JP2011184513A - Heat transportation medium and heat transportation system using the same - Google Patents

Heat transportation medium and heat transportation system using the same Download PDF

Info

Publication number
JP2011184513A
JP2011184513A JP2010049057A JP2010049057A JP2011184513A JP 2011184513 A JP2011184513 A JP 2011184513A JP 2010049057 A JP2010049057 A JP 2010049057A JP 2010049057 A JP2010049057 A JP 2010049057A JP 2011184513 A JP2011184513 A JP 2011184513A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer medium
heat
quaternary ammonium
ammonium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010049057A
Other languages
Japanese (ja)
Inventor
Akira Kishimoto
章 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010049057A priority Critical patent/JP2011184513A/en
Publication of JP2011184513A publication Critical patent/JP2011184513A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transportation medium capable of reducing the effects on corrosion even when a metallic piping is used. <P>SOLUTION: The heat transportation medium is used for a heat transportation system for circulating the heat transportation medium between a heat-supplying side system and a heat-utilizing side system through a supplying side passage and a returning side passage. The heat transportation medium is obtained by adding a quaternary ammonium salt-type surfactant represented by the molecular formula: RN<SP>+</SP>((CH<SB>2</SB>)<SB>l</SB>OH)((CH<SB>2</SB>)<SB>m</SB>OH)((CH<SB>2</SB>)<SB>n</SB>OH)-A<SP>-</SP>(wherein, R is 8-22C alkyl or alkenyl; A<SP>-</SP>is an organic acid ion; and l, m and n are each 1-4) to an aqueous liquid, wherein the proportion of the moles of a halide ion in the aqueous liquid is ≤0.5 of the added moles of the quaternary ammonium salt-type surfactant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱供給側システムと熱利用側システムとの間を循環して熱(温熱、冷熱)を搬送する熱搬送媒体及びこれを用いた熱搬送システムに関する。   The present invention relates to a heat transfer medium that circulates between a heat supply side system and a heat utilization side system to transfer heat (hot and cold) and a heat transfer system using the heat transfer medium.

例えば、地域冷暖房システムにおいては、熱供給側システムから熱利用側のビルなどに設置された空調装置(熱利用側システム)に熱搬送媒体(例えば、水)を循環させるための配管の長さは数km以上になり、その水搬送動力はかなり大きく、地域冷暖房システムのランニングコストの約60%〜70%であるとも言われている。   For example, in a district cooling and heating system, the length of a pipe for circulating a heat transfer medium (for example, water) from an air supply system to an air conditioner (heat utilization side system) installed in a building on the heat utilization side is It is said that it is several kilometers or more and its water conveyance power is considerably large, which is about 60% to 70% of the running cost of the district cooling and heating system.

そこで、この水搬送動力を低減させる有効な方法として、粘弾性を示す界面活性剤水溶液を熱搬送媒体として用い、流動摩擦抵抗を著しく低減させる方法が提案されている(例えば、特許文献1、特許文献2、特許文献3及び特許文献4)。この方法では、配管内を流動する水(例えば、水道水)に界面活性剤として特定の第四級アンモニウム塩を数10〜数1000ppmと有機酸塩とを当該第四級アンモニウム塩に対して0.5〜100倍モル数になるように溶解させると、界面活性剤が水中で、疎水基部を中心に親水基部を外周部に配置してミセルを形成し、そのミセルが棒状の形態をなして高次に絡まって粘弾性を示すことに起因するといわれている。   Therefore, as an effective method for reducing the water conveyance power, there has been proposed a method for significantly reducing the fluid friction resistance by using a surfactant aqueous solution exhibiting viscoelasticity as a heat conveyance medium (for example, Patent Document 1, Patent). Document 2, Patent Document 3, and Patent Document 4). In this method, several tens to several thousand ppm of a specific quaternary ammonium salt and an organic acid salt are added to water (for example, tap water) flowing in a pipe as a surfactant with respect to the quaternary ammonium salt. When dissolved so that the number of moles is 5 to 100 times, the surfactant is in water, and the hydrophilic base is arranged around the hydrophobic base to form the micelle, and the micelle has a rod-like form. It is said that it is caused by entanglement in higher order and showing viscoelasticity.

水に溶解される第四級アンモニウム塩として用いられるものとして、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化オレイルトリメチルアンモニウム、塩化オレイルビスヒドロキシエチルメチルアンモニウムなどであり、これらは第四級アンモニウムの塩化物塩である。   Examples of quaternary ammonium salts that can be dissolved in water include cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, oleyltrimethylammonium chloride, and oleylbishydroxyethylmethylammonium chloride. These are quaternary ammonium chlorides. It is a salt.

