JP2006080402A - Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method - Google Patents

Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method Download PDF

Info

Publication number
JP2006080402A
JP2006080402A JP2004264742A JP2004264742A JP2006080402A JP 2006080402 A JP2006080402 A JP 2006080402A JP 2004264742 A JP2004264742 A JP 2004264742A JP 2004264742 A JP2004264742 A JP 2004264742A JP 2006080402 A JP2006080402 A JP 2006080402A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
wiring board
capacitor
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264742A
Other languages
Japanese (ja)
Inventor
Naohiko Abe
直彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004264742A priority Critical patent/JP2006080402A/en
Publication of JP2006080402A publication Critical patent/JP2006080402A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for manufacturing a printed-wiring board excellent in an uniformity in film thickness of a dielectric layer and a positional accuracy of a capacitor circuit, which removes as much of an extra dielectric layer as possible, and to provide the printed-wiring board having the embedded capacitor circuit. <P>SOLUTION: The manufacturing method comprises the steps of using the capacitor-layer-forming material having the dielectric layer between a first conductive layer for forming an upper electrode and a second conductive layer for forming a lower electrode, forming a first insulating layer on the outer surface of the second conductive layer of the capacitor-layer-forming material, etching between the upper electrode part of the first conductive layer positioning at the outer layer and the unnecessary part in a thin slit shape, after that, simultaneously exfoliating the dielectric layer of the unnecessary part by exfoliating and removing the unnecesary part of the first conductive layer, and machining the printed-wiring board by leaving only the upper electrode part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本件出願に係る発明は、内蔵キャパシタ回路を備えるプリント配線板の製造方法及びその製造方法で得られたプリント配線板に関する。特に、キャパシタ回路を内蔵するプリント配線板の製造方法として好適なものを提供する。   The invention according to the present application relates to a method for manufacturing a printed wiring board having a built-in capacitor circuit, and a printed wiring board obtained by the manufacturing method. In particular, a preferred method for manufacturing a printed wiring board incorporating a capacitor circuit is provided.

従来から、キャパシタ回路(素子)を内蔵した多層プリント配線板は、その内層に位置する絶縁層の内の1以上の層を誘電層として用い、その誘電層の両面に位置する内層回路にキャパシタとしての上部電極及び下部電極が対峙する形で用いられてきた。   Conventionally, a multilayer printed wiring board with a built-in capacitor circuit (element) uses one or more of the insulating layers located in the inner layer as a dielectric layer, and the inner layer circuit located on both sides of the dielectric layer serves as a capacitor. The upper and lower electrodes have been used in opposition to each other.

このような内蔵キャパシタを備えるプリント配線板は、一般的なプリント配線板の製造プロセスを応用することが好ましく、図1及び図2に示したプロセスを経て、図12に示した製造工程へと繋がる方法が採用されてきた。即ち、図12(c)に示したように、第1導電層3をエッチングして上部電極20を形成するため、露光パターンフィルム7’’を用いてUV露光し、現像し、エッチングし、レジスト剥離することで、図12(d)に示すような状態とした。このとき、上部電極以外の部位では、誘電層は露出した状態となる。   A printed wiring board having such a built-in capacitor is preferably applied to a general printed wiring board manufacturing process, and leads to the manufacturing process shown in FIG. 12 through the processes shown in FIGS. The method has been adopted. That is, as shown in FIG. 12C, in order to form the upper electrode 20 by etching the first conductive layer 3, UV exposure is performed using the exposure pattern film 7 ″, development, etching, and resist. By peeling, a state as shown in FIG. At this time, the dielectric layer is exposed at a portion other than the upper electrode.

従って、この図12(f)に示すような中間製品を用いて、以降のプリント配線板製造工程を経ても、誘電層がキャパシタ回路部のみならず、多層プリント配線板の全面に亘って広がっており、キャパシタ回路以外の電源ライン、信号伝達ラインの下部及び周辺にも誘電層が存在することになる。この誘電層は、高誘電率であるためシグナル信号等の電送時に誘電損失が大きくなるという問題があった。また、この誘電層に対し、インダクタ等の他の回路素子を埋め込もうとしても不可能な場合が多く、回路設計に一定の制約を受けるのが通常であった。   Therefore, using the intermediate product as shown in FIG. 12F, the dielectric layer spreads over the entire surface of the multilayer printed wiring board as well as the capacitor circuit portion even after the subsequent printed wiring board manufacturing process. In addition, a dielectric layer is also present below and around the power supply line and the signal transmission line other than the capacitor circuit. Since this dielectric layer has a high dielectric constant, there has been a problem that dielectric loss increases when a signal signal or the like is transmitted. In addition, there are many cases where it is impossible to embed other circuit elements such as inductors in this dielectric layer, and circuit design is usually subject to certain restrictions.

従って、当業者間では、誘電体層を必要な部位にのみ形成するため、特許文献1に開示されているように内層基板表面に設けた絶縁層を開口処理して、その部位に高誘電材料を埋め込んだり、特許文献2に開示されているように、予め樹脂フィルム上に形成したキャパシタ回路付層を内層コア材表面に転写する方法、特許文献3に開示されているように、スクリーン印刷法で誘電体フィラーを含有したペーストを印刷する等の方法が採用されてきた。   Therefore, among those skilled in the art, in order to form a dielectric layer only at a necessary portion, an insulating layer provided on the inner layer substrate surface is subjected to an opening treatment as disclosed in Patent Document 1, and a high dielectric material is formed at that portion. Embedded image or as disclosed in Patent Document 2, a method of transferring a layer with a capacitor circuit previously formed on a resin film onto the surface of the inner core material, as disclosed in Patent Document 3, and a screen printing method For example, a method of printing a paste containing a dielectric filler has been adopted.

特開平09−116247号公報JP 09-116247 A 特開2000−323845号公報JP 2000-323845 A 特開平08−125302号公報Japanese Patent Laid-Open No. 08-125302

しかしながら、通常のプリント配線板製造プロセスを採用する限り、誘電層が全面に亘って広がる事は避けられず、必要な部位のみに誘電層を残すことは困難である。更に、特許文献2〜特許文献3に開示された発明では、不要部に誘電層が残留した状態は解消出来るものの、誘電層の膜厚均一性に欠け、転写やスクリーン印刷する際の位置精度に問題が生じていた。   However, as long as a normal printed wiring board manufacturing process is employed, it is inevitable that the dielectric layer spreads over the entire surface, and it is difficult to leave the dielectric layer only at necessary portions. Further, in the inventions disclosed in Patent Documents 2 to 3, although the state where the dielectric layer remains in the unnecessary portion can be eliminated, the film thickness uniformity of the dielectric layer is lacking, and the positional accuracy during transfer or screen printing is improved. There was a problem.

キャパシタは、可能な限り大きな電気容量を持つことが基本的な品質として求められる。キャパシタの容量(C)は、C=εε(A/d)の式(εは真空の誘電率)から計算される。特に、最近の電子、電気機器の軽薄短小化の流れから、プリント配線板にも同様の要求が行われることになり、一定のプリント配線板面積の中で、キャパシタ電極の面積を広く採ることは殆ど不可能であり、表面積(A)に関しての改善に関しては限界がある事は明らかである。従って、キャパシタ容量を増大させるためには、キャパシタ電極の表面積(A)及び誘電体層の比誘電率(ε)が一定とすれば、誘電体層の厚さ(d)を薄くする必要があり、膜厚均一性に欠けることはキャパシタとしての品質のバラツキが大きくなり好ましくない。 A capacitor is required as a basic quality to have as much electric capacity as possible. The capacitance (C) of the capacitor is calculated from the equation C = εε 0 (A / d) (ε 0 is the dielectric constant of vacuum). In particular, due to the recent trend of light and thin electronic and electrical equipment, the same demands will be made on printed wiring boards, and it is not possible to take a large capacitor electrode area within a certain printed wiring board area. It is almost impossible and it is clear that there is a limit to the improvement in terms of surface area (A). Accordingly, in order to increase the capacitance of the capacitor, it is necessary to reduce the thickness (d) of the dielectric layer if the surface area (A) of the capacitor electrode and the relative dielectric constant (ε) of the dielectric layer are constant. In addition, lack of film thickness uniformity is not preferable because of the large variation in quality as a capacitor.

