JP2006080568A - Solar power generation equipment and method of installing it - Google Patents

Solar power generation equipment and method of installing it Download PDF

Info

Publication number
JP2006080568A
JP2006080568A JP2005347412A JP2005347412A JP2006080568A JP 2006080568 A JP2006080568 A JP 2006080568A JP 2005347412 A JP2005347412 A JP 2005347412A JP 2005347412 A JP2005347412 A JP 2005347412A JP 2006080568 A JP2006080568 A JP 2006080568A
Authority
JP
Japan
Prior art keywords
double
solar cell
layer
solar
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005347412A
Other languages
Japanese (ja)
Other versions
JP3985837B2 (en
Inventor
Toshio Joge
利男 上下
Ichiro Araki
一郎 荒木
Yoshio Eguchi
吉雄 江口
Yasuhiro Imazu
康博 今津
Kenichi Abe
賢一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005347412A priority Critical patent/JP3985837B2/en
Publication of JP2006080568A publication Critical patent/JP2006080568A/en
Application granted granted Critical
Publication of JP3985837B2 publication Critical patent/JP3985837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of a solar power generation equipment without decreasing an amount of insolation. <P>SOLUTION: A double-sided acceptance type solar battery is connected a plurality of double-sided acceptance solar cells in series through lead wires, in which an n<SP>+</SP>layer in which phosphorous diffusion is performed is formed in a surface of a p type silicon substrate, p<SP>+</SP>layer in which boron diffusion is performed is formed in a reverse side, a passivation oxide film and an antireflection film are formed on diffusion layers of both sides, and an emitter electrode is formed in the n<SP>+</SP>layer and a collector electrode is formed in the p<SP>+</SP>layer. An acceptance side of the double-sided acceptance type solar battery is installed in a direction displaced from north and south, while turned perpendicular to installation side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電装置及びその設置方法に係わる。   The present invention relates to a photovoltaic power generation apparatus and an installation method thereof.

従来の一般的な太陽光発電装置は、片面受光型太陽電池が複数個並べられた太陽電池モジュールが複数併設される太陽電池アレイである。非追尾型の場合、太陽電池アレイは、太陽電池の受光面を南向きにし、年間の日射量を最大限に受光できるよう設置場所の緯度を考慮して、春分・秋分時の天頂角に合わせた傾斜角度で設置する。また、ビル等の建物においては、太陽電池モジュールを建物の壁面に設置する。   A conventional general solar power generation device is a solar cell array in which a plurality of solar cell modules in which a plurality of single-sided light-receiving solar cells are arranged are provided. In the case of the non-tracking type, the solar cell array faces the zenith angle at the time of spring equinox and autumn equinox, taking into account the latitude of the installation location so that the solar cell light receiving surface faces south and receives the maximum amount of solar radiation for the year. Install at an inclined angle. Moreover, in buildings, such as a building, a solar cell module is installed in the wall surface of a building.

〔特許文献1〕には、太陽電池設備の板状太陽発電機7が垂直に立てて設置してあり、壁の上端に設置した太陽発電機7は、両面が感光性の厚さ0.1mm の太陽電池13(例えば、両面が感光性のMIS太陽電池)を使用し、枠15で縁を補強した2つの支持ガラス板14に設置することが記載されている。   In [Patent Document 1], a plate-like solar generator 7 of a solar cell facility is vertically installed, and the solar generator 7 installed at the upper end of the wall has a photosensitive thickness of 0.1 mm on both sides. The solar cell 13 (for example, a MIS solar cell whose both surfaces are photosensitive) is used and installed on two supporting glass plates 14 whose edges are reinforced by a frame 15.

特表平10−507312号公報Japanese National Patent Publication No. 10-50712

従来の太陽電池アレイは、上記のように太陽電池の受光面が南向き,春分・秋分時天頂角傾斜で設置されるような太陽電池モジュール設置架台、または、住宅の南面屋根に取り付けた架台に設置される。従って、太陽電池モジュールは、地上面に平行な面に広い設置面積が必要である。   The conventional solar cell array is installed on a solar cell module installation base where the light receiving surface of the solar cell is facing south, as described above, with a zenith angle inclination at the time of equinox / autumn, or on a base mounted on the south roof of a house. Installed. Therefore, the solar cell module needs a large installation area on a plane parallel to the ground surface.

従来の太陽電池アレイは、上記のような構造及び設置を行うので、規定された風圧に耐える設計がとられ、剛な構造物となっており、建設コストがその分、高くなる。   Since the conventional solar cell array is constructed and installed as described above, it is designed to withstand a prescribed wind pressure, and is a rigid structure, which increases the construction cost accordingly.

従来の架台設置型の太陽電池アレイにおいては、降雪時に太陽電池モジュールの受光面に積雪が発生し、発電不能に陥る為、雪落し作業を必要とする。また、年間の積雪量を見込んだ太陽電池モジュール設置高さ、更に、積雪重量に耐える太陽電池モジュール及び架台の設計を行う必要があり、建設コストが上昇する。   In a conventional pedestal installation type solar cell array, snowfall occurs on the light receiving surface of the solar cell module during snowfall, and power generation becomes impossible. In addition, it is necessary to design a solar cell module installation height that allows for the amount of snowfall in the year and a solar cell module and a stand that can withstand the weight of snowfall, which increases construction costs.