特公平3−76360号公報Japanese Patent Publication No. 3-76360 特公平4−6231号公報Japanese Patent Publication No. 4-6231 特公平5−47534号公報Japanese Patent Publication No. 5-47534 特開平8−311431号公報JP-A-8-311431

一般的に、熱搬送媒体の溶媒として用いられる水の中の塩化物イオン(ハロゲン化イオン)の濃度が過剰になると、金属への腐食性が増すことが知られている。熱供給側システムと熱利用側システムとの間を接続する供給側流路及び戻り側流路は、炭素鋼などから形成された金属製配管から構成されていることが多く、このような金属製配管を用いた場合、塩化物イオンの過剰量は金属製配管を腐食劣化させてしまう危険性がある。例えば、社団法人日本冷凍空調工業会、冷凍空調機器用水質ガイドライン(JRA−GL 02:1994)によると、塩化物イオンは水の腐食性を高める重要因子の一つであることが明示されており、またその基準値として、熱搬送媒体(冷水)においては50mg/L以下と定められている。   In general, it is known that when the concentration of chloride ions (halide ions) in water used as a solvent for the heat transfer medium becomes excessive, the corrosivity to metals increases. The supply-side flow path and the return-side flow path that connect between the heat supply side system and the heat utilization side system are often composed of metal pipes made of carbon steel or the like. When piping is used, excessive amounts of chloride ions can corrode metal piping. For example, according to the Japan Refrigeration and Air Conditioning Industry Association and the Water Quality Guidelines for Refrigeration and Air Conditioning Equipment (JRA-GL 02: 1994), chloride ions are clearly one of the important factors that enhance the corrosivity of water. As a reference value thereof, it is set to 50 mg / L or less for the heat transfer medium (cold water).

本発明の目的は、金属製配管を用いた場合においてもその腐食への影響を軽減させることができる熱搬送媒体を提供することである。   An object of the present invention is to provide a heat transfer medium capable of reducing the influence on corrosion even when a metal pipe is used.

また、本発明の他の目的は、供給側流路及び戻り側流路を規定する配管への腐食の影響を軽減して長期にわたって使用することができる熱搬送システムを提供することである。   Another object of the present invention is to provide a heat transfer system that can be used over a long period of time by reducing the influence of corrosion on the piping that defines the supply-side flow path and the return-side flow path.

本発明者らは、金属製配管への腐食の影響が大きいイオンとして、塩化物イオンを含むハロゲン化イオンに注目し、第四級アンモニウム塩としてハロゲン化物ではなく、第四級アンモニウム塩の有機酸塩を用いることによって良好な摩擦低減を得ることができるとともに、熱搬送媒体中のハロゲンイオンのモル数を添加する第4級アンモニウム塩に対して所定以下に抑えることによって、配管への腐食の影響をも大きく軽減させることができることを見出した。   The present inventors have focused on halide ions including chloride ions as ions having a great influence on the corrosion of metal pipes. As quaternary ammonium salts, organic acids of quaternary ammonium salts are used instead of halides. By using a salt, good friction reduction can be obtained, and by suppressing the number of moles of halogen ions in the heat transfer medium to a predetermined value or less with respect to the quaternary ammonium salt, the influence of corrosion on the piping Has also been found to be greatly reduced.

しかるに、本発明は、下記に示すとおりの熱搬送媒体及び熱搬送システムを提供するものである。   However, the present invention provides a heat transfer medium and a heat transfer system as described below.

本発明の請求項1に記載の熱搬送媒体は、熱供給側システムと熱利用側システムの間を供給側流路及び戻り側流路を通して熱搬送媒体を循環する熱搬送システムに用いられる熱搬送媒体であって、
前記熱搬送媒体が次の分子式で示される第四級アンモニウム塩型界面活性剤:

RN((CHOH)((CHOH)((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;l、m、nは1〜4)
が、水性液体に添加されており、前記水性液体の中のハロゲン化物イオンのモル数の割合が前記第四級アンモニウム塩型界面活性剤の添加モル数に対して0.5以下であることを特徴とする。
The heat transfer medium according to claim 1 of the present invention is a heat transfer medium used in a heat transfer system that circulates the heat transfer medium between a heat supply side system and a heat utilization side system through a supply side channel and a return side channel. A medium,
A quaternary ammonium salt type surfactant in which the heat transfer medium is represented by the following molecular formula:

RN + ((CH 2 ) 1 OH) ((CH 2 ) m OH) ((CH 2 ) n OH) · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; l, m, n is 1 to 4)
Is added to an aqueous liquid, and the ratio of the number of moles of halide ions in the aqueous liquid is 0.5 or less with respect to the number of moles of the quaternary ammonium salt surfactant added. Features.

また、本発明の請求項2に記載の熱搬送媒体では、水性液体に添加される前記第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;nは1〜4)
であることを特徴とする。
In the heat transfer medium according to claim 2 of the present invention, the quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) n OH) 3 · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; n is 1 to 4)
It is characterized by being.

また、本発明の請求項3に記載の熱搬送媒体では、水性液体に添加される前記第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(Rはオレイル基;Aはサリチル酸イオン)
であることを特徴とする。
In the heat transfer medium according to claim 3 of the present invention, the quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) 2 OH) 3 · A
(R is an oleyl group; A - is salicylate)
It is characterized by being.

更に、本発明の請求項4に記載の熱搬送システムは、熱供給側システムと熱利用側システムの間を供給側流路及び戻り側流路を通して熱搬送媒体を循環する熱搬送システムであって、
請求項1〜3のいずれかに記載の熱搬送媒体を用い、水性液体に添加される第四級アンモニウム塩型界面活性剤の濃度が、300〜2000重量ppmであることを特徴とする。
Furthermore, a heat transfer system according to claim 4 of the present invention is a heat transfer system for circulating a heat transfer medium between a heat supply side system and a heat utilization side system through a supply side flow path and a return side flow path. ,
The heat carrier medium according to any one of claims 1 to 3, wherein the concentration of the quaternary ammonium salt type surfactant added to the aqueous liquid is 300 to 2000 ppm by weight.