また、転写やスクリーン印刷する際の位置精度に問題がある場合には、折角形成した上部電極と下部電極との位置にズレが生じ、キャパシタの電気容量を左右する表面積(A)の実効面積が減少し、設計通りのキャパシタ性能が得られなくなり、製品品質がスペックアウトするのである。   In addition, when there is a problem with positional accuracy during transfer or screen printing, the position between the upper electrode and the lower electrode formed at the corner is displaced, and the effective area of the surface area (A) that affects the capacitance of the capacitor is As a result, the capacitor performance as designed cannot be obtained, and the product quality is out of specification.

従って、複雑な製造方法を必要とすることなく、誘電層の膜厚均一性及びキャパシタ回路の位置精度に優れ、キャパシタ回路部を除き可能な限り誘電体層を除去した多層プリント配線板の製造技術及びキャパシタ回路を内蔵する多層プリント配線板が求められてきたのである。   Therefore, a multilayer printed wiring board manufacturing technique that has excellent dielectric layer thickness uniformity and capacitor circuit positional accuracy without requiring a complicated manufacturing method, and removes the dielectric layer as much as possible except for the capacitor circuit section. In addition, a multilayer printed wiring board having a built-in capacitor circuit has been demanded.

そこで、本件発明者等は、鋭意研究の結果、本件発明に係るキャパシタ回路を内蔵するプリント配線板の製造方法に想到したのである。この製造方法は、誘電層と下部電極との間での密着性が弱いという欠点を、むしろ積極的に利用したものである。そして、最も一般的なプリント配線板の製造プロセスを採用出来るため、特段の設備投資も要さず無用な工程増加もなく、工業的なメリットが大きなものとなる。   Thus, as a result of diligent research, the inventors of the present invention have come up with a method for manufacturing a printed wiring board incorporating the capacitor circuit according to the present invention. This manufacturing method rather positively utilizes the disadvantage that the adhesion between the dielectric layer and the lower electrode is weak. And since the most common printed wiring board manufacturing process can be adopted, no special equipment investment is required, no unnecessary process increases, and industrial merit is great.

本件発明に係る内蔵キャパシタ回路を備えるプリント配線板の基本的製造方法は、「上部電極を形成する第1導電層と下部電極を形成する第2導電層との間に誘電層を備えるキャパシタ層形成材」を用いて内蔵キャパシタ回路を備えるプリント配線板を製造する方法であって、以下の工程A〜工程Gを備えることを特徴としたものである。   The basic method for manufacturing a printed wiring board having a built-in capacitor circuit according to the present invention is “capacitor layer formation having a dielectric layer between a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode” It is a method for manufacturing a printed wiring board having a built-in capacitor circuit using a “material”, and includes the following steps A to G.

工程A: 前記キャパシタ層形成材の第2導電層は、少なくとも誘電層と接触する面にニッケル−リン合金層を備えたものであり、当該キャパシタ層形成材の第2導電層の外表面に第1絶縁層を形成する第1絶縁層形成工程。
工程B: 外層に位置する前記第1導電層の表面にエッチングレジスト層を形成し、エッチングパターンを露光し、現像し、上部電極部と不要部との間を細いスリット状にエッチングするスリットエッチング工程。
工程C: スリットエッチングした後に、第1導電層の前記不要部を剥離除去することで同時に不要部の誘電層も同時剥離し、上部電極を含む必要な回路を残留させる第1導電層不要部剥離工程。
工程D: 上部電極を形成した面をエッチングレジストで被覆し、第2導電層を下部電極形状とするためのエッチングパターン露光を行い、現像、エッチング、レジスト剥離を行い下部電極形状とする下部電極形成工程。
工程E: 上部電極表面に第2絶縁層及び第3導電層を形成する第2絶縁層形成工程。
工程F: 上部電極/誘電層/下部電極からなるキャパシタ回路と第3導電層との導通を確保するため等の孔明加工を行い、層間導通メッキ等を行う層間導通手段形成工程。
工程G: 第3導電層をエッチング加工することで外層回路を形成する外層回路形成工程。
Step A: The second conductive layer of the capacitor layer forming material is provided with a nickel-phosphorus alloy layer at least on the surface in contact with the dielectric layer, and the second conductive layer of the capacitor layer forming material is formed on the outer surface of the second conductive layer of the capacitor layer forming material. A first insulating layer forming step of forming one insulating layer;
Process B: A slit etching process in which an etching resist layer is formed on the surface of the first conductive layer located in the outer layer, the etching pattern is exposed and developed, and the space between the upper electrode part and the unnecessary part is etched into a thin slit shape. .
Step C: After the slit etching, the unnecessary portion of the first conductive layer is peeled and removed, so that the dielectric layer of the unnecessary portion is also peeled off at the same time, and the first conductive layer unnecessary portion is peeled off to leave a necessary circuit including the upper electrode. Process.
Step D: Cover the surface on which the upper electrode is formed with an etching resist, perform etching pattern exposure to make the second conductive layer into the lower electrode shape, and develop, etch, and remove the resist to form the lower electrode into the lower electrode shape Process.
Step E: A second insulating layer forming step of forming a second insulating layer and a third conductive layer on the upper electrode surface.
Step F: An interlayer conduction means forming step for performing interlayer machining such as perforating processing for ensuring conduction between the capacitor circuit composed of the upper electrode / dielectric layer / lower electrode and the third conductive layer, and the like.
Step G: an outer layer circuit forming step of forming an outer layer circuit by etching the third conductive layer.

そして、前記キャパシタ層形成材の第2導電層は、少なくとも誘電層と接触する面にニッケル−リン合金層を備えたものを用いることが好ましい。   The second conductive layer of the capacitor layer forming material is preferably provided with a nickel-phosphorus alloy layer on at least the surface in contact with the dielectric layer.

更に、前記スリットエッチングを行う場合のスリット幅は、25μm〜110μmの範囲とすることが好ましい。   Furthermore, the slit width when performing the slit etching is preferably in the range of 25 μm to 110 μm.

そして、本件発明に係る内蔵キャパシタ回路を備えるプリント配線板の製造方法で得られたプリント配線板は、高品質で製造コストに優れた製品となる。   And the printed wiring board obtained by the manufacturing method of a printed wiring board provided with the built-in capacitor circuit which concerns on this invention turns into a product excellent in manufacturing cost with high quality.

本件発明に係る内蔵キャパシタ回路を備える多層プリント配線板の製造方法は、不必要な部位に誘電層が存在しないため、キャパシタ回路を形成した近傍に信号回路を形成しても、シグナル信号等の電送時に誘電損失が大きくなることがなく、インダクタ等の他の回路素子を埋め込むことも可能となり、回路設計の制約条件を大幅に緩和することが可能となるのである。従って、この製造方法で得られた内蔵キャパシタ回路を備えるプリント配線板は、極めて高品質のものとなるのである。   In the method for manufacturing a multilayer printed wiring board having a built-in capacitor circuit according to the present invention, since a dielectric layer does not exist in an unnecessary portion, even if a signal circuit is formed in the vicinity of the capacitor circuit, transmission of a signal signal or the like In some cases, dielectric loss does not increase, and other circuit elements such as inductors can be embedded, so that the constraint conditions of circuit design can be greatly relaxed. Therefore, the printed wiring board provided with the built-in capacitor circuit obtained by this manufacturing method is of extremely high quality.

