JP2006080033A - Liquid filling battery - Google Patents

Liquid filling battery Download PDF

Info

Publication number
JP2006080033A
JP2006080033A JP2004265618A JP2004265618A JP2006080033A JP 2006080033 A JP2006080033 A JP 2006080033A JP 2004265618 A JP2004265618 A JP 2004265618A JP 2004265618 A JP2004265618 A JP 2004265618A JP 2006080033 A JP2006080033 A JP 2006080033A
Authority
JP
Japan
Prior art keywords
ampoule
power generation
liquid injection
path
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004265618A
Other languages
Japanese (ja)
Other versions
JP4130647B2 (en
Inventor
Akiko Endo
晶子 遠藤
Tomoya Watanabe
朋也 渡邉
Keizo Oda
敬三 小田
Yasuhiro Nishimura
保廣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004265618A priority Critical patent/JP4130647B2/en
Publication of JP2006080033A publication Critical patent/JP2006080033A/en
Application granted granted Critical
Publication of JP4130647B2 publication Critical patent/JP4130647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid filling battery with a high reliability capable of filling an electrolytic solution into a power generation part rapidly and positively. <P>SOLUTION: The liquid filling battery comprises an ampule filled with an electrolytic solution, a power generation part including a plurality of units cells laminated, and a structure having an ampule housing part, a power generation part housing part, and a liquid filling passage and an exhaust air passage communicating the ampule part and the power generation part housing part. The ampule and the power generation part are arranged through the liquid filling passage and the ampule is located with its sealing part on the opposite side of the liquid filling passage, and the ampule housing part has at least one groove connected to the liquid filling passage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、飛翔体に搭載され、飛翔体発射時の衝撃のみで活性化する注液式電池に関する。さらに詳しくは、低電圧で小型タイプの注液式電池に関する。   The present invention relates to a liquid injection type battery that is mounted on a flying object and is activated only by an impact when the flying object is launched. More specifically, the present invention relates to a small-sized injection type battery with a low voltage.

近年、注液式電池の小型化が要求されるにつれて、使用する電解液の量も少なくなっている。少量の電解液が入ったアンプルが衝撃により確実に割れ、電解液が発電部に不足なく供給することができる構造が求められている。   In recent years, the amount of electrolytic solution to be used has been reduced as the size of the injection type battery has been reduced. There is a demand for a structure in which an ampoule containing a small amount of electrolyte can be reliably cracked by an impact and the electrolyte can be supplied to the power generation unit without a shortage.

本発明者らは、発射衝撃のみで活性化する新規な注液式電池として、電解液を封入したアンプル、電解液を発電部に導く注液路、および発電部をその順に配列し、アンプル側を、飛翔体の前部に向けて搭載する構造の注液式電池を検討している。
アンプルから発電部の方向に発射衝撃による力が加わると、アンプル収納部の底部、すなわち発電部側の内壁にアンプルが衝突することによりアンプルが破壊され、アンプル内に封入されていた電解液が外部へ飛散する。そして、アンプルから解放された電解液は、飛翔体の進行方向とは逆の方向に流れるから、アンプル収納部から注液路を経て発電部へ流入する。このように発射衝撃のみで発電部に電解液が供給されて電圧を発生させることができる。
As a novel injection type battery that is activated only by a launch impact, the present inventors arranged an ampoule enclosing an electrolyte, an injection path for introducing the electrolyte to the power generation unit, and a power generation unit in that order, and the ampoule side We are investigating a liquid-injection battery with a structure that mounts the airframe toward the front of the flying object.
When a force from the impact is applied in the direction from the ampoule to the power generation unit, the ampoule collides with the bottom of the ampoule storage unit, that is, the inner wall on the power generation unit side, the ampoule is destroyed, and the electrolyte enclosed in the ampoule is externally Scatter to. And since the electrolyte solution released from the ampoule flows in the direction opposite to the traveling direction of the flying object, it flows from the ampoule storage part to the power generation part through the liquid injection path. In this way, the electrolytic solution can be supplied to the power generation unit only by the launch impact to generate a voltage.

