JP2006082108A - Method for drying gypsum mold - Google Patents

Method for drying gypsum mold Download PDF

Info

Publication number
JP2006082108A
JP2006082108A JP2004269557A JP2004269557A JP2006082108A JP 2006082108 A JP2006082108 A JP 2006082108A JP 2004269557 A JP2004269557 A JP 2004269557A JP 2004269557 A JP2004269557 A JP 2004269557A JP 2006082108 A JP2006082108 A JP 2006082108A
Authority
JP
Japan
Prior art keywords
gypsum mold
temperature
heating temperature
heating
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269557A
Other languages
Japanese (ja)
Inventor
Masashi Yano
雅士 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004269557A priority Critical patent/JP2006082108A/en
Publication of JP2006082108A publication Critical patent/JP2006082108A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for drying a gypsum mold by which the drying work for obtaining the high quality gypsum mold having no crack etc., can efficiently be performed without increasing working man-hours. <P>SOLUTION: In the method for drying the gypsum mold, drying the gypsum mold with a heating temperature rising, composed of a heating process for dehydrating by heating the gypsum mold while raising the heating temperature and a cooling process for transforming the crystal by cooling the gypsum mold while lowering the heating temperature, the heating process is performed by rising the heating temperature step by step and the cooling process is performed by lowering the heating temperature step by step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、石膏鋳型の乾燥方法に関する。   The present invention relates to a method for drying a gypsum mold.

石膏鋳型を製造する方法は、まず水に石膏を添加して撹拌して均一なスラリーにし、模型をセットした鋳枠内にこのスラリーを流し込み、スラリーが硬化した後、型抜きし、乾燥することで、石膏鋳型を製造する。   The method for producing a gypsum mold is to first add gypsum to water and stir to make a uniform slurry, then pour this slurry into a casting frame on which a model is set, and after the slurry has hardened, die and dry The gypsum mold is manufactured.

特に鋳肌や寸法精度に優れる鋳造用の石膏鋳型を製造する場合に、石膏中の水分の放出と結晶を変態して安定した結晶形態とする乾燥工程は最も重要な工程である。
石膏は熱伝導率が小さいので、石膏の表面と内部とで温度差を生じやすく、加熱乾燥工程においてこの温度差が大きくなり過ぎると、脱水による収縮率が表面と内部とで異なることで、クラックが生じるおそれがある。
In particular, when producing a casting gypsum mold having excellent casting surface and dimensional accuracy, the most important process is to release moisture in the gypsum and transform the crystals into a stable crystal form.
Since gypsum has a low thermal conductivity, it tends to cause a temperature difference between the surface and the inside of the gypsum.If this temperature difference becomes too large in the heating and drying process, the shrinkage rate due to dehydration differs between the surface and the inside, and cracks occur. May occur.

そのため、従来の乾燥工程においては、石膏の表面と内部の温度差が大きくならないように、極めて緩慢に加熱し、次いで緩慢に冷却していたので、乾燥時間は長時間かかり、非効率的であった。   For this reason, in the conventional drying process, since the temperature difference between the surface and the inside of the gypsum was not very large, it was heated very slowly and then slowly cooled, so that the drying time was long and inefficient. It was.

そこで、石膏鋳型に同石膏鋳型外と連通する貫通孔を備えて、石膏鋳型の表面とともに内部も貫通孔を通して熱が直接与えられるようにして表面と内部の温度差をなくしクラックの発生を防止する例(特許文献1参照)が提案されている。
特開平7−256392号公報
Therefore, the gypsum mold is provided with a through hole that communicates with the outside of the gypsum mold, so that heat can be directly applied to the inside and the inside of the gypsum mold through the through hole, thereby eliminating the temperature difference between the surface and the inside and preventing the occurrence of cracks. An example (see Patent Document 1) has been proposed.
Japanese Patent Laid-Open No. 7-256392

しかし、石膏鋳型に貫通孔を形成する加工を必要として、作業工数が増加することになるとともに、鋳型の形状によってはこの貫通孔の形成が難しい場合がある。   However, this requires a process for forming a through hole in the gypsum mold, which increases the number of work steps, and it may be difficult to form the through hole depending on the shape of the mold.

本発明は、かかる点に鑑みなされたもので、その目的とする処は、作業工数を増加させることなくクラックなどのない高品質の石膏鋳型を得られる乾燥作業を効率的に行うことができる石膏鋳型乾燥方法を供する点にある。   The present invention has been made in view of the above points, and the object of the present invention is gypsum that can efficiently perform a drying operation to obtain a high-quality gypsum mold without cracks without increasing the number of work steps. It is in providing a mold drying method.

課題を解決するための手段および効果Means and effects for solving the problem

上記目的を達成するために、請求項1記載の発明は、加熱温度を上昇させながら石膏鋳型を加熱して脱水させる加熱工程と加熱温度を下降させながら石膏鋳型を冷却して結晶を変態させる冷却工程とからなり加熱温度制御により石膏鋳型を乾燥させる石膏鋳型乾燥方法において、加熱温度を段階的に上昇させることで加熱工程が実行され、加熱温度を段階的に下降させることで冷却工程が実行される石膏鋳型乾燥方法とした。   In order to achieve the above object, the invention described in claim 1 includes a heating step in which the gypsum mold is heated and dehydrated while increasing the heating temperature, and a cooling in which the gypsum mold is cooled and the crystals are transformed while the heating temperature is decreased. In the gypsum mold drying method comprising the steps of drying the gypsum mold by controlling the heating temperature, the heating process is executed by increasing the heating temperature stepwise, and the cooling process is executed by decreasing the heating temperature stepwise. The gypsum mold drying method was used.

