JP4423143B2 - Injection battery - Google Patents

Injection battery Download PDF

Info

Publication number
JP4423143B2
JP4423143B2 JP2004264286A JP2004264286A JP4423143B2 JP 4423143 B2 JP4423143 B2 JP 4423143B2 JP 2004264286 A JP2004264286 A JP 2004264286A JP 2004264286 A JP2004264286 A JP 2004264286A JP 4423143 B2 JP4423143 B2 JP 4423143B2
Authority
JP
Japan
Prior art keywords
power generation
ampoule
generation unit
liquid injection
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004264286A
Other languages
Japanese (ja)
Other versions
JP2006080000A (en
Inventor
晶子 遠藤
敬三 小田
朋也 渡邉
保廣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004264286A priority Critical patent/JP4423143B2/en
Publication of JP2006080000A publication Critical patent/JP2006080000A/en
Application granted granted Critical
Publication of JP4423143B2 publication Critical patent/JP4423143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Description

本発明は、飛翔体に搭載され、飛翔体発射時の衝撃のみで活性化する注液式電池に関する。さらに詳しくは、低電圧で小型タイプの注液式電池に関する。   The present invention relates to a liquid injection type battery that is mounted on a flying object and is activated only by an impact when the flying object is launched. More specifically, the present invention relates to a small-sized injection type battery with a low voltage.

従来の注液式電池では、飛翔体の発射に際して、その発射による衝撃によって、電解液を封入したアンプルが破壊される。同時に飛翔体が回転することにより、遠心力が与えられ、電解液がアンプルの周囲に配置された発電部に流入し、電池が活性化し、電圧が発生する。このような注液式電池は、発射後に旋回する飛翔体の信管用電源部として使用されている(例えば、特許文献1)。   In the conventional injection type battery, when the flying object is launched, the ampoule enclosing the electrolyte is destroyed by the impact of the launch. At the same time, the flying body rotates, so that centrifugal force is applied, and the electrolytic solution flows into the power generation unit arranged around the ampoule, the battery is activated, and a voltage is generated. Such a liquid injection type battery is used as a power supply unit for a fuze of a flying object that turns after launch (for example, Patent Document 1).

発電部では、複数の単セルが積層され、各単セルが互いに直列に接続されている。単セルは、二酸化鉛からなる正極、鉛からなる負極、リング状セパレータより構成される。
ところで、近年、旋回せずに発射衝撃のみで活性化する電源部として注液式電池の適用が求められている。しかし、上記のような従来の注液式電池では、発射衝撃だけでは、電解液がアンプルの周囲に配置された発電部に流入しないため、電池が活性化しないという問題がある。
In the power generation unit, a plurality of single cells are stacked, and the single cells are connected in series with each other. A single cell is comprised from the positive electrode which consists of lead dioxide, the negative electrode which consists of lead, and a ring-shaped separator.
By the way, in recent years, application of a liquid injection type battery is demanded as a power supply unit that is activated only by a launch impact without turning. However, in the conventional liquid injection type battery as described above, there is a problem that the battery is not activated because the electrolyte does not flow into the power generation unit arranged around the ampoule only by the launch impact.

そこで、上記問題を解決するために、発射衝撃のみで活性化する注液式電池が検討されている。この注液式電池の側面および正面における概略縦断面図をそれぞれ図4および5に示す。
ステンレス鋼製のケース15内に収納されたステンレス鋼製の構造体13は、アンプルを収納するアンプル収納部11a、前記アンプル収納部11aの下方に発電部を収納する発電部収納部12a、ならびに前記アンプル収納部11aと発電部収納部12aとを連絡する注液路18および排気路19を有している。
Therefore, in order to solve the above problem, a liquid injection type battery that is activated only by a launch impact has been studied. 4 and 5 are schematic longitudinal cross-sectional views of the side surface and the front surface of the injection type battery, respectively.
The stainless steel structure 13 stored in the stainless steel case 15 includes an ampoule storage part 11a for storing an ampoule, a power generation part storage part 12a for storing a power generation part below the ampoule storage part 11a, and the A liquid injection path 18 and an exhaust path 19 are provided to connect the ampoule storage section 11a and the power generation section storage section 12a.