以下、実施の形態と実施例とを通じて、本件発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail through embodiments and examples.

以下、「内蔵キャパシタ回路を備えるプリント配線板の製造方法」と「内蔵キャパシタ回路を備えるプリント配線板」とに分けて説明することとする。   Hereinafter, the description will be divided into “a method for manufacturing a printed wiring board having a built-in capacitor circuit” and “a printed wiring board having a built-in capacitor circuit”.

(内蔵キャパシタ回路を備えるプリント配線板の製造方法の実施形態)
本件発明に係るキャパシタ回路を内蔵する多層プリント配線板(以下、単に「多層プリント配線板」と称する。)の製造方法を、図2〜図4を主に用い、図5〜図8を補助的に用いて説明する。なお、本件発明においては、図面を多用して説明を行うが、その図面中でキャパシタ部と層間の回路との電気的導通を確保するためのビアホール等は定法に基づき任意の時点及び形状に形成出来るのである。従って、これらの層間導通手段の詳細な記述は省略し、本件発明が技術的思想として明瞭に理解出来るように説明するものとする。
(Embodiment of manufacturing method of printed wiring board having built-in capacitor circuit)
A manufacturing method of a multilayer printed wiring board (hereinafter simply referred to as “multilayer printed wiring board”) incorporating the capacitor circuit according to the present invention is mainly shown in FIGS. 2 to 4 and FIGS. It explains using. In the present invention, a lot of drawings are used for explanation. In the drawing, via holes for securing electrical continuity between the capacitor portion and the circuit between layers are formed at an arbitrary time point and shape based on a regular method. It can be done. Therefore, detailed description of these interlayer conduction means is omitted, and the present invention will be described so that the present invention can be clearly understood as a technical idea.

キャパシタ層形成材: 最初に本件発明に係る内蔵キャパシタ回路を備えるプリント配線板の製造方法に用いるキャパシタ層形成材に関して説明する。このように予め作り込んだキャパシタ層形成材を用いることで、誘電層の膜厚均一性が高度なレベルで維持出来るのである。当該キャパシタ層形成材2は、図1にいくつかのバリエーションを示したように、上部電極を形成する第1導電層3と下部電極を形成する第2導電層4との間に誘電層5を備える層構成を持つものである。そして、このキャパシタ層構成材は、後述の製造方法から明らかとなるように、下部電極となる第2導電層4と誘電層5との界面が極めて強固に接着するものは好ましくない。 Capacitor layer forming material: First, a capacitor layer forming material used in a method for manufacturing a printed wiring board having a built-in capacitor circuit according to the present invention will be described. By using the capacitor layer forming material fabricated in advance as described above, the film thickness uniformity of the dielectric layer can be maintained at a high level. The capacitor layer forming material 2 includes a dielectric layer 5 between a first conductive layer 3 forming an upper electrode and a second conductive layer 4 forming a lower electrode, as shown in several variations in FIG. It has a layer structure. And as this capacitor layer constituent material becomes clear from the manufacturing method described later, it is not preferable that the interface between the second conductive layer 4 serving as the lower electrode and the dielectric layer 5 adheres extremely firmly.

従って、第2導電層4は、金属箔の張り合わせ、メッキ法、蒸着法等の種々の方法で形成可能なものであるが、誘電層の種類に応じて、以下の製造方法で容易に剥離する特性のものを選択的に用いることが好ましい。例えば、図1(a)に示すように単一層の第2導体層を用いる場合には、ニッケル合金であるニッケル−リン合金等の使用が好ましい。また、図1(b)に示すように2層構造として、第2導電層の誘電層と接触する面にニッケル−リン合金層等4aを採用し、他は銅層4bとする等である。また、図1(c)に示すように、第2導電層の誘電層と接触する面及び他面側にニッケル−リン合金層等4aを採用した3層構造としても差し支えない。第2導電層をニッケル−リン合金等の表面処理層を備えた銅箔等の金属箔を用いて形成する場合には、図1(c)に示す形態のキャパシタ層形成材が最も一般的と考えられる。しかしながら、第2導電層をエッチングして下部電極形状を作り込む場合を想定すると、図1(b)に示す形態のキャパシタ層形成材を用いることが最も好ましい。プリント配線板製造工程で用いる銅エッチング液によって、ニッケル合金を溶解することは困難であり、可能な限りニッケル合金量を少なくすることが可能だからである。   Therefore, the second conductive layer 4 can be formed by various methods such as bonding of metal foil, plating method, vapor deposition method, etc., but easily peels off by the following manufacturing method depending on the type of dielectric layer. Those having characteristics are preferably used selectively. For example, when a single second conductor layer is used as shown in FIG. 1A, it is preferable to use a nickel-phosphorus alloy that is a nickel alloy. Further, as shown in FIG. 1B, a nickel-phosphorus alloy layer 4a or the like is adopted as a two-layer structure on the surface of the second conductive layer in contact with the dielectric layer, and the others are a copper layer 4b. Further, as shown in FIG. 1C, a three-layer structure in which a nickel-phosphorus alloy layer 4a or the like is employed on the surface of the second conductive layer in contact with the dielectric layer and the other surface side may be used. When the second conductive layer is formed using a metal foil such as a copper foil provided with a surface treatment layer such as a nickel-phosphorus alloy, the capacitor layer forming material having the form shown in FIG. Conceivable. However, assuming the case where the lower electrode shape is formed by etching the second conductive layer, it is most preferable to use the capacitor layer forming material having the form shown in FIG. This is because it is difficult to dissolve the nickel alloy by the copper etching solution used in the printed wiring board manufacturing process, and the amount of nickel alloy can be reduced as much as possible.

そして、第1導電層3も、金属箔の張り合わせ、メッキ法、蒸着法等の種々の方法で形成可能なものであるが、一般的なプリント配線板製造ラインを使用することを考えれば、銅若しくは銅合金を用いること好ましい。しかし、以下の製造方法で明らかとなるように、第1導電層3に誘電層5が被着した状態で引き剥がすものであるため、第1導電層3と誘電層5との剥離が容易に起こるものであってはならない。第1導電層3と誘電層5との密着強度は、少なくとも、第2導電層4と誘電層5との密着強度よりも高いことが要求される。従って、第2導電層4と誘電層5との密着強度を考慮して、第1導電層3の材質を定めればよいのである。   The first conductive layer 3 can also be formed by various methods such as bonding of metal foil, plating method, vapor deposition method, etc., considering that a general printed wiring board production line is used. Alternatively, it is preferable to use a copper alloy. However, as will be apparent from the following manufacturing method, since the first conductive layer 3 is peeled off with the dielectric layer 5 attached thereto, the first conductive layer 3 and the dielectric layer 5 can be easily separated. It must not happen. The adhesion strength between the first conductive layer 3 and the dielectric layer 5 is required to be at least higher than the adhesion strength between the second conductive layer 4 and the dielectric layer 5. Therefore, the material of the first conductive layer 3 may be determined in consideration of the adhesion strength between the second conductive layer 4 and the dielectric layer 5.