加熱工程で加熱温度を段階的に上昇させる加熱温度制御を行うので、加熱温度を一定に維持する段階で石膏鋳型の表面と内部の温度差を小さくでき、加熱工程全般に亘って石膏鋳型の表面と内部の温度差が所定温度以上に大きくなるのを回避してクラックの発生を防止しながら脱水を十分行う加熱工程を効率的に実行することができる。   Since the heating temperature is controlled to raise the heating temperature step by step in the heating process, the temperature difference between the surface of the gypsum mold and the inside can be reduced while maintaining the heating temperature constant, and the surface of the gypsum mold throughout the heating process. Thus, it is possible to efficiently carry out a heating process in which dehydration is sufficiently performed while preventing the occurrence of cracks by avoiding the internal temperature difference from becoming larger than a predetermined temperature.

また、冷却工程で加熱温度を段階的に下降させる加熱温度制御を行うので、加熱温度を一定に維持する段階で石膏鋳型の結晶形態をより安定した結晶形態に効率良く変態させることができるとともに、石膏鋳型の表面と内部の温度差が大きくなるのを防止することができる。
以上の加熱工程および冷却工程の双方を効率良く実行することができるので、乾燥工程の作業時間の短縮を図ることができる。
In addition, since the heating temperature is controlled to lower the heating temperature step by step in the cooling process, the crystal form of the gypsum mold can be efficiently transformed into a more stable crystal form at the stage of maintaining the heating temperature constant, An increase in the temperature difference between the surface and the inside of the gypsum mold can be prevented.
Since both the above heating process and cooling process can be performed efficiently, the working time of the drying process can be shortened.

請求項2記載の発明は、請求項1記載の石膏鋳型乾燥方法において、所定加熱温度を少なくとも最低維持時間一定に維持し、最低維持時間経過時に石膏鋳型の表面温度と内部温度の温度差が所定温度差以下にない場合は所定温度差以下になるまで維持時間を延長する制御を所定加熱温度ごとに行い加熱温度を段階的に変化させることを特徴とする。   According to a second aspect of the present invention, in the gypsum mold drying method according to the first aspect, the predetermined heating temperature is kept constant for at least the minimum maintenance time, and the temperature difference between the surface temperature of the gypsum mold and the internal temperature is predetermined when the minimum maintenance time elapses. When the temperature difference is not less than or equal to the temperature difference, a control for extending the maintenance time until the temperature difference becomes less than or equal to the predetermined temperature difference is performed for each predetermined heating temperature, and the heating temperature is changed stepwise.

所定加熱温度を少なくとも最低維持時間一定に維持し、最低維持時間経過時に石膏鋳型の表面温度と内部温度の温度差が所定温度差以下にない場合は所定温度差以下になるまで維持時間を延長するので、脱水または結晶変態の作業を確実に行いながら、所定加熱温度ごとに石膏鋳型の表面温度と内部温度の温度差が所定温度差以下に抑えられ、温度差が大きくなり過ぎてクラックが発生するのが防止され効率良く脱水および結晶変態をなし、高品質の石膏鋳型を得ることができる。   Maintain the specified heating temperature at least at the minimum maintenance time, and extend the maintenance time until the temperature difference between the surface temperature of the gypsum mold and the internal temperature is not less than the specified temperature difference when the minimum maintenance time has elapsed. Therefore, while reliably performing dehydration or crystal transformation work, the temperature difference between the surface temperature of the gypsum mold and the internal temperature is suppressed to a predetermined temperature difference or less at each predetermined heating temperature, and the temperature difference becomes too large and cracks are generated. Therefore, dehydration and crystal transformation are efficiently performed, and a high-quality gypsum mold can be obtained.

請求項3記載の発明は、請求項2記載の石膏鋳型乾燥方法において、前記所定温度差が約10℃であることを特徴とする。   The invention described in claim 3 is the gypsum mold drying method according to claim 2, wherein the predetermined temperature difference is about 10 ° C.

所定加熱温度ごとに石膏鋳型の表面温度と内部温度の温度差が約10℃以下に抑えられるので、乾燥工程全般に亘って該温度差が10℃を大きく上回ることがなく、クラックの発生を防止して効率良く乾燥させることができる。   The temperature difference between the surface temperature of the gypsum mold and the internal temperature is kept below about 10 ° C for each predetermined heating temperature, so the temperature difference does not greatly exceed 10 ° C throughout the drying process, preventing the occurrence of cracks. And can be efficiently dried.

請求項4記載の発明は、前記加熱工程では、段階的に設定される所定加熱温度が、約120℃,約140℃,約160℃,約180℃,約230℃であることを特徴とする。   The invention according to claim 4 is characterized in that in the heating step, the predetermined heating temperature set in stages is about 120 ° C, about 140 ° C, about 160 ° C, about 180 ° C, about 230 ° C. .

