JP3911622B2 - How to use solar power generation equipment - Google Patents

How to use solar power generation equipment Download PDF

Info

Publication number
JP3911622B2
JP3911622B2 JP2001184887A JP2001184887A JP3911622B2 JP 3911622 B2 JP3911622 B2 JP 3911622B2 JP 2001184887 A JP2001184887 A JP 2001184887A JP 2001184887 A JP2001184887 A JP 2001184887A JP 3911622 B2 JP3911622 B2 JP 3911622B2
Authority
JP
Japan
Prior art keywords
solar cell
solar
power generation
double
sided light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184887A
Other languages
Japanese (ja)
Other versions
JP2003008043A (en
Inventor
吉雄 江口
利男 上下
康博 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001184887A priority Critical patent/JP3911622B2/en
Publication of JP2003008043A publication Critical patent/JP2003008043A/en
Application granted granted Critical
Publication of JP3911622B2 publication Critical patent/JP3911622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • F24S25/617Elements driven into the ground, e.g. anchor-piles; Foundations for supporting elements; Connectors for connecting supporting structures to the ground or to flat horizontal surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池モジュールを利用した太陽光発電設備の使用方法に関する。
【0002】
【従来の技術】
太陽光発電設備は、太陽電池を利用した無公害で環境にやさしい発電設備であり、最近の国の補助金事業の効果もあり、ここ数年急速に普及が拡大している。太陽電池は、太陽光エネルギーを直接電気エネルギーに変換する素子であるため、効率よく発電を行うためにはできるだけ有効に太陽光エネルギーを受けるように設置する必要がある。
太陽光エネルギーが最も有効に得られる太陽電池の設置方向、設置角度については以前から種々検討が行われてきた。現在、国内ではこれらのデータとしては新エネルギー産業技術開発機構が委託研究として行った成果をまとめた「発電量基礎調査」(昭和63年3月新エネルギー産業技術開発機構)、あるいは、これを改定した全国日射関連データマップが最も一般に利用されている
これらのデータによると、太陽電池の設置方位、角度を固定した場合には、本州では南向きに傾斜角度30前後で設置すると、年間を通して最も日射量を得ることができる結果となっている。このため、本州では太陽電池を設置する場合には特殊条件がある場合を除いて殆ど南向きで傾斜角度は20〜30程度に固定して設置されている。
また、住宅用太陽光発電設備のように既設住宅の屋根に太陽電池電池を設置する場合には、傾斜角度は屋根の傾斜にあわせて設置する方法が取られるが、この場合でも南向き方位の屋根面に固定して設置する方式が一般に採用されている。住宅用太陽光発電設備として太陽電池が採用されるようになってから、太陽電池を建築材料の一部として利用する動きが活発となってきており、ビルの壁材として太陽電池を利用するなどの設置例が出てきている。このような場合には、太陽電池は、地表面に対して垂直に設置されることになり、従来の設置方法とは違った方向から太陽光が入射するため、太陽電池の発電特性も従来の設置の場合と異なった特性を有することになる。
また、現在、太陽電池は表面のみで太陽光を受けて発電する片面受光型太陽電池が殆どの場合使用されているが、最近は表面のみならず、裏面からも太陽光を取り入れて発電を行う両面受光型太陽電池も実用化され始めている。
このような両面受光型太陽電池の設置方法としては、特願平2000−179367号公報に例が見られる。特願平2000−179367号公報では太陽電池を地表面に対して垂直に設置し、太陽電池の表面を東、裏面を西向に固定する方式が提案され、発電電力量の評価も行われている。この方式によると、上記のように両面受光型太陽電池を設置した場合に得られる発電電力量は、両面受光型太陽電池の表面側の変換効率と等しい片面受光型太陽電池を最適傾斜角で設置した場合に得られる発電電力量と大きな差がないことが記されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特願平2000−179367号公報では、季節に関係なく、太陽電池の表面を東、裏面を西向に固定する方式であるため、設置方位に対して季節ごとの太陽電池の発電電力量については言及しておらず、どの方位に太陽電池を向けた場合に最も効率よく発電電力が得られるかについては明確されていない。