誘電層は、いわゆるゾルゲル法、誘電体フィラーとバインダー樹脂とを含む誘電体フィラー含有樹脂溶液を用いて塗工により誘電層を形成する塗工法等種々の公知の方法を採用することが可能である。   For the dielectric layer, various known methods such as a so-called sol-gel method, a coating method in which a dielectric layer is formed by coating using a dielectric filler-containing resin solution containing a dielectric filler and a binder resin can be employed. .

内蔵キャパシタ回路を備えるプリント配線板の製造方法: 以下、本件発明に係る内蔵キャパシタ回路を備えるプリント配線板の製造方法を説明するが、図1(c)に示したキャパシタ層形成材を用いた場合を、例示的に示すこととする。以下、工程A〜工程Gに関して、工程ごとに説明する。 Method for manufacturing printed wiring board having built-in capacitor circuit: Hereinafter, a method for manufacturing a printed wiring board having a built-in capacitor circuit according to the present invention will be described. When the capacitor layer forming material shown in FIG. Is illustratively shown. Hereinafter, Step A to Step G will be described for each step.

工程Aは、前記キャパシタ層形成材の第2導電層の外表面に第1絶縁層を形成する第1絶縁層形成工程である。即ち、この工程では、図2(a)に示すキャパシタ層形成材2の第2導電層4にガラス−エポキシプリプレグやポリイミド樹脂基材等のプリント配線板用途に用いられる絶縁層構成材をプレス加工する等して張り合わせ、図2(b)に示すように絶縁層6を形成する。このときの張り合わせ方法及び条件等には特段の限定はない。また、図8に示すように、絶縁層6を中心として、絶縁層6の両面に前記キャパシタ層形成材の第2導電層4を張り合わせ、両面にキャパシタ層を形成することも当然に可能である。但し、図面は片面にキャパシタ層を張り合わせた状態で説明する。   Step A is a first insulating layer forming step of forming a first insulating layer on the outer surface of the second conductive layer of the capacitor layer forming material. That is, in this process, an insulating layer constituent material used for printed wiring board applications such as glass-epoxy prepreg and polyimide resin base material is pressed into the second conductive layer 4 of the capacitor layer forming material 2 shown in FIG. The insulating layer 6 is formed as shown in FIG. There are no particular limitations on the bonding method and conditions at this time. Further, as shown in FIG. 8, it is naturally possible to bond the second conductive layer 4 of the capacitor layer forming material on both surfaces of the insulating layer 6 with the insulating layer 6 as the center, thereby forming a capacitor layer on both surfaces. . However, the drawings will be described with a capacitor layer attached to one side.

工程Bは、外層に位置する前記第1導電層の表面にエッチングレジスト層9を形成し、エッチングパターンを露光し、現像し、上部電極部と不要部との間を細いスリット状にエッチングするスリットエッチング工程である。即ち、図3(c)に示すように、25μm〜200μm幅のスリットエッチングの可能なエッチングパターンを露光するため、エッチングレジスト層を形成した後、露光パターンフィルム7を用いてUV露光し、現像し、スリットエッチングし、レジスト剥離するのである。但し、必要に応じて、この段階でのレジスト剥離を行う必要はない。完全に不要となるまで残留させておけば、後工程での上部電極の損傷を防ぐことが出来るからである。従って、説明に用いる図面中ではレジスト剥離を行わない状態での様子を模式的に示している。その結果、図3(d)に示すように、上部電極部と不要部との間にスリット8が形成されるのである。ここで、スリットエッチング幅を、25μm〜200μmとしている。スリットエッチング幅が、25μm未満となると形成されるスリット内部へのエッチング液回りが困難で、エッチング速度が極端に遅くなり、誘電層の側面形状が悪化するのである。そして、スリットエッチング幅が、200μmを超えると、スリット内エッチング液侵入が容易になりすぎて、密着性に欠ける下部電極と誘電層との界面への溶液侵入が容易になり、下部電極と誘電層との密着性を阻害する事となるのである。   In step B, an etching resist layer 9 is formed on the surface of the first conductive layer located on the outer layer, the etching pattern is exposed and developed, and a slit is formed between the upper electrode portion and the unnecessary portion in a thin slit shape. Etching process. That is, as shown in FIG. 3C, in order to expose an etching pattern capable of slit etching with a width of 25 μm to 200 μm, after forming an etching resist layer, the exposure pattern film 7 is used for UV exposure and development. Then, slit etching is performed and the resist is peeled off. However, it is not necessary to remove the resist at this stage if necessary. This is because if it is left until it is completely unnecessary, damage to the upper electrode in a later process can be prevented. Therefore, in the drawings used for explanation, the state in a state where the resist is not removed is schematically shown. As a result, as shown in FIG. 3D, a slit 8 is formed between the upper electrode portion and the unnecessary portion. Here, the slit etching width is set to 25 μm to 200 μm. When the slit etching width is less than 25 μm, it is difficult to make the etching solution around the formed slit, the etching rate becomes extremely slow, and the side surface shape of the dielectric layer deteriorates. If the slit etching width exceeds 200 μm, the intrusion of the etching solution in the slit becomes too easy, and the solution intrusion into the interface between the lower electrode and the dielectric layer that lacks adhesion becomes easy, and the lower electrode and the dielectric layer It will interfere with the adhesion.

工程Cは、スリットエッチングした後に、第1導電層の前記不要部を剥離除去することで同時に不要部の誘電層も同時剥離し、上部電極を含む必要な回路を残留させる第1導電層不要部剥離工程である。この工程で不要部を除去しようとしたときには、第1導電層3と誘電層5との密着強度が、第2導電層4と誘電層5との密着強度よりも高いため、不要部の第1導電層と誘電層とが同時に剥離され、図4(e)に示すように、剥離部には第2導電層4の表面が露出することになる。   In step C, after the slit etching is performed, the unnecessary portion of the first conductive layer is peeled and removed, so that the dielectric layer of the unnecessary portion is also peeled off at the same time, and the first conductive layer unnecessary portion that leaves the necessary circuit including the upper electrode remains. It is a peeling process. When an unnecessary portion is to be removed in this step, the adhesion strength between the first conductive layer 3 and the dielectric layer 5 is higher than the adhesion strength between the second conductive layer 4 and the dielectric layer 5. The conductive layer and the dielectric layer are peeled off at the same time, and the surface of the second conductive layer 4 is exposed at the peeled portion as shown in FIG.

工程Dは、上部電極20を形成した面をエッチングレジストで被覆し、第2導電層を下部電極形状とするためのエッチングパターン露光を行い、現像、エッチング、レジスト剥離を行い下部電極形状とする下部電極形成工程である。即ち、図4(f)に示すように、上部電極20を形成した面にエッチングレジスト層9’を形成し、第2導電層4をエッチングするための、露光パターンフィルム7’を用いてUV露光し、現像し、エッチングし、レジスト剥離するのである。その結果、図5(g)に示すように、下部電極21が形成されるのである。   In step D, the surface on which the upper electrode 20 is formed is covered with an etching resist, etching pattern exposure is performed to form the second conductive layer into the lower electrode shape, and development, etching, and resist removal are performed to form the lower electrode shape. This is an electrode forming step. That is, as shown in FIG. 4F, an etching resist layer 9 ′ is formed on the surface on which the upper electrode 20 is formed, and UV exposure is performed using an exposure pattern film 7 ′ for etching the second conductive layer 4. Then, it is developed, etched, and the resist is peeled off. As a result, as shown in FIG. 5G, the lower electrode 21 is formed.