加熱工程で、加熱温度を約120℃に一定に維持することで、石膏鋳型の付着水の放出による膨張変形を緩和することができ、約140℃に一定に維持することで、付着水の放出後の収縮変形を緩和することができ、約160℃に一定に維持することで、石膏鋳型の結晶水の放出開始による膨張変形を緩和することができ、約180℃に一定に維持することで、結晶水の放出中における膨張変形を緩和することができ、約230℃に一定に維持することで、結晶水の完全放出を確保することができる。
このように石膏鋳型の膨張収縮の変形を緩和しながら脱水を完遂して鋳型の乾燥割れを防止しながら水分巣の発生を回避して高品質の石膏鋳型を得ることができる。
By maintaining the heating temperature constant at about 120 ° C in the heating process, expansion deformation due to the discharge of adhering water from the gypsum mold can be mitigated, and by maintaining the heating temperature constant at about 140 ° C, the adhering water can be released. Later shrinkage deformation can be relieved, and by maintaining constant at about 160 ° C, expansion deformation due to the start of release of crystal water in the gypsum mold can be relieved, and by maintaining constant at about 180 ° C In addition, expansion deformation during the release of crystal water can be alleviated, and by maintaining the temperature constant at about 230 ° C., complete release of crystal water can be secured.
In this way, it is possible to obtain a high-quality gypsum mold while avoiding the formation of moisture nests while completing dehydration while preventing deformation of expansion and contraction of the gypsum mold and preventing dry cracking of the mold.

請求項5記載の発明は、請求項2から請求項4までのいずれか記載の石膏鋳型乾燥方法において、前記冷却工程では、段階的に設定される所定加熱温度が、約180℃および約150℃であることを特徴とする。   According to a fifth aspect of the present invention, in the gypsum mold drying method according to any one of the second to fourth aspects, in the cooling step, the predetermined heating temperature set stepwise is about 180 ° C and about 150 ° C. It is characterized by being.

冷却工程で、加熱温度を約180℃一定に維持することで、斜方晶の結晶形態がより安定した六方晶または立方晶に効率良く変態することができるとともに変態に伴う収縮変形を緩和することができ、加熱温度を約150℃一定に所定時間維持することで、六方晶の結晶形態がより安定した立方晶に効率良く変態することができるとともに変態に伴う収縮変形を緩和することができる。   By maintaining the heating temperature constant at about 180 ° C in the cooling process, the orthorhombic crystal morphology can be efficiently transformed into a more stable hexagonal crystal or cubic crystal, and shrinkage deformation associated with transformation can be mitigated. By maintaining the heating temperature at a constant temperature of about 150 ° C. for a predetermined time, the hexagonal crystal form can be efficiently transformed into a more stable cubic crystal and shrinkage deformation accompanying transformation can be mitigated.

以下、本発明に係る一実施の形態について図1ないし図3に基づいて説明する。
本実施の形態に係る石膏鋳型1は、タイヤを加硫成型するアルミニウム合金製の金型を鋳造する鋳型であり、石膏を水に溶かしたスラリーを鋳枠内で硬化して、型抜きした石膏鋳型1を、図1および図2に示す乾燥炉10で乾燥させる。
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
A gypsum mold 1 according to the present embodiment is a mold for casting a mold made of an aluminum alloy for vulcanizing and molding a tire. A gypsum obtained by curing a slurry in which gypsum is dissolved in water in a casting frame to remove the mold. The mold 1 is dried in a drying furnace 10 shown in FIGS.

乾燥炉10は、石膏鋳型1を載置する台車11と台車11の全体を覆い加熱する釣鐘状の蓋部材21とからなる。
台車11は、4隅に車輪12を備えた矩形の基台13に支柱14が立設し、支柱14の途中高さに円板状の載置板15,16が適当な間隔を存して固着されている。
The drying furnace 10 includes a carriage 11 on which the plaster mold 1 is placed and a bell-shaped lid member 21 that covers and heats the entire carriage 11.
The carriage 11 has a column 14 erected on a rectangular base 13 having wheels 12 at four corners, and disk-like mounting plates 15 and 16 are located at an appropriate distance in the middle of the column 14. It is fixed.

この上下2段の載置板15,16に、それぞれ型抜きした石膏鋳型1を載置するが、各載置板15,16には支柱14を中心に等距離位置に互いに等間隔に石膏鋳型1が載置される。   The die-cast gypsum mold 1 is placed on each of the upper and lower mounting plates 15 and 16, and each of the mounting plates 15 and 16 is placed at equidistant positions around the column 14 at equal intervals. 1 is placed.

1つの石膏鋳型1には、温度センサ17,18がその表面と内部に装着されて、石膏鋳型1の表面温度と内部温度を検出することができる。
温度センサ17,18からは信号線17a,18aが延出し、支柱14内を通って基台13の下方にぬけている。
One gypsum mold 1 is provided with temperature sensors 17 and 18 on the surface and inside thereof, so that the surface temperature and the internal temperature of the gypsum mold 1 can be detected.
Signal lines 17 a and 18 a extend from the temperature sensors 17 and 18 and pass through the support column 14 and below the base 13.