アンプル収納部11aには、過塩素酸水溶液からなる電解液を封入したアンプル11が設置されている。発電部収納部12aには、セパレータ34と極板35とを交互に積層することにより構成された単セル複数個からなる発電部12が配されている。
ここで、図6は発電部12の拡大断面図である。極板35としては、図6に示すように、ニッケル等からなる基板32の一方の面に正極として二酸化鉛33が被覆され、他方の面に負極として鉛31が被覆されたものが用いられる。単セル36は、鉛31、セルロース製のセパレータ34、および二酸化鉛33からなる。そして、発電部12は、積層された各単セル36の側面が注液路18側に向くように配置され、アンプル11および発電部12は、注液路18を介して一直線上に配置されている。
An ampoule 11 in which an electrolytic solution made of a perchloric acid aqueous solution is enclosed is installed in the ampoule housing portion 11a. The power generation unit storage unit 12a is provided with a power generation unit 12 composed of a plurality of single cells formed by alternately laminating separators 34 and electrode plates 35.
Here, FIG. 6 is an enlarged cross-sectional view of the power generation unit 12. As the electrode plate 35, as shown in FIG. 6, one having a substrate 32 made of nickel or the like coated with lead dioxide 33 as a positive electrode and the other surface coated with lead 31 as a negative electrode is used. The single cell 36 includes lead 31, a cellulose separator 34, and lead dioxide 33. The power generation unit 12 is arranged such that the side surfaces of the stacked single cells 36 face the liquid injection path 18 side, and the ampoule 11 and the power generation unit 12 are arranged in a straight line via the liquid injection path 18. Yes.

アンプル収納部11aの上部および発電部収納部12aの下部には、電解液が外部へ漏れないように仮蓋14がそれぞれ配されている。構造体13とケース15との間には、出力端子20a、20bと発電部12とを接続する一対のリード線16a、16bが配されている。
そして、ケース15およびアンプル収納部11aの上部に配されている仮蓋14の上部には、ポリエチレンなどからなる樹脂により蓋17が形成され、これによりケース15が封口される。
Temporary lids 14 are respectively arranged on the upper part of the ampoule storage part 11a and the lower part of the power generation part storage part 12a so that the electrolyte does not leak outside. A pair of lead wires 16 a and 16 b that connect the output terminals 20 a and 20 b and the power generation unit 12 are arranged between the structure 13 and the case 15.
Then, a lid 17 is formed of a resin made of polyethylene or the like on the upper portion of the temporary lid 14 disposed on the upper portion of the case 15 and the ampoule housing portion 11a, whereby the case 15 is sealed.

この注液式電池の作動について説明する。
図5に示す矢印の方向に発射衝撃による力が加わると、アンプル11が破壊され、封入されていた電解液が外部へ飛散する。そして、アンプル11と発電部12と注液路18が一直線上に配置しているため、無旋回であっても発射衝撃により、電解液は注液路18を通り、発電部12へ流入する(図5中の破線で示した矢印の方向)。この時、電池内部は密閉されているため、発電部収納部12a内に電解液が流入した体積分の空気は、排気路19を通り、アンプル収納部11aへ排気される。これにより、電解液の発電部12への流入が迅速に行われる。発電部12を構成する各単セルの側面が、注液路18側を向いているため、確実に各セルに電解液が流入し、電圧が発生する。
The operation of the injection type battery will be described.
When a force due to a shooting impact is applied in the direction of the arrow shown in FIG. 5, the ampoule 11 is broken and the enclosed electrolyte is scattered outside. And since the ampoule 11, the electric power generation part 12, and the liquid injection path 18 are arrange | positioned on a straight line, even if it is non-turning, electrolyte solution flows into the electric power generation part 12 through the liquid injection path 18 by a launch impact ( The direction of the arrow indicated by the broken line in FIG. 5). At this time, since the inside of the battery is hermetically sealed, the volume of air into which the electrolytic solution has flowed into the power generation unit storage unit 12a passes through the exhaust path 19 and is exhausted to the ampoule storage unit 11a. Thereby, inflow to the electric power generation part 12 of electrolyte solution is performed rapidly. Since the side surface of each single cell constituting the power generation unit 12 faces the liquid injection path 18 side, the electrolyte surely flows into each cell, and a voltage is generated.