工程E: 上部電極面上に第2絶縁層及び第3導電層を形成する第2絶縁層形成工程である。ここでは、第2絶縁層形成工程と称しているが、上部電極表面に第2絶縁層10と第3導電層11とを同時に形成するのである。このときの第2絶縁層10と第3導電層11とを張り合わせる方法は、以下に述べる如き方法を採用することが可能である。   Step E: A second insulating layer forming step of forming the second insulating layer and the third conductive layer on the upper electrode surface. Here, although referred to as a second insulating layer forming step, the second insulating layer 10 and the third conductive layer 11 are simultaneously formed on the upper electrode surface. At this time, a method as described below can be adopted as a method of bonding the second insulating layer 10 and the third conductive layer 11 together.

上部電極面上に第2絶縁層及び第3導電層を形成するにあたり、ガラス−エポキシ材質等のプリプレグ12と金属箔13とを用い、図9に示すように重ねてプレス加工して、図5(h)と同様の状態とする。なお、図5(h)の第2絶縁層10にはガラスクロス等の骨格材13の記述は省略している。   In forming the second insulating layer and the third conductive layer on the upper electrode surface, a prepreg 12 such as a glass-epoxy material and a metal foil 13 are used, and are stacked and pressed as shown in FIG. The state is the same as (h). In addition, description of frame | skeleton materials 13, such as a glass cloth, is abbreviate | omitted in the 2nd insulating layer 10 of FIG.5 (h).

また、上部電極面上に第2絶縁層及び第3導電層を形成するにあたり、図10に示すように、上部電極面に樹脂層付金属箔14を重ねて、プレス加工して張り合わせ、図5(h)と同様の状態とすることも好ましい。ここで言う樹脂層付金属箔とは、金属箔の片面に絶縁層を構成するための半硬化樹脂層15を備えたものである。   Further, in forming the second insulating layer and the third conductive layer on the upper electrode surface, as shown in FIG. 10, the metal foil 14 with a resin layer is stacked on the upper electrode surface and bonded together by pressing, as shown in FIG. It is also preferable to use the same state as in (h). The metal foil with a resin layer mentioned here is provided with a semi-cured resin layer 15 for constituting an insulating layer on one side of the metal foil.

更に、上部電極面上に第2絶縁層10及び第3導電層11を形成するにあたり、図11に示すように、上部電極面に骨格材含有樹脂層付金属箔16を重ねて、プレス加工して張り合わせ、図5(h)と同様の状態とすることも好ましい。ここで言う骨格材含有樹脂層付金属箔とは、金属箔の片面に、絶縁層を構成するための樹脂層にガラス繊維やアラミド繊維等の織布若しくは不織布等の骨格材17を含んだ骨格材含有樹脂層18を備えたものである。   Further, when forming the second insulating layer 10 and the third conductive layer 11 on the upper electrode surface, as shown in FIG. 11, the metal foil 16 with a skeleton material-containing resin layer is stacked on the upper electrode surface and pressed. It is also preferable that the same state as in FIG. The metal foil with a skeleton material-containing resin layer referred to herein is a skeleton including a skeleton material 17 such as a woven fabric or a non-woven fabric such as a glass fiber or an aramid fiber in a resin layer for constituting an insulating layer on one side of the metal foil. The material-containing resin layer 18 is provided.

工程Fは、上部電極/誘電層/下部電極からなるキャパシタ回路と第3導電層との導通を確保するため等の孔明加工を行い、層間導通メッキ等を行う層間導通手段形成工程である。この工程は、図6(i)に示すようにバイアホールやスルーホールを形成するための穴明け(孔明加工)をおこない、図6(j)には層間導通メッキ17を行った状態を示している。なお、層間導通手段はメッキ法のみならず、導電性ペースト充填法等を使用することも可能となる。   Step F is an interlayer conduction means forming step in which drilling is performed to ensure conduction between the capacitor circuit composed of the upper electrode / dielectric layer / lower electrode and the third conductive layer, and interlayer conduction plating is performed. In this step, as shown in FIG. 6 (i), drilling (drilling processing) is performed to form via holes and through holes, and FIG. 6 (j) shows a state where interlayer conductive plating 17 is performed. Yes. The interlayer conduction means can use not only the plating method but also a conductive paste filling method.

工程Gは、第3導電層11をエッチング加工することで外層回路を形成する外層回路形成工程である。定法に基づいて、この第3導電層11の上にエッチングレジスト層を形成し、第3導電層11をエッチングするための、露光パターンフィルムを用いてUV露光し、現像し、エッチングし、レジスト剥離するのである。その結果、図7(k)に示すように、外層回路17が形成され、プリント配線板1の形となるのである。   Step G is an outer layer circuit forming step for forming an outer layer circuit by etching the third conductive layer 11. Based on a conventional method, an etching resist layer is formed on the third conductive layer 11, UV exposure is performed using an exposure pattern film for etching the third conductive layer 11, development is performed, etching is performed, and the resist is peeled off. To do. As a result, as shown in FIG. 7 (k), the outer layer circuit 17 is formed and takes the form of the printed wiring board 1.

内蔵キャパシタ回路を備えるプリント配線板: 以上の工程を経て、内蔵キャパシタ回路を備えたプリント配線板が得られるのである。このプリント配線板は、内蔵キャパシタ部以外に誘電層が存在せず、キャパシタ回路部が絶縁層の構成樹脂に包み込まれており、誘電層と絶縁層との密着性の問題が生じることもなく、内層部でのデラミネーションの発生も少なくなる。しかも、この製造方法を採用する限り、誘電層の膜厚均一性が良好で、キャパシタ回路の位置精度も良好なものとなる。以下に、実施例を示すこととする。 Printed wiring board with built-in capacitor circuit: A printed wiring board with a built-in capacitor circuit is obtained through the above-described steps. In this printed wiring board, there is no dielectric layer other than the built-in capacitor part, and the capacitor circuit part is wrapped in the constituent resin of the insulating layer, so that the problem of adhesion between the dielectric layer and the insulating layer does not occur. Less delamination occurs in the inner layer. In addition, as long as this manufacturing method is employed, the film thickness uniformity of the dielectric layer is good, and the positional accuracy of the capacitor circuit is also good. Examples will be shown below.