また、上記に示すように、片面受光型または両面受光型の太陽電池が地表面に対して垂直に設置された太陽光発電設備においては、従来最大に出力が取れる設置方法に関して十分検討がなされておらず、エネルギーの有効利用の点では問題があった。
【0004】
本発明の課題は、上記事情に鑑み、太陽電池を地表面に対してほぼ垂直に設置した太陽光発電設備の使用方法において、太陽電池の設置方向と日射量の関係を明らかにし、発電電力量が最大となる設置方位を設定して使用する太陽光発電設備の使用方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、太陽電池モジュールの設置角度が地表面に対してほぼ垂直に設置した太陽光発電設備の使用方法において、太陽電池モジュールのエネルギー変換効率の高い側の面を冬季には南方向に向けて使用し、夏季には東方向あるいは西方向に向けて使用する。
ここで、両面受光型太陽電池モジュールの両面のエネルギー変換効率が等価のとき、その一方の面を冬季には南方向に向けて使用し、夏季には東方向あるいは西方向に向けて使用する。
ここで、冬季が10月〜3月であり、夏季が4月〜9月である。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
まず、片面受光型太陽電池を地表面に対してほぼ垂直に設置して使用する場合の設置方向と日射量の関係について説明する。
太陽電池の発電電力は、太陽電池表面に入射される日射量によってほぼ決定されるので、できるだけ日射量が多く得られるように、太陽電池を設置する必要がある。太陽電池表面に入射する日射量の評価としては、先に述べた全国日射関連データマップが現在最も一般に使用されている。このデータマップは、国内801地点について方位角毎に(南から北まで15度毎)傾斜角を10〜90度まで10度ピッチで変えた場合の単位面積当たりに入射される日射量を各月ごとに計算したものである。
このデータマップから札幌、仙台、水戸、東京、金沢、名古屋、大阪、広島、福岡の代表9地区について、傾斜角90度(地表面に対して垂直)の面に入射する各方位の単位面積当たりに入射する月別平均日射量をグラフにした結果を図2に示す。
図2では、横軸に月をとり、縦軸に1日の単位面積当りの全天日射量をとって方位角をパラメータとしてグラフを描いている。方位角パラメータは、南を0度とし、30度ごとに北向きまで7種類とっている。なお、全国日射関連データマップは、東西の日射は対象のため、方位角は一方向のみの表示となっている。
図2のグラフから、札幌の日射量データに着目すると、4月に若干の差はあるものの、10月〜4月の期間は0度(南向き)面の月別全天日射量が最も多くなる結果となっている。また、5月〜8月の間は90度つまり東向き面あるいは西向き面の全天日射量が最も多くなる結果となっている。
この現象は、札幌だけに特有の現象ではなく、他の8地域すべてに同様の現象となっていることがわかる。
以上の分析から、片面受光型太陽電池を地表面に対して垂直に設置して使用する場合は、日本国内ではどの地区においても10月〜4月の冬季には南面に向けて設置し、5月〜8月の夏季には太陽電池を東又は西向きに設置することで最大の日射量が得られることがわかる。つまり、片面受光型の太陽電池を垂直設置して使用する場合は、夏季と冬季で太陽電池の設置方向を1回変更するだけで最大発電出力を取ることができる。
【0007】
次に、両面受光型太陽電池を地表面に対して垂直に設置して使用する場合の設置方向と発電電力量の関係について説明する。
両面受光型太陽電池の場合は、表面の外に裏面からの入射量も発電電力に影響する。このため、片面受光型太陽電池の場合に入射量が最大となる
10月〜4月:南向き
5月〜8月:東面向き(あるいは西向き)
の設置が両面受光型太陽電池の場合にも適用できるかは断定できない。
そこで、以下に両面受光型太陽電池の最適設置方法について検討する。一般に、両面受光型太陽電池では、表面、裏面とも同じエネルギー変換効率を有していることが理想的と考えられるが、裏面側のエネルギー変換効率を表面側と同じ値とすることは難しく、現状では裏面側の変換効率は表面側の70〜75%程度である。
これらの状況から、以下では両面受光型太陽電池の裏面変換効率を表面の75%として両面受光型太陽電池の出力特性の考察を行う。
両面受光型太陽電池では、表面、裏面各々に入射する太陽光によって発電した電力の合計値が発電出力として得られる。したがって、表面裏面の変換効率が等しい場合には、表面、裏面の入射日射量合計値が最大となる時が太陽電池の出力も最大となる。一方、裏面の変換効率が表面の75%の場合には、裏面側発電電力は裏面に表面と同じ日射が入っても電気出力は表面の75%しか得られないことを考慮して評価する必要がある。
しかしながら、このことは見方を変えると、裏面と表面の変換効率は同じと考え、裏面に入る日射が実際の75%に低下すると考えることと等価なる。つまり、裏面の変換効率の低下分を裏面の日射量が低下したと考えることによって、表面、裏面の変換効率を等しいと見做すことができる。