本発明の請求項1に記載の熱搬送媒体によれば、第四級アンモニウム塩型界面活性剤として次の分子式::

RN((CHOH)((CHOH)((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;l、m、nは1〜4)
の有機酸塩を水性液体に添加するので、ハロゲン化物イオンを含んでおらず、金属製配管への腐食の影響を大きく抑えるとともに、良好な摩擦低減効果を得ることができる。また、水性液体(熱搬送媒体)中のハロゲン化物イオンのモル数の割合が第四級アンモニウム塩型界面活性剤の添加モル数に対して0.5以下であるので、水性液体中に含まれるハロゲン化物イオンが低く抑えられ、金属製配管への腐食の影響を軽減することができる。
According to the heat carrier medium of claim 1 of the present invention, the following molecular formula is used as the quaternary ammonium salt type surfactant:

RN + ((CH 2 ) 1 OH) ((CH 2 ) m OH) ((CH 2 ) n OH) · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; l, m, n is 1 to 4)
Since the organic acid salt is added to the aqueous liquid, it does not contain halide ions, so that the influence of corrosion on the metal pipe can be greatly suppressed and a good friction reducing effect can be obtained. Further, since the ratio of the number of moles of halide ions in the aqueous liquid (heat transfer medium) is 0.5 or less with respect to the number of moles of the added quaternary ammonium salt type surfactant, it is contained in the aqueous liquid. Halide ions are kept low, and the influence of corrosion on metal pipes can be reduced.

また、本発明の請求項2に記載の熱搬送媒体によれば、水性液体に添加される第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;nは1〜4)
であり、またその請求項3に記載の熱搬送媒体によれば、この第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(Rはオレイル基;Aはサリチル酸イオン)
であるので、第4級アンモニウム塩界面活性剤としてハロゲン化物イオンを含んでおらず、金属製配管への腐食の影響を大きく抑えるとともに、良好な摩擦低減効果を得ることができる。
Moreover, according to the heat carrier medium of claim 2 of the present invention, the quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) n OH) 3 · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; n is 1 to 4)
According to the heat transfer medium of claim 3, the quaternary ammonium salt type surfactant has the following molecular formula:
RN + ((CH 2 ) 2 OH) 3 · A
(R is an oleyl group; A - is salicylate)
Therefore, halide ions are not included as the quaternary ammonium salt surfactant, and the influence of corrosion on the metal pipe can be greatly suppressed, and a good friction reducing effect can be obtained.

更に、本発明の請求項4に記載の熱搬送システムによれば、請求項1〜3のいずれかに記載の熱搬送媒体を用い、水性液体に添加される第四級アンモニウム塩型界面活性剤の濃度が300〜2000重量ppmであるので、供給側流路及び戻り側流路を規定する金属製配管への腐食の影響を大きく抑えるとともに、所望の摩擦低減効果を得ることができる。   Furthermore, according to the heat transfer system according to claim 4 of the present invention, a quaternary ammonium salt type surfactant that is added to an aqueous liquid using the heat transfer medium according to any one of claims 1 to 3. Since the concentration of is 300 to 2000 ppm by weight, it is possible to largely suppress the influence of corrosion on the metal pipe defining the supply side flow path and the return side flow path, and to obtain a desired friction reducing effect.

本発明に従う熱搬送媒体が利用される熱搬送システムを示す概略図。1 is a schematic diagram showing a heat transfer system in which a heat transfer medium according to the present invention is used. 実施例及び比較例で用いた評価装置を示す槻略図。The schematic diagram which shows the evaluation apparatus used by the Example and the comparative example. 実施例及び比較例における摩擦低減効果の実験結果を示す図。The figure which shows the experimental result of the friction reduction effect in an Example and a comparative example.

以下、添付図面を参照して、本発明に従う熱搬送媒体及びこれを用いた熱搬送システムの実施形態を説明する。図1は、本発明に従う熱搬送媒体が利用される熱搬送システムの一例を示す概略図である。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a heat transfer medium and a heat transfer system using the heat transfer medium according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating an example of a heat transfer system in which a heat transfer medium according to the present invention is used.

図1において、図示の熱搬送システムは、例えば、熱搬送媒体に熱(温熱、冷熱)を供給する熱供給側システム2と、熱搬送媒体の熱を利用する熱利用側システム4と、熱供給側システム2と熱利用側システム4との間を通して熱搬送媒体を循環させる供給側流路6及び戻し側流路8とを備え、供給側流路6及び戻り側流路8は、例えば金属製の配管により規定される。この実施形態では、供給側流路6に送給ポンプ10が配設され、戻り側流路8に電磁流量計12が配設されている。熱搬送媒体は、配管などにより規定される供給側流路6及び戻り側流路8に充填され、送給ポンプ10の作用によって、この熱搬送媒体が供給側流路6及び戻り側流路8を通して熱供給側システム2及び熱利用側システム4との間を循環され、電磁流量計12は戻り側流路8を流れる熱搬送媒体の流量を計測する。   In FIG. 1, the illustrated heat transfer system includes, for example, a heat supply side system 2 that supplies heat (hot and cold) to a heat transfer medium, a heat use side system 4 that uses the heat of the heat transfer medium, and a heat supply. A supply-side flow path 6 and a return-side flow path 8 that circulate the heat transfer medium through between the side system 2 and the heat utilization side system 4, and the supply-side flow path 6 and the return-side flow path 8 are made of, for example, metal Stipulated by the piping. In this embodiment, a feed pump 10 is disposed in the supply side flow path 6, and an electromagnetic flow meter 12 is disposed in the return side flow path 8. The heat transfer medium is filled in the supply side flow path 6 and the return side flow path 8 defined by piping or the like, and this heat transfer medium is supplied by the action of the feed pump 10 to the supply side flow path 6 and the return side flow path 8. The electromagnetic flow meter 12 is circulated between the heat supply side system 2 and the heat utilization side system 4 through and measures the flow rate of the heat transfer medium flowing through the return side flow path 8.