工程A: 最初に、キャパシタ層形成材に関して説明する。この実施例で用いたキャパシタ層形成材は、図2(a)に示す如きものである。即ち、上部電極を形成するための第1導電層3は5μm厚さのスパッタリング蒸着により形成した銅層を用い、下部電極を形成するための第2導電層4には35μm厚さの電解銅箔の両面に3μm厚さのニッケル−リン合金メッキ層を備えた表面処理電解銅箔を用いた。そして、この第1導電層と第2導電層との間に位置する誘電層5は、ゾルゲル法を用いて第2導電層の表面に誘電膜として形成した。このときに用いたゾルゲル法は、沸点近傍に加温したメタノール溶液に、安定化剤として全金属量に対して50mol%〜60mol%濃度となるようにエタノールアミンを添加し、チタンイソプロポキシド、ジルコニウムポロポキシドのプロパノール溶液、酢酸鉛、酢酸ランタン、触媒としての硝酸を順次添加し、最終的にメタノールで0.2mol/l濃度に希釈したゾルゲル溶液を用いた。そして、このゾルゲル溶液をスピンコータを用いて、前記表面処理銅箔のニッケル−リン合金層の表面に塗工し、250℃×5分の大気雰囲気で乾燥、500℃×15分の大気雰囲気での熱分解を行い。更に、この塗工工程を6回繰り返し膜厚調整を行った。そして、最終的に600℃×30分の窒素置換雰囲気での焼成処理を行い誘電層を形成した。このときの誘電層の組成比は、Pb:La:Zr:Ti=1.1:0.05:0.52:0.48であった。上述のような第1導電層3(銅成分)と誘電層5との密着強度が、第2導電層4(表層のニッケル−リン合金成分)と誘電層5との密着強度よりも高くなり、以下で言う不要部と誘電層とを同時に剥離することが可能となる。 Step A: First, the capacitor layer forming material will be described. The capacitor layer forming material used in this example is as shown in FIG. That is, the first conductive layer 3 for forming the upper electrode is a copper layer formed by sputtering deposition having a thickness of 5 μm, and the second conductive layer 4 for forming the lower electrode is an electrolytic copper foil having a thickness of 35 μm. A surface-treated electrolytic copper foil provided with a nickel-phosphorus alloy plating layer having a thickness of 3 μm on both sides was used. The dielectric layer 5 positioned between the first conductive layer and the second conductive layer was formed as a dielectric film on the surface of the second conductive layer using a sol-gel method. In the sol-gel method used at this time, ethanolamine was added to a methanol solution heated near the boiling point as a stabilizer so as to have a concentration of 50 mol% to 60 mol% with respect to the total amount of metal, titanium isopropoxide, A sol-gel solution in which a propanol solution of zirconium propoxide, lead acetate, lanthanum acetate, and nitric acid as a catalyst were sequentially added and finally diluted to 0.2 mol / l with methanol was used. Then, using a spin coater, this sol-gel solution was applied to the surface of the nickel-phosphorus alloy layer of the surface-treated copper foil, dried in an air atmosphere at 250 ° C. for 5 minutes, and in an air atmosphere at 500 ° C. for 15 minutes. Perform pyrolysis. Further, the coating process was repeated 6 times to adjust the film thickness. Finally, a baking process was performed in a nitrogen substitution atmosphere at 600 ° C. for 30 minutes to form a dielectric layer. The composition ratio of the dielectric layer at this time was Pb: La: Zr: Ti = 1.1: 0.05: 0.52: 0.48. The adhesion strength between the first conductive layer 3 (copper component) and the dielectric layer 5 as described above is higher than the adhesion strength between the second conductive layer 4 (surface nickel-phosphorus alloy component) and the dielectric layer 5, It is possible to peel off the unnecessary portion and the dielectric layer at the same time.

そして、ニッケル−リン合金層の形成は、35μm厚さの電解銅箔の両面に、リン酸系溶液を用い、硫酸ニッケル濃度が250g/l、塩化ニッケル濃度40.39g/l、HBO濃度19.78g/l、HPO濃度3g/l、液温50℃、電流密度20.4A/dmの条件で電解し、電解銅箔の両面に析出形成したニッケル層の上にニッケル−リン合金層を均一且つ平滑に電析させた。 The nickel-phosphorus alloy layer is formed by using a phosphoric acid solution on both sides of an electrolytic copper foil having a thickness of 35 μm, a nickel sulfate concentration of 250 g / l, a nickel chloride concentration of 40.39 g / l, and H 3 BO 3. Electrolysis was performed under conditions of a concentration of 19.78 g / l, a H 3 PO 3 concentration of 3 g / l, a liquid temperature of 50 ° C., and a current density of 20.4 A / dm 2. -The phosphorus alloy layer was electrodeposited uniformly and smoothly.

このキャパシタ層形成材2を用いて、その第2導電層4に定法に基づいて、50μm厚さのFR−4プリプレグを約180℃×60分程度のプレス加工を行い張り合わせ、図2(b)に示すように絶縁層6を形成した。   Using this capacitor layer forming material 2, the FR-4 prepreg having a thickness of 50 μm is bonded to the second conductive layer 4 by pressing at about 180 ° C. for about 60 minutes based on a conventional method, and FIG. An insulating layer 6 was formed as shown in FIG.

工程B: ここでは、外層に位置する前記第1導電層3の表面に25μm厚さのドライフィルムを張り合わせエッチングレジスト層9を形成し、図3(c)に示すようにエッチングパターンを露光し、現像し、上部電極部と不要部との間を細いスリット状にエッチングするスリットエッチングし、レジスト剥離を行った。このときのスリットエッチング幅は100μmとした。その結果、図3(d)に示すように、上部電極部と不要部との間にスリット8が形成された。 Step B: Here, an etching resist layer 9 is formed by laminating a dry film having a thickness of 25 μm on the surface of the first conductive layer 3 located in the outer layer, and an etching pattern is exposed as shown in FIG. Development was performed, and the resist was peeled off by slit etching for etching the upper electrode portion and the unnecessary portion into a thin slit shape. The slit etching width at this time was 100 μm. As a result, as shown in FIG. 3D, a slit 8 was formed between the upper electrode portion and the unnecessary portion.

工程C: スリットエッチングが終了すると、第1導電層の前記不要部を物理的に引き剥がして剥離除去し、この剥離作業時に不要部と誘電層とが同時に除去でき、引き剥がした部位の下部電極表面に誘電層の残留は見られなかった。その結果、図4(e)に示すように、剥離部には第2導電層4の表面が露出することになる。 Step C: When slit etching is completed, the unnecessary portion of the first conductive layer is physically peeled off and removed, and the unnecessary portion and the dielectric layer can be removed at the same time during the peeling operation. There was no residual dielectric layer on the surface. As a result, as shown in FIG. 4E, the surface of the second conductive layer 4 is exposed at the peeling portion.

工程D: ここでは、図4(f)に示すように、上部電極20を形成した面に液体レジストを用いてエッチングレジスト層9’を形成し、第2導電層4をエッチングするための、露光パターンフィルム7’を用いてUV露光し、現像し、エッチングし、レジスト剥離したのである。その結果、図5(g)に示すように、下部電極21の形状を形成したのである。 Step D: Here, as shown in FIG. 4 (f), an exposure for etching the second conductive layer 4 by forming an etching resist layer 9 ′ using a liquid resist on the surface on which the upper electrode 20 is formed. The pattern film 7 ′ was used for UV exposure, development, etching, and resist stripping. As a result, the shape of the lower electrode 21 was formed as shown in FIG.

工程E: ここでは、上部電極表面に第2絶縁層10と第3導電層11とを同時に形成したのである。このときの第2絶縁層10と第3導電層11との張り合わせは、樹脂層付金属箔14を用いて、図10に示すように、上部電極面に樹脂層付金属箔14を重ねて、約180℃×60分程度のプレス加工により張り合わせ、図5(h)と同様の状態とした。ここで言う樹脂層付金属箔は、金属箔の片面に絶縁層を構成するための半硬化状態の樹脂層を備えたものである。 Step E: Here, the second insulating layer 10 and the third conductive layer 11 are simultaneously formed on the upper electrode surface. At this time, the second insulating layer 10 and the third conductive layer 11 are laminated by using the resin layer-attached metal foil 14 and overlapping the resin layer-attached metal foil 14 on the upper electrode surface as shown in FIG. Bonding was performed by pressing at about 180 ° C. for about 60 minutes to obtain the same state as in FIG. The metal foil with a resin layer mentioned here is provided with a semi-cured resin layer for constituting an insulating layer on one side of the metal foil.