ところで、アンプルは、径を細くした開口部より電解液を入れた後、その開口部をガスバーナで溶融して封口される。このようにして形成されるアンプルの封口部は、その厚さが他の部分より厚く、また厚さのばらつきも大きい。そのような封口部が発電部側に位置するようにアンプルを収納部に収納すると、発射衝撃により、アンプルの封口部は、アンプル収納部の底に衝突する。このため、アンプルへの衝撃力が小さい場合、アンプルが十分に破壊されずに、電解液の一部がアンプル内に残留し、発電部に電解液が十分に供給されない可能性がある。
また、アンプルが粉々に破壊された場合でも、アンプルの破片がアンプル収納部の注液路の入口に折り重なって入口を塞いでしまい、電解液が発電部へ迅速に流れ込まない可能性がある。
By the way, an ampoule is filled with an electrolytic solution through an opening having a reduced diameter, and then the opening is melted and sealed with a gas burner. The ampoule sealing portion thus formed is thicker than the other portions and has a large variation in thickness. When the ampoule is stored in the storage part so that such a sealing part is located on the power generation part side, the sealing part of the ampoule collides with the bottom of the ampoule storage part due to the launch impact. For this reason, when the impact force to the ampoule is small, the ampoule is not sufficiently destroyed, and a part of the electrolyte solution may remain in the ampoule, and the electrolyte solution may not be sufficiently supplied to the power generation unit.
Further, even when the ampule is broken into pieces, the ampule fragments may fold over the inlet of the liquid injection path of the ampule storage section and block the inlet, and the electrolyte may not flow into the power generation section quickly.

そこで、本発明は、上記の問題を解決するため、電解液を迅速かつ確実に発電部へ注入することが可能な高信頼性の注液式電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly reliable liquid injection type battery that can quickly and surely inject an electrolytic solution into a power generation unit in order to solve the above-described problems.

本発明の注液式電池は、(a)電解液を封入したアンプルと、(b)積層された単セル複数個を含む発電部と、(c)アンプル収納部、発電部収納部、ならびに前記アンプル収納部および前記発電部収納部を連絡する注液路および排気路を有する構造体とを備え、前記アンプルおよび前記発電部が、前記注液路を介して配列しており、前記アンプルの封口部が、前記発電部の反対側に位置し、前記アンプル収納部が前記注液路に連なる少なくとも1つの溝を有することを特徴とする。   The injection type battery of the present invention includes (a) an ampoule enclosing an electrolyte, (b) a power generation unit including a plurality of stacked single cells, (c) an ampoule storage unit, a power generation unit storage unit, and A structure having an injection path and an exhaust path communicating with the ampoule storage section and the power generation section storage section, the ampoule and the power generation section being arranged via the liquid injection path, and sealing the ampoule The section is located on the opposite side of the power generation section, and the ampoule storage section has at least one groove connected to the liquid injection path.

前記積層された単セルの端面が前記注液路に向けて配置され、前記注液路が、前記各単セルに対応して分割された複数の流路を含み、前記アンプル収納部が、前記注液路に連なる部分において各流路に連絡する少なくとも1つの溝を有するのが好ましい。   End surfaces of the stacked single cells are arranged toward the liquid injection path, the liquid injection path includes a plurality of flow paths divided corresponding to the single cells, and the ampoule storage part includes: It is preferable to have at least one groove that communicates with each flow path in a portion that continues to the liquid injection path.

本発明によれば、電解液を迅速かつ確実に発電部へ注入することができる。このため、電圧が迅速に立ち上がり、確実に活性化する高信頼性の注液式電池を提供することができる。   According to the present invention, the electrolytic solution can be quickly and reliably injected into the power generation unit. Therefore, it is possible to provide a highly reliable liquid injection battery in which the voltage rises quickly and is reliably activated.

本発明の実施の形態の一例として、低電圧で小型タイプの注液式電池の正面および側面における概略縦断面図をそれぞれ図1および図2に示す。
ステンレス鋼製のケース5内に収納されたステンレス鋼製の構造体3は、アンプルを収納するアンプル収納部1a、アンプル収納部1aの下方に発電部を収納する発電部収納部2a、ならびにアンプル収納部1aと発電部収納部2aとを連絡する注液路8および排気路9を有している。
As an example of an embodiment of the present invention, a schematic longitudinal cross-sectional view of a front surface and a side surface of a low-voltage, small-sized injection type battery is shown in FIGS. 1 and 2, respectively.
The stainless steel structure 3 housed in the stainless steel case 5 includes an ampoule housing part 1a for housing an ampoule, a power generation part housing part 2a for housing a power generating part below the ampoule housing part 1a, and an ampoule housing. It has a liquid injection path 8 and an exhaust path 9 that connect the section 1a and the power generation section storage section 2a.