しかし、注液路が中央に一つしか設けられていないため、発電部の端部よりも中央に位置する単セルに電解液が流入しやすい。したがって、単セルの注液量にばらつきが生じやすい。また、発電部の端部にまで電解液が充分に行き渡るまでに時間を要してしまう。
また、従来の注液式電池に対して、発電部の体積が約1/2の小型タイプで、発生電圧が1/6と低い注液式電池が要求されている。すなわち、電解液が少量で、発電部を構成する単セルの積層数が少なく、かつ発射衝撃のみで発電部への電解液の注液が可能な注液式電池の要望が高まっている。
実開昭60−64574号公報
However, since only one liquid injection path is provided in the center, the electrolytic solution easily flows into the single cell located in the center rather than the end of the power generation unit. Therefore, the liquid injection amount of the single cell tends to vary. In addition, it takes time for the electrolytic solution to sufficiently reach the end of the power generation unit.
In addition, there is a demand for a liquid injection type battery that is a small type with a volume of a power generation unit of about 1/2 and a generated voltage as low as 1/6 as compared with a conventional liquid injection type battery. That is, there is an increasing demand for a liquid injection type battery that has a small amount of electrolytic solution, has a small number of stacked single cells that constitute the power generation unit, and can inject the electrolytic solution into the power generation unit only with a firing impact.
Japanese Utility Model Publication No. 60-64574

そこで、本発明は、上記の問題を解決し、発電部を構成する複数の単セルに電解液を同時かつ均等に発電部へ注入でき、迅速な活性化が可能である注液式電池を提供することを目的とする。   Accordingly, the present invention provides a liquid injection type battery that solves the above problems and can inject electrolyte into a plurality of unit cells constituting the power generation unit simultaneously and evenly into the power generation unit and enables rapid activation. The purpose is to do.

本発明の注液式電池は、(a)電解液を封入したアンプルと、(b)複数個の単セルを積層した発電部と、(c)アンプル収納部、発電部収納部、ならびに前記アンプル収納部および前記発電部収納部を連絡する注液路および排気路を有する構造体とを備え、前記アンプルおよび前記発電部が、前記注液路を介して直線状に配列され、積層された前記単セルの側面が前記注液路に向けて配置され、前記注液路が、前記単セルごとに分割されて、それぞれ前記単セルの上方に位置し、前記排気路は、前記発電部収納部の側面に前記アンプル収納部と連絡する入口を有し、前記側面に垂直な方向に対する入口付近の排気路の角度θが、30°≦θ<70°であることを特徴とする。 Pouring type battery of the present invention, (a) and ampoule an electrolyte solution was sealed, (b) a plurality of the power generation unit for the single cell and product layer, (c) ampule portion, the power generation unit housing portion, and the A structure having an injection path and an exhaust path communicating with the ampoule storage section and the power generation section storage section, and the ampoule and the power generation section are linearly arranged and stacked via the liquid injection path A side surface of the single cell is arranged toward the liquid injection path, the liquid injection path is divided for each single cell and is positioned above the single cell, and the exhaust path is stored in the power generation unit. And an angle θ of the exhaust passage in the vicinity of the inlet with respect to a direction perpendicular to the side surface is 30 ° ≦ θ <70 ° .

本発明によれば、発電部を構成する複数の単セルに電解液を同時かつ均等に発電部へ注入でき、迅速な活性化が可能である注液式電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, an injection type battery which can inject | pour electrolyte into a power generation part simultaneously and equally to the several single cell which comprises a power generation part, and can be activated rapidly can be provided.

本発明は、電解液を封入したアンプルと、単セル複数個を横方向に積層した発電部と、アンプル収納部、発電部収納部、ならびに前記アンプル収納部および前記発電部収納部を連絡する注液路および排気路を有する構造体とを備え、前記アンプルおよび前記発電部が、前記注液路を介して直線状に配列され、積層された前記単セルの側面が前記注液路に向けて配置され、前記注液路が、前記単セルごとに分割されており、それぞれ前記単セルの上方に位置する注液式電池に関する。   The present invention communicates an ampoule enclosing an electrolyte, a power generation unit in which a plurality of single cells are stacked in a lateral direction, an ampoule storage unit, a power generation unit storage unit, and the ampoule storage unit and the power generation unit storage unit. A structure having a liquid path and an exhaust path, the ampoule and the power generation unit are arranged in a straight line through the liquid injection path, and the side surfaces of the stacked single cells face the liquid injection path The liquid injection path is arranged, and the liquid injection path is divided for each single cell, and each of the liquid injection paths is located above the single cell.

本発明の実施の形態の一例として低電圧で小型タイプの注液式電池の正面および側面における概略縦断面図をそれぞれ図1および2に示す。
ステンレス鋼製のケース5内に収納されたステンレス鋼製の構造体3は、アンプルを収納するアンプル収納部1a、前記アンプル収納部1aの下方に発電部を収納する発電部収納部2a、ならびに前記アンプル収納部1aと発電部収納部2aとを連絡する注液路8および排気路9を有している。
As an example of the embodiment of the present invention, schematic longitudinal sectional views of the front and side surfaces of a low-voltage, small-sized injection type battery are shown in FIGS. 1 and 2, respectively.
The stainless steel structure 3 housed in the stainless steel case 5 includes an ampoule housing part 1a for housing an ampoule, a power generation part housing part 2a for housing a power generating part below the ampoule housing part 1a, and the It has a liquid injection path 8 and an exhaust path 9 that connect the ampoule storage section 1a and the power generation section storage section 2a.

アンプル収納部1aには、過塩素酸水溶液からなる電解液を封入したアンプル1が設置されている。発電部収納部2aには、セパレータ24と極板25とを交互に積層することにより構成された単セル複数個からなる発電部2が配されている。アンプル1、注液路8、および発電部2は、図2に示す発射衝撃を受ける方向(矢印の方向)に、その順に配列されている。
ここで、図3は発電部2の拡大断面図である。極板25としては、ニッケル等からなる基板22の一方の面に正極として二酸化鉛23が被覆され、他方の面に負極として鉛21が被覆されたものが用いられる。単セル26は、鉛21、セルロース製のセパレータ24、および二酸化鉛23からなる。発電部2は、積層された各単セル26の側面、すなわち、単セル26を構成する正極、負極およびセパレータの端面が注液路8側に向くように配置され、アンプル1および発電部2は、注液路8を介して直線状に配列されている。この場合、アンプル1および発電部2の軸心が注液路8を介して一直線上に一致していることが好ましいが、必ずしも一致していなくてもよい。
The ampoule housing 1a is provided with an ampoule 1 in which an electrolytic solution made of a perchloric acid aqueous solution is enclosed. In the power generation unit storage unit 2a, the power generation unit 2 including a plurality of single cells configured by alternately laminating separators 24 and electrode plates 25 is disposed. The ampule 1, the liquid injection path 8, and the power generation unit 2 are arranged in that order in the direction (in the direction of the arrow) that receives the launch impact shown in FIG. 2.
Here, FIG. 3 is an enlarged cross-sectional view of the power generation unit 2. As the electrode plate 25, a substrate 22 made of nickel or the like and having one surface coated with lead dioxide 23 as a positive electrode and the other surface coated with lead 21 as a negative electrode is used. The single cell 26 includes a lead 21, a separator 24 made of cellulose, and a lead dioxide 23. The power generation unit 2 is disposed so that the side surfaces of the stacked single cells 26, that is, the end surfaces of the positive electrode, the negative electrode, and the separator constituting the single cell 26 face the liquid injection path 8 side. Are arranged in a straight line through the liquid injection path 8. In this case, it is preferable that the axes of the ampoule 1 and the power generation unit 2 coincide on a straight line via the liquid injection path 8, but they do not necessarily have to coincide.

前記複数の注液路8は、発電部2を構成する各単セル26ごとに分割されており、前記単セル26の上方に各1つずつ配置されている。すなわち、注液路8は前記単セル26の数と同じ数の流路を有し、それら流路がそれぞれ単セル26の上側に位置する。なお、注液路の形状としては、注液路の入口を一つとし、内部で分岐させて複数の流路を形成し、出口を複数としてもよい。   The plurality of liquid injection paths 8 are divided for each single cell 26 constituting the power generation unit 2, and are arranged one by one above the single cell 26. That is, the liquid injection path 8 has the same number of flow paths as the number of the single cells 26, and these flow paths are respectively positioned above the single cells 26. As the shape of the liquid injection path, there may be a single inlet for the liquid injection path, branched internally to form a plurality of flow paths, and a plurality of outlets.

アンプル収納部1aの上部および発電部収納部2aの下部には、電解液が外部へ漏れないように仮蓋4がそれぞれ配されている。構造体3とケース5との間には、出力端子10a、10bと発電部2とを接続する一対のリード線6a、6bが配されている。
そして、ケース5およびアンプル収納部1aの上部には、ポリエチレンなどからなる樹脂により蓋7が形成され、これによりケース5が封口される。
Temporary lids 4 are respectively disposed on the upper part of the ampoule storage part 1a and the lower part of the power generation part storage part 2a so that the electrolyte does not leak outside. Between the structure 3 and the case 5, a pair of lead wires 6a and 6b for connecting the output terminals 10a and 10b and the power generation unit 2 are arranged.
A lid 7 is formed of a resin made of polyethylene or the like on the upper part of the case 5 and the ampoule housing portion 1a, thereby sealing the case 5.

上記の注液式電池の作動について説明する。
図2に示す矢印の方向に発射衝撃による力が加わると、アンプル1が破壊され、封入されていた電解液が外部へ飛散する。そして、アンプル1と発電部2と注液路8が一直線上に配置しているため、無旋回であるが発射衝撃により、電解液は注液路8を通り、発電部2へ流入する(図2中の破線で示した矢印の方向)。
The operation of the above injection type battery will be described.
When a force due to a shooting impact is applied in the direction of the arrow shown in FIG. 2, the ampoule 1 is broken and the enclosed electrolyte is scattered outside. And since the ampoule 1, the power generation unit 2, and the liquid injection path 8 are arranged in a straight line, the electrolyte solution flows through the liquid injection path 8 and flows into the power generation unit 2 due to the launch impact, although there is no turning (see FIG. (Direction of arrow indicated by a broken line in FIG. 2).

この時、複数の注液路8が各単セルの上方に各1つずつ配置されているため、各単セルに同時かつ均等に電解液が流入する。また、電池内部は密閉されているため、発電部収納部2a内に電解液が流入した体積分の空気は、排気路9を通り、アンプル収納部1aへ排気される。
これにより、電解液がすばやく均等に発電部へ流入することができるため、電池電圧が確実に発生し、電池は迅速に活性化することができる。
At this time, since each of the plurality of liquid injection paths 8 is arranged above each unit cell, the electrolyte flows into each unit cell simultaneously and evenly. Since the inside of the battery is hermetically sealed, the volume of air into which the electrolytic solution has flowed into the power generation unit storage unit 2a passes through the exhaust path 9 and is exhausted to the ampoule storage unit 1a.
Thereby, since electrolyte solution can flow into a power generation part quickly and uniformly, a battery voltage generate | occur | produces reliably and a battery can be activated quickly.

前記排気路は、前記発電部収納部の側面に前記アンプル収納部と連絡する入口を有し、前記側面に垂直な方向に対する入口付近の排気路の角度θが、30°≦θ<70°であることが好ましい。
角度θが30°未満のとき、排気路に電解液が入り込み、電解液により排気路内が完全に塞がれてしまう。このため、発電部収納部の空気を排気路を介してアンプル収納部へ排気することができなくなり、電解液が発電部へすばやく流入することが困難となる。
一方、角度θが70°以上では、排気路とアンプル収納部の位置関係による構造体の構造的な問題が生じるため、排気路を設けることができない。
The exhaust path has an inlet that communicates with the ampoule storage part on a side surface of the power generation unit storage part, and an angle θ of the exhaust path near the inlet with respect to a direction perpendicular to the side surface is 30 ° ≦ θ <70 °. Preferably there is.
When the angle θ is less than 30 °, the electrolyte enters the exhaust passage, and the inside of the exhaust passage is completely blocked by the electrolyte. For this reason, it becomes impossible to exhaust the air of a power generation part accommodating part to an ampoule accommodating part via an exhaust path, and it becomes difficult for electrolyte solution to flow into a power generation part quickly.
On the other hand, when the angle θ is 70 ° or more, there is a structural problem of the structure due to the positional relationship between the exhaust path and the ampoule housing portion, and therefore the exhaust path cannot be provided.

また、上記アンプルの上部に、アンプルを破壊するための破壊機構を設けてもよい。例えば、ステンレス鋼製の円柱状の錘を図1におけるアンプルの上に配置してもよい。図1のように破壊機構を設けなくても、発射衝撃により受ける力のみで、アンプルを破壊することも可能である。   Further, a breaking mechanism for breaking the ampoule may be provided on the upper part of the ampoule. For example, a cylindrical weight made of stainless steel may be disposed on the ampoule in FIG. Even if a breaking mechanism is not provided as shown in FIG. 1, it is possible to break the ampoule only by the force received by the launch impact.

上記の構造体では、発電部を構成する各単セルの上方に各1つずつ注液路を設けた構成としたが、各単セルの上方にそれぞれ複数個の注液路を設けた構成としてもよい。
以下に、本発明の実施例を詳細に説明する。しかし、本発明はこれらの実施例に限定されない。
In the above structure, a single liquid injection path is provided above each single cell constituting the power generation unit, but a plurality of liquid injection paths are provided above each single cell. Also good.
Examples of the present invention will be described in detail below. However, the present invention is not limited to these examples.

《実施例1》
上記の図1および2と同様の構造の注液式電池を作製した。発電部2には、セルロース製のセパレータ24、および極板25を交互に積層して、3個の単セル26で構成される発電部を用いた。極板25には、図3のようにニッケルからなる基板22の一方の面に正極として二酸化鉛23を被覆し、他方の面に負極として鉛21を被覆したものを用いた。この3個の単セル26にそれぞれ対応するように、図2に示すような3つの注液路8を有するステンレス鋼製の構造体3を用いた。そして、各単セル26の一方の側面が注液路8に対向するように発電部2を配置した。ガラス製のアンプル1には、過塩素酸水溶液からなる電解液を封入した。また、発電部収納部側面に垂直な方向に対する入口付近の排気路の角度θを45°とした。このようにして、低電圧で小型タイプの注液式電池を得た。
Example 1
A liquid injection type battery having the same structure as that shown in FIGS. 1 and 2 was produced. As the power generation unit 2, a power generation unit composed of three single cells 26 in which cellulose separators 24 and electrode plates 25 are alternately stacked is used. As the electrode plate 25, as shown in FIG. 3, one surface of a substrate 22 made of nickel was coated with lead dioxide 23 as a positive electrode, and the other surface was coated with lead 21 as a negative electrode. A stainless steel structure 3 having three injection channels 8 as shown in FIG. 2 was used so as to correspond to the three single cells 26, respectively. And the electric power generation part 2 was arrange | positioned so that one side surface of each single cell 26 might oppose the liquid injection path 8. FIG. An ampoule 1 made of glass was filled with an electrolytic solution composed of a perchloric acid aqueous solution. In addition, the angle θ of the exhaust passage near the entrance with respect to the direction perpendicular to the side surface of the power generation unit storage unit was set to 45 °. In this way, a small-sized injection type battery with a low voltage was obtained.

《比較例1》
実施例1における構造体3の代わりに、上記の図4および5と同様に注液路が一つである構造体13を用いた以外は、実施例1と同様の方法により注液式電池を作製した。
実施例1および比較例1の注液式電池をそれぞれ5個ずつ作製した。そして、常温にて、各電池に旋回を加えず、発射衝撃(15000G)に相当する衝撃力を加えることによりアンプルを破壊した。このとき、0.03秒以内に所定の電圧まで電池電圧が立ち上がった電池の個数をそれぞれ調べた。
この評価結果を表1に示す。
<< Comparative Example 1 >>
In place of the structure 3 in the first embodiment, a liquid injection type battery is manufactured in the same manner as in the first embodiment except that the structure 13 having a single liquid injection path is used as in FIGS. Produced.
Five injection type batteries of Example 1 and Comparative Example 1 were produced. Then, at normal temperature, the ampoule was broken by applying an impact force corresponding to the launch impact (15000 G) without turning each battery. At this time, the number of batteries whose battery voltage rose to a predetermined voltage within 0.03 seconds was examined.
The evaluation results are shown in Table 1.