熱供給側システム2の具体例としては、ガス吸収式冷温水機、油吸収式冷温水機、ターボ冷凍機、ボイラーなどであり、また熱利用側システム4の具体例としては、空気調和装置(例えば、エアーハンドリングユニット、ファンコイルユニットなど)、暖房機(例えば、ファンコンベクター、床暖房装置など)、熱交換器ユニット(例えば、プレート熱交換器など)などである。   Specific examples of the heat supply side system 2 include a gas absorption chiller / heater, an oil absorption chiller / heater, a turbo refrigerator, a boiler, and the like, and specific examples of the heat utilization side system 4 include an air conditioner ( For example, an air handling unit, a fan coil unit, etc.), a heater (eg, a fan convector, a floor heating device, etc.), a heat exchanger unit (eg, a plate heat exchanger, etc.), etc.

次に、このような熱搬送システムに用いる熱搬送媒体について説明すると、熱搬送媒体としては水(水道水など)などの水性液体が用いられ、この水性液体に第四級アンモニウム塩型界面活性剤を添加したものが用いられる。   Next, the heat transfer medium used in such a heat transfer system will be described. As the heat transfer medium, an aqueous liquid such as water (tap water) is used, and the quaternary ammonium salt type surfactant is used as the aqueous liquid. Is used.

水性液体に添加される第四級アンモニウム塩型界面活性剤としては、次の分子式:

RN((CHOH)((CHOH)((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;l、m、nは1〜4)
で示されるものを用いることができ、この分子式で示される具体例としては、オレイルジ(ヒドロキシエチル)ヒドロキシプロピルアンモニウムサリチレート、オレイルジ(ヒドロキシエチル)ヒドロキシプロピルアンモニウムナフトエート、オレイルジ(ヒドロキシエチル)ヒドロキシプロピルアンモニウムサチリレート、オレイルジ(ヒドロキシエチル)ヒドロキシプロピルアンモニウムナフトエートなどの一種又は二種以上の混合物があげられる。
The quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:

RN + ((CH 2 ) 1 OH) ((CH 2 ) m OH) ((CH 2 ) n OH) · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; l, m, n is 1 to 4)
Specific examples represented by this molecular formula include oleyldi (hydroxyethyl) hydroxypropylammonium salicylate, oleyldi (hydroxyethyl) hydroxypropylammonium naphthoate, oleyldi (hydroxyethyl) hydroxypropyl Examples thereof include one or a mixture of two or more of ammonium salicylate, oleyl di (hydroxyethyl) hydroxypropylammonium naphthoate, and the like.

このような第四級アンモニウム塩型界面活性剤は、水性液体中で疎水基部を中心に親水基部を外周部に配置して形成されるミセルが棒状の形態をなして高次に絡まって粘弾性をし、この粘弾性によって良好な摩擦低減効果が得られる。また、このような第四級アンモニウム塩型界面活性剤は、組成として有機酸イオンを含み、この有機酸イオンは金属製の配管への腐食の影響が少なく、熱搬送システムに用いられる配管の腐食発生を大きく抑えることができる。   Such a quaternary ammonium salt type surfactant is a viscoelastic material in which micelles formed by placing a hydrophilic base at the outer periphery of a hydrophobic base in an aqueous liquid form a rod-like form and are entangled in high order. This viscoelasticity provides a good friction reducing effect. Further, such a quaternary ammonium salt type surfactant contains an organic acid ion as a composition, and this organic acid ion has little influence on the corrosion of metal pipes and corrodes the pipes used in the heat transfer system. Generation can be greatly suppressed.

水性液体に添加される第四級アンモニウム塩型界面活性剤としては、次の分子式:
RN((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;nは1〜4)
で示されるものが好ましく、この分子式で示される具体例としては、セチルトリ(ヒドロキシエチル)アンモニウムサリチレート、セチルトリ(ヒドロキシエチル)アンモニウムナフトエート、オレイルトリ(ヒドロキシエチル)アンモニウムナフトエートなどの一種又は二種以上の混合物があげられる。
The quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) n OH) 3 · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; n is 1 to 4)
And specific examples represented by this molecular formula include one or two of cetyltri (hydroxyethyl) ammonium salicylate, cetyltri (hydroxyethyl) ammonium naphthoate, oleyltri (hydroxyethyl) ammonium naphthoate, etc. The above mixture is mentioned.

この第四級アンモニウム塩型界面活性剤としては、次の分子式:
RN((CHOH)・A
(Rはオレイル基;Aはサリチル酸イオン)
で示されるものが一層好ましく、この分子式で示される具体例としてオレイルトリ(ヒドロキシエチル)アンモニウムサリチレートがあげられる。
This quaternary ammonium salt type surfactant has the following molecular formula:
RN + ((CH 2 ) 2 OH) 3 · A
(R is an oleyl group; A - is salicylate)
Is more preferable, and a specific example represented by this molecular formula is oleyltri (hydroxyethyl) ammonium salicylate.