太陽電池の電気出力は日射量に比例するので、上記のように表面、裏面の変換効率が等しいと見做せる場合には、表面の日射量と裏面の日射量の75%を合計した日射量が最大の条件のところでは太陽電池の出力も最大となる。したがって、図2と同様に、両面の日射量によって太陽電池の電気出力の最大値を評価することができる。
【0008】
上記の考え方によって、両面受光型太陽電池の表、裏両面に入射される日射量を計算した結果を図3に示す。図3は、各方位の表面と裏面に入射する日射量を計算し、裏面に入射する日射量を0.75倍して表面と裏面を合計したものを図2と同様にグラフにしたものである。
図3の結果から、9地域全てにおいて最大日射量が取れる条件は下記となる。10月〜3月:南向き
4月〜9月:東面向き(あるいは西向き)
これは、図2の片面受光太陽電池の場合と比べて1ヶ月程度の時期のずれはあるが、図2の片面受光太陽電池の場合とほぼ同様な結果となっている。つまり、両面受光型太陽電池も、夏季と冬季で設置方向を1回変更するだけで最大発電出力を得ることが可能となる。
なお、上記では、裏面変換効率が表面変換効率の75%として評価を行ったが、裏面変換効率が表面変換効率の50〜100%の範囲で変化した場合でも、全く同じ結論が得られることを確認しているが、ここでは説明を省略する。
【0009】
上記の検討結果をもとに、図1に、本発明の太陽光発電設備の一実施形態を示す。図1において、1は太陽電池モジュールであり、各太陽電池モジュールは6枚ずつフレーム枠2a及び2bによって固定され、太陽電池を支える支柱3に取付けられる。支柱3は支持材4及び台座5によって支えられ、基礎6に固定される。さらに、基礎6はアンカーボルト等によって地面に固定され、風圧荷重等の外力に十分耐えられるよう据付られる。
【0010】
図4は、図1の支柱3、支持材4、台座5の取付け構造部の詳細を示す。支柱3は、基礎6に安定して固定できるように、基礎6の部分に十分な長さが差し込まれる構造とする。支柱3と支持材4とは溶接等により一体構造とし、太陽電池1、フレーム枠2a,2b及び支柱3の荷重が台座5に伝わる構造とする。
台座5は、固定ボルト5bにより基礎6に固定され、ベアリング機構5aが埋め込まれる。このベアリング機構5aの作用により、支柱3の中心軸の周方向に自由に回転できる構造とする。
上記の構造により、支柱3を自由に回転することができるので、太陽電池1、フレーム枠2a,2bを任意の方角に向けることが可能となる。
また、支持材4には、上から見たときに図5に示す位置に固定用の穴7a〜7dがあけられ、太陽電池1の設置方向が南向あるいは東西向きに決定したとき、ピンを入れてその位置に固定する。
【0011】
太陽電池発電設備を以上説明した構造とすることにより、冬期には、片面受光型太陽電池の場合は太陽電池を南向きとして、また、両面受光型太陽電池の場合はエネルギー変換効率が高い側の面(表面)を南向きとして設置することが可能となり、夏季には、固定用の穴7a〜7dに差し込まれているピンを抜いて支柱3を回転自由な状態とし、支柱3を90度右あるいは左方向に回転し、再度固定用の穴7a〜7dにピンを差込固定することで、片面受光型太陽電池の場合は太陽電池を東あるいは西方向に向けて、また、両面受光型太陽電池の場合はエネルギー変換効率が高い側の面(表面)を東あるいは西方向に向けて設置することが可能となる。ここで、片面受光型太陽電池の場合は、片面のみが太陽電池で形成されることから、この片面をエネルギー変換効率が高い側の面と云うことができる。
なお、両面受光型太陽電池の場合に、その両面のエネルギー変換効率が等価のときは、そのいずれか一方の面を南方向または東(あるいは西)方向に向けて設置することになる。
【0012】
図6は、本発明の他の実施形態を示す。太陽電池発電設備の構成は図1と同じであるが、支柱3、支持材4、台座5の構成が図4と一部異なり、ベアリング機構5を省略した例である。
太陽電池モジュール1の枚数が少なく、フレーム枠2a、2b、支柱3が軽い場合には、ベアリング機構を必要とせず、ハンドル8を支柱3の軸方向に回転することによって図1の実施形態と同様に設置方向を回転させることが可能となる。
【0013】
本発明の上記実施形態では、支柱3を手動で回転させる機構について述べたが、油圧機構などを用いた動力によって回転させても同様な効果を得られることは云うまでもない。
【0014】
【発明の効果】
以上説明したように、本発明によれば、太陽電池を地表面に対してほぼ垂直に設置する太陽光発電設備から、太陽電池の設置方向を季節によって変更することによって、常に最大発電電力を得ることができ、最も有効に太陽電池を利用することが可能となる。
【図面の簡単な説明】
【図1】本発明の太陽光発電設備の一実施形態
【図2】日射特性を説明する図
【図3】日射特性を説明する図
【図4】本発明の取付け構造部の詳細図
【図5】本発明の取付け構造部の詳細図
【図6】本発明の他の実施形態
【符号の説明】
1…太陽電池、2a…フレーム枠、2b…フレーム枠、3…支柱、4…支持材、5…台座、5a…ベアリング機構、5b…固定用ボルト、6…基礎、7a〜d…固定用の穴、8…ハンドル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for using a photovoltaic power generation facility using a solar cell module.
[0002]
[Prior art]
