JP2006077867A - Bearing sleeve and its manufacturing method - Google Patents

Bearing sleeve and its manufacturing method Download PDF

Info

Publication number
JP2006077867A
JP2006077867A JP2004261702A JP2004261702A JP2006077867A JP 2006077867 A JP2006077867 A JP 2006077867A JP 2004261702 A JP2004261702 A JP 2004261702A JP 2004261702 A JP2004261702 A JP 2004261702A JP 2006077867 A JP2006077867 A JP 2006077867A
Authority
JP
Japan
Prior art keywords
bearing sleeve
bearing
wire
manufacturing
inner face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261702A
Other languages
Japanese (ja)
Inventor
Ikuo Kobayashi
郁夫 小林
Hiromichi Kobayashi
弘通 小林
Yuichi Sato
雄一 佐藤
Kuniyasu Kobayashi
邦康 小林
Takashi Yamamoto
敬士 山本
Hideki Kobayashi
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Fine Tech Co Ltd
Original Assignee
Citizen Fine Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Fine Tech Co Ltd filed Critical Citizen Fine Tech Co Ltd
Priority to JP2004261702A priority Critical patent/JP2006077867A/en
Publication of JP2006077867A publication Critical patent/JP2006077867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the durability and heat resistance of a bearing by forming a number of fine vertical grooves approximately perpendicular to the rotating direction, in the inner face of a journal bearing. <P>SOLUTION: Blanking work for a bearing sleeve 1 is followed by wiring work. Herein, with a wire 2 passing through a blank inner face 1a, the bearing sleeve 1 is slid once or several times in the axial direction. At this time, paste 3 containing diamond grains having grain sizes of 10 μm or smaller is previously applied to the wire 2 to give no rotation to both the bearing sleeve 1 and the wire 2. Thus, the number of fine vertical grooves 1b approximately perpendicular to the rotating direction are formed in the inner face 1a of the journal bearing to serve as lubricating oil reservoirs. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷却ファン用軸受などに使用される軸受スリーブ及びその製造方法に関する。   The present invention relates to a bearing sleeve used for a cooling fan bearing and the like and a method of manufacturing the same.

従来、軸受内部表面に縦溝や凹部の油溜まりを形成する方法として、溝パターンをエッチングによって加工する方法(例えば、特許文献1参照。)、型加工による方法(例えば、特許文献2参照。)、切削加工や塑性加工、旋削加工によって螺旋状の溝をスリーブ内面に形成する方法(例えば、特許文献3参照。)、砥粒を用いたブラスティング方法(例えば、特許文献4参照。)、眼球状のショットの噴射方法(例えば、特許文献5参照。)、ダイヤモンド成膜技術を用いた方法(例えば、特許文献6参照。)等様々な方法が知られている。   Conventionally, as a method of forming a vertical groove or an oil reservoir of a concave portion on the inner surface of the bearing, a method of processing a groove pattern by etching (for example, see Patent Document 1), a method by mold processing (for example, see Patent Document 2) , A method of forming a spiral groove on the inner surface of the sleeve by cutting, plastic working or turning (see, for example, Patent Document 3), a blasting method using abrasive grains (for example, see Patent Document 4), and an eyeball. Various methods are known, such as a method for jetting a shaped shot (for example, see Patent Document 5) and a method using a diamond film forming technique (for example, see Patent Document 6).

セラミックスは金属材料に比べて耐熱性、耐摩耗性などの面で優れており、切削工具などには広く応用されている。また、高密度を有するセラミックスは油を含浸する機能がないため、水や油を使う軸受(水中ポンプ、血液ポンプ、メカニカルシールなど)に用途が限定されていた。しかし、セラミックスは共有結合性・イオン結合性が強いために、ごく微少の水や油が潤滑剤として作用することが知られている。近年は、流体軸受とボールベアリングとの中間的存在である滑り摩擦を採用した冷却ファン用軸受材料としても注目されて実用化が試みられている。
特開平6−10148号公報(第2頁、図6) 特開平10−249464号公報(第2−3頁、図1−図7) 特開2002−36004号公報(第2−3頁、図1) 特開2002−193693号公報(第2−3頁、図1−図2) 特開平7−188738号公報(第3−4頁、図1) 特開2004−116770号公報(第3−4頁、図1−図6)
Ceramics are superior to metal materials in terms of heat resistance and wear resistance, and are widely applied to cutting tools and the like. Further, since ceramics having a high density do not have a function of impregnating with oil, the use thereof is limited to bearings using water or oil (submersible pump, blood pump, mechanical seal, etc.). However, since ceramics have strong covalent bonds and ionic bonds, it is known that very small amounts of water and oil act as lubricants. In recent years, it has attracted attention as a bearing material for cooling fans that employs sliding friction, which is an intermediate between a fluid bearing and a ball bearing, and has been put into practical use.
JP-A-6-10148 (2nd page, FIG. 6) JP-A-10-249464 (page 2-3, FIG. 1 to FIG. 7) JP 2002-36004 A (page 2-3, FIG. 1) JP 2002-193893 A (page 2-3, FIG. 1 to FIG. 2) JP 7-188738 A (page 3-4, FIG. 1) JP 2004-116770 A (page 3-4, FIGS. 1 to 6)

しかし、セラミックス製の小型ジャーナル軸受(φ0.1〜φ20)の軸受内部表面に縦溝や凹部の油溜まりを形成するには上記公知方法は何れも用いることができない。セラミックスは加工性、寸法精度、表面粗さ精度の面では悪く、軸受としてはカジリ、ガタ等が発生するという問題があるからである。また、表面が粗いと粒界脱離が起きて相手材を摩耗させてしまい、鏡面にすると界面同士でスティックスリップ現象が発生するという問題もあった。   However, none of the above known methods can be used to form a vertical groove or a reservoir of oil in the concave portion on the inner surface of a ceramic small journal bearing (φ0.1 to φ20). This is because ceramics are poor in terms of workability, dimensional accuracy, and surface roughness accuracy, and there is a problem that galling, looseness, and the like are generated as a bearing. In addition, if the surface is rough, grain boundary detachment occurs and the mating material is worn, and when it is mirror-finished, there is a problem that a stick-slip phenomenon occurs between the interfaces.

本発明は、このような従来の問題を解決するためになされたものであり、セラミックス製の小型ジャーナル軸受内面に深さ1μm以下の縦溝を形成する方法である。その目的は、セラミックスの利点を生かし耐久性の向上が図れる軸受スリーブ及びその製造方法を提供することである。   The present invention has been made to solve such a conventional problem, and is a method of forming a longitudinal groove having a depth of 1 μm or less on the inner surface of a ceramic small journal bearing. The object is to provide a bearing sleeve that can improve the durability by taking advantage of ceramics, and a method of manufacturing the same.

前述した目的を達成するための本発明の手段は、ジャーナル軸受の内面に回転方向に略直交する微細な縦溝を多数有することを特徴とする。   The means of the present invention for achieving the above-described object is characterized in that a large number of fine vertical grooves substantially perpendicular to the rotation direction are provided on the inner surface of the journal bearing.

また、前記軸受スリーブの材料はセラミックスであることを特徴とする。   The material of the bearing sleeve is ceramics.

前述した目的を達成するための本発明の他の手段は、請求項1又は請求項2記載の軸受スリーブを製造する方法において、前記縦溝は重ねた多数の軸受スリーブの軸穴にワイヤーを挿通して加工することを特徴とする。   According to another aspect of the present invention for achieving the above-mentioned object, in the method of manufacturing the bearing sleeve according to claim 1 or 2, the longitudinal groove is inserted through a shaft hole of a plurality of bearing sleeves stacked. And processing.

また、前記ワイヤー加工で用いるワイヤーには粒径φ10μm以下のダイヤモンド粒を被着したことを特徴とする。   The wire used in the wire processing is characterized in that diamond grains having a particle diameter of φ10 μm or less are deposited.

また、前記粒径は、より好ましくはφ2〜φ4μmであることを特徴とする。   The particle size is more preferably φ2 to φ4 μm.

本発明によれば、ジャーナル軸受の内面に回転方向に略直交する微細な縦溝を多数設け、この縦溝は軸受スリーブの軸穴にワイヤーを挿通して加工したものであるから、本発明で得られる縦溝が潤滑油の油溜まりとなり、ミクロプール現象が発生して動摩擦係数(通常μ=0.1)の大幅な減少(μ=0.001程度)が期待できる。本発明により真円度1.0μm以下、円筒度1.0μm以下の高精度な加工が可能であるから、軸受と軸とのクリアランスを少なく設計できる。また、同時に溝の表面はワイヤー加工により鏡面仕上げされ、その表面粗さは非接触式表面粗さ計を用いた測定でRa0.1μm程度、Ry0.5μm程度となった(図3のX(軸方向)Profile参照)。これにより軸受の耐久性の向上が期待できる。   According to the present invention, a large number of fine vertical grooves that are substantially orthogonal to the rotation direction are provided on the inner surface of the journal bearing, and these vertical grooves are formed by inserting a wire through the shaft hole of the bearing sleeve. The obtained vertical groove becomes an oil pool of the lubricating oil, and a micropool phenomenon occurs, so that a significant reduction (about μ = 0.001) of the dynamic friction coefficient (usually μ = 0.1) can be expected. According to the present invention, high-precision machining with a roundness of 1.0 μm or less and a cylindricity of 1.0 μm or less is possible, so that the clearance between the bearing and the shaft can be designed to be small. At the same time, the surface of the groove was mirror-finished by wire processing, and the surface roughness was about 0.1 μm Ra and about 0.5 μm Ry when measured using a non-contact surface roughness meter (X (axis of FIG. 3 Direction) See Profile). This can be expected to improve the durability of the bearing.

以下、本発明の実施の形態を図面を参照して詳細に説明する。図1はこの本発明の実施の形態である軸受スリーブの中央縦断面図である。図1において、1はアルミナから成る軸受スリーブであり、軸穴の内面1aには約1μmの深さの縦溝1bが略中心軸方向に多数形成されている。縦溝1bの方向は軸受の回転方向に対する傾斜角αにして90°±30°以下に形成されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a central longitudinal sectional view of a bearing sleeve according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a bearing sleeve made of alumina, and a large number of longitudinal grooves 1b having a depth of about 1 μm are formed on the inner surface 1a of the shaft hole in a substantially central axis direction. The direction of the longitudinal groove 1b is formed to be 90 ° ± 30 ° or less as an inclination angle α with respect to the rotation direction of the bearing.

次に、この軸受スリーブ1の製造方法について説明する。まず、アルミナ材料からプレス成形により予め図1に示すような軸受スリーブ1のブランクを形成する。図2は溝加工の方法を示す模式図である。図2において、2は軸受スリーブ1の内径に対してやや小さい径のピアノ線から成るワイヤーであり、3は粒径φ10μm以下(好ましくはφ2〜φ4μm)のダイヤモンド粒であり、ダイヤモンド粒3を含んだペーストをワイヤー2に塗布することによって被着してある。ブランク加工に引き続いてワイヤー加工に移行する。ここでは重ねて固定した多数の軸受スリーブ1のブランクの軸穴内面1aにダイヤモンドペースト3を塗布したワイヤー2を挿通して加工する。ワイヤー2は軸受スリーブ1に対して中心軸方向に往復1回〜数回摺動させる。   Next, a method for manufacturing the bearing sleeve 1 will be described. First, a blank of the bearing sleeve 1 as shown in FIG. 1 is formed in advance from an alumina material by press molding. FIG. 2 is a schematic view showing a groove processing method. In FIG. 2, 2 is a wire made of a piano wire having a diameter slightly smaller than the inner diameter of the bearing sleeve 1, and 3 is a diamond particle having a particle diameter of φ10 μm or less (preferably φ2 to φ4 μm). The paste is applied by applying the paste to the wire 2. Shift to wire processing following blank processing. Here, the wire 2 coated with the diamond paste 3 is inserted into the shaft inner surface 1a of the blank of a large number of bearing sleeves 1 which are overlapped and fixed. The wire 2 is slid back and forth once or several times in the central axis direction with respect to the bearing sleeve 1.

ワイヤー加工中に軸受スリーブ1とワイヤー2との若干の相対回転動作が起きるので、その場合には縦溝1bの傾斜αが90°からわずかにずれるが、±30°以内ならば潤滑油の保持に影響を与えることはない。この動作を終えて洗浄すると、軸受スリーブ1が完成する。以上の方法によって軸受スリーブ1の内面1aに深さ1μm以下の縦溝を多数本形成することができる。   A slight relative rotational movement between the bearing sleeve 1 and the wire 2 occurs during wire processing. In this case, the inclination α of the longitudinal groove 1b slightly deviates from 90 °, but if it is within ± 30 °, the lubricating oil is retained. Will not be affected. When this operation is finished and washed, the bearing sleeve 1 is completed. By the above method, a large number of longitudinal grooves having a depth of 1 μm or less can be formed on the inner surface 1 a of the bearing sleeve 1.

なお、ワイヤー2の代わりにダイヤモンド粒をワイヤー表面に電着によって被着した電着ワイヤーを用いてもよい。この加工は軸受スリーブが円筒形状を有するワイヤー加工可能なセラミックス全般、さらに金属やカーボン、ダイヤモンドなどの材料でも可能である。   Instead of the wire 2, an electrodeposited wire in which diamond grains are deposited on the wire surface by electrodeposition may be used. This processing can be performed with all wire-processable ceramics having a cylindrical bearing sleeve, and with materials such as metal, carbon, and diamond.

次に、本発明の実施の形態の効果について説明する。本発明の方法を用いて作製した軸受と軸との二面間に形成される潤滑油膜の最小厚さをhmin 、二面の粗さの自乗平方根粗さをそれぞれRarms1、Rarms2とすると、実際の摺動面における潤滑状態の目安となる油膜パラメータeはe=hmin /(Rarms1+Rarms2)で表され(NIPPON VALQUA INDUSTRIES.LTDのHP参照)、この軸受と軸との間には境界潤滑機構ではなく流体潤滑機構が発生していると考えられる。   Next, effects of the embodiment of the present invention will be described. When the minimum thickness of the lubricating oil film formed between the two surfaces of the bearing and the shaft manufactured using the method of the present invention is hmin and the square root roughness of the roughness of the two surfaces is Rarms1 and Rarms2, respectively, The oil film parameter e, which is a guideline of the lubrication state on the sliding surface, is expressed by e = hmin / (Rarms1 + Rarms2) (refer to NIPPON VALQUA INDUSTRIES.LTD HP). It is considered that a lubrication mechanism has occurred.

Al、ZrO、Si、SiC等のファインセラミックスを材料として用いることにより、錆の発生、腐食、焼き付きを防止できる。セラミックスの硬度はHv1000以上であるため、耐摩耗性に優れ、溝形状が保持されやすい。したがって耐久性の向上及び耐熱性の向上が期待できる。また、セラミックスの熱膨張係数が小さいため温度上昇時の形状変化が少ないという利点がある。 By using fine ceramics such as Al 2 O 3 , ZrO 2 , Si 3 N 4 , and SiC as materials, rust generation, corrosion, and seizure can be prevented. Since the ceramic has a hardness of Hv1000 or more, it has excellent wear resistance and the groove shape is easily maintained. Therefore, improvement in durability and improvement in heat resistance can be expected. Moreover, since the thermal expansion coefficient of ceramics is small, there is an advantage that there is little shape change at the time of temperature rise.

軸受スリーブ1と軸とのクリアランスを少なく設計できるが、縦溝1bの深さはクリアランスと等しいかそれ以下であることが望ましい。特に、内部クラックの発生を抑制し、結晶粒界の脱落が起きないように考慮するとその溝深さは1μm以下であることが望ましく、本発明の方法を用いることにより可能になる(図3のY(軸に垂直方向)Profile参照)。その表面粗さは図3の軸受内径加工面表面粗さ測定グラフに示すように、非接触式表面粗さ計を用いた測定でRa0.1μm程度、Ry0.5μm程度となった。油膜が1μmでも油溜め効果が発揮され流体潤滑機構が発生する。また、オイルミストレベルの薄膜においても潤滑はできる。   Although the clearance between the bearing sleeve 1 and the shaft can be designed to be small, the depth of the longitudinal groove 1b is preferably equal to or less than the clearance. In particular, when the occurrence of internal cracks is suppressed and the crystal grain boundary is prevented from falling off, the groove depth is desirably 1 μm or less, which is possible by using the method of the present invention (FIG. 3). Y (perpendicular to axis) Profile). The surface roughness was about 0.1 μm Ra and about 0.5 μm Ry when measured using a non-contact type surface roughness meter, as shown in the graph for measuring the surface roughness of the inner surface of the bearing inner diameter in FIG. Even if the oil film is 1 μm, the oil reservoir effect is exhibited and a fluid lubrication mechanism is generated. Lubrication is also possible for oil mist level thin films.

本発明の軸受スリーブ及びその製造方法は小型ジャーナル軸受一般に広く適用できるものである。   The bearing sleeve and the manufacturing method thereof according to the present invention can be widely applied to small journal bearings in general.

本発明の実施の形態である軸受スリーブの中央縦断面図である。It is a center longitudinal cross-sectional view of the bearing sleeve which is embodiment of this invention. 本発明のワイヤー加工方法を示す断面図である。It is sectional drawing which shows the wire processing method of this invention. 本発明の軸受内径加工面表面粗さと溝深さを測定したグラフである。It is the graph which measured the bearing inner surface processing surface surface roughness and groove depth of this invention.

符号の説明Explanation of symbols

1 軸受スリーブ
1a 内面
1b 縦溝
2 ワイヤー
3 ダイヤモンドペースト
DESCRIPTION OF SYMBOLS 1 Bearing sleeve 1a Inner surface 1b Longitudinal groove 2 Wire 3 Diamond paste

Claims (5)

ジャーナル軸受の内面に回転方向に略直交する微細な縦溝を多数有することを特徴とする軸受スリーブ。   A bearing sleeve having a large number of fine vertical grooves substantially orthogonal to the rotation direction on the inner surface of a journal bearing. 前記軸受スリーブの材料はセラミックスであることを特徴とする請求項1記載の軸受スリーブ。   The bearing sleeve according to claim 1, wherein a material of the bearing sleeve is ceramic. 請求項1又は請求項2記載の軸受スリーブを製造する方法において、前記縦溝は重ねた多数の軸受スリーブの軸穴にワイヤーを挿通して加工することを特徴とする軸受スリーブの製造方法。   3. The method of manufacturing a bearing sleeve according to claim 1, wherein the longitudinal grooves are processed by inserting wires into shaft holes of a plurality of stacked bearing sleeves. 前記ワイヤー加工で用いるワイヤーには粒径φ10μm以下のダイヤモンド粒を被着したことを特徴とする請求項3記載の軸受スリーブの製造方法。   4. The method of manufacturing a bearing sleeve according to claim 3, wherein the wire used in the wire processing is coated with diamond grains having a particle diameter of 10 [mu] m or less. 前記粒径は、より好ましくはφ2〜φ4μmであることを特徴とする請求項4記載の軸受スリーブの製造方法。
The method for manufacturing a bearing sleeve according to claim 4, wherein the particle diameter is more preferably φ2 to φ4 μm.
JP2004261702A 2004-09-08 2004-09-08 Bearing sleeve and its manufacturing method Pending JP2006077867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261702A JP2006077867A (en) 2004-09-08 2004-09-08 Bearing sleeve and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261702A JP2006077867A (en) 2004-09-08 2004-09-08 Bearing sleeve and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006077867A true JP2006077867A (en) 2006-03-23

Family

ID=36157497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261702A Pending JP2006077867A (en) 2004-09-08 2004-09-08 Bearing sleeve and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006077867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209816A (en) * 2016-05-24 2017-11-30 三星ダイヤモンド工業株式会社 Cutter wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209816A (en) * 2016-05-24 2017-11-30 三星ダイヤモンド工業株式会社 Cutter wheel
TWI732864B (en) * 2016-05-24 2021-07-11 日商三星鑽石工業股份有限公司 Scoring wheel

Similar Documents

Publication Publication Date Title
CN100504090C (en) Sliding bearing
US8381695B2 (en) Workpiece having a tribologically useable surface and method for producing such a surface
EP1589212A1 (en) Cylinder block and method for manufacturing the same
JP2006509967A (en) Structured layer system
JP2009002436A (en) Rolling slide member
JP5974695B2 (en) Drill and method for manufacturing drill tip
JP5196495B2 (en) Structural member for sliding and manufacturing method thereof
JP4798669B2 (en) Reamer
JP5176378B2 (en) Rolling sliding member and rolling device using the same
US20060220322A1 (en) Replenishment pockets on piston rings for the prevention of microwelding
JP2006077867A (en) Bearing sleeve and its manufacturing method
JP2011133000A (en) Cylindrical roller bearing device
JP4253593B2 (en) Sliding surface structure and forming method of sliding member
JP4794602B2 (en) Grinding wheel tip and grinding wheel using this grinding wheel tip
JP5152717B2 (en) Structural member and manufacturing method thereof
TWM619455U (en) Double edge-trimming dynamic pressure bearing structure
JP2006088242A (en) Drilling tool
JP2007303622A (en) Sliding member
JP2009119542A (en) Rotating tool for drilling and manufacturing method of yoke for universal-joint
JP2007177838A (en) Rolling bearing
JP3580580B2 (en) Hydrodynamic bearing
JPH0293115A (en) Ceramic rotating shaft
JP4412466B2 (en) Hydrodynamic bearing device and processing method thereof
JPS61167718A (en) Bearing material and manufacture thereof
JP2007319990A (en) Spheroidal graphite cast iron cutting method, spheroidal graphite cast iron, sliding member, and hydraulic equipment