水性液体に添加される第四級アンモニウム塩界面活性剤の濃度は、300〜2000重量ppmであるのが好ましい。その濃度が300重量ppmよりも少ないと、添加量が少なくなり過ぎて所望の摩擦低減効果が得られ難く、またその濃度が2000重量ppmを超えると、所望の摩擦低減効果は得られるが、過剰に添加するようになって経済的に無駄となる。   The concentration of the quaternary ammonium salt surfactant added to the aqueous liquid is preferably 300 to 2000 ppm by weight. If the concentration is less than 300 ppm by weight, the amount of addition becomes too small and it is difficult to obtain the desired friction reduction effect. If the concentration exceeds 2000 ppm by weight, the desired friction reduction effect is obtained, but it is excessive. It becomes economically wasteful to be added to.

熱搬送媒体で溶媒として用いられる水性液体の中には、場合によって、各種薬剤を添加するようにしてもよい。例えば、グリコールやアルコールなどの不凍剤や亜硝酸塩、モリブデン酸塩、アミンなどの金属配管腐食抑制剤などを添加させるようにしてもよい。   Various chemicals may be added to the aqueous liquid used as the solvent in the heat transfer medium. For example, an antifreezing agent such as glycol or alcohol, or a metal pipe corrosion inhibitor such as nitrite, molybdate, or amine may be added.

この熱搬送媒体においては、第四級アンモニウム塩型界面活性剤を添加した水性液体に含まれるハロゲン化物イオンのモル数の割合が、第四級アンモニウム塩型界面活性剤の添加モル数に対して0.5以下であり、例えば水性液体として水道水を用いた場合においても、水道水に含まれる塩化物イオンを含めて0.5以下である。水性液体中のハロゲン化物イオンのモル数の割合を上記添加モル数に対して0.5以下とすることによって、水性液体に含まれるハロゲン化物イオンが少なくなり、これによっても、金属製の配管への腐食の影響を軽減することができる。このハロゲン化物イオンのモル数の割合は、金属製配管の腐食抑制効果を高めるために、上記添加モル数に対して0.3以下にするのが好ましい。   In this heat transfer medium, the ratio of the number of moles of halide ions contained in the aqueous liquid to which the quaternary ammonium salt type surfactant is added is based on the number of moles of the quaternary ammonium salt type surfactant added. For example, even when tap water is used as an aqueous liquid, it is 0.5 or less including chloride ions contained in tap water. By setting the ratio of the number of moles of halide ions in the aqueous liquid to 0.5 or less with respect to the number of moles added, the number of halide ions contained in the aqueous liquid decreases, and this also leads to the metal pipe. The effect of corrosion can be reduced. The ratio of the number of moles of halide ions is preferably 0.3 or less with respect to the number of moles added in order to enhance the corrosion inhibition effect of the metal pipe.

次に、実施例により本発明を更に詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

本発明の効果を確認するために、次の通りの実験を行い、本発明の熱搬送媒体について摩擦低減効果及び金属腐食の影響について確認した。   In order to confirm the effect of the present invention, the following experiment was conducted to confirm the friction reduction effect and the influence of metal corrosion on the heat transfer medium of the present invention.

<摩擦低減効果の計測>
摩擦低減効果の実験については、図2に示す評価装置を用いて行った。ここで、図2を参照して評価装置について説明する。図2において、この評価装置は、媒体タンク21を備え、この媒体タンク21に配管23,24,25,26を接続して媒体タンク21内に充填した熱搬送媒体が配管23,24,25,26を通して循環されるようにし、配管25に関連して摩擦特性計測部27を設けた。この摩擦特性計測部27に微差圧計29を設け、また配管23と配管24との間に電磁流量計30を配設した。摩擦低減効果の実験においては、10℃に調整した熱搬送媒体(後述する各サンプル)を媒体タンク21に充填し、送給ポンプ22により媒体タンク21内の熱搬送媒体を矢印で示すように配管23〜26を通して循環させ、配管25を流れる熱搬送媒体の圧力差、即ち摩擦特性計測部27の流入部と流出部との差圧を微差圧計29で計り、その圧力損失△Pを計測した。
<Measurement of friction reduction effect>
The experiment of the friction reduction effect was performed using the evaluation apparatus shown in FIG. Here, the evaluation apparatus will be described with reference to FIG. In FIG. 2, the evaluation apparatus includes a medium tank 21, and pipes 23, 24, 25, 26 are connected to the medium tank 21, and the heat transfer medium filled in the medium tank 21 is connected to the pipes 23, 24, 25, 26, a friction characteristic measuring unit 27 is provided in connection with the pipe 25. A fine differential pressure gauge 29 is provided in the friction characteristic measuring unit 27, and an electromagnetic flow meter 30 is provided between the pipe 23 and the pipe 24. In the experiment of the friction reduction effect, a heat transfer medium (each sample described later) adjusted to 10 ° C. is filled in the medium tank 21, and the heat transfer medium in the medium tank 21 is piped by the feed pump 22 as indicated by an arrow. The pressure difference of the heat transfer medium flowing through the pipe 25, that is, the pressure difference between the inflow portion and the outflow portion of the friction characteristic measurement unit 27 was measured with the micro differential pressure gauge 29, and the pressure loss ΔP was measured. .