従来の太陽電池アレイにおいては、受光面が受光する日射量は、正午あるいはその近傍の受光をピークとしたコサイン状の分布となる。即ち、太陽光発電装置が有する低レベル閾値(一般的には最大出力の5%)以下の発電電気出力では、発電を行わず、従って、早朝,夕方の発電は期待できない。更に、全般的にパワーコンディショナーの定格値に対し、低い出力点での運転となるので、変換損失が大きい。   In a conventional solar cell array, the amount of solar radiation received by the light receiving surface has a cosine-like distribution with a peak at noon or in the vicinity thereof. That is, power generation is not performed at a power generation output equal to or lower than a low level threshold (generally 5% of the maximum output) of the solar power generation apparatus. Therefore, early morning and evening power generation cannot be expected. Furthermore, since the operation is performed at a low output point relative to the rated value of the power conditioner, the conversion loss is large.

従来技術においては、上記のように、南向き設置であるが、太陽電池アレイが受光する年間を通じた平均的な日射量は、正午近傍にピークを有する分布となる。従って、太陽電池アレイに付帯するパワーコンディショナー,動力ケーブル等の電気設備は、ピーク照射量受光時の太陽電池アレイの出力を設計条件として設計される為、建設費が割高となる。   In the prior art, as described above, the solar radiation array is installed facing south, but the average amount of solar radiation received by the solar cell array throughout the year has a distribution having a peak near noon. Therefore, since the electrical equipment such as a power conditioner and a power cable attached to the solar cell array is designed with the output of the solar cell array at the time of receiving the peak irradiation amount as a design condition, the construction cost is expensive.

又、〔特許文献1〕に記載の従来の技術は、両面が感光性のMIS(メタルインスレイティッドの略)太陽電池を使用すると記載されているだけであり、双方の露光面が同一の効率を有すると仮定した場合に年間利得が双方の寄与の和として106%となる仮定のこと述べたものであり、実際は裏面の効率はかなり悪くなるのが通常である。また、裏面の効率が悪いと、受光面日射量による発電出力は、平坦にならないため、パワーコンディショナーの平均動作点を高くできないという問題がある。   In addition, the conventional technique described in [Patent Document 1] only describes that both sides use photosensitive MIS (abbreviation of metal insulated) solar cells, and both exposure surfaces have the same efficiency. Is assumed to have an annual gain of 106% as the sum of both contributions, and in fact, the efficiency of the back side is usually considerably worse. In addition, if the efficiency of the back surface is poor, the power generation output due to the amount of solar radiation on the light receiving surface does not become flat, and thus there is a problem that the average operating point of the power conditioner cannot be increased.

本発明は、上記の問題点を考慮してなされたものであり、日射量を確保しながらもコスト低減が可能な太陽光発電装置及びその設置方法を提供する。   The present invention has been made in consideration of the above-described problems, and provides a solar power generation apparatus and a method for installing the solar power generation apparatus that can reduce the cost while ensuring the amount of solar radiation.

本発明による太陽光発電装置は、両面受光型太陽電池を備える。この両面受光型太陽電池の一方及び他方の受光面が太陽光発電装置の設置面に対し実質垂直である。本太陽光発電装置においては、太陽電池の受光面が設置面に対して実質垂直であるため、装置の設置面積を低減できる。反面、太陽電池の片面当たりの日射量が低下するが、両受光面で発電動作が起きる両面受光型太陽電池を用いるので、太陽光発電装置全体としての有効日射量を確保できる。従って、日射量を確保しながらも、太陽光発電装置または本装置を含む太陽光発電設備のコストが低減できる。なお、受光面が垂直とは、受光面の平面に沿った方向あるいはその方向に平行な方向が設置面に垂直であることを意味する。   The solar power generation device according to the present invention includes a double-sided light receiving solar cell. One and the other light receiving surfaces of the double-sided light-receiving solar cell are substantially perpendicular to the installation surface of the solar power generation device. In this solar power generation device, since the light receiving surface of the solar cell is substantially perpendicular to the installation surface, the installation area of the device can be reduced. On the other hand, although the solar radiation amount per one side of the solar cell is reduced, since the double-sided light receiving solar cell in which power generation operation is performed on both light receiving surfaces is used, the effective solar radiation amount as a whole solar power generation device can be secured. Therefore, it is possible to reduce the cost of the solar power generation apparatus or the solar power generation equipment including the present apparatus while securing the amount of solar radiation. In addition, the light receiving surface is perpendicular means that a direction along the plane of the light receiving surface or a direction parallel to the direction is perpendicular to the installation surface.

本発明による他の太陽光発電装置においては、両面受光型太陽電池の一方及び他方の受光面の向きが南北方向から変位している。このため、受光面が南向きの場合よりも、受光面における日射量のピーク値の大きさが低減する。従って、付帯電気設備の電流・電圧などの設計条件が緩和されるので、太陽光発電装置を備える太陽光発電設備全体のコストが低減する。一方、日射量のピーク値は低減するが、両面受光型太陽電池を用いるので、太陽光発電装置全体としての有効日射量を確保できる。なお、受光面の向きとは、受光面の平面に垂直な方向、または受光面における仮想法線の方向、あるいはこれらの方向に平行な方向を意味する。   In another solar power generation device according to the present invention, the direction of one and the other light receiving surface of the double-sided light receiving solar cell is displaced from the north-south direction. For this reason, the magnitude | size of the peak value of the solar radiation amount in a light-receiving surface reduces rather than the case where a light-receiving surface faces south. Therefore, since the design conditions such as current and voltage of the incidental electrical facilities are relaxed, the cost of the entire solar power generation facility including the solar power generation device is reduced. On the other hand, although the peak value of the amount of solar radiation is reduced, since the double-sided light-receiving solar cell is used, the effective solar radiation amount as the whole solar power generation device can be secured. The direction of the light receiving surface means a direction perpendicular to the plane of the light receiving surface, a direction of a virtual normal on the light receiving surface, or a direction parallel to these directions.