Solar power generation facilities are non-polluting and environmentally friendly power generation facilities that use solar cells, and due to the effects of recent subsidy projects in the country, they have been rapidly spreading in recent years. Since the solar cell is an element that directly converts solar energy into electric energy, it is necessary to install the solar cell so as to receive solar energy as effectively as possible in order to efficiently generate power.
Various studies have been conducted on the installation direction and installation angle of solar cells that can most effectively obtain solar energy. At present, in Japan, these data include the “Basic Survey on Power Generation” (New Energy Industry Technology Development Organization, March 1988) that summarizes the results of the commissioned research by the New Energy Industry Technology Development Organization. According to these data, which is the most commonly used national solar radiation-related data map, if the installation direction and angle of the solar cell are fixed, if it is installed southward in Honshu at an inclination angle of about 30, the most solar radiation throughout the year The result is that the quantity can be obtained. For this reason, when installing solar cells in Honshu, except for the case where there are special conditions, the south is almost south and the inclination angle is fixed at about 20-30.
In addition, when installing solar cells on the roof of an existing house, such as a residential solar power generation facility, the inclination angle can be set in accordance with the inclination of the roof. A method of fixing to the roof surface is generally adopted. Since solar cells have been adopted as residential solar power generation facilities, there has been an active movement to use solar cells as a part of building materials, such as the use of solar cells as building wall materials. An example of installation has come out. In such a case, the solar cell is installed perpendicular to the ground surface, and sunlight is incident from a direction different from the conventional installation method. It will have different characteristics from the installation case.
Currently, single-sided solar cells that generate power by receiving sunlight only on the front surface are used in most cases, but recently, not only the front surface but also the back surface takes in sunlight to generate power. Double-sided solar cells are also starting to be put into practical use.