この実施例で用いた樹脂層付金属箔は、公称厚さ18μmで、粗化面の表面粗さ(Rzjis)が3.0μmである電解銅箔を用いて、その表面に塗工により半硬化樹脂層を形成したのである。この半硬化樹脂層の形成に用いる樹脂組成物を調製した。ここでは、樹脂として、ビスフェノールA型エポキシ樹脂(商品名:YD−128、東都化成社製)30重量部、o−クレゾール型エポキシ樹脂(商品名:ESCN−195XL80、住友化学社製)50重量部、エポキシ樹脂硬化剤として固形分25%のジメチルホルムアルデヒド溶液の形でジシアンジアミド(ジシアンジアミドとして4重量部)を16重量部、硬化促進剤として2−エチル4−メチルイミダゾール(商品名:キャゾール2E4MZ、四国化成社製)を0.1重量部をメチルエチルケトンとジメチルホルムアルデヒドとの混合溶剤(混合比:メチルエチルケトン/ジメチルホルムアルデヒド=4/6)に溶解して固形分60%の樹脂組成物とし、これを電解銅箔の粗面に塗布して用いた。そして、室温で30分間放置して、熱風乾燥機を用いて150℃の温風を2分間衝風することで、一定量の溶剤を除去し、50μm厚さの半硬化状態の樹脂膜とした。   The metal foil with resin layer used in this example is an electro-deposited copper foil having a nominal thickness of 18 μm and a roughened surface with a surface roughness (Rzjis) of 3.0 μm, and the surface thereof is semi-cured by coating. A resin layer was formed. A resin composition used for forming the semi-cured resin layer was prepared. Here, as resin, bisphenol A type epoxy resin (trade name: YD-128, manufactured by Tohto Kasei Co., Ltd.) 30 parts by weight, o-cresol type epoxy resin (trade name: ESCN-195XL80, manufactured by Sumitomo Chemical Co., Ltd.) 50 parts by weight 16 parts by weight of dicyandiamide (4 parts by weight as dicyandiamide) in the form of a dimethylformaldehyde solution having a solid content of 25% as an epoxy resin curing agent, and 2-ethyl 4-methylimidazole (trade name: Cazole 2E4MZ, Shikoku Chemicals) as a curing accelerator 0.1 part by weight is dissolved in a mixed solvent of methyl ethyl ketone and dimethyl formaldehyde (mixing ratio: methyl ethyl ketone / dimethyl formaldehyde = 4/6) to obtain a resin composition having a solid content of 60%, and this is an electrolytic copper foil It was used by coating on the rough surface. Then, the mixture was left at room temperature for 30 minutes, and a hot air at 150 ° C. was blown for 2 minutes using a hot air dryer to remove a certain amount of solvent, and a 50 μm thick semi-cured resin film was obtained. .

工程F: 上部電極/誘電層/下部電極からなるキャパシタ回路と第3導電層との導通を確保するためのレーザー法によるバイアホール形成のための孔明加工を行い、図6(i)に示すような状態とした。そして、バイアホールの内壁をメッキして層間導通を確保するための層間導通メッキ17として、定法に基づき銅メッキを行い、図6(j)に示す状態とした。 Step F: Drilling is performed for forming a via hole by a laser method for ensuring conduction between the capacitor circuit comprising the upper electrode / dielectric layer / lower electrode and the third conductive layer, as shown in FIG. It was in the state. Then, as the interlayer conductive plating 17 for plating the inner wall of the via hole to ensure the interlayer conductive, copper plating was performed based on a conventional method to obtain the state shown in FIG.

工程G: ここでは、この第3導電層11の上に25μm厚さのドライフィルムを用いてエッチングレジスト層を形成し、第3導電層11をエッチングするための、露光パターンフィルムを用いてUV露光し、現像し、エッチングし、レジスト剥離することで、図7(k)に示すように、外層回路17を形成し、プリント配線板1とした。 Step G: Here, an etching resist layer is formed on the third conductive layer 11 using a dry film having a thickness of 25 μm, and UV exposure is performed using an exposure pattern film for etching the third conductive layer 11. Then, development, etching, and resist peeling were performed to form the outer layer circuit 17 as shown in FIG.

本件発明に係る内蔵キャパシタ回路を備えるプリント配線板の製造方法は、内蔵キャパシタ回路を製造した同一平面内の不必要な部位に誘電層が存在しないため、信号回路のシグナル信号電送時の誘電損失は小さく、インダクタ等の他の回路素子を埋設配置することが可能となる。よって、回路設計が容易となり、設計のバリエーションが飛躍的に向上するのである。本件発明に係る製造方法で得られた内蔵キャパシタ回路を備えるプリント配線板は、極めて高品質のものとなるが、上記製造方法を持って効率よく生産可能であり、市場供給が容易なものとなる。   Since the dielectric layer does not exist in the unnecessary part in the same plane where the built-in capacitor circuit is manufactured, the dielectric loss at the time of signal signal transmission of the signal circuit is Other circuit elements such as an inductor can be embedded in a small size. Therefore, circuit design is facilitated and design variations are dramatically improved. A printed wiring board provided with a built-in capacitor circuit obtained by the manufacturing method according to the present invention is of extremely high quality, but can be efficiently produced with the above manufacturing method and can be easily supplied to the market. .

本件発明で用いるキャパシタ層形成材のバリエーションを示す模式断面図。The schematic cross section which shows the variation of the capacitor layer forming material used by this invention. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を内蔵するプリント配線板の製造フローを表す模式図。The schematic diagram showing the manufacture flow of the printed wiring board which incorporates a capacitor circuit. キャパシタ回路を絶縁層の両面に形成する場合の一形態を示す模式図。The schematic diagram which shows one form in the case of forming a capacitor circuit on both surfaces of an insulating layer. プリプレグと金属箔とを用い、上部電極面上に第2絶縁層及び第3導電層を形成する態様を表す模式図。The schematic diagram showing the aspect which forms a 2nd insulating layer and a 3rd conductive layer on an upper electrode surface using a prepreg and metal foil. 樹脂層付金属箔を用い、上部電極面上に第2絶縁層及び第3導電層を形成する態様を表す模式図。The schematic diagram showing the aspect which forms a 2nd insulating layer and a 3rd conductive layer on an upper electrode surface using the metal foil with a resin layer. 骨格材含有樹脂層付金属箔を用い、上部電極面上に第2絶縁層及び第3導電層を形成する態様を表す模式図。The schematic diagram showing the aspect which forms a 2nd insulating layer and a 3rd conductive layer on an upper electrode surface using metal foil with a frame material containing resin layer. 従来技術の製造フローを表した模式断面図。The schematic cross section showing the manufacturing flow of the prior art.

符号の説明Explanation of symbols

1 内蔵キャパシタ回路を備えるプリント配線板
2a,2b,2c キャパシタ層形成材
3 第1導電層
4 第2導電層
4a ニッケル−リン合金等の層
4b 銅層
5 誘電層
6 第1絶縁層
7 エッチングパターン露光フィルム
8 スリット
9,9’ エッチングレジスト層
10 第2絶縁層
11 第3導電層
12 プリプレグ
13 金属箔
14 樹脂層付金属箔
15 半硬化樹脂層
16 骨格材含有樹脂層付金属箔
17 骨格材
18 骨格材含有樹脂層
20 上部電極
21 下部電極
DESCRIPTION OF SYMBOLS 1 Printed wiring board 2a, 2b, 2c provided with built-in capacitor circuit Capacitor layer forming material 3 1st conductive layer 4 2nd conductive layer 4a Layer 4b of nickel-phosphorus alloy etc. Copper layer 5 Dielectric layer 6 1st insulating layer 7 Etching pattern Exposed film 8 Slit 9, 9 'Etching resist layer 10 Second insulating layer 11 Third conductive layer 12 Prepreg 13 Metal foil 14 Metal foil with resin layer 15 Semi-cured resin layer 16 Metal foil 17 with skeleton material-containing resin layer Skeleton material 18 Skeletal material-containing resin layer 20 Upper electrode 21 Lower electrode