アンプル収納部1aには、過塩素酸水溶液からなる電解液を封入したアンプル1が配されている。発電部収納部2aには、セパレータ24と電極体25とを交互に積層することにより構成された、単セルの複数個からなる発電部2が配されている。アンプル1、注液路8、および発電部2は、その順に、しかもそれらの中心部はほぼ一直線に並ぶように、配列される。そして、この注液式電池は、アンプル側を飛翔体の前部に向けて搭載される。従って、注液式電池には、飛翔体の発射衝撃が、図2に示す矢印の方向に加えられる。   An ampoule 1 in which an electrolytic solution made of a perchloric acid aqueous solution is enclosed is disposed in the ampoule housing 1a. In the power generation section storage section 2a, a power generation section 2 composed of a plurality of single cells, which is configured by alternately laminating separators 24 and electrode bodies 25, is disposed. The ampule 1, the liquid injection path 8, and the power generation unit 2 are arranged in that order, and so that their central portions are arranged in a substantially straight line. And this injection type | mold battery is mounted with the ampoule side facing the front part of a flying body. Therefore, the projectile impact of the flying object is applied to the liquid injection type battery in the direction of the arrow shown in FIG.

注液式電池に、図2に示す矢印の方向に発射衝撃による力が加わると、アンプル1が破壊され、封入されていた電解液が外部へ飛散する。そして、無旋回であるが発射衝撃により、電解液は注液路8を通り、発電部2へ流入する(図2中の破線で示した矢印の方向)。なお、電池内部は密閉されているため、発電部収納部2a内に電解液が流入した体積分の空気は、排気路9を通り、アンプル収納部1aへ排気される。排気路9は、発電部の上部側面から、注液路8とは重ならないようにアンプル収納部の側方を迂回して、アンプル収納部の上方側につながっている。   When a force due to a launch impact is applied to the liquid injection type battery in the direction of the arrow shown in FIG. 2, the ampoule 1 is broken and the enclosed electrolyte is scattered to the outside. Although there is no turning, the electrolytic solution flows through the liquid injection path 8 and flows into the power generation unit 2 due to the launch impact (in the direction of the arrow indicated by the broken line in FIG. 2). Since the inside of the battery is hermetically sealed, the volume of air into which the electrolytic solution has flowed into the power generation unit storage unit 2a passes through the exhaust path 9 and is exhausted to the ampoule storage unit 1a. The exhaust path 9 is connected to the upper side of the ampoule storage part from the upper side surface of the power generation part, bypassing the side of the ampoule storage part so as not to overlap the liquid injection path 8.

さらに、アンプル収納部1a内のアンプル1は、封口部1bを発電部2と反対側にして設置されている。これにより、図2に示す矢印の方向に発射衝撃を受けると、アンプル1の封口部1bと反対側における厚さの薄い面が、アンプル収納部1aの底部、すなわち発電部2側の内壁に衝突する。このため、衝撃力が小さくてもアンプル1は細かく破壊されやすくなり、アンプル1内に電解液の一部が残留することがなく、確実に十分な量の電解液が発電部2に供給される。   Furthermore, the ampoule 1 in the ampoule storage part 1a is installed with the sealing part 1b opposite to the power generation part 2. Accordingly, when receiving a launch impact in the direction of the arrow shown in FIG. 2, the thin surface on the side opposite to the sealing portion 1b of the ampule 1 collides with the bottom of the ampule housing portion 1a, that is, the inner wall on the power generation portion 2 side. To do. Therefore, even if the impact force is small, the ampoule 1 is easily broken finely, and a part of the electrolyte does not remain in the ampoule 1, and a sufficient amount of the electrolyte is reliably supplied to the power generation unit 2. .