An example of the installation method of such a double-sided light-receiving solar cell is found in Japanese Patent Application No. 2000-179367. Japanese Patent Application No. 2000-179367 proposes a method in which a solar cell is installed vertically to the ground surface, and the surface of the solar cell is fixed in the east direction and the back surface in the west direction, and the amount of generated power is also evaluated. . According to this method, the amount of power generated when a double-sided solar cell is installed as described above is the same as the conversion efficiency on the surface side of the double-sided solar cell. It is noted that there is no significant difference from the amount of power generated in this case.
[0003]
[Problems to be solved by the invention]
However, in Japanese Patent Application No. 2000-179367, since the solar cell surface is fixed to the east and the back surface to the west regardless of the season, the amount of power generated by the solar cell for each season with respect to the installation direction Is not mentioned, and it is not clear in which direction the generated power can be obtained most efficiently when the solar cell is directed.
In addition, as described above, in a photovoltaic power generation facility in which a single-sided or double-sided solar cell is installed perpendicular to the ground surface, a sufficient study has been made regarding an installation method capable of obtaining maximum output. There was a problem in terms of effective use of energy.
[0004]
In view of the above circumstances, the object of the present invention is to clarify the relationship between the installation direction of solar cells and the amount of solar radiation in a method for using solar power generation equipment in which solar cells are installed substantially perpendicular to the ground surface. It is to provide a method for using a photovoltaic power generation facility that sets and uses an installation orientation that maximizes the installation direction.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the usage method of the photovoltaic power generation equipment in which the installation angle of the solar cell module is installed substantially perpendicular to the ground surface, the surface of the solar cell module having the higher energy conversion efficiency is used in winter. used towards the south direction, in the summer months to use towards the east direction or west direction.
Here, when the energy conversion efficiencies of both surfaces of the double-sided light receiving solar cell module are equivalent, one surface is used in the south direction in winter and is used in the east or west direction in summer.
Here, the winter season is from October to March, and the summer season is from April to September.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the relationship between the installation direction and the amount of solar radiation when a single-sided light-receiving solar cell is installed and used substantially perpendicular to the ground surface will be described.
Since the generated power of the solar cell is almost determined by the amount of solar radiation incident on the surface of the solar cell, it is necessary to install the solar cell so that the amount of solar radiation is as large as possible. As the evaluation of the amount of solar radiation incident on the solar cell surface, the national solar radiation-related data map described above is currently most commonly used. This data map shows the amount of solar radiation that is incident per unit area for each azimuth angle at every azimuth angle (every 15 degrees from south to north) at a pitch of 10 degrees from 10 to 90 degrees each month. It is calculated for each.
From this data map, per unit area of each azimuth incident on a plane with an inclination angle of 90 degrees (perpendicular to the ground surface) for nine representative areas of Sapporo, Sendai, Mito, Tokyo, Kanazawa, Nagoya, Osaka, Hiroshima and Fukuoka FIG. 2 shows the graph of the monthly average solar radiation incident on the.
In FIG. 2, the horizontal axis represents the moon, the vertical axis represents the total solar radiation amount per unit area per day, and the graph is drawn with the azimuth as a parameter. There are seven azimuth angle parameters, with 0 degrees south, and north every 30 degrees. Note that the national solar radiation-related data map is displayed only in one direction for the azimuth angle because the solar radiation in the east and west is the target.
From the graph in Fig. 2, focusing on the solar radiation data in Sapporo, there is a slight difference in April, but the monthly total solar radiation on the 0 degree (south) surface is the largest during the period from October to April. It is the result. In addition, from May to August, the total solar radiation amount is 90 degrees, that is, the east-facing surface or the west-facing surface is the largest.
It can be seen that this phenomenon is not unique to Sapporo but is the same in all eight other regions.
From the above analysis, when a single-sided solar cell is used by being installed perpendicular to the ground surface, it should be installed toward the south in the winter season from October to April in any region in Japan. It can be seen that the maximum amount of solar radiation can be obtained by installing solar cells in the east or west direction in the summer months from August to August. That is, when a single-sided light-receiving solar cell is used by being vertically installed, the maximum power generation output can be obtained only by changing the installation direction of the solar cell once in summer and winter.