熱搬送媒体として第四級アンモニウム塩型界面活性剤水溶液(後述する各サンプル)を用いた場合の摩擦低減率DR(%)を、以下の式(1)にて算出した。   The friction reduction rate DR (%) when a quaternary ammonium salt surfactant aqueous solution (each sample to be described later) was used as a heat transfer medium was calculated by the following equation (1).

DR(%)=〔(△Pw―△Ps)/△Pw〕×100 ・・・(1)
△Pw:熱搬送媒体として水道水を用いた時の圧力損失
△Ps:熱搬送媒体として界面活性剤水溶液を用いた時の圧力損失
この摩擦低減率DR(%)は、式(1)から理解されるように、その値が大きいほど摩擦低減効果が大きいことを示す。
DR (%) = [(ΔPw−ΔPs) / ΔPw] × 100 (1)
△ Pw: Pressure loss when using tap water as heat transfer medium
ΔPs: Pressure loss when a surfactant aqueous solution is used as the heat transfer medium As this friction reduction rate DR (%) is understood from the equation (1), the greater the value, the greater the friction reduction effect. Indicates.

<金属腐食影響の計測>
金属腐食影響については、次の通りの実験を行った。テストピースとして、材質SS400、サイズ40mm(縦)×40mm(横)×2mm(厚み)、表面#800研磨のものを調製し、腐食実験前の重量を計測した。熱搬送媒体(後述する各サンプル)が混入された500mLビーカーにテストピースを浸漬し、マグネティックスターラーでビーカー内の熱搬送媒体を750rpmの回転速度で攪拌した。この際、熱搬送媒体の温度は60℃になるようヒータで加熱を行った。この浸漬状態を10日間継続した後、テストピースを取り出し、酸洗浄を行った後、実験後の重量計測を行った。腐食実験の評価は、浸漬前のテストピースの重量と浸漬、酸洗浄後のテストピースの重量の差(減量)を求め、式(2)より腐食速度(MDD)[mg/dm・day]を算出した。
<Measurement of metal corrosion effects>
The following experiment was conducted on the effect of metal corrosion. As a test piece, a material of SS400, size 40 mm (length) × 40 mm (width) × 2 mm (thickness), surface # 800 polished was prepared, and the weight before the corrosion test was measured. The test piece was immersed in a 500 mL beaker mixed with a heat transfer medium (each sample to be described later), and the heat transfer medium in the beaker was stirred at a rotational speed of 750 rpm with a magnetic stirrer. At this time, the heater was heated so that the temperature of the heat transfer medium was 60 ° C. After this immersion state was continued for 10 days, the test piece was taken out, washed with an acid, and then weighed after the experiment. In the evaluation of the corrosion experiment, the difference (weight reduction) between the weight of the test piece before immersion and the weight of the test piece after immersion and acid cleaning was calculated, and the corrosion rate (MDD) [mg / dm 2 · day] from the equation (2) Was calculated.

浸食速度(MDD)={〔(浸漬前のテストピースの重量[g]−浸漬後のテストピースの重量[g])×100〕/(テストピースの表面積[cm]×1000/100)}/浸漬日数[day] ・・・ (2)
<サンプル例1>
サンプル例1の熱搬送媒体として、第四級アンモニウム塩型界面活性剤であるオレイルトリ(ヒドロキシエチル)アンモニウムサリチレート[分子式:C1835(CHCHOH)・C(OH)(COO);以下、「OTHAS」と記す。]と種々の濃度の塩化ナトリウムを水道水に添加したもの(塩化物イオン濃度10.0mg/L、15.9mg/L、26.4mg/L、37.0mg/L)を用いた。このときのOTHASの濃度は800重量ppm(モル濃度1.49×10−3mol/L)とした。このサンプル例1における塩化物イオン濃度10.0mg/L(界面活性剤に対するモル比0.19)の熱搬送媒体を実施例1とし、塩化物イオン濃度15.9mg/L(界面活性剤に対するモル比0.30)の熱搬送媒体を実施例2とし、塩化物イオン濃度26.4mg/L(界面活性剤に対するモル比0.50)の熱搬送媒体を実施例3とし、また塩化物イオン濃度37.0mg/L(界面活性剤に対するモル比0.70)の熱搬送媒体を比較例1とした。
Erosion rate (MDD) = {[(weight of test piece before immersion [g] −weight of test piece after immersion [g]) × 100] / (surface area of test piece [cm 2 ] × 1000/100)} / Immersion days [day] (2)
<Sample Example 1>
As a heat transfer medium of Sample Example 1, oleyltri (hydroxyethyl) ammonium salicylate which is a quaternary ammonium salt type surfactant [molecular formula: C 18 H 35 N + (CH 2 CH 2 OH) 3 · C 6 H 4 (OH) (COO ); hereinafter referred to as “OTHAS”. ] And various concentrations of sodium chloride added to tap water (chloride ion concentrations 10.0 mg / L, 15.9 mg / L, 26.4 mg / L, 37.0 mg / L) were used. The OTHAS concentration at this time was 800 ppm by weight (molar concentration 1.49 × 10 −3 mol / L). In Example 1, the heat transfer medium having a chloride ion concentration of 10.0 mg / L (molar ratio to the surfactant of 0.19) was used as Example 1, and the chloride ion concentration of 15.9 mg / L (molar to the surfactant) The heat transfer medium having a ratio of 0.30) was set as Example 2, the heat transfer medium having a chloride ion concentration of 26.4 mg / L (molar ratio to surfactant of 0.50) was set as Example 3, and the chloride ion concentration was A heat transfer medium having a molecular weight of 37.0 mg / L (molar ratio of 0.70 to the surfactant) was defined as Comparative Example 1.