Claims (4)

上部電極を形成する第1導電層と下部電極を形成する第2導電層との間に誘電層を備えるキャパシタ層形成材を用いて内蔵キャパシタ回路を備えるプリント配線板を製造する方法であって、
以下の工程A〜工程Gを備えることを特徴とした内蔵キャパシタ回路を備えるプリント配線板の製造方法。
工程A: 前記キャパシタ層形成材の第2導電層の外表面に第1絶縁層を形成する第1絶縁層形成工程。
工程B: 外層に位置する前記第1導電層の表面にエッチングレジスト層を形成し、エッチングパターンを露光し、現像し、上部電極部と不要部との間を細いスリット状にエッチングするスリットエッチング工程。
工程C: スリットエッチングした後に、第1導電層の前記不要部を剥離除去することで同時に不要部の誘電層も同時剥離し、上部電極を含む必要な回路を残留させる第1導電層不要部剥離工程。
工程D: 上部電極を形成した面をエッチングレジストで被覆し、第2導電層を下部電極形状とするためのエッチングパターン露光を行い、現像、エッチング、レジスト剥離を行い下部電極形状とする下部電極形成工程。
工程E: 上部電極表面に第2絶縁層及び第3導電層を形成する第2絶縁層形成工程。
工程F: 上部電極/誘電層/下部電極からなるキャパシタ回路と第3導電層との導通を確保するため等の孔明加工を行い、層間導通メッキ等を行う層間導通手段形成工程。
工程G: 第3導電層をエッチング加工することで外層回路を形成する外層回路形成工程。
A method of manufacturing a printed wiring board having a built-in capacitor circuit using a capacitor layer forming material having a dielectric layer between a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode,
The manufacturing method of a printed wiring board provided with the built-in capacitor circuit characterized by including the following processes A-G.
Step A: A first insulating layer forming step of forming a first insulating layer on the outer surface of the second conductive layer of the capacitor layer forming material.
Process B: A slit etching process in which an etching resist layer is formed on the surface of the first conductive layer located in the outer layer, the etching pattern is exposed and developed, and the space between the upper electrode part and the unnecessary part is etched into a thin slit shape. .
Step C: After the slit etching, the unnecessary portion of the first conductive layer is peeled and removed, so that the dielectric layer of the unnecessary portion is also peeled off at the same time, and the first conductive layer unnecessary portion is peeled off to leave a necessary circuit including the upper electrode. Process.
Step D: Cover the surface on which the upper electrode is formed with an etching resist, perform etching pattern exposure to make the second conductive layer into the lower electrode shape, and develop, etch, and remove the resist to form the lower electrode into the lower electrode shape Process.
Step E: A second insulating layer forming step of forming a second insulating layer and a third conductive layer on the upper electrode surface.
Step F: An interlayer conduction means forming step for performing interlayer machining such as perforating processing for ensuring conduction between the capacitor circuit composed of the upper electrode / dielectric layer / lower electrode and the third conductive layer, and the like.
Step G: an outer layer circuit forming step of forming an outer layer circuit by etching the third conductive layer.
前記キャパシタ層形成材の第2導電層は、少なくとも誘電層と接触する面にニッケル−リン合金層を備えたものを用いる請求項1に記載の内蔵キャパシタ回路を備えるプリント配線板の製造方法。 2. The method of manufacturing a printed wiring board having a built-in capacitor circuit according to claim 1, wherein the second conductive layer of the capacitor layer forming material includes a nickel-phosphorus alloy layer on at least a surface in contact with the dielectric layer. 前記スリットエッチングを行う場合のスリット幅は、25μm〜200μmである請求項1又は請求項2に記載の内蔵キャパシタ回路を備えるプリント配線板の製造方法。
The manufacturing method of a printed wiring board provided with a built-in capacitor circuit according to claim 1 or 2, wherein a slit width in the case of performing the slit etching is 25 to 200 µm.
請求項1〜請求項3のいずれかに記載の内蔵キャパシタ回路を備えるプリント配線板の製造方法で得られたプリント配線板。 The printed wiring board obtained by the manufacturing method of a printed wiring board provided with the built-in capacitor circuit in any one of Claims 1-3.
JP2004264742A 2004-09-10 2004-09-10 Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method Pending JP2006080402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264742A JP2006080402A (en) 2004-09-10 2004-09-10 Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264742A JP2006080402A (en) 2004-09-10 2004-09-10 Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method

Publications (1)

Publication Number Publication Date
JP2006080402A true JP2006080402A (en) 2006-03-23

Family

ID=36159594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264742A Pending JP2006080402A (en) 2004-09-10 2004-09-10 Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method

Country Status (1)

Country Link
JP (1) JP2006080402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070938A (en) * 2007-09-12 2009-04-02 Cmk Corp Component-equipped multilayer printed wiring board and its manufacturing method
JP2015078955A (en) * 2013-10-18 2015-04-23 株式会社日本マイクロニクス Inspection device and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070938A (en) * 2007-09-12 2009-04-02 Cmk Corp Component-equipped multilayer printed wiring board and its manufacturing method
JP2015078955A (en) * 2013-10-18 2015-04-23 株式会社日本マイクロニクス Inspection device and inspection method

Similar Documents

Publication Publication Date Title
TWI233768B (en) Double-sided wiring board and manufacturing method of double-sided wiring board
US6664127B2 (en) Method of manufacturing multi-layer printed wiring board
US10966324B2 (en) Wiring board, multilayer wiring board, and method of manufacturing wiring board
JP2007134364A (en) Method for manufacturing multilayer wiring board, multilayer wiring board, and electronic device using it
US20100261348A1 (en) Method for fabricating semiconductor package substrate having different thicknesses between wire bonding pad and ball pad
JP2015122545A (en) Multilayer wiring board and manufacturing method of the same
JPWO2006016589A1 (en) Dielectric layer constituent material manufacturing method, dielectric layer constituent material obtained by the manufacturing method, capacitor circuit forming member using the dielectric layer constituent material, capacitor circuit forming member obtained by the manufacturing method, and A multilayer printed wiring board obtained using a dielectric layer constituent material and / or a capacitor circuit forming member.
JP2007208263A (en) Method for manufacturing printed-circuit substrate with built-in thin-film capacitor
JP2008113002A (en) Printed circuit board with built-in capacitor, and manufacturing method thereof
JP4846258B2 (en) Wiring board and manufacturing method thereof
JP6189592B2 (en) Component-embedded printed circuit board and manufacturing method thereof
US7169707B2 (en) Method of manufacturing package substrate with fine circuit pattern using anodic oxidation
JP2010073809A (en) Method of manufacturing printed circuit board
JP3037662B2 (en) Multilayer wiring board and method of manufacturing the same
JP2004152904A (en) Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same
JP4488187B2 (en) Method for manufacturing substrate having via hole
KR101862243B1 (en) Method for manuracturing printed circuit board with via and fine pitch circuit and printed circuit board by the same method
JP2003124637A (en) Multilayer wiring board
JP2001068856A (en) Insulation resin sheet and its manufacture
JP2006080402A (en) Method for manufacturing printed-wiring board having embedded capacitor circuit and printed-wiring board obtained by the method
JP2013080823A (en) Printed wiring board and manufacturing method of the same
KR102054198B1 (en) Method for manufacturing wiring board
JP4466169B2 (en) Manufacturing method of substrate for semiconductor device
KR100704917B1 (en) Printed circuit board and the manufacturing method thereof
JP4492071B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326