ここで、図3は発電部2の拡大断面図である。電極体25としては、ニッケル等からなる基板22の一方の面に二酸化鉛からなる正極23が被覆され、他方の面に鉛からなる負極21が被覆されたものが用いられる。単セル26は、負極21、セルロース製のセパレータ24、および正極23からなる。発電部2は、積層された各単セル26の端面、すなわち、単セル26を構成する正極、負極およびセパレータの端面が注液路8側に向くように配置されている。   Here, FIG. 3 is an enlarged cross-sectional view of the power generation unit 2. As the electrode body 25, one in which a positive electrode 23 made of lead dioxide is coated on one surface of a substrate 22 made of nickel or the like and a negative electrode 21 made of lead is coated on the other surface is used. The single cell 26 includes a negative electrode 21, a separator 24 made of cellulose, and a positive electrode 23. The power generation unit 2 is arranged so that the end surfaces of the stacked single cells 26, that is, the end surfaces of the positive electrode, the negative electrode, and the separator constituting the single cell 26 face the liquid injection channel 8 side.

注液路8は、発電部2を構成する各単セル26ごとに分割された複数の流路からなり、単セル26の上方に1つずつ流路が配置されている。このため、各単セルに同時にかつ均等に電解液が流入する。
なお、注液路の形状としては、注液路の入口を一つとし、内部で分岐させて複数の流路を形成し、出口を複数としてもよい。
The liquid injection path 8 includes a plurality of flow paths divided for each single cell 26 constituting the power generation unit 2, and one flow path is disposed above the single cell 26. For this reason, electrolyte solution flows into each single cell simultaneously and equally.
In addition, as the shape of the liquid injection path, there may be a single inlet for the liquid injection path, branched internally to form a plurality of flow paths, and a plurality of outlets.

アンプル収納部1aの底部は、図4に示すように、最も低い帯状の部分11と、その帯状の部分11と側部とをつなぐ傾斜部12とからなり、部分11に注液路8が設けられている。そして、傾斜部12には、各注液路8につながる一対の溝8aが設けられている。これにより、細かく砕けたアンプル1の破片が注液路8の上を折り重なっても、電解液がその溝8aを通って注液路8に流れ込むことができる。これにより、電解液が確実に、かつ迅速に発電部2へ流入することができる。   As shown in FIG. 4, the bottom portion of the ampoule storage portion 1 a is composed of the lowest belt-like portion 11 and an inclined portion 12 connecting the belt-like portion 11 and the side portion, and a liquid injection path 8 is provided in the portion 11. It has been. In addition, the inclined portion 12 is provided with a pair of grooves 8 a connected to the respective liquid injection paths 8. Thereby, even if the finely broken pieces of the ampoule 1 fold over the liquid injection path 8, the electrolyte can flow into the liquid injection path 8 through the groove 8a. Thereby, electrolyte solution can flow in into the electric power generation part 2 reliably and rapidly.

アンプルの破片が入りにくいという点で、溝の幅は少なくとも注液路の径よりも小さいのが好ましい。また、電解液をできるだけ多く、迅速に注液路に送り込むという点で、溝は、アンプル収納部の底部において、注液路からアンプル収納部の側面の方向に延びているのが好ましい。また、電解液が注液路に流れ込みやすいという点で、注液路は、アンプル収納部の底部おいて中心部の最も低い部分に開口させ、溝はその最も低い部分につながる傾斜部に設けることが好ましい。
なお、上記の構造体は、発電部を構成する各単セルの上方に各1つずつ流路を設けたが、複数の流路を設けてもよい。また、各流路に連なる溝を各2つずつ設けた構成としたが、各流路に連なる溝の数はこれに限定されない。
It is preferable that the width of the groove is at least smaller than the diameter of the liquid injection path in that ampule fragments are difficult to enter. Moreover, it is preferable that the groove | channel is extended in the direction of the side surface of the ampoule accommodating part from the pouring path at the bottom part of an ampoule accommodating part at the point of sending electrolyte solution as much as possible to a pouring path rapidly. Also, since the electrolyte is easy to flow into the liquid injection path, the liquid injection path is opened at the lowest part of the central part at the bottom of the ampoule storage part, and the groove is provided in the inclined part connected to the lowest part. Is preferred.
In the above structure, one flow path is provided above each single cell constituting the power generation unit, but a plurality of flow paths may be provided. Moreover, although it was set as the structure which provided two each of the groove | channels connected to each flow path, the number of the grooves connected to each flow path is not limited to this.

アンプル収納部1aの上部および発電部収納部2aの下部には、電解液が外部へ漏れないように仮蓋4がそれぞれ配されている。構造体3とケース5との間には、出力端子10a、10bと発電部2とを接続する一対のリード線6a、6bが配されている。
そして、ケース5およびアンプル収納部1aの上部には、ポリエチレンなどからなる樹脂により蓋7が形成され、これによりケース5が封口される。
Temporary lids 4 are respectively disposed on the upper part of the ampoule storage part 1a and the lower part of the power generation part storage part 2a so that the electrolyte does not leak outside. Between the structure 3 and the case 5, a pair of lead wires 6a and 6b for connecting the output terminals 10a and 10b and the power generation unit 2 are arranged.
A lid 7 is formed of a resin made of polyethylene or the like on the upper part of the case 5 and the ampoule housing portion 1a, thereby sealing the case 5.

以下に、本発明の実施例を詳細に説明する。しかし、本発明はこれらの実施例に限定されない。   Examples of the present invention will be described in detail below. However, the present invention is not limited to these examples.

《実施例1》
所定量の電解液を入れたアンプルを封口台に載せ、封口カバーを設置した。首部分をガスバーナで加熱し、首部分が溶融垂下すると同時に、封口治具でつまみアンプルの開口部を封口し、封口部1bを形成した。そして、アンプルの高さ寸法の規格内に入るように封口部1bを研磨した。このとき、アンプル1の厚さは0.3〜0.5mmであり、その封口部1bの厚さは1〜1.5mmであった。
Example 1
An ampoule containing a predetermined amount of electrolyte was placed on a sealing stand and a sealing cover was installed. The neck portion was heated with a gas burner, and at the same time the neck portion melted and dripped, the opening of the knob ampoule was sealed with a sealing jig to form the sealing portion 1b. And the sealing part 1b was grind | polished so that it might be in the specification of the height dimension of an ampoule. At this time, the thickness of the ampule 1 was 0.3 to 0.5 mm, and the thickness of the sealing portion 1b was 1 to 1.5 mm.

上記の図1および2と同様の構造の注液式電池を作製した。発電部2には、セルロース製のセパレータ24、および電極体25を交互に積層して、3個の単セル26で構成される発電部を用いた。電極体25には、図3のようにニッケルからなる基板22の一方の面に二酸化鉛からなる正極23を被覆し、他方の面に鉛からなる負極21を被覆したものを用いた。この3個の単セル26にそれぞれ対応するように、図2に示すような3つの流路からなる注液路8を有するステンレス鋼製の構造体3を用いた。そして、各単セル26の一方の端面が注液路8に対向するように発電部2を配置した。ガラス製のアンプル1には、過塩素酸水溶液からなる電解液を封入した。   A liquid injection type battery having the same structure as that shown in FIGS. 1 and 2 was produced. As the power generation unit 2, a power generation unit configured by three single cells 26 in which cellulose separators 24 and electrode bodies 25 are alternately stacked is used. As the electrode body 25, as shown in FIG. 3, one surface of a substrate 22 made of nickel was coated with a positive electrode 23 made of lead dioxide, and the other surface was coated with a negative electrode 21 made of lead. A stainless steel structure 3 having a liquid injection path 8 composed of three flow paths as shown in FIG. 2 was used so as to correspond to each of the three single cells 26. And the electric power generation part 2 was arrange | positioned so that one end surface of each single cell 26 might oppose the liquid injection path 8. FIG. An ampoule 1 made of glass was filled with an electrolytic solution made of a perchloric acid aqueous solution.