[0007]
Next, the relationship between the installation direction and the amount of generated power when the double-sided light-receiving solar cell is installed perpendicular to the ground surface will be described.
In the case of a double-sided light-receiving solar cell, the amount of incident light from the back surface in addition to the front surface also affects the generated power. For this reason, in the case of a single-sided light-receiving solar cell, the amount of incident is maximized from October to April: southward May to August: eastward (or westward)
It can not be determined whether the installation of can be applied to the case of a double-sided light-receiving solar cell.
Therefore, the optimum installation method of the double-sided light-receiving solar cell will be examined below. In general, in double-sided solar cells, it is considered ideal that both the front and back surfaces have the same energy conversion efficiency, but it is difficult to make the energy conversion efficiency on the back side the same value as the front side. Then, the conversion efficiency on the back side is about 70 to 75% on the front side.
From these situations, the output characteristics of the double-sided light-receiving solar cell will be considered below with the back surface conversion efficiency of the double-sided light-receiving solar cell as 75% of the surface.
In a double-sided light-receiving solar cell, a total value of power generated by sunlight incident on each of the front and back surfaces is obtained as a power generation output. Therefore, when the conversion efficiencies of the front and back surfaces are equal, the output of the solar cell is maximized when the total amount of incident solar radiation on the front and back surfaces is maximized. On the other hand, when the conversion efficiency of the back surface is 75% of the front surface, the back side generated power needs to be evaluated in consideration of the fact that only 75% of the front surface can be obtained even when the same solar radiation enters the back surface. There is.
However, this is equivalent to thinking that the conversion efficiency of the back surface and the front surface is the same, and that the solar radiation entering the back surface is reduced to 75% of the actual, from a different viewpoint. That is, the conversion efficiency of the front surface and the back surface can be regarded as equal by considering that the amount of solar radiation on the back surface has decreased with respect to the decrease in the conversion efficiency of the back surface.
Since the electrical output of the solar cell is proportional to the amount of solar radiation, if it can be assumed that the conversion efficiency of the front and back surfaces is equal as described above, the solar radiation amount is the sum of the solar radiation amount on the front surface and 75% of the solar radiation amount on the back surface. However, the maximum output of the solar cell is at the maximum condition. Therefore, as in FIG. 2, the maximum value of the electric output of the solar cell can be evaluated by the amount of solar radiation on both sides.
[0008]
FIG. 3 shows the result of calculating the amount of solar radiation incident on both the front and back surfaces of the double-sided light-receiving solar cell based on the above concept. FIG. 3 is a graph similar to FIG. 2 in which the amount of solar radiation incident on the front and back surfaces in each direction is calculated, and the amount of solar radiation incident on the back surface is multiplied by 0.75 and the front and back surfaces are totaled. is there.
From the result of FIG. 3, the conditions under which the maximum amount of solar radiation can be obtained in all nine regions are as follows. October to March: South facing April to September: East facing (or west facing)
This is almost the same as the case of the single-sided light receiving solar cell of FIG. 2, although there is a time lag of about one month as compared to the case of the single-sided light receiving solar cell of FIG. That is, the double-sided light-receiving solar cell can also obtain the maximum power generation output only by changing the installation direction once in summer and winter.
In addition, in the above, evaluation was performed assuming that the back surface conversion efficiency was 75% of the surface conversion efficiency, but the same conclusion can be obtained even when the back surface conversion efficiency changes within the range of 50 to 100% of the surface conversion efficiency. Although it has been confirmed, the description is omitted here.
[0009]
On the basis of the above examination results, FIG. 1 shows an embodiment of the photovoltaic power generation facility of the present invention. In FIG. 1, reference numeral 1 denotes a solar cell module. Each solar cell module is fixed by six frame frames 2a and 2b, and is attached to a column 3 that supports the solar cells. The column 3 is supported by a support member 4 and a pedestal 5 and is fixed to the foundation 6. Further, the foundation 6 is fixed to the ground by anchor bolts or the like, and is installed so as to sufficiently withstand external force such as wind pressure load.