本発明によるさらに他の太陽光発電装置においては、1日において、両面受光型太陽電池の一方及び他方の各受光面における日射量がピーク値となる時刻が、互いに異なる。これにより、両面受光型太陽電池の両受光面を合わせた日射量のピーク値の大きさが低減するので、太陽光発電装置を備える太陽光発電設備全体のコストが低減する。一方、日射量のピーク値は低減するが、両面受光型太陽電池を用いるので、太陽光発電装置全体としての有効日射量を確保できる。   In yet another photovoltaic power generation apparatus according to the present invention, the time at which the amount of solar radiation on one and the other light receiving surfaces of the double-sided light receiving solar cell reaches a peak value in one day is different from each other. Thereby, since the magnitude | size of the peak value of the solar radiation amount which match | combined both light-receiving surfaces of a double-sided light reception type solar cell reduces, the cost of the whole photovoltaic power generation equipment provided with a photovoltaic power generation device reduces. On the other hand, although the peak value of the amount of solar radiation is reduced, since the double-sided light-receiving solar cell is used, the effective solar radiation amount as the whole solar power generation device can be secured.

なお、上記各太陽光発電装置において、両面受光型太陽電池の受光面の向きが実質東西方向であることが好ましい。これにより、日射量のピーク値が低減するとともに日射量が平坦化する。さらに、少なくとも従来と同等の有効日射量が確保できる。従って、垂直設置の場合でも、有効日射量を損なうことがない。   In addition, in each said solar power generation device, it is preferable that the direction of the light-receiving surface of a double-sided light reception type solar cell is a substantial east-west direction. Thereby, the peak value of the solar radiation amount is reduced and the solar radiation amount is flattened. Furthermore, the effective solar radiation amount at least equivalent to the past can be ensured. Therefore, even in the case of vertical installation, the effective solar radiation amount is not impaired.

なお、上述したような太陽光発電装置を設置するための方法は、第1のステップとして、両面受光型太陽電池または両面受光型太陽電池モジュール,両面受光型太陽電池または両面受光型太陽電池モジュールを取付ける構造体または支持体を準備し、第2のステップとして、これらを両面受光型太陽電池または両面受光型太陽電池モジュールの一方及び他方の受光面が太陽光発電装置の設置面に対し実質垂直になるように設置する。第2のステップとしては、受光面が、太陽光発電装置の設置面に対し実質垂直になるように、かつ南北方向から変位した方向を向くように設置しても良い。   In addition, the method for installing the solar power generation device as described above includes, as a first step, a double-sided light-receiving solar cell or a double-sided light-receiving solar cell module, a double-sided light-receiving solar cell or a double-sided light-receiving solar cell module. A structure or a support to be attached is prepared, and as a second step, one and the other light receiving surfaces of the double-sided light receiving solar cell or the double-sided light receiving solar cell module are substantially perpendicular to the installation surface of the photovoltaic power generation device. Install to be. As a 2nd step, you may install so that a light-receiving surface may become the direction displaced from the north-south direction so that it may become substantially perpendicular | vertical with respect to the installation surface of a solar power generation device.

本発明によれば日射量を損なうことなく、有効な発電時間を早朝から夕方まで拡大し、発生電気出力のピーク値を低減できるので、パワーコンディショナー等の電気設備の定格値を低く設計でき、太陽光発電装置のコストを低減できる。   According to the present invention, the effective power generation time can be extended from early morning to evening without impairing the amount of solar radiation, and the peak value of the generated electrical output can be reduced, so that the rated value of electrical equipment such as a power conditioner can be designed low, The cost of the photovoltaic device can be reduced.

以下、本発明の実施例を説明する。図1は、本発明に適用する両面受光型太陽電池の代表的なセル構造を示すものである。本セルは、p型シリコン基板1の表面にリン拡散を行ったn+ 層2を形成し、裏面側には、ボロン拡散を行ったp+層3を形成し、両面の拡散層の上にパッシベーション酸化膜4、更に、反射防止膜5を形成している。当該n+ 層2,p+ 層3に、それぞれ、エミッター電極6,コレクター電極7を形成している。本セルでは、表面からの照射光および裏面からの照射光の両者によって、電気出力を得ることができる。 Examples of the present invention will be described below. FIG. 1 shows a typical cell structure of a double-sided light receiving solar cell applied to the present invention. In this cell, an n + layer 2 subjected to phosphorus diffusion is formed on the surface of a p-type silicon substrate 1, and a p + layer 3 subjected to boron diffusion is formed on the back side, and the diffusion layers on both sides are formed. A passivation oxide film 4 and an antireflection film 5 are formed. An emitter electrode 6 and a collector electrode 7 are formed on the n + layer 2 and the p + layer 3, respectively. In this cell, an electrical output can be obtained by both irradiation light from the front surface and irradiation light from the back surface.

図2は、当該両面受光セルを適用した両面受光型太陽電池モジュールの構成例を示すものである。両面受光太陽電池セル8は、図のように、縦横に並べ、リード線9で直列に接続される。この接続されたセル群は、断面図に示すように、2枚の透明保護材10の中に封止材11で封止されている。両面受光型太陽電池モジュール13は、このアセンブリに、フレーム12および端子ボックスを取り付けたものである。   FIG. 2 shows a configuration example of a double-sided light receiving solar cell module to which the double-sided light receiving cell is applied. The double-sided light receiving solar cells 8 are arranged vertically and horizontally and connected in series with lead wires 9 as shown in the figure. This connected cell group is sealed with a sealing material 11 in two transparent protective materials 10 as shown in a cross-sectional view. The double-sided light receiving solar cell module 13 is obtained by attaching a frame 12 and a terminal box to this assembly.

図3,図4および図5は、本発明を適用した太陽電池アレイの実施例を示す図である。図3は、1本の柱状の構造物(ポール)に、複数の両面受光型モジュール13を設置したアレイの例を示す。以下このアレイについて説明する。柱状構造物14は、地面に構築した基礎15の上に建てられる。柱状構造物14には、水平支持構造物16が固定金物17で連結されている。水平支持構造物16は、柱状構造物14を中心にして、設置面に平行な方向に沿って柱状構造物14の両側に水平に伸びている。両面受光型太陽電池モジュール13は、水平支持構造物に釣り下げられた形で、上部ジョイント18で固定され、モジュール13の下部は、下部ジョイントで固定される。このようにして複数の太陽電池モジュールが、柱状構造物を軸として左右対称に配置される。上部ジョイントは、水平支持構造物16の長さ方向を軸として回転できる構造を採用し、下部ジョイント19は、スプリング構造を有する。この場合、両面受光型太陽電池モジュール13が風圧を受けたとき、モジュールは、水平支持構造物の長さ方向を軸とした規定範囲の回転変位を許容し、風圧を吸収する柔構造となっている。   3, 4 and 5 are diagrams showing examples of solar cell arrays to which the present invention is applied. FIG. 3 shows an example of an array in which a plurality of double-sided light receiving modules 13 are installed on one columnar structure (pole). This array will be described below. The columnar structure 14 is built on a foundation 15 built on the ground. A horizontal support structure 16 is connected to the columnar structure 14 by a fixed hardware 17. The horizontal support structure 16 extends horizontally on both sides of the columnar structure 14 along the direction parallel to the installation surface with the columnar structure 14 as the center. The double-sided light receiving solar cell module 13 is fixed to the upper joint 18 while being suspended from the horizontal support structure, and the lower portion of the module 13 is fixed to the lower joint. In this way, a plurality of solar cell modules are arranged symmetrically about the columnar structure. The upper joint employs a structure that can rotate around the length direction of the horizontal support structure 16, and the lower joint 19 has a spring structure. In this case, when the double-sided light receiving solar cell module 13 receives wind pressure, the module has a flexible structure that allows rotational displacement within a specified range about the length direction of the horizontal support structure and absorbs wind pressure. Yes.

従来技術では、アレイ設置架台は、風圧等に対する設計耐力を備えるために剛な構造設計とする必要があり、コスト高となるが、本実施例によれば、太陽電池モジュールは、1対の水平支持構造物に柔構造の取り付けが可能となる為、建設コストの低減が図られる。   In the prior art, the array installation base needs to have a rigid structural design in order to have design resistance against wind pressure or the like, which increases the cost. According to this embodiment, the solar cell module is a pair of horizontal Since the flexible structure can be attached to the support structure, the construction cost can be reduced.

図4は、本発明を、フェンス状の構造物に適用した場合を説明する図である。構造物は、垂直構造物20と横梁21の組み合わせで構成されており、基礎15上に固定される。両面受光型太陽電池モジュールは、前述の図3で説明した柱状構造物アレイと同様な方式で取り付けられる。   FIG. 4 is a diagram illustrating a case where the present invention is applied to a fence-like structure. The structure is composed of a combination of a vertical structure 20 and a cross beam 21 and is fixed on the foundation 15. The double-sided light receiving solar cell module is attached in the same manner as the columnar structure array described with reference to FIG.

図5は、図3で説明した方式の一部変形例で、電柱等の柱に、小型の両面受光型モジュールを取り付けた例である。本変形例においては、柱状構造物14を軸として、本柱状構造物の片側に太陽電池モジュールが取り付けられる。   FIG. 5 is a partial modification of the method described with reference to FIG. 3, and is an example in which a small double-sided light receiving module is attached to a pole such as a utility pole. In this modification, a solar cell module is attached to one side of the columnar structure around the columnar structure 14.

上記各実施例においては、両面受光型太陽電池モジュールの受光面すなわち両面受光型太陽電池の受光面は、太陽光発電装置の設置面に垂直方向に向いている。このため、複数の太陽電池モジュールを高さ方向に設置することができる。実際には、各実施例で示したような、太陽電池モジュールを取付けるための柱状またはフェンス状などの構造物の高さ方向に両面受光型太陽電池モジュールすなわち両面受光型太陽電池が配置される。従って、太陽光発電装置の設置面積が低減する。また、設置場所の制限が緩和される。太陽電池モジュールの受光面を設置面に対し垂直にすると、後述するように、1日において一方または他方の受光面が受ける日射量のピーク値が低減する。しかし、両面受光太陽電池を用いているので、両受光面で受ける有効日射量は、少なくとも従来と同等にできる。従って、太陽光発電装置の出力電力量が損なわれることはない。なお、太陽光発電装置の立地条件などによっては、垂直設置に比べ設置面積があまり増大しない範囲で、垂直方向から多少ずれた方向に受光面を傾けても良い。   In each of the above-described embodiments, the light receiving surface of the double-sided light receiving solar cell module, that is, the light receiving surface of the double-sided light receiving solar cell is oriented in a direction perpendicular to the installation surface of the solar power generation device. For this reason, a plurality of solar cell modules can be installed in the height direction. Actually, a double-sided light-receiving solar cell module, that is, a double-sided light-receiving solar cell is arranged in the height direction of a structure such as a columnar shape or a fence shape for mounting the solar cell module as shown in each embodiment. Therefore, the installation area of the photovoltaic power generator is reduced. In addition, restrictions on the installation location are eased. When the light receiving surface of the solar cell module is made perpendicular to the installation surface, as will be described later, the peak value of the amount of solar radiation received by one or the other light receiving surface in one day is reduced. However, since a double-sided light-receiving solar cell is used, the effective solar radiation received on both light-receiving surfaces can be at least equivalent to the conventional amount. Therefore, the output power amount of the photovoltaic power generator is not impaired. Depending on the location conditions of the photovoltaic power generation device, the light receiving surface may be inclined in a direction slightly deviated from the vertical direction within a range where the installation area does not increase much compared to the vertical installation.

さらに、上述の各実施例とも、両面受光型太陽電池モジュールは、受光両面を東西方向に向けて設置する。図6は、実施例の両面受光型太陽電池アレイの受光日射量を従来技術の太陽電池アレイのそれと比較した説明図である。なお、本図に示す日射データは、北関東の特定の地点での実績データに基づくものである。従来技術の南面傾斜付き片面受光太陽電池アレイの年間の受光日射量(1)は、図示のように、正午にピークを持つ分布となる。一方、東垂直面の受光日射量及び西垂直面の受光日射量は、図中、それぞれ、曲線
(2),(3)で示すように、東側は午前9時頃、西側は午後の15時頃にピークを示す分布となる。実施例では、適用する太陽電池モジュールは、両面受光型であり、これらの(2)及び(3)の日射を同時に受光することになり、その受光量は、曲線(4)に示す分布となる。即ち、従来技術での片面受光型太陽電池アレイでの有効受光日射量は、曲線(1)の積分値であり、実施例における両面受光太陽電池アレイでは、曲線(4)の積分値となり、両者は殆ど同じ値となる。更に、ピーク値は低くなり、かつ、早朝から夕刻まで高レベルの日射量を平均的に受光することができる。なお、受光面は正確に東西方向を向いていなくても、南北方向から変位した向きであれば、ピーク値を低減することができる。また、受光面は、有効日射量を損なわない範囲で東西方向から多少ずれていても良い。
Further, in each of the above-described embodiments, the double-sided light-receiving solar cell module is installed with the light-receiving both sides facing in the east-west direction. FIG. 6 is an explanatory diagram comparing the received solar radiation amount of the double-sided light receiving solar cell array of the example with that of the solar cell array of the prior art. The solar radiation data shown in this figure is based on actual data at a specific point in the north Kanto. The amount of solar radiation received per year (1) of the conventional single-sided solar cell array with a slope on the south surface is a distribution having a peak at noon as shown in the figure. On the other hand, the amount of solar radiation received on the east vertical surface and the amount of solar radiation received on the west vertical surface are 9 am on the east side and 15 pm on the west side as shown by curves (2) and (3), respectively. The distribution shows a peak around the time. In the embodiment, the solar cell module to be applied is a double-sided light receiving type, and the solar radiation of (2) and (3) is received simultaneously, and the amount of received light has a distribution shown in the curve (4). . That is, the effective amount of received solar radiation in the single-sided light receiving solar cell array in the prior art is an integral value of the curve (1), and in the double-sided solar cell array in the embodiment, the integral value of the curve (4) is obtained. Are almost the same value. Further, the peak value becomes low, and a high level of solar radiation can be received on average from early morning to evening. Even if the light receiving surface does not accurately face the east-west direction, the peak value can be reduced if the light-receiving surface is displaced from the north-south direction. The light receiving surface may be slightly deviated from the east-west direction within a range that does not impair the effective solar radiation amount.

各実施例によれば、太陽電池モジュールは、垂直に設置される為、降雪時の雪は、モジュール上に積もることがなく、発電を継続することが可能となる。更にA従来技術では、太陽電池アレイの積雪重量を見込んだ太陽電池モジュール及び設置架台とする必要があり、建設費が高くなるが、各実施例によれば、アレイ上に積雪が発生しないので、経済的な設備とすることができる。更に、太陽電池アレイは、予め積雪量を考慮した設計とする必要があり、従来技術では、モジュール設置用の架台はその分の高さを必要とし、建設費は高くなるが、各実施例では、単に、柱状構造物の高さを高くするだけであり、経済的な設備設計とすることができる。   According to each embodiment, since the solar cell module is installed vertically, snow during snowfall does not accumulate on the module, and power generation can be continued. Furthermore, in the A prior art, it is necessary to use a solar cell module and an installation stand that allow for the snow cover weight of the solar cell array, which increases the construction cost. However, according to each embodiment, no snow is generated on the array. It can be an economical facility. Furthermore, the solar cell array needs to be designed in consideration of the amount of snow in advance. In the prior art, the mount for installing the module requires that much height, and the construction cost is high. Only the height of the columnar structure is simply increased, and an economical facility design can be achieved.

各実施例によれば、両面受光型太陽電池モジュールをその受光面を東西に垂直に設置するので、太陽光の地上反射の強い積雪時や海岸近くでは、これらの日射を高率よく受光できるので、従来技術の南面傾斜付き太陽電池アレイに比べて、同一面積のモジュール面積で、年間発電量を多く発生させることができる。   According to each embodiment, since the light-receiving surface of the double-sided light-receiving solar cell module is installed vertically in the east and west, these solar radiations can be received with high efficiency in snowy areas where the sunlight is strongly reflected on the ground or near the coast. Compared with the conventional solar cell array with a slope on the south surface, it is possible to generate a large amount of annual power generation with the same module area.

各実施例によれば、同一の面積を有する太陽電池モジュールで、従来技術に比較して、年間の総発電電力量は同等以上を確保した上で、有効な発電時間を早朝から夕方までと拡大し、かつ、日間の発生電気出力の分布を平坦にする太陽光発電設備を提供することができる。従って、発生電気出力のピーク値を大幅に低減できるので、パワーコンディショナー等の電気設備の定格値をその分、低く設計でき、建設費の低減が可能となる。更に、日間の発生電気出力が平坦な分布になるので、パワーコンディショナーの平均動作点が高くなり、高い変換効率でのパワーコンディショナーの運転が可能となる。   According to each example, with a solar cell module having the same area, compared to the conventional technology, the annual total power generation amount is ensured to be equal to or higher, and the effective power generation time is expanded from early morning to evening. In addition, it is possible to provide a solar power generation facility that flattens the distribution of the daily generated electrical output. Therefore, since the peak value of the generated electrical output can be greatly reduced, the rated value of the electrical equipment such as the power conditioner can be designed to be low accordingly, and the construction cost can be reduced. Furthermore, since the daily generated electrical output has a flat distribution, the average operating point of the power conditioner becomes high, and the power conditioner can be operated with high conversion efficiency.

本発明の他の実施例を図7及び図8を使用して以下説明する。図7は、前述の柱状構造物型の太陽電池アレイに、更に、第2の太陽電池モジュール22を南面傾斜付きで設置し、両者のアレイ出力を並列接続し、両者の合計の電気出力を得るようにしたものである。本実施例を適用した場合の、年間の日射量の日時間分布を図8に示す。図中の曲線(4)は、前述の図6で説明した両面受光型太陽電池モジュールの東西垂直面合計を示す。一方、曲線(5)は、柱状構造物の最上部に南面傾斜付きで設置した第2の太陽電池モジュール20の受光する日射量を示すもので、この受光日射量は、前述の図6での曲線(1)に相当する日射量分布形状をしている。従って、第2の太陽電池モジュール20の受光面積を、適切に選択することによって、曲線(4)の中央部の凹部を平坦にするような日射量を得ることができる。即ち、受光日射量による発電出力を平坦に、かつ、早朝から夕刻までの長時間に亘って発電できる太陽光発電システムを提供することができる。   Another embodiment of the present invention will be described below with reference to FIGS. FIG. 7 shows that the second solar cell module 22 is further installed on the above-described columnar structure type solar cell array with a south surface inclination, and both array outputs are connected in parallel to obtain the total electric output of both. It is what I did. FIG. 8 shows the daily time distribution of the amount of solar radiation in the year when this embodiment is applied. Curve (4) in the figure shows the total east-west vertical plane of the double-sided solar cell module described in FIG. On the other hand, the curve (5) indicates the amount of solar radiation received by the second solar cell module 20 installed at the uppermost part of the columnar structure with a slope on the south surface. It has a solar radiation distribution shape corresponding to the curve (1). Accordingly, by appropriately selecting the light receiving area of the second solar cell module 20, it is possible to obtain an amount of solar radiation that flattens the concave portion at the center of the curve (4). In other words, it is possible to provide a solar power generation system that can generate power over a long period of time from early morning to evening with a flat power generation output based on the amount of received sunlight.

本発明による太陽光発電装置で使用する両面受光型太陽電池セルの基本構造を説明する図である。It is a figure explaining the basic structure of the double-sided light reception type photovoltaic cell used with the solar power generation device by this invention. 本発明による太陽光発電装置で使用する両面受光型太陽電池モジュールの基本構造を説明する図である。It is a figure explaining the basic structure of the double-sided light reception type solar cell module used with the solar power generation device by this invention. 本発明を柱状構造物に適用した実施例を説明する図である。It is a figure explaining the Example which applied this invention to the columnar structure. 本発明をフェンス状構造物に適用した実施例を説明する図である。It is a figure explaining the Example which applied this invention to the fence-like structure. 本発明を電柱等に適用した実施例を説明する図である。It is a figure explaining the Example which applied this invention to the utility pole. 太陽電池アレイが受光する年間日射量の日間分布を説明する図である。It is a figure explaining the daily distribution of the amount of annual solar radiation which a solar cell array receives. 本発明の他の実施例を説明する図である。It is a figure explaining the other Example of this invention. 図7の実施例の場合の太陽電池アレイが受光する年間日射量の日間分布を説明する図である。It is a figure explaining the daily distribution of the annual solar radiation amount which the solar cell array in the case of the Example of FIG. 7 light-receives.

符号の説明Explanation of symbols

1…両面受光太陽電池セルのp型シリコン基板、2…両面受光セルのn+ 層、3…両面受光セルのp+ 層、4…両面受光セルのパッシベーション酸化膜、5…両面受光セルの反射防止膜、6…両面受光セルのエミッター電極、7…両面受光セルのコレクター電極、8…両面受光セル、9…リード線、10…透明保護材、11…封止材、12…フレーム、
13…両面受光型太陽電池モジュール、14…柱状構造物、15…基礎、16…水平支持構造物、17…固定金具、18…上部ジョイント、19…下部ジョイント、20…垂直構造材、21…横梁、22…南面傾斜付き設置太陽電池モジュール。
DESCRIPTION OF SYMBOLS 1 ... p-type silicon substrate of a double-sided light reception photovoltaic cell, 2 ... n + layer of a double-sided light reception cell, 3 ... p + layer of a double-sided light reception cell, 4 ... Passivation oxide film of a double-sided light reception cell, 5 ... Reflection of a double-sided light reception cell Prevention film, 6 ... Emitter electrode of double-sided light receiving cell, 7 ... Collector electrode of double-sided light receiving cell, 8 ... Double-sided light receiving cell, 9 ... Lead wire, 10 ... Transparent protective material, 11 ... Sealing material, 12 ... Frame,
DESCRIPTION OF SYMBOLS 13 ... Double-sided light reception type solar cell module, 14 ... Columnar structure, 15 ... Base, 16 ... Horizontal support structure, 17 ... Fixing metal fitting, 18 ... Upper joint, 19 ... Lower joint, 20 ... Vertical structure material, 21 ... Cross beam , 22 ... Installation solar cell module with a south surface inclination.

Claims (4)

p型シリコン基板の表面にリン拡散を行ったn+ 層を形成し、裏面側にはボロン拡散を行ったp+ 層を形成し、両面の拡散層の上にパッシベーション酸化膜,反射防止膜を形成し、n+ 層にエミッタ電極を、p+ 層にコレクター電極を形成した複数の両面受光太陽電池セルをリード線で直列に接続した両面受光型太陽電池の受光面を設置面に垂直方向に向けるとともに、受光面を東西方向に向いて設置し、受光面セルで形成された第2の太陽電池モジュールを南面傾斜付きで設置し、前記両面受光型太陽電池のアレイ出力と前記第2の太陽電池モジュールのアレイ出力を並列接続して合計の電力を出力するようにした太陽光発電装置。 An n + layer with phosphorus diffusion is formed on the surface of a p-type silicon substrate, a p + layer with boron diffusion is formed on the back side, and a passivation oxide film and an antireflection film are formed on both diffusion layers. The light-receiving surface of a double-sided solar cell in which a plurality of double-sided solar cells with an emitter electrode in the n + layer and a collector electrode in the p + layer are connected in series with lead wires is perpendicular to the installation surface. The second solar cell module formed by the light-receiving surface cells with a south surface inclination, and the array output of the double-sided light-receiving solar cell and the second sun A solar power generation device that outputs the total power by connecting the array outputs of battery modules in parallel. p型シリコン基板の表面にリン拡散を行ったn+ 層を形成し、裏面側にはボロン拡散を行ったp+ 層を形成し、両面の拡散層の上にパッシベーション酸化膜,反射防止膜を形成し、n+ 層にエミッタ電極を、p+ 層にコレクター電極を形成した複数の両面受光太陽電池セルをリード線で直列に接続した両面受光型太陽電池であって、該両面受光型太陽電池の受光面を設置面に垂直方向に向けるとともに、受光面を南北方向から変位した向きで設置した太陽光発電装置。 An n + layer with phosphorus diffusion is formed on the surface of a p-type silicon substrate, a p + layer with boron diffusion is formed on the back side, and a passivation oxide film and an antireflection film are formed on both diffusion layers. A double-sided light-receiving solar cell formed by connecting a plurality of double-sided light-receiving solar cells formed with an emitter electrode in an n + layer and a collector electrode in a p + layer in series with a lead wire, The solar power generator installed with its light receiving surface oriented in a direction perpendicular to the installation surface and with the light receiving surface displaced from the north-south direction. 前記両面受光太陽電池セルが2枚の透明保護材の中に封止材で封止されている請求項2に記載の太陽光発電装置。   The solar power generation device according to claim 2, wherein the double-sided light receiving solar cell is sealed with a sealing material in two transparent protective materials. 垂直方向に設けられた柱状の構造物に連結された水平支持構造物である上部ジョイントと下部ジョイントでp型シリコン基板の表面にリン拡散を行ったn+ 層を形成し、裏面側にはボロン拡散を行ったp+ 層を形成し、両面の拡散層の上にパッシベーション酸化膜,反射防止膜を形成し、n+ 層にエミッタ電極を、p+ 層にコレクター電極を形成した複数の両面受光太陽電池セルをリード線で直列に接続した両面受光型太陽電池を固定し、該両面受光型太陽電池の受光面を南北方向から変位した向きに設置した太陽光発電装置の設置方法。
An n + layer with phosphorus diffusion is formed on the surface of the p-type silicon substrate by the upper joint and lower joint, which are horizontal support structures connected to the columnar structure provided in the vertical direction, and boron is formed on the back side. Forming a diffused p + layer, forming a passivation oxide film and an antireflection film on the diffused layers on both sides, and forming multiple emitters on the n + layer and a collector electrode on the p + layer A solar power generation apparatus installation method in which a double-sided light-receiving solar cell in which solar cells are connected in series with lead wires is fixed, and a light-receiving surface of the double-sided light-receiving solar cell is installed in a direction displaced from the north-south direction.
JP2005347412A 2005-12-01 2005-12-01 Photovoltaic power generation apparatus and installation method thereof Expired - Lifetime JP3985837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347412A JP3985837B2 (en) 2005-12-01 2005-12-01 Photovoltaic power generation apparatus and installation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347412A JP3985837B2 (en) 2005-12-01 2005-12-01 Photovoltaic power generation apparatus and installation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000179367A Division JP3794245B2 (en) 2000-06-09 2000-06-09 Solar power plant

Publications (2)

Publication Number Publication Date
JP2006080568A true JP2006080568A (en) 2006-03-23
JP3985837B2 JP3985837B2 (en) 2007-10-03

Family

ID=36159712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347412A Expired - Lifetime JP3985837B2 (en) 2005-12-01 2005-12-01 Photovoltaic power generation apparatus and installation method thereof

Country Status (1)

Country Link
JP (1) JP3985837B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064870A2 (en) * 2007-11-13 2009-05-22 Advent Solar, Inc. Selective emitter and texture processes for back contact solar cells
JP2010050206A (en) * 2008-08-20 2010-03-04 Aichi Kinzoku Kogyo Kk Photovoltaic generation system
KR101729304B1 (en) * 2010-12-21 2017-04-21 엘지전자 주식회사 Solar cell and method for manufacturing the same
WO2018115120A3 (en) * 2016-12-23 2018-10-18 Next2Sungmbh Photovoltaic system and associated use
KR20190095724A (en) * 2018-02-07 2019-08-16 크린빌(주) supporting device for solar power generation
KR20190095731A (en) * 2018-02-07 2019-08-16 크린빌(주) supporting device for solar power generation
KR102138744B1 (en) * 2020-03-26 2020-07-28 주식회사 나우솔리드 Vertical type solar power plant having double faces type solar module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064870A2 (en) * 2007-11-13 2009-05-22 Advent Solar, Inc. Selective emitter and texture processes for back contact solar cells
WO2009064870A3 (en) * 2007-11-13 2009-07-16 Advent Solar Inc Selective emitter and texture processes for back contact solar cells
JP2010050206A (en) * 2008-08-20 2010-03-04 Aichi Kinzoku Kogyo Kk Photovoltaic generation system
KR101729304B1 (en) * 2010-12-21 2017-04-21 엘지전자 주식회사 Solar cell and method for manufacturing the same
EP3687060A3 (en) * 2016-12-23 2020-10-21 Next2Sun GmbH Photovoltaic system
EP3742602A1 (en) * 2016-12-23 2020-11-25 Next2Sun GmbH Photovoltaic system and its application
CN110214414B (en) * 2016-12-23 2023-03-31 耐克斯2太阳有限公司 Photovoltaic device
CN110214414A (en) * 2016-12-23 2019-09-06 耐克斯2太阳有限公司 Photovoltaic apparatus and related application
US11411525B2 (en) 2016-12-23 2022-08-09 Next2Sun GmbH Photovoltaic system and associated use
EA039661B1 (en) * 2016-12-23 2022-02-24 Нексттусан Гмбх Photovoltaic power system and use thereof
EP3683960A1 (en) * 2016-12-23 2020-07-22 Next2Sun GmbH Photovoltaic system
EA037282B1 (en) * 2016-12-23 2021-03-04 Нексттусан Гмбх Photovoltaic power system and use thereof
WO2018115120A3 (en) * 2016-12-23 2018-10-18 Next2Sungmbh Photovoltaic system and associated use
KR102032444B1 (en) 2018-02-07 2019-10-15 크린빌(주) supporting device for solar power generation
KR102032440B1 (en) 2018-02-07 2019-10-15 크린빌(주) supporting device for solar power generation
KR20190095724A (en) * 2018-02-07 2019-08-16 크린빌(주) supporting device for solar power generation
KR20190095731A (en) * 2018-02-07 2019-08-16 크린빌(주) supporting device for solar power generation
KR102138744B1 (en) * 2020-03-26 2020-07-28 주식회사 나우솔리드 Vertical type solar power plant having double faces type solar module

Also Published As

Publication number Publication date
JP3985837B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US8049150B2 (en) Solar collector with end modifications
JP3985837B2 (en) Photovoltaic power generation apparatus and installation method thereof
US20070240755A1 (en) Apparatus and method for construction and placement of a non-equatorial photovoltaic module
US20220228564A1 (en) Column having at least one photovoltaic element, and use of a photovoltaic element on a column
US6342669B1 (en) Solar electric power apparatus, solar module, and installation method of solar modules
CN102804402A (en) Solar shingle system
US20120152317A1 (en) High concentration photovoltaic module
JP2660138B2 (en) Solar cell module
US20110174365A1 (en) System and method for forming roofing solar panels
JP4043100B2 (en) Solar cell device
Smeltink et al. The ANU 20kW PV/Trough Concentrator
JP3794245B2 (en) Solar power plant
JP2001077394A (en) Solar cell module array equipped with show guard fittings and method of fixing the same
RU2395758C1 (en) Solar power station
JP2760599B2 (en) Roof-mounted solar cells
JP2760600B2 (en) Roof-mounted solar cells
JP2005223164A (en) Solar light power generation system and its installation method
JP2021145496A (en) Photovoltaic power generation system based on horizontal wiring method and photovoltaic power generation method based on horizontal wiring method
KR20100072957A (en) Solar electric generator and blind apparatus
KR102251708B1 (en) Solar power system and solar power generating method using the same
JP7066587B2 (en) Solar power generation system using solar power generation equipment
JP2015228729A (en) Solar panel site
JP3911622B2 (en) How to use solar power generation equipment
JP2019017156A (en) Solar cell panel arrangement
JP2004311883A (en) Solar cell module installation structure

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R151 Written notification of patent or utility model registration

Ref document number: 3985837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

EXPY Cancellation because of completion of term