《比較例1》
アンプル収納部1aに溝8aを設けない以外は構造体3と同様の構造体を用い、実施例1と同様の方法により注液式電池を作製した。
《比較例2》
アンプル1を、その封口部1bを下側、すなわち発電部2側に向けてアンプル収納部1a内に配置した以外は、比較例1と同様の方法により注液式電池を作製した。
<< Comparative Example 1 >>
A liquid injection type battery was produced in the same manner as in Example 1 except that the groove 8a was not provided in the ampoule housing portion 1a and a structure similar to the structure 3 was used.
<< Comparative Example 2 >>
A liquid injection type battery was produced in the same manner as in Comparative Example 1 except that the ampoule 1 was placed in the ampoule storage part 1a with the sealing part 1b facing downward, that is, the power generation part 2 side.

実施例1ならびに比較例1および2の注液式電池をそれぞれ10個ずつ作製した。そして、常温にて、各電池に旋回を加えず、発射衝撃(10000G)に相当する衝撃力を加えることによりアンプルを破壊した。このとき、0.1秒以内に4V以上に電池電圧が立ち上がった電池の個数をそれぞれ調べた。
この評価結果を表1に示す。
Ten injection-type batteries of Example 1 and Comparative Examples 1 and 2 were produced. Then, at normal temperature, the ampoule was broken by applying an impact force corresponding to a launch impact (10000 G) without turning each battery. At this time, the number of batteries whose battery voltage rose to 4 V or more within 0.1 seconds was examined.
The evaluation results are shown in Table 1.

Figure 2006080033
Figure 2006080033

実施例1では、アンプルが確実に粉々に割れて、電解液が確実かつ十分に各単セルへ流入したため、いずれの電池も時間内に所定の電圧が発生した。これに対して、比較例1では、アンプル収納部に注液路に連なる溝が設けられていないため、破壊されたアンプルの破片が注液路を塞いだために、発電部への電解液の供給が迅速に行われずに、所定の時間内に電圧が立ち上がらない電池がみられた。また、比較例2では、アンプルの破壊が不充分なため、電解液の一部がアンプル内に残留し、発電部への電解液の供給が不充分となり、正常に電圧が立ち上がらない電池がみられた。   In Example 1, since the ampule was surely broken into pieces and the electrolyte flowed into each single cell reliably and sufficiently, a predetermined voltage was generated in time for all the batteries. On the other hand, in Comparative Example 1, since the ampoule storage part is not provided with a groove continuous with the liquid injection path, broken ampoule fragments blocked the liquid injection path, so that the electrolyte solution to the power generation part There was a battery that was not supplied quickly and the voltage did not rise within a predetermined time. In Comparative Example 2, since the ampoule is not sufficiently broken, a part of the electrolyte remains in the ampoule, the supply of the electrolyte to the power generation unit becomes insufficient, and the voltage does not rise normally. It was.

以上のように、本発明の注液式電池は高信頼性を有するため、高性能の飛翔体に搭載される電源として適用できる。   As described above, since the injection type battery of the present invention has high reliability, it can be applied as a power source mounted on a high-performance flying object.

本発明の注液式電池の側面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the side surface of the injection type battery of this invention. 本発明の注液式電池の正面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the front of the injection type battery of this invention. 図2中のX部分(発電部)の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a portion X (power generation unit) in FIG. 2. 本発明の注液式電池におけるアンプル収納部を、発射衝撃を受ける方向(図2に示す矢印の方向)からみた図である。It is the figure which looked at the ampoule accommodating part in the injection type battery of this invention from the direction (direction of the arrow shown in FIG. 2) which receives a launch impact.

符号の説明Explanation of symbols

1 アンプル
1a アンプル収納部
1b 封口部
2 発電部
2a 発電部収納部
3 構造体
4 仮蓋
5 ケース
7 蓋
8 注液路
8a 溝
9 排気路
10a、10b 出力端子
DESCRIPTION OF SYMBOLS 1 Ampoule 1a Ampoule storage part 1b Sealing part 2 Power generation part 2a Power generation part storage part 3 Structure 4 Temporary cover 5 Case 7 Lid 8 Liquid injection path 8a Groove 9 Exhaust path 10a, 10b Output terminal

Claims (2)