[0010]
FIG. 4 shows details of a mounting structure portion of the column 3, the support member 4, and the base 5 of FIG. The support column 3 has a structure in which a sufficient length is inserted into a portion of the foundation 6 so as to be stably fixed to the foundation 6. The support column 3 and the support member 4 are integrated with each other by welding or the like, and the load of the solar cell 1, the frame frames 2 a and 2 b, and the support column 3 is transmitted to the pedestal 5.
The pedestal 5 is fixed to the base 6 with fixing bolts 5b, and the bearing mechanism 5a is embedded. A structure that can freely rotate in the circumferential direction of the central axis of the column 3 by the action of the bearing mechanism 5a.
With the above structure, the support column 3 can be freely rotated, so that the solar cell 1 and the frame frames 2a and 2b can be directed in arbitrary directions.
Further, the support member 4 is provided with fixing holes 7a to 7d at positions shown in FIG. 5 when viewed from above, and when the installation direction of the solar cell 1 is determined to be southward or east-westward, Insert and fix in place.
[0011]
By adopting the structure described above for the solar cell power generation equipment, in the winter, the solar cell is facing south in the case of a single-sided light-receiving solar cell, and the energy conversion efficiency is higher in the case of a double-sided light-receiving solar cell. The surface (surface) can be installed facing south, and in the summer, the pins inserted in the fixing holes 7a to 7d are pulled out so that the column 3 can rotate freely, and the column 3 is rotated 90 degrees to the right. Alternatively, by rotating in the left direction and inserting and fixing the pins in the fixing holes 7a to 7d again, in the case of a single-sided light-receiving solar cell, the solar cell is directed east or west, and double-sided light-receiving solar In the case of a battery, it is possible to install the surface (surface) with high energy conversion efficiency facing east or west. Here, in the case of a single-sided light-receiving solar cell, since only one side is formed by a solar cell, this single side can be referred to as a surface with high energy conversion efficiency.
In the case of a double-sided light receiving solar cell, if the energy conversion efficiencies of both surfaces are equivalent, either one of the surfaces will be installed in the south or east (or west) direction.
[0012]
FIG. 6 shows another embodiment of the present invention. Although the configuration of the solar cell power generation facility is the same as that in FIG. 1, the configuration of the support column 3, the support material 4, and the pedestal 5 is partially different from that in FIG. 4, and the bearing mechanism 5 is omitted.
When the number of the solar cell modules 1 is small and the frame frames 2a and 2b and the columns 3 are light, a bearing mechanism is not required, and the handle 8 is rotated in the axial direction of the columns 3 as in the embodiment of FIG. It is possible to rotate the installation direction.
[0013]
In the above-described embodiment of the present invention, the mechanism for manually rotating the support column 3 has been described, but it goes without saying that the same effect can be obtained even if it is rotated by power using a hydraulic mechanism or the like.
[0014]
【The invention's effect】
As described above, according to the present invention, the maximum generated power is always obtained by changing the installation direction of the solar cell according to the season from the solar power generation facility in which the solar cell is installed substantially perpendicular to the ground surface. It is possible to use the solar cell most effectively.
[Brief description of the drawings]
FIG. 1 is an embodiment of a solar power generation facility according to the present invention. FIG. 2 is a diagram for explaining solar radiation characteristics. FIG. 3 is a diagram for explaining solar radiation characteristics. 5] Detailed view of the mounting structure of the present invention [FIG. 6] Other embodiments of the present invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2a ... Frame frame, 2b ... Frame frame, 3 ... Support | pillar, 4 ... Support material, 5 ... Base, 5a ... Bearing mechanism, 5b ... Fixing bolt, 6 ... Foundation, 7a-d ... Fixing Hole, 8 ... handle

Claims (3)

太陽電池モジュールの設置角度が地表面に対してほぼ垂直に設置した太陽光発電設備の使用方法において、前記太陽電池モジュールが両面受光型の太陽電池モジュールであって、該両面受光型太陽電池モジュールのエネルギー変換効率の高い側の面を冬季には南方向に向けて使用し、夏季には東方向あるいは西方向に向けて使用することを特徴とする太陽光発電設備の使用方法In the method of using a photovoltaic power generation facility in which the installation angle of the solar cell module is installed substantially perpendicular to the ground surface, the solar cell module is a double-sided light-receiving solar cell module, and the double-sided light-receiving solar cell module the higher side of the surface energy conversion efficiency using toward the south direction in winter, the use of solar power equipment in summer, characterized in that use toward the east or west direction. 請求項1において、前記両面受光型太陽電池モジュールの両面のエネルギー変換効率が等価のとき、その一方の面を冬季には南方向に向けて使用し、夏季には東方向あるいは西方向に向けて使用することを特徴とする太陽光発電設備の使用方法In Claim 1, when the energy conversion efficiency of both surfaces of the double-sided light-receiving solar cell module is equivalent, one surface of the solar cell module is used in the south direction in winter, and in the east or west direction in summer. A method of using a photovoltaic power generation facility characterized by using . 請求項1または請求項2において、前記冬季が10月〜3月であり、前記夏季が4月〜9月であることを特徴とする太陽光発電設備の使用方法The method for using a photovoltaic power generation facility according to claim 1 or 2 , wherein the winter season is from October to March, and the summer season is from April to September.