Figure 0004423143
Figure 0004423143

実施例1では、電解液が同時かつ均一に各単セルへ流入したため、いずれの電池も時間内に所定の電圧が発生した。これに対して、比較例1では、単セルへの電解液の流入が均一でなく、発電部の端部ほど電解液が流入しにくいため、時間内に所定の電圧が得られなかった。   In Example 1, since the electrolyte solution flowed into each single cell simultaneously and uniformly, a predetermined voltage was generated in time for all the batteries. On the other hand, in Comparative Example 1, the inflow of the electrolyte into the single cell was not uniform, and the electrolyte did not easily flow into the end portion of the power generation unit, so that a predetermined voltage could not be obtained in time.

《実施例2》
実施例1で用いた構造体の代わりに、図1に示す角度θを表2のように種々に変えた構造体をそれぞれ作製した。そして、これらの構造体を用いた以外は、実施例1と同様の方法により注液式電池をそれぞれ作製した。そして、実施例1と同様に発射衝撃を加えたときの排気路における液づまりの状態を調べた。なお、液づまりとは、排気路に電解液が入り込んで完全に排気路が電解液で塞がれた状態である。
その評価結果を表2に示す。
Example 2
Instead of the structure used in Example 1, structures in which the angle θ shown in FIG. 1 was variously changed as shown in Table 2 were prepared. And the injection type | mold battery was each produced by the method similar to Example 1 except using these structures. Then, as in Example 1, the state of liquid clogging in the exhaust passage when a shooting impact was applied was examined. The liquid clogging is a state in which the electrolyte enters the exhaust path and is completely blocked by the electrolyte.
The evaluation results are shown in Table 2.

Figure 0004423143
Figure 0004423143

角度θが30°以上では、液づまりが起こらなかった。また、角度θが70°以上では、排気路とアンプル収納部の位置関係による構造体の構造的な問題により、排気路を設けることができなかった。
このことから、角度θが30°≦θ<70°のとき、排気路の液づまりは起こらず、スムーズに発電部収納部内の空気をアンプル収納部に排気でき、電解液がすばやく発電部に流入することがわかった。
When the angle θ was 30 ° or more, liquid clogging did not occur. In addition, when the angle θ is 70 ° or more, the exhaust path cannot be provided due to the structural problem of the structure due to the positional relationship between the exhaust path and the ampoule storage portion.
Therefore, when the angle θ is 30 ° ≦ θ <70 °, liquid clogging of the exhaust passage does not occur, the air in the power generation unit storage unit can be smoothly exhausted to the ampoule storage unit, and the electrolyte quickly flows into the power generation unit I found out that

以上のように、本発明の注液式電池は、発電部を構成する複数の単セルに電解液を同時かつ均等に発電部へ注入できるため、迅速な活性化を要する注液式電池に適用できる。   As described above, the liquid injection type battery of the present invention can be applied to a liquid injection type battery that requires rapid activation because the electrolyte can be injected into the power generation unit simultaneously and evenly into a plurality of single cells constituting the power generation unit. it can.

本発明の実施例の注液式電池の側面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the side surface of the injection type battery of the Example of this invention. 本発明の実施例の注液式電池の正面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the front of the injection type battery of the Example of this invention. 図2中のX部分(発電部)の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a portion X (power generation unit) in FIG. 2. 比較例の注液式電池の側面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the side surface of the injection type battery of a comparative example. 比較例の注液式電池の正面における概略縦断面図である。It is a schematic longitudinal cross-sectional view in the front of the injection type battery of a comparative example. 図5中のY部分(発電部)の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a Y portion (power generation unit) in FIG. 5.

符号の説明Explanation of symbols

1 アンプル
2 発電部
3 構造体
4 仮蓋
5 ケース
6a、6b リード線
7 蓋
8 注液路
9 排気路
10a、10b 出力端子
21 鉛
22 基板
23 二酸化鉛
24 セパレータ
25 極板
26 単セル
DESCRIPTION OF SYMBOLS 1 Ampoule 2 Power generation part 3 Structure 4 Temporary cover 5 Case 6a, 6b Lead wire 7 Lid 8 Injection path 9 Exhaust path 10a, 10b Output terminal 21 Lead 22 Substrate 23 Lead dioxide 24 Separator 25 Electrode plate 26 Single cell

Claims (1)

(a)電解液を封入したアンプルと、(b)複数個の単セルを積層した発電部と、(c)アンプル収納部、発電部収納部、ならびに前記アンプル収納部および前記発電部収納部を連絡する注液路および排気路を有する構造体とを備え、
前記アンプルおよび前記発電部が、前記注液路を介して直線状に配列され、
積層された前記単セルの側面が前記注液路に向けて配置され、
前記注液路が、前記単セルごとに分割されて、それぞれ前記単セルの上方に位置し、
前記排気路は、前記発電部収納部の側面に前記アンプル収納部と連絡する入口を有し、
前記側面に垂直な方向に対する入口付近の排気路の角度θが、30°≦θ<70°であることを特徴とする注液式電池
(A) an ampoule enclosing an electrolyte; (b) a power generation unit in which a plurality of single cells are stacked; (c) an ampoule storage unit, a power generation unit storage unit, and the ampoule storage unit and the power generation unit storage unit. A structure having a liquid injection path and an exhaust path in communication with each other;
The ampoule and the power generation unit are arranged in a straight line through the liquid injection path,
The side surfaces of the stacked single cells are arranged toward the liquid injection path,
The liquid injection path is divided for each single cell, and is located above the single cell ,
The exhaust path has an inlet in communication with the ampoule storage part on a side surface of the power generation part storage part,
An injection type battery characterized in that an angle θ of the exhaust passage near the inlet with respect to a direction perpendicular to the side surface is 30 ° ≦ θ <70 ° .
JP2004264286A 2004-09-10 2004-09-10 Injection battery Expired - Lifetime JP4423143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264286A JP4423143B2 (en) 2004-09-10 2004-09-10 Injection battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264286A JP4423143B2 (en) 2004-09-10 2004-09-10 Injection battery

Publications (2)

Publication Number Publication Date
JP2006080000A JP2006080000A (en) 2006-03-23
JP4423143B2 true JP4423143B2 (en) 2010-03-03

Family

ID=36159267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264286A Expired - Lifetime JP4423143B2 (en) 2004-09-10 2004-09-10 Injection battery

Country Status (1)

Country Link
JP (1) JP4423143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047495A (en) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd Liquid injection type battery

Also Published As

Publication number Publication date
JP2006080000A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
CN112787048B (en) Lithium ion battery, battery module, battery pack and automobile
CN214254576U (en) End cover assembly, battery monomer, battery and power consumption device
JP2008293980A (en) Electrode assembly and secondary battery using it
CN217334364U (en) End cover assembly, battery monomer, battery and power consumption device
JP5190488B2 (en) Lithium secondary battery
WO2023025104A1 (en) Battery cell, battery, and electric device
CN214505621U (en) Battery monomer, battery and use device of battery monomer as power
CN212659597U (en) Secondary battery and battery pack
JP4423143B2 (en) Injection battery
JP2007265656A (en) Square battery case and square battery
CN104103853B (en) Rechargeable battery
CN217444527U (en) Battery and electric device
WO2023108571A1 (en) Battery cell, battery, electric apparatus, manufacturing method and manufacturing device
JP4130647B2 (en) Injection battery
CN115441105A (en) End cover assembly, single battery, battery module and electric equipment
JP2007048535A (en) Liquid injection type battery
JP2006079999A (en) Liquid filling battery
CN114725610A (en) End cover assembly, battery monomer, battery and power consumption device
JP2013251123A (en) Square secondary battery
CN114696012A (en) Battery cell, method for manufacturing same, battery, and electric device
CN221080176U (en) Top cap subassembly and battery package
JP2006080034A (en) Liquid filling battery
JP2008047495A (en) Liquid injection type battery
CN219873988U (en) Battery monomer, battery and electric equipment
CN219419220U (en) Battery cell, battery and electricity utilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4423143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4