一方、蓋部材21は、側壁22内にヒータ23が内蔵されている。
ヒータ23は釣鐘状の側壁22に中央最高部から放射方向に互いに等間隔に配設されて内部を略均等に加熱することができる。
この等間隔に配設されるヒータ23,23間の側壁22に縦に長尺の開口が形成されていて、同開口を開閉扉24が開閉自在に閉塞できるようになっている。
On the other hand, the lid member 21 has a heater 23 built in the side wall 22.
The heaters 23 are disposed on the bell-shaped side wall 22 at equal intervals in the radial direction from the central highest portion so that the inside can be heated substantially evenly.
A longitudinally long opening is formed in the side wall 22 between the heaters 23 and 23 arranged at equal intervals, and the opening / closing door 24 can be opened and closed freely.

この釣鐘状の蓋部材21を台車11に被せ、台車11全体を蓋部材21が覆うようにして、ヒータ23を働かせると、蓋部材21内の載置板15,16に載置された複数の石膏鋳型1を偏りなく均等に加熱することができる。
また、開閉扉24を開き蓋部材21の開口を開放すると、内部を冷却することができる。
When the bell-shaped lid member 21 is placed on the carriage 11 and the carriage 11 is entirely covered with the lid member 21 and the heater 23 is operated, a plurality of pieces placed on the placement plates 15 and 16 in the lid member 21 are applied. The gypsum mold 1 can be heated evenly without bias.
Further, when the opening / closing door 24 is opened and the opening of the lid member 21 is opened, the inside can be cooled.

以上のような乾燥炉10によって、型抜きされた石膏鋳型1が乾燥される。
図3は、本実施の形態における該乾燥炉10による乾燥工程の加熱温度制御の過程と同温度制御による石膏鋳型1の表面と内部の温度変化を示したものである。
The die-cut gypsum mold 1 is dried by the drying furnace 10 as described above.
FIG. 3 shows the temperature change in the surface and inside of the gypsum mold 1 by the temperature control process in the drying process by the drying furnace 10 and the temperature control in the present embodiment.

図3において、折れ線で示される実線がヒータによる加熱温度Hを示し、1点鎖線が石膏鋳型1の表面温度Toを示し、2点鎖線が石膏鋳型1の内部温度Tiを示している。
石膏鋳型1の表面温度Toおよび内部温度Tiは、前記温度センサ17,18によって検出することができる。
In FIG. 3, the solid line indicated by the broken line indicates the heating temperature H by the heater, the one-dot chain line indicates the surface temperature To of the gypsum mold 1, and the two-dot chain line indicates the internal temperature Ti of the gypsum mold 1.
The surface temperature To and the internal temperature Ti of the gypsum mold 1 can be detected by the temperature sensors 17 and 18.

乾燥工程は、加熱温度を上昇させながら石膏鋳型1を加熱して脱水させる加熱工程と加熱温度を下降させながら石膏鋳型を冷却して結晶を変態させる冷却工程とからなる。
加熱工程においては、ヒータ設定温度を230℃程度まで段階的に上昇させるが、このヒータ設定温度Hの上昇に伴い石膏鋳型1の表面温度Toが僅かに遅れて追随して上昇する。
石膏鋳型1の表面温度Toの上昇変化率は、加熱温度の上昇変化率に略等しい。
The drying process includes a heating process in which the gypsum mold 1 is heated and dehydrated while increasing the heating temperature, and a cooling process in which the gypsum mold is cooled and the crystals are transformed while the heating temperature is decreased.
In the heating process, the heater set temperature is raised stepwise up to about 230 ° C., but as the heater set temperature H rises, the surface temperature To of the gypsum mold 1 rises with a slight delay.
The increasing change rate of the surface temperature To of the plaster mold 1 is substantially equal to the increasing change rate of the heating temperature.

これに対して、石膏鋳型1の内部温度Tiは、石膏の熱伝達率が小さいので、表面温度Toよりさらに遅れて上昇する。
そして、内部温度Tiの上昇変化率も表面温度Toの上昇変化率よりいくらか小さいので、ヒータによる加熱温度を上昇させているときは、石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTは徐々に大きくなっていく。
On the other hand, the internal temperature Ti of the gypsum mold 1 rises later than the surface temperature To because the heat transfer coefficient of gypsum is small.
And since the rate of change of the internal temperature Ti is somewhat smaller than the rate of change of the surface temperature To, when the heating temperature by the heater is increased, the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti is It grows gradually.

冷却工程においても同様に、ヒータ設定温度を段階的に下降させるが、このヒータ設定温度Hの下降に伴い石膏鋳型1の表面温度Toが僅かに遅れて追随して下降する。
さらに遅れて石膏鋳型1の内部温度Tiが下降している。
Similarly, in the cooling process, the heater set temperature is lowered stepwise, but as the heater set temperature H is lowered, the surface temperature To of the gypsum mold 1 is lowered with a slight delay.
Further, the internal temperature Ti of the gypsum mold 1 decreases with a delay.

そして、内部温度Tiの下降変化率も表面温度Toの下降変化率よりいくらか小さいので、ヒータ設定温度を下降させているときは、石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTは徐々に大きくなっていく。   Since the rate of change of the internal temperature Ti is somewhat smaller than the rate of change of the surface temperature To, the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti gradually increases when the heater set temperature is lowered. It gets bigger.