JP2001184887A 2001-06-19 2001-06-19 How to use solar power generation equipment Expired - Fee Related JP3911622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184887A JP3911622B2 (en) 2001-06-19 2001-06-19 How to use solar power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184887A JP3911622B2 (en) 2001-06-19 2001-06-19 How to use solar power generation equipment

Publications (2)

Publication Number Publication Date
JP2003008043A JP2003008043A (en) 2003-01-10
JP3911622B2 true JP3911622B2 (en) 2007-05-09

Family

ID=19024570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184887A Expired - Fee Related JP3911622B2 (en) 2001-06-19 2001-06-19 How to use solar power generation equipment

Country Status (1)

Country Link
JP (1) JP3911622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162280B1 (en) 2010-08-06 2012-07-04 김미지 Street Lamp Using Solar Cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976706B2 (en) * 2014-03-10 2016-08-24 大都技研株式会社 Solar power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162280B1 (en) 2010-08-06 2012-07-04 김미지 Street Lamp Using Solar Cell

Also Published As

Publication number Publication date
JP2003008043A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
CN110214414B (en) Photovoltaic device
Huang et al. Long-term field test of solar PV power generation using one-axis 3-position sun tracker
Tripathy et al. Determination of optimum tilt angle and accurate insolation of BIPV panel influenced by adverse effect of shadow
Rachchh et al. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area
Chang Performance study on the east–west oriented single-axis tracked panel
JP3985837B2 (en) Photovoltaic power generation apparatus and installation method thereof
Lee et al. A novel algorithm for single-axis maximum power generation sun trackers
US20170117842A1 (en) Solar module mounting apparatus and method of mounting the same
JP3911622B2 (en) How to use solar power generation equipment
Muthu et al. Experimental investigation of 4E performance studies of a vertical bifacial solar module during summer and winter
KR20100115652A (en) Solar cell module assembly
KR101237231B1 (en) Appratus for adjusting the angle of a solar panel in the roof of a building
CN105553386A (en) Floor-intensified photovoltaic array
Lo et al. Design, operation, and performance evaluation of a cable‐drawn dual‐axis solar tracker compared to a fixed‐tilted system
KR102511058B1 (en) Apparatus for reflecting by structure of back of solar photovoltaic panel
Naeimi et al. Calculation of the optimal installation angle for seasonal adjusting of PV panels based on solar radiation prediction
JP2005142383A (en) Solar power generation device
JP2015228729A (en) Solar panel site
Barman et al. Performance Analysis of Building Integrated Photovoltaic of High-rise Buildings in Urban Areas
JP3794245B2 (en) Solar power plant
Hongxing et al. Building-integrated photovoltaic application-its practice in Hong Kong
JP2001271738A (en) Natural energy power generation structure by wind forc force and sunlight
CN216146280U (en) Supporting structure and multipoint-supporting tracking type photovoltaic system
Bryan et al. Designing a solar ready roof: establishing the conditions for a high-performing solar installation
Carbonari et al. Optimal arrangement of photovoltaic panels coupled with electrochemical storages

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees