃上昇したことが判る。 On the other hand, in the case of FIG. 5, a cationic surfactant (Ethoquad O / 12; oleylbishydroxyethylmethylammonium chloride; C 18 H 35 N (C 2 H 4 OH) 2 CH 3 Cl) is added to 500 ppm of parachloro. This is the result when benzoic acid (ClC 6 H 4 COOH) is added, and the drag reduction rate DR% (%) starts to drop when the temperature exceeds 70 ° C., and the drag reduction rate DR% = 50% at 76 ° C. As a result, it was found that the upper limit temperature was increased by 7 ° C. by changing the counter ion agent from sodium orthosalicylate in the ortho position to parachlorobenzoic acid in the para position.

ヒートポンプを使用したDR効果評価の為に使用される装置の概説図である。It is a schematic diagram of the apparatus used for DR effect evaluation using a heat pump. 最大DR%(%)とカチオン系界面活性剤濃度との関係を示すグラフ図である。It is a graph which shows the relationship between maximum DR% (%) and a cationic surfactant density | concentration. 最大DR%(%)と対イオン濃度との関係を示すグラフ図である。It is a graph which shows the relationship between maximum DR% (%) and counter ion concentration. 流体の上限温度が69℃を超えると抗力減少率DR%(%)が低下し始める場合のグラフ図である。It is a graph in the case where the drag reduction rate DR% (%) starts to decrease when the upper limit temperature of the fluid exceeds 69 ° C. 流体の上限温度が76℃を超えると抗力減少率DR%(%)が低下し始める場合のグラフ図である。It is a graph in the case where the drag reduction rate DR% (%) starts to decrease when the upper limit temperature of the fluid exceeds 76 ° C.

符号の説明Explanation of symbols

1 冷温水発生機(ヒートポンプ)
2 高架タンク
3 熱媒移送配管
4 電磁流量計
5 差圧計測器
6 循環ポンプ
7 インバータ
8 調温装置
1 Cold / hot water generator (heat pump)
2 Elevated tank 3 Heat transfer pipe 4 Electromagnetic flow meter 5 Differential pressure measuring instrument 6 Circulating pump 7 Inverter 8 Temperature controller

Claims (4)

カチオン系界面活性剤とメタまたはパラハロゲン化安息香酸のうち少なくとも一方である対イオン剤とよりなる流体用流れ促進剤。   A fluid flow accelerator comprising a cationic surfactant and a counter ion agent which is at least one of meta or para-halogenated benzoic acid. 流体用流れ促進剤に防錆剤を添加することを特徴とする請求項1記載の冷温水用腐食抑制流れ促進剤。   2. The corrosion-inhibiting flow accelerator for cold / hot water according to claim 1, wherein a rust inhibitor is added to the fluid flow accelerator. 流体用流れ促進剤に消泡剤を添加することを特徴とする請求項1記載の冷温水用腐食抑制流れ促進剤。   The anti-foaming agent for cold / hot water according to claim 1, wherein an antifoaming agent is added to the fluid flow accelerator. カチオン系界面活性剤50〜1500ppm、対イオン剤50〜5000ppmを流体に添加混合することを特徴とする冷温水熱媒における腐食抑制流れ促進方法。   A method for promoting corrosion inhibition in a cold / warm water heating medium, wherein 50 to 1500 ppm of a cationic surfactant and 50 to 5000 ppm of a counter ion agent are added to and mixed with the fluid.
JP2004267845A 2004-09-15 2004-09-15 Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium Active JP4719873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267845A JP4719873B2 (en) 2004-09-15 2004-09-15 Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267845A JP4719873B2 (en) 2004-09-15 2004-09-15 Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium

Publications (2)

Publication Number Publication Date
JP2006083247A true JP2006083247A (en) 2006-03-30
JP4719873B2 JP4719873B2 (en) 2011-07-06

Family

ID=36162022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267845A Active JP4719873B2 (en) 2004-09-15 2004-09-15 Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium

Country Status (1)

Country Link
JP (1) JP4719873B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007397A2 (en) * 2008-07-18 2010-01-21 Lux Innovate Limited Method for inhibiting corrosion
JP2016030853A (en) * 2014-07-29 2016-03-07 大阪瓦斯株式会社 Piping equipment chemical addition method and surface treatment agent
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185692A (en) * 1982-04-07 1983-10-29 ヘキスト・アクチエンゲゼルシヤフト Reduction of friction resistance for streaming aqueous medium
JPS5946246A (en) * 1982-06-29 1984-03-15 ヘキスト・アクチエンゲゼルシヤフト Quaternary ammonium salt, manufacture and use
JPS624888A (en) * 1985-06-28 1987-01-10 ヘキスト アクチェンゲゼルシャフト Prevention of corrosion of metal material
JPH1161093A (en) * 1997-08-26 1999-03-05 Lion Corp Frictional resistance reduction agent for aqueous medium and method for reducing frictional resistance of aqueous medium by using same
JP2002080820A (en) * 2000-09-07 2002-03-22 Shunan Chiiki Jiba Sangyo Shinko Center Corrosion-resistant flow accelerator for cold and hot water
JP2004231833A (en) * 2003-01-31 2004-08-19 Osaka Gas Co Ltd Heat carrying medium and heat carrying system using the same
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185692A (en) * 1982-04-07 1983-10-29 ヘキスト・アクチエンゲゼルシヤフト Reduction of friction resistance for streaming aqueous medium
JPS5946246A (en) * 1982-06-29 1984-03-15 ヘキスト・アクチエンゲゼルシヤフト Quaternary ammonium salt, manufacture and use
JPS624888A (en) * 1985-06-28 1987-01-10 ヘキスト アクチェンゲゼルシャフト Prevention of corrosion of metal material
JPH1161093A (en) * 1997-08-26 1999-03-05 Lion Corp Frictional resistance reduction agent for aqueous medium and method for reducing frictional resistance of aqueous medium by using same
JP2002080820A (en) * 2000-09-07 2002-03-22 Shunan Chiiki Jiba Sangyo Shinko Center Corrosion-resistant flow accelerator for cold and hot water
JP2004231833A (en) * 2003-01-31 2004-08-19 Osaka Gas Co Ltd Heat carrying medium and heat carrying system using the same
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007397A2 (en) * 2008-07-18 2010-01-21 Lux Innovate Limited Method for inhibiting corrosion
WO2010007397A3 (en) * 2008-07-18 2010-04-29 Lux Innovate Limited Method for inhibiting corrosion and for monitoring the concentration of corrosion inhibitor in a fluid
AU2009272395B2 (en) * 2008-07-18 2015-06-18 Anpera Technologies Limited Method for inhibiting corrosion and for monitoring the concentration of corrosion inhibitor in a fluid
US9359677B2 (en) 2008-07-18 2016-06-07 Lux Assure Limited Method for inhibiting corrosion
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.
JP2016030853A (en) * 2014-07-29 2016-03-07 大阪瓦斯株式会社 Piping equipment chemical addition method and surface treatment agent

Also Published As

Publication number Publication date
JP4719873B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
EP0652305A1 (en) Closed cooling system corrosion inhibitors
TWI708867B (en) Corrosion inhibition method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion inhibition system
JP4719873B2 (en) Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium
JP4645187B2 (en) Cold transport medium
JP4748290B2 (en) Corrosion-inhibiting flow promoter for cold and hot water
WO2016152829A1 (en) Heat medium liquid
JP4180923B2 (en) Method for delaying corrosion of metals in lithium halide solutions.
US20030173543A1 (en) Organic Corrosion Inhibitors and Corrosion Control Methods for Water Systems
JP2005029591A (en) Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
EP0837919B1 (en) Heat and mass transfer additives for improved aqueous absorption fluids
KR20030066544A (en) Feed Water Composition for Boiler
JP3897330B2 (en) Heat transfer medium
JP5706728B2 (en) Heat transfer medium and heat transfer system using the same
JP2005016896A (en) Heat transporting medium and heat transporting system using the same
CN112375546A (en) Efficient refrigerant
JP5571418B2 (en) Heat transfer medium and heat transfer system using the same
JP2001158878A (en) Cooling liquid composition
JP3671450B2 (en) Fluid flow promoter and thermal energy transfer method using the same
JP2011184513A (en) Heat transportation medium and heat transportation system using the same
JP4132951B2 (en) Method for reducing frictional resistance in piping of water-based heat transfer medium
EP4230949A1 (en) Circulating cooling water treatment method and cooling performance improvement method
JP4420995B2 (en) How to reduce frictional resistance in piping
Saeki et al. Cationic surfactants and counter ions for turbulent drag reduction
JP4787433B2 (en) Water treatment method
JPS5925034B2 (en) Corrosion inhibitor for copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150