<サンプル例2>
サンプル例2の熱搬送媒体として、第四級アンモニウム塩型界面活性剤であるオレイルトリ(ヒドロキシエチル)アンモニウムクロライド[分子式:C1835(CHCHOH)・Cl;以下、「OTHAC」と記す。]とサリチル酸ナトリウムを水に添加したものを用いた。このときのOTHACの濃度は800重量ppm(モル濃度1.83×10−3mol/L)とした。OTHACとサリチル酸ナトリウムの混合比は、モル比で1:1とした。このサンプル例2の熱搬送媒体を比較例2とした。
<Sample Example 2>
As a heat transfer medium of sample example 2, oleyltri (hydroxyethyl) ammonium chloride which is a quaternary ammonium salt type surfactant [molecular formula: C 18 H 35 N + (CH 2 CH 2 OH) 3 · Cl ; It is written as “OTHAC”. ] And sodium salicylate added to water. The concentration of OTAC at this time was 800 ppm by weight (molar concentration 1.83 × 10 −3 mol / L). The mixing ratio of OTAC and sodium salicylate was 1: 1 by molar ratio. The heat transfer medium of Sample Example 2 was referred to as Comparative Example 2.

<実験結果>
上述した摩擦低減効果の実験結果を図3に示す。図3は、実施例1〜3及び比較例1〜2における熱搬送媒体の流速と摩擦低減率(DR%)との関係を示す図である。この実験結果から明らかなように、実施例1〜3及び比較例1〜2のいずれにおいても流速0.5m/s〜2.5m/sの範囲において、70%〜75%の摩擦低減率を示しており、いずれも摩擦低減効果を有していることを確認できた。
<Experimental result>
The experimental result of the friction reduction effect mentioned above is shown in FIG. FIG. 3 is a diagram illustrating the relationship between the flow velocity of the heat transfer medium and the friction reduction rate (DR%) in Examples 1 to 3 and Comparative Examples 1 and 2. As is clear from this experimental result, in any of Examples 1 to 3 and Comparative Examples 1 and 2, a friction reduction rate of 70% to 75% was obtained in the range of flow velocity of 0.5 m / s to 2.5 m / s. It was shown that both have a friction reducing effect.

また、表1は、金属腐食影響の実験結果を示す。   Table 1 shows the experimental results of metal corrosion effects.

Figure 2011184513

実施例1〜3及び比較例1における塩化物イオン量は、溶媒として用いた水道水中に含まれているもの及び添加した塩化ナトリウムに起因するものである。また,比較例2における塩化物イオンは、溶媒として用いた水道水中に含まれているものの他に、使用した第四級アンモニウム塩型界面活性剤が塩化物塩であるのでこれに起因するものである。
Figure 2011184513

The amounts of chloride ions in Examples 1 to 3 and Comparative Example 1 are attributed to those contained in tap water used as a solvent and added sodium chloride. In addition, the chloride ion in Comparative Example 2 is attributed to the fact that the quaternary ammonium salt type surfactant used is a chloride salt in addition to those contained in the tap water used as the solvent. is there.

この実験結果から明らかなように、塩化物イオンの界面活性剤に対するモル比が0.50以下である熱搬送媒体を用いた場合、テストピースに対する腐食速度が遅く、塩化物イオンの金属への腐食影響も少ないことが確認できた。   As is clear from the results of this experiment, when a heat transfer medium having a molar ratio of chloride ions to surfactant of 0.50 or less is used, the corrosion rate of the test piece is slow and the corrosion of chloride ions to the metal. It was confirmed that there was little influence.

以上の実験結果から、実施例1〜3においては、充分な摩擦低減効果を得ることができるとともに、金属への腐食影響も少なくすることができることが判った。   From the above experimental results, it was found that in Examples 1 to 3, it was possible to obtain a sufficient friction reducing effect and to reduce the corrosion influence on the metal.

2 熱供給側システム
4 熱利用側システム
6 供給側流路
8 戻り側流路
10 送給ポンプ




















2 Heat supply side system 4 Heat utilization side system 6 Supply side flow path 8 Return side flow path 10 Feeding pump




















Claims (4)

熱供給側システムと熱利用側システムの間を供給側流路及び戻り側流路を通して熱搬送媒体を循環する熱搬送システムに用いられる熱搬送媒体であって、
前記熱搬送媒体が次の分子式で示される第四級アンモニウム塩型界面活性剤:

RN((CHOH)((CHOH)((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;l、m、nは1〜4)
が、水性液体に添加されており、前記水性液体の中のハロゲン化物イオンのモル数の割合が前記第四級アンモニウム塩型界面活性剤の添加モル数に対して0.5以下であることを特徴とする熱搬送媒体。
A heat transfer medium used in a heat transfer system for circulating a heat transfer medium between a heat supply side system and a heat utilization side system through a supply side flow path and a return side flow path,
A quaternary ammonium salt type surfactant in which the heat transfer medium is represented by the following molecular formula:

RN + ((CH 2 ) 1 OH) ((CH 2 ) m OH) ((CH 2 ) n OH) · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; l, m, n is 1 to 4)
Is added to an aqueous liquid, and the ratio of the number of moles of halide ions in the aqueous liquid is 0.5 or less with respect to the number of moles of the quaternary ammonium salt surfactant added. Characteristic heat transfer medium.
水性液体に添加される前記第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(RはC〜C22のアルキルまたはアルケニル基;Aは有機酸イオン;nは1〜4)
であることを特徴とする請求項1に記載の熱搬送媒体。
The quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) n OH) 3 · A
(R is an alkyl or alkenyl group of C 8 ~C 22; A - is an organic acid ion; n is 1 to 4)
The heat transfer medium according to claim 1, wherein:
水性液体に添加される前記第四級アンモニウム塩型界面活性剤が、次の分子式:
RN((CHOH)・A
(Rはオレイル基;Aはサリチル酸イオン)
であることを特徴とする請求項2に記載の熱搬送媒体。
The quaternary ammonium salt type surfactant added to the aqueous liquid has the following molecular formula:
RN + ((CH 2 ) 2 OH) 3 · A
(R is an oleyl group; A - is salicylate)
The heat transfer medium according to claim 2, wherein
熱供給側システムと熱利用側システムの間を供給側流路及び戻り側流路を通して熱搬送媒体を循環する熱搬送システムであって、
請求項1〜3のいずれかに記載の熱搬送媒体を用い、水性液体に添加される第四級アンモニウム塩型界面活性剤の濃度が、300〜2000重量ppmであることを特徴とする熱搬送システム。
A heat transfer system for circulating a heat transfer medium between a heat supply side system and a heat utilization side system through a supply side flow path and a return side flow path,
A heat transfer medium comprising the heat transfer medium according to any one of claims 1 to 3, wherein the concentration of the quaternary ammonium salt surfactant added to the aqueous liquid is 300 to 2000 ppm by weight. system.
JP2010049057A 2010-03-05 2010-03-05 Heat transportation medium and heat transportation system using the same Pending JP2011184513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049057A JP2011184513A (en) 2010-03-05 2010-03-05 Heat transportation medium and heat transportation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049057A JP2011184513A (en) 2010-03-05 2010-03-05 Heat transportation medium and heat transportation system using the same

Publications (1)

Publication Number Publication Date
JP2011184513A true JP2011184513A (en) 2011-09-22

Family

ID=44791179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049057A Pending JP2011184513A (en) 2010-03-05 2010-03-05 Heat transportation medium and heat transportation system using the same

Country Status (1)

Country Link
JP (1) JP2011184513A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225468A (en) * 1996-02-26 1997-09-02 Fuji Electric Co Ltd Drinking water sterilizing device
JP2005016896A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Heat transporting medium and heat transporting system using the same
JP3153575U (en) * 2009-06-29 2009-09-10 フロイント産業株式会社 Container cleaning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225468A (en) * 1996-02-26 1997-09-02 Fuji Electric Co Ltd Drinking water sterilizing device
JP2005016896A (en) * 2003-06-27 2005-01-20 Osaka Gas Co Ltd Heat transporting medium and heat transporting system using the same
JP3153575U (en) * 2009-06-29 2009-09-10 フロイント産業株式会社 Container cleaning device

Similar Documents

Publication Publication Date Title
JP3383441B2 (en) Method for preventing corrosion of closed cooling system, scale and corrosion inhibiting composition
CN108138033A (en) Heat transfer fluid composition and purposes
TWI708867B (en) Corrosion inhibition method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion inhibition system
JP2011184513A (en) Heat transportation medium and heat transportation system using the same
JP4748290B2 (en) Corrosion-inhibiting flow promoter for cold and hot water
JP5706728B2 (en) Heat transfer medium and heat transfer system using the same
JP3897330B2 (en) Heat transfer medium
CN100352883C (en) Feed water composition for boilers
JP2005029591A (en) Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JP4719873B2 (en) Corrosion-inhibiting flow promoter for cold and hot water and corrosion-inhibiting flow promotion method in cold and hot water heating medium
JP2006316117A (en) Heat carrier
JP2000313872A (en) Method for decreasing in-pipe friction resistance of water-based heat transfer medium
JP2005016896A (en) Heat transporting medium and heat transporting system using the same
JP5571418B2 (en) Heat transfer medium and heat transfer system using the same
JP4230822B2 (en) Friction resistance reducing agent in piping for brine
JP2004107521A (en) Flow accelerator for fluid, circulating water containing the accelerator, and air conditioning installation using the circulating water
Saeki et al. Improving energy efficiency of ground thermal energy systems by reducing drag inside pipes
JP3671450B2 (en) Fluid flow promoter and thermal energy transfer method using the same
JP5706727B2 (en) Heat transfer medium and heat transfer system using the same
JP2007204753A (en) Heat transfer medium having improved heat stability and based on higher polyglycol
JP4132951B2 (en) Method for reducing frictional resistance in piping of water-based heat transfer medium
JP4295013B2 (en) Water transport drag reducing additive effective in a wide temperature range
JP6635173B1 (en) Corrosion protection method for metal members of cooling water system
JP2006199800A (en) Composition for reducing water transportation drag
JP2000136396A (en) Method for decreasing friction resistance of aqueous heat transport medium in pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311