(a)電解液を封入したアンプル、
(b)積層された単セルの複数個を含む発電部、および
(c)アンプル収納部、発電部収納部、ならびに前記アンプル収納部と前記発電部収納部とを連絡する注液路および排気路を有する構造体を備え、
前記アンプルおよび前記発電部が、前記注液路を介して配列されており、
前記アンプルは、その封口部が前記注液路と反対側に位置し、
前記アンプル収納部が、前記注液路に連なる少なくとも1つの溝を有することを特徴とする注液式電池。
(A) an ampoule enclosing an electrolyte solution,
(B) a power generation unit including a plurality of stacked single cells; and (c) an ampoule storage unit, a power generation unit storage unit, and a liquid injection path and an exhaust path that connect the ampoule storage unit and the power generation unit storage unit. Comprising a structure having
The ampoule and the power generation unit are arranged via the liquid injection path,
The ampoule is located on the side opposite to the liquid injection path,
The liquid injection type battery, wherein the ampoule storage part has at least one groove connected to the liquid injection path.
前記積層された単セルの端面が前記注液路に向けて配置され、
前記注液路が、前記各単セルに対応して分割された複数の流路を含み、
前記アンプル収納部が、前記注液路に連なる部分において各流路に連絡する少なくとも1つの溝を有する請求項1記載の注液式電池。
The end face of the laminated single cell is arranged toward the liquid injection path,
The liquid injection path includes a plurality of flow paths divided corresponding to the single cells,
The liquid injection type battery according to claim 1, wherein the ampoule storage portion has at least one groove communicating with each flow path at a portion connected to the liquid injection path.
JP2004265618A 2004-09-13 2004-09-13 Injection battery Active JP4130647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265618A JP4130647B2 (en) 2004-09-13 2004-09-13 Injection battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265618A JP4130647B2 (en) 2004-09-13 2004-09-13 Injection battery

Publications (2)

Publication Number Publication Date
JP2006080033A true JP2006080033A (en) 2006-03-23
JP4130647B2 JP4130647B2 (en) 2008-08-06

Family

ID=36159296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265618A Active JP4130647B2 (en) 2004-09-13 2004-09-13 Injection battery

Country Status (1)

Country Link
JP (1) JP4130647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659405A (en) * 2015-02-02 2015-05-27 江苏锋驰绿色电源有限公司 Lithium battery with conveniently replaced electrolyte
KR101549398B1 (en) 2014-05-20 2015-09-02 주식회사 비츠로셀 reserve battery case

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522760U (en) * 1991-09-05 1993-03-26 早川ゴム株式会社 Floor material laying structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549398B1 (en) 2014-05-20 2015-09-02 주식회사 비츠로셀 reserve battery case
CN104659405A (en) * 2015-02-02 2015-05-27 江苏锋驰绿色电源有限公司 Lithium battery with conveniently replaced electrolyte

Also Published As

Publication number Publication date
JP4130647B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
KR101327777B1 (en) Battery Module
CN103682188B (en) Flame-proof explosion-proof battery pack
CN214254576U (en) End cover assembly, battery monomer, battery and power consumption device
JPH04366547A (en) Gas depolarizing assembling battery
WO1989005525A3 (en) Extended life nickel-hydrogen storage cell
KR880010516A (en) Sealed Absorbing Electrolyte Storage Battery with End Cell for Expansion Compensation
TW201505232A (en) Fuel-type solid electrolyte secondary battery
JP4130647B2 (en) Injection battery
JP2014235935A (en) Lid for battery tray, battery tray with lid, and method for manufacturing battery
US10749230B2 (en) Metal-air battery unit and metal-air battery
US20180212284A1 (en) Battery system
US20200194848A1 (en) Battery system
CN209374493U (en) A kind of lithium battery
CN109742451B (en) Liquid injection method of cylindrical lithium ion battery
JP7022316B2 (en) Sealed battery
CN104103853B (en) Rechargeable battery
JP4423143B2 (en) Injection battery
KR20200077304A (en) Pouch-type Battery Case Comprising Asymmetrical Concave Part
JP2007048535A (en) Liquid injection type battery
JP2006079999A (en) Liquid filling battery
JP2008071741A (en) Liquid injection battery
CN201699083U (en) Standby lithium battery
JP2007323878A (en) Immersion cell
JP2006080034A (en) Liquid filling battery
JP2008047495A (en) Liquid injection type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Ref document number: 4130647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6