段階的に設定される加熱温度は、加熱工程で120℃,140℃,160℃,180℃,230℃の5段階であり、冷却工程で180℃および150℃の2段階である。
各設定加熱温度ごとにそれぞれ脱水または結晶変態の作業を確実に行うことができる最低維持時間が決められており、設定加熱温度を少なくとも決められた最低維持時間は一定に維持するよう制御される。
The heating temperature set in stages is five stages of 120 ° C., 140 ° C., 160 ° C., 180 ° C. and 230 ° C. in the heating process, and two stages of 180 ° C. and 150 ° C. in the cooling process.
A minimum maintenance time during which dehydration or crystal transformation can be reliably performed is determined for each set heating temperature, and at least the set minimum maintenance time is controlled to be kept constant.

石膏は、概ね石膏の結晶と水分で構成されており、結晶としては立方晶,六方晶,斜方晶の3形態があり、立方晶,六方晶,斜方晶の順に安定度が低下する。
また、石膏に含まれる水分は、結晶内にとり込まれる結晶水と、結晶表面に付着する付着水と、その他残りの遊離水とからなる。
Gypsum is mainly composed of gypsum crystals and moisture. The crystals have three forms, cubic, hexagonal and orthorhombic, and the stability decreases in the order of cubic, hexagonal and orthorhombic.
Moreover, the water | moisture content contained in gypsum consists of the crystal water taken in in a crystal | crystallization, the adhesion water adhering to a crystal | crystallization surface, and other remaining free water.

石膏に含まれるこれら水分の脱水が加熱工程で行われ、脱水後に結晶形態をより安定した形態に変態させるのが冷却工程である。   The water contained in the gypsum is dehydrated in the heating process, and the cooling process transforms the crystal form into a more stable form after the dehydration.

まず、加熱工程の第1段階S1では、加熱温度120℃一定に少なくとも最低維持時間t1の2時間維持される。
加熱温度120℃近傍で石膏鋳型の付着水の放出があり、120℃一定に維持することで、付着水の放出による石膏鋳型1の膨張変形を緩和することができる。
そして少なくとも2時間120℃一定に維持することで、付着水の必要な放出を確保することができる。
First, in the first stage S1 of the heating process, the heating temperature is kept constant at 120 ° C. for at least 2 hours, which is the minimum maintenance time t1.
The adhering water of the gypsum mold is released near the heating temperature of 120 ° C., and by maintaining the temperature constant at 120 ° C., the expansion deformation of the gypsum mold 1 due to the discharge of the adhering water can be reduced.
And by keeping the temperature constant at 120 ° C. for at least 2 hours, it is possible to ensure the necessary discharge of the attached water.

図3に示す例では、第1段階S1の加熱温度120℃一定に維持する時間が、最低維持時間t1の2時間を越えているが、これは、最低維持時間t1経過時の石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTが10℃を越えていたので、温度差ΔTが10℃以下となるまで維持時間を延長したものである。   In the example shown in FIG. 3, the time for maintaining the heating temperature at 120 ° C. in the first stage S1 is more than 2 hours of the minimum maintenance time t1, but this is because the gypsum mold 1 at the time when the minimum maintenance time t1 has elapsed Since the temperature difference ΔT between the surface temperature To and the internal temperature Ti exceeded 10 ° C., the maintenance time was extended until the temperature difference ΔT became 10 ° C. or less.

なお、最低維持時間t1経過時に温度差ΔTが10℃以下であれば、維持時間を延長しない。
したがって、第1段階S1の終了時には、石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTは常に10℃以下となっている。
If the temperature difference ΔT is 10 ° C. or less when the minimum maintenance time t1 has elapsed, the maintenance time is not extended.
Therefore, at the end of the first stage S1, the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti is always 10 ° C. or less.

次ぎの第2段階S2では、加熱温度140℃一定に少なくとも最低維持時間t2の1時間維持される。
加熱温度140℃近傍で石膏鋳型の付着水の放出後の収縮変形があり、140℃一定に維持することで、石膏鋳型の収縮変形を緩和することができる。
図3に示す例の第2段階S2では、最低維持時間t2の1時間経過時の前記温度差ΔTが10℃以下で、維持時間は延長されていない。
In the next second stage S2, the heating temperature is maintained constant at 140 ° C. for at least one minimum maintenance time t2.
There is shrinkage deformation after the adhering water of the gypsum mold is released at a heating temperature of around 140 ° C, and by maintaining the temperature constant at 140 ° C, the shrinkage deformation of the gypsum mold can be alleviated.
In the second stage S2 of the example shown in FIG. 3, the temperature difference ΔT after the lapse of 1 hour of the minimum maintenance time t2 is 10 ° C. or less, and the maintenance time is not extended.

次ぎの第3段階S3では、加熱温度160℃一定に少なくとも最低維持時間t3の2時間維持される。
加熱温度160℃近傍で石膏鋳型の結晶水の放出が開始し、160℃一定に維持することで、結晶水の放出による石膏鋳型1の膨張変形を緩和することができる。
In the next third stage S3, the heating temperature is kept constant at 160 ° C. for at least 2 hours of the minimum maintenance time t3.
Discharge of crystal water from the gypsum mold starts near the heating temperature of 160 ° C., and the constant deformation at 160 ° C. can mitigate expansion deformation of the gypsum mold 1 due to the release of crystal water.

そして少なくとも2時間160℃一定に維持することで、結晶水の放出開始時としては十分である。
図3に示す例の第3段階S3では、最低維持時間t3の2時間経過時の前記温度差ΔTが10℃以下で、維持時間は延長されていない。
Maintaining the temperature at 160 ° C. for at least 2 hours is sufficient for starting the release of crystal water.
In the third step S3 of the example shown in FIG. 3, the temperature difference ΔT when the minimum maintenance time t3 elapses for 2 hours is 10 ° C. or less, and the maintenance time is not extended.

次ぎの第4段階S4では、加熱温度180℃一定に少なくとも最低維持時間t4の1時間維持される。
加熱温度180℃近傍で石膏鋳型の結晶水の放出が継続しており、180℃一定に維持することで、結晶水の放出による石膏鋳型1の膨張変形を緩和することができる。
In the next fourth stage S4, the heating temperature is kept constant at 180 ° C. for at least one minimum maintenance time t4.
The discharge of crystal water from the gypsum mold continues at a heating temperature of about 180 ° C., and by maintaining the temperature constant at 180 ° C., expansion deformation of the gypsum mold 1 due to the release of crystal water can be mitigated.

そして少なくとも1時間180℃一定に維持することで、結晶水の必要な放出を確保することができる。
図3に示す例の第4段階S4では、最低維持時間t4の1時間経過時の前記温度差ΔTが10℃を越えているので、温度差ΔTが10℃以下となるまで維持時間を延長している。
And by keeping the temperature constant at 180 ° C. for at least one hour, necessary release of crystal water can be ensured.
In the fourth stage S4 of the example shown in FIG. 3, the temperature difference ΔT at the time of 1 hour of the minimum maintenance time t4 exceeds 10 ° C., so the maintenance time is extended until the temperature difference ΔT becomes 10 ° C. or less. ing.

次いで、加熱工程の最後の第5段階S5では、加熱温度230℃一定に維持時間t5の3時間維持される。
加熱温度230℃近傍で維持時間t5の3時間維持されることで、石膏鋳型の結晶水の完全放出が確保される。
なお、維持時間t5は、最低維持時間ではなく、3時間あれば前記温度差ΔTは10℃以下となっており、延長することはない。
Next, in the final fifth stage S5 of the heating process, the heating temperature is kept constant at 230 ° C. for 3 hours of the maintenance time t5.
By maintaining the heating temperature in the vicinity of 230 ° C. for 3 hours at the maintenance time t5, complete discharge of the crystal water of the gypsum mold is ensured.
Note that the maintenance time t5 is not the minimum maintenance time, and if it is 3 hours, the temperature difference ΔT is 10 ° C. or less and is not extended.

以上で石膏鋳型1から脱水を行う加熱工程を終了して、次ぎに冷却工程に入り、加熱温度を下げるとともに、乾燥炉10の釣鐘状の蓋部材21の開閉扉24を開いて内部の熱を放熱して冷却する。   The heating process for dehydrating from the gypsum mold 1 is completed, and then the cooling process is started. The heating temperature is lowered, and the open / close door 24 of the bell-shaped lid member 21 of the drying furnace 10 is opened to reduce the internal heat. Dissipate heat to cool.

まず、第6段階S6では、加熱温度180℃一定に少なくとも最低維持時間t6の1時間維持される。
加熱温度180℃まで低下すると、結晶水放出後の冷却に伴う結晶1次変態による収縮変形があり、180℃一定に維持することで、結晶1次変態を効率良く実行するとともに、この収縮変形を緩和することができる。
First, in the sixth step S6, the heating temperature is kept constant at 180 ° C. for at least one minimum maintenance time t6.
When the heating temperature is lowered to 180 ° C, there is shrinkage deformation due to the primary transformation of the crystal accompanying cooling after the release of crystal water. By maintaining the constant 180 ° C, the primary transformation of the crystal is efficiently performed and Can be relaxed.

この結晶1次変態により斜方晶の結晶形態がより安定した六方晶または立方晶に変態する。
図3に示す例の第6段階S6では、最低維持時間t6の1時間経過時の前記温度差ΔTが10℃を越えているので、温度差ΔTが10℃以下となるまで維持時間を延長している。
This primary crystal transformation transforms the orthorhombic crystal form into a more stable hexagonal or cubic crystal.
In the sixth step S6 of the example shown in FIG. 3, the temperature difference ΔT at the elapse of 1 hour of the minimum maintenance time t6 exceeds 10 ° C., so the maintenance time is extended until the temperature difference ΔT becomes 10 ° C. or less. ing.

次ぎの第7段階S7では、加熱温度150℃一定に少なくとも最低維持時間t7の1時間維持される。
加熱温度150℃まで低下すると、結晶水放出後の冷却に伴う結晶2次変態による収縮変形があり、180℃一定に維持することで、結晶2次変態を効率良く実行するとともに、この収縮変形を緩和することができる。
In the next seventh stage S7, the heating temperature is kept constant at 150 ° C. for at least one minimum maintenance time t7.
When the heating temperature is lowered to 150 ° C, there is shrinkage deformation due to the secondary transformation of the crystal due to cooling after the crystallization water is released. By maintaining 180 ° C constant, the secondary transformation of the crystal is executed efficiently and this shrinkage deformation is reduced. Can be relaxed.

この結晶2次変態により六方晶の結晶形態がより安定した立方晶に変態する。
こうして石膏鋳型1の結晶形態は、最も安定した立方晶に全て変態することで、石膏鋳型1の強度は高く維持される。
図3に示す例の第7段階S7では、最低維持時間t7の1時間経過時の前記温度差ΔTが10℃以下で、維持時間は延長されていない。
This crystal secondary transformation transforms the hexagonal crystal form into a more stable cubic crystal.
Thus, the crystal form of the gypsum mold 1 is completely transformed into the most stable cubic crystal, so that the strength of the gypsum mold 1 is maintained high.
In the seventh stage S7 of the example shown in FIG. 3, the temperature difference ΔT after the lapse of 1 hour of the minimum maintenance time t7 is 10 ° C. or less, and the maintenance time is not extended.

その後、さらに冷却して加熱温度を下げ、120℃以下で石膏鋳型1を取り出す。
好ましくは、70℃付近で取り出すのが良い。
なお、120℃領域以下からは、乾燥設備内の湿度に応じて鋳型に水分が吸収されるため、外気を遮断して冷却する必要がある。
Thereafter, it is further cooled to lower the heating temperature, and the gypsum mold 1 is taken out at 120 ° C. or lower.
Preferably, it is good to take out around 70 degreeC.
In addition, from 120 degrees C or less area | region, since a water | moisture content is absorbed into a casting_mold | template according to the humidity in a drying equipment, it is necessary to interrupt | block outside air and to cool.

以上のように、加熱工程で加熱温度を段階的に上昇させるので、脱水に伴う石膏鋳型1の膨張変形を緩和し、冷却工程で加熱温度を段階的に下降させるので、脱水後の冷却による結晶変態に伴う石膏鋳型1の収縮変形を緩和することができ、石膏鋳型1の変形歪みを防止することができる。   As described above, since the heating temperature is increased stepwise in the heating process, the expansion deformation of the gypsum mold 1 accompanying dehydration is alleviated, and the heating temperature is decreased stepwise in the cooling process. Shrinkage deformation of the gypsum mold 1 accompanying transformation can be alleviated, and deformation distortion of the gypsum mold 1 can be prevented.

所定加熱温度を少なくとも最低維持時間一定に維持し、最低維持時間経過時に石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTが10℃以下にない場合は10℃以下になるまで維持時間を延長するので、脱水または結晶変態の作業を確実に行いながら、所定加熱温度ごとに石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTが10℃以下に抑えられ、温度差が大きくなり過ぎてクラックが発生するのが防止され効率良く脱水および結晶変態をなす。   Maintain the predetermined heating temperature at least constant for the minimum maintenance time, and if the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti is not less than 10 ° C when the minimum maintenance time has passed, maintain the maintenance time until it becomes 10 ° C or less Since it is extended, the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti is suppressed to 10 ° C. or less at every predetermined heating temperature while reliably performing dehydration or crystal transformation, and the temperature difference becomes too large. Thus, cracks are prevented from occurring, and dehydration and crystal transformation are efficiently performed.

以上の本実施の形態に係る石膏鋳型乾燥方法により乾燥させた石膏鋳型は、クラックは皆無であり、鋳造巣も0個ないし2個と極めて少ない高品質の石膏鋳型である。
上記温度制御をせずに、石膏鋳型1の表面温度Toと内部温度Tiの温度差ΔTが、いずれかの段階で10℃を大きく上回ることがあると、クラックが生じ、鋳造巣も10個以上の多数形成されてしまう。
The gypsum mold dried by the gypsum mold drying method according to the present embodiment described above is a high-quality gypsum mold with no cracks and very few casting nests.
Without the above temperature control, if the temperature difference ΔT between the surface temperature To of the gypsum mold 1 and the internal temperature Ti may greatly exceed 10 ° C. at any stage, cracks will occur, and there will be 10 or more casting voids. Many will be formed.

本実施の形態に係る石膏鋳型乾燥方法は、石膏鋳型に貫通孔などの加工を施すことがなく、作業工数を増加することなく、効率的に乾燥作業を行うので、作業時間も短縮される。   In the gypsum mold drying method according to the present embodiment, the gypsum mold is not subjected to processing such as through-holes, and the drying operation is efficiently performed without increasing the number of work steps. Therefore, the work time is also shortened.

本発明の一実施の形態に係る乾燥炉の蓋部材を開いた状態の斜視図である。It is a perspective view of the state where the lid member of the drying furnace concerning one embodiment of the present invention was opened. 同蓋部材を閉じた状態の斜視図である。It is a perspective view of the state where the lid member was closed. 本実施の形態における乾燥炉による乾燥工程の加熱温度制御の過程と同温度制御による石膏鋳型の表面と内部の温度変化を示したグラフである。It is the graph which showed the process of the heating temperature control of the drying process by the drying furnace in this Embodiment, and the temperature change of the surface of gypsum mold by the same temperature control, and an inside.

符号の説明Explanation of symbols

1…石膏鋳型、10…乾燥炉、11…台車、12…車輪、13…基台、14…支柱、15,16…載置板、17,18…温度センサ、21…蓋部材、22…側壁、23…ヒータ、24…開閉扉。   DESCRIPTION OF SYMBOLS 1 ... Gypsum mold, 10 ... Drying furnace, 11 ... Bogie, 12 ... Wheel, 13 ... Base, 14 ... Post, 15, 16 ... Mounting plate, 17, 18 ... Temperature sensor, 21 ... Lid member, 22 ... Side wall , 23 ... heater, 24 ... open / close door.

Claims (5)

加熱温度を上昇させながら石膏鋳型を加熱して脱水させる加熱工程と加熱温度を下降させながら石膏鋳型を冷却して結晶を変態させる冷却工程とからなり加熱温度制御により石膏鋳型を乾燥させる石膏鋳型乾燥方法において、
加熱温度を段階的に上昇させることで加熱工程が実行され、加熱温度を段階的に下降させることで冷却工程が実行されることを特徴とする石膏鋳型乾燥方法。
Drying the gypsum mold by drying the gypsum mold by controlling the heating temperature, which consists of a heating process in which the gypsum mold is heated and dehydrated while raising the heating temperature, and a cooling process in which the gypsum mold is cooled to transform the crystals while lowering the heating temperature. In the method
A gypsum mold drying method, wherein a heating step is executed by raising the heating temperature stepwise, and a cooling step is executed by lowering the heating temperature stepwise.
所定加熱温度を少なくとも最低維持時間一定に維持し、最低維持時間経過時に石膏鋳型の表面温度と内部温度の温度差が所定温度差以下にない場合は所定温度差以下になるまで維持時間を延長する制御を所定加熱温度ごとに行い加熱温度を段階的に変化させることを特徴とする請求項1記載の石膏鋳型乾燥方法。   Maintain the specified heating temperature at least at the minimum maintenance time, and extend the maintenance time until the temperature difference between the surface temperature of the gypsum mold and the internal temperature is not less than the specified temperature difference when the minimum maintenance time has elapsed. 2. The gypsum mold drying method according to claim 1, wherein control is performed for each predetermined heating temperature to change the heating temperature stepwise. 前記所定温度差が約10℃であることを特徴とする請求項2記載の石膏鋳型乾燥方法。   The gypsum mold drying method according to claim 2, wherein the predetermined temperature difference is about 10 ° C. 前記加熱工程では、段階的に設定される所定加熱温度が、約120℃,約140℃,約160℃,約180℃,約230℃であることを特徴とする請求項2または請求項3記載の石膏鋳型乾燥方法。   The predetermined heating temperature set stepwise in the heating step is about 120 ° C, about 140 ° C, about 160 ° C, about 180 ° C, or about 230 ° C. Gypsum mold drying method. 前記冷却工程では、段階的に設定される所定加熱温度が、約180℃および約150℃であることを特徴とする請求項2から請求項4までのいずれか記載の石膏鋳型乾燥方法。

The gypsum mold drying method according to any one of claims 2 to 4, wherein in the cooling step, the predetermined heating temperature set in stages is about 180 ° C and about 150 ° C.

JP2004269557A 2004-09-16 2004-09-16 Method for drying gypsum mold Pending JP2006082108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269557A JP2006082108A (en) 2004-09-16 2004-09-16 Method for drying gypsum mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269557A JP2006082108A (en) 2004-09-16 2004-09-16 Method for drying gypsum mold

Publications (1)

Publication Number Publication Date
JP2006082108A true JP2006082108A (en) 2006-03-30

Family

ID=36161026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269557A Pending JP2006082108A (en) 2004-09-16 2004-09-16 Method for drying gypsum mold

Country Status (1)

Country Link
JP (1) JP2006082108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041343A (en) * 2006-08-03 2008-02-21 Geomatec Co Ltd Heat-generating resin substrate
CN105215272A (en) * 2015-11-10 2016-01-06 哈尔滨工业大学 A kind of preparation method with micro-structural gypsum mould

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041343A (en) * 2006-08-03 2008-02-21 Geomatec Co Ltd Heat-generating resin substrate
CN105215272A (en) * 2015-11-10 2016-01-06 哈尔滨工业大学 A kind of preparation method with micro-structural gypsum mould

Similar Documents

Publication Publication Date Title
JP6085451B2 (en) Temperature control method for lining concrete
CN103813983A (en) Directional solidification system and method
JP2016513616A (en) Directional coagulation system and method
JP5361483B2 (en) Manufacturing method of tire mold
JP2006082108A (en) Method for drying gypsum mold
WO2004092454A3 (en) System and method of making single-crystal structures through free-form fabrication techniques
JP4579305B2 (en) Manufacturing method of sheet glass
US4043380A (en) Production of plaster molds by microwave treatment
KR20120030381A (en) Method for preparing of ceramic shaped part, apparatus and use thereof
US20130133569A1 (en) Crystal Growth Device
JPS62283876A (en) Method of burning dough formed article comprising ceramic substance and equipment for carrying out same
JP2002308616A (en) Method for producing polycrystalline silicon
JP2010141060A5 (en)
CN217831756U (en) Mud mould air-drying frame
JP4476986B2 (en) Manufacturing method of sheet glass
CN211848207U (en) Guard plate felt structure for reducing defects of polycrystalline corner rods of cast ingots
JP2005144461A (en) Method for cooling cast product
CN111957890B (en) Preparation method of formwork with controllable heat dissipation conditions
JP2000290087A (en) Aging method of concrete product
Suzdal'tsev Effect of temperature on the structuring and properties of glass and glass ceramic of lithium aluminosilicate composition
JP2007173528A5 (en)
TW201508102A (en) Construction of crystal growth furnace for lateral mobile heating
JPH09301709A (en) Method for casting silicon
JPH04209727A (en) Production of figured glass
JP5598649B2 